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We study regularity and nonexistence properties for some free-interface problems arising in the
study of limiting vorticities associated to the Ginzburg–Landau equations with magnetic field in two
dimensions. Our results imply in particular that if these limiting vorticities concentrate on a smooth
closed curve then they have a distinguished sign; moreover, if the domain is thin then solutions of the
Ginzburg–Landau equations cannot have a number of vortices much larger than the applied magnetic
field.

1. Introduction and main results

1.1 Presentation of the problem

In this paper, we are interested in the equation

div Tµ = 0 in Ω, (1.1)

where Tµ ≡ ((Tµ)ij )16i,j62 defined by

Tµ =

(
1
2 ((∂2hµ)

2
− (∂1hµ)

2
+ h2

µ) −∂1hµ∂2hµ

−∂1hµ∂2hµ
1
2 ((∂1hµ)

2
− (∂2hµ)

2
+ h2

µ)

)

is the symmetric stress-energy tensor associated to the solution hµ ∈ H 1(Ω) of the equation{
−∆h+ h = µ in Ω,
h = c on ∂Ω (c ≡ 0 or c ≡ 1).

(1.2)

Equation (1.1), understood in the sense of distributions as ∂1(Tµ)i1 + ∂2(Tµ)i2 = 0 for i = 1, 2,
arises in the study of limiting vorticities for the Ginzburg–Landau equations in superconductivity
which we will discuss in the next subsection. In the context of Ginzburg–Landau theory, (1.2)
corresponds to the limit of the “London equation”, and (1.1), obtained by passing to the limit in
the stress-energy tensor associated to the Ginzburg–Landau energy Gε (see (1.4)), is a criticality
condition on the limiting measures µ of critical points of Gε. In (1.1)–(1.2), the domain Ω is a
smooth bounded domain in R2 corresponding to a section of the superconducting material and µ is
a measure belonging to H−1(Ω), the dual of the Sobolev space H 1

0 (Ω). Finally, we note that (1.1)
can be formally written as ∇hµµ = 0 and thus µ is a (weak version of) stationary solution of the
evolution problem

d
dt
µ(t)− div(∇hµ(t)|µ(t)|) = 0 in Ω (1.3)
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which has recently been studied using a gradient flow approach by Ambrosio and Serfaty. See [1]
and the references therein for previous studies of (1.3).

If µ ∈ Lp(Ω) for some p > 1, then it was proved in [11, Theorem 13.1] that for c ≡ 1,
the solution hµ ∈ H 1(Ω) to (1.1)–(1.2) satisfies 0 6 hµ 6 1 and µ is in fact a nonnegative L∞

function and that for c ≡ 0, (1.1)–(1.2) has no solutions except for the trivial measure µ = 0.
In the present paper, we investigate equation (1.1) with measures µ more singular than those

considered above: µ is only in H−1(Ω). A typical example of µ ∈ H−1(Ω) is the arclength
measure along a smooth closed curve in Ω with some weight. It is precisely this case that we will
consider in the paper. At first, this setting seems to be restrictive; however, when µ is viewed as the
limiting vorticity for the Ginzburg–Landau equations, this situation is quite natural as can be seen
in a recent result of Aydi [2]. Thus, in the following, we consider measures µ ∈ H−1(Ω) having
support suppµ = Σ , a smooth closed curve in Ω and being absolutely continuous with respect to
the arclength measure on Σ with nowhere-zero density.

We will be in particular interested in the existence and nonexistence results for (1.1)–(1.2)
depending on µ, the regularity of Tµ and hµ, the sign of µ and its positivity depending on the
spectral properties of the domain Ω . These problems in the end have some similar flavor to the
studies of free boundaries and their regularity (see also Section 4); however, we have not seen many
results on similar questions.

1.2 Connections to Ginzburg–Landau vortices

Our study of the equation (1.1) is motivated by two open problems (Problems 17 & 18) in the book
of Sandier and Serfaty [11] about the limiting vorticities for the critical points {(uε, Aε)}ε>0 of the
Ginzburg–Landau energy in superconductivity

Gε(u,A) =
1
2

∫
Ω

(
|∇u− iAu|2 +

1
2ε2 (1− |u|

2)2 + |h− hex|
2
)
. (1.4)

Here u is a complex-valued function called the order parameter and its isolated zeros are called
vortices; hex > 0 is the intensity of the applied magnetic field; A : Ω → R2 is the vector potential
and h = curlA = −∂2A1 + ∂1A2 is the induced magnetic field.

There has been much interest in the limiting vorticity measures associated to critical points of
the Ginzburg–Landau energy; see the books by Bethuel, Brezis and Hélein [3] and Sandier and
Serfaty [11] and the references therein for an abundant literature on the subject.

In the following, we summarize some results and recall some open problems concerning
Ginzburg–Landau vortices in [11] (see also [10]) that are closely related to (1.1)–(1.2).

Let {(uε, Aε)}ε>0 be critical points of Gε. Then

−∇
⊥hε = (iuε,∇uε − iAεuε) in Ω, hε = hex on ∂Ω. (1.5)

Here ∇⊥ denotes the operator (−∂2, ∂1) and (·, ·) the scalar product in C identified with R2, i.e.,
(a, b) = (ab + ab)/2. The important quantity carrying the topological information on the vortices
of uε is the vorticity µε defined by

µε = µε(uε, Aε) = curl (iuε,∇uε − iAεuε)+ curlAε.

Taking the curl of (1.5), one obtains −∆hε + hε = µε with µε approximately 2π
∑
i d

ε
i δaεi (see

(1.6)). This is what is called the London equation in physics. The aεi ’s are essentially the vortices
with degrees dεi .
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Now, we can recall the following

THEOREM 1.1 ([11, Theorem 13.1]) Let {(uε, Aε)}ε>0 be critical points of Gε that satisfy the
energy bound Gε(uε, Aε) 6 C0ε

α−1 for any ε > 0 where α > 2/3 is independent of ε. Then
the vorticity µε can be approximated by a sum of Dirac masses in the sense that for any ε > 0
there exists a measure νε of the form 2π

∑
i d

ε
i δaεi , where the sum is finite, aεi ∈ Ω and dεi ∈ Z for

every i, such that
‖µε − νε‖W−1,p(Ω)‖µε − νε‖C0(Ω)∗ → 0 (1.6)

for some p ∈ (1, 2).
Let {νε}ε>0 be any measure of the form 2π

∑
i d

ε
i δaεi satisfying (1.6) and set nε =

∑
i |d

ε
i |, the

total degree of the vortices. There are four regimes to distinguish according to the ratio of nε to the
external field hex: possibly after passing to a subsequence, one of the following holds:

(0) nε = 0 for any ε small enough and then µε tends to 0 in W−1,p(Ω).
(1) nε = o(hex) is nonzero for ε small enough, and then µε/nε converges in W−1,p(Ω) to a

measure µ such that µ∇H0 = 0. Hence the support of µ is contained in the set of critical points
of H0, the solution to the London equation, i.e., (1.2) with µ ≡ 0 and c ≡ 1.

(2) hex ∼ λnε with λ > 0 and then µε/hex converges in W−1,p(Ω) to a measure µ and hε/hex

converges in W 1,p
loc (Ω) to a solution of (1.2) with c ≡ 1.

(3) hex = o(nε) and then µε/nε converges in W−1,p(Ω) to a measure µ and hε/nε converges in
W

1,p
loc (Ω) to the solution of (1.2) with c ≡ 0.

In cases (2) and (3), if µ ∈ H−1(Ω) then the solution hµ ∈ H 1(Ω) of (1.2) and its associated
symmetric stress-energy tensor Tµ ≡ ((Tµ)ij )16i,j62 defined by

Tµ =

(
1
2 ((∂2hµ)

2
− (∂1hµ)

2
+ h2

µ) −∂1hµ∂2hµ

−∂1hµ∂2hµ
1
2 ((∂1hµ)

2
− (∂2hµ)

2
+ h2

µ)

)
(1.7)

has the following properties: Tµ is in L1
loc(Ω),

div Tµ = 0 in the sense of distributions and |∇hµ|2 ∈ W
1,q
loc (Ω) ∀q ∈ [1,∞). (1.8)

The first property of (1.8) means that for i = 1, 2, we have ∂1(Tµ)i1 + ∂2(Tµ)i2 = 0 in the sense of
distributions while the latter property implies that hµ is locally Lipschitz.

Thus, cases (2) and (3) correspond to equation (1.1). These cases are most interesting but not
very well understood, especially when µ is not absolutely continuous with respect to the Lebesgue
measure. The main question is to understand the nontriviality and the sign of µ (recall that µ is the
limiting measure of (2π/nε)

∑
i d

ε
i δaεi ), which in turn gives qualitative information on the behavior

of vortices.
In the rest of the section, we will be more specific on this question. In Theorem 1.1, dεi ’s are the

degrees of the vortices aεi ’s; typically dεi = ±1 in stable configurations. On the ε-level, it is expected
that dεi ’s can have different signs and thus the approximating measures νε are not necessarily of
distinguished sign. When we do the space rescaling as in cases (2) and (3), close vortices of different
signs may annihilate each other. This leads us to an open problem (Problem 17 of [11]) about the
possibility of having solutions with nonpositive/changing sign limiting measures. Our Corollary
1.1(i) in the next section partially answers this in the negative direction.
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In the above theorem, if all vortices have uniformly bounded degrees (which is physically
possible) then the quantity nε is basically the total number of vortices of the critical points of the
Ginzburg–Landau energy. Case (3) only happens for critical points with a number of vortices nε
much larger than the applied magnetic field hex. This leads us to another open problem (Problem 18
in [11]) about the possibility of having critical points with a number of vortices much larger than
the applied magnetic field hex. As we will see in Theorem 1.2 below, for thin domains, the answer
to this open problem is negative.

Recall that if µ ∈ Lp(Ω) where p > 1 then the answer to both Problems 17 & 18 is negative;
this fact was established in Theorem 13.1 of [11].

We note that our assumption on µ in the context of Ginzburg–Landau vortices corresponds to
the case where limiting vortices concentrate on a closed smooth curve in Ω . This type of limiting
vorticity can happen. Indeed, recently Aydi [2] showed that when Ω is the unit disc, a nonzero
vorticity µ which is supported in a finite union of concentric circles can actually arise as limit of the
vorticities of some family of solutions.

1.3 Main results and methods of proof

Our first result concerns the regularity of hµ in terms of that of µ.

PROPOSITION 1.1 Suppose that µ is absolutely continuous with respect to the arclength measure
on Σ with density f ∈ W 2,p(Σ) for some p > 1, i.e., µ = fH1

bΣ. Then the solution hµ of (1.2)
is C1,1−1/p up to the boundary on each subdomain of Ω enclosed by Σ and/or ∂Ω .

REMARK 1.1 Every µ as in the above proposition is in W−1,q(Ω) for all q > 1.

We note that (1.1)–(1.2) implies (1.8); see, e.g., [11]. Below, we need (1.8) and the following
condition on the solution hµ of (1.2):

(A) hµ is C1 up to the boundary on each side of Σ.

Rather than imposing this condition on hµ, we feel it is more natural to impose a condition on the
measure µ. This is why we gave a sufficient condition in terms of µ in Proposition 1.1. By this
proposition, (A) is satisfied if µ = fH1

bΣ with f ∈ W 2,p(Σ) for some p > 1.
When µ is clear from context, the subscript µ is dropped in hµ, Tµ, etc.

NOTATION We denote by λ1(Ω) the first eigenvalue of the Laplace operator −∆ on Ω with
zero Dirichlet boundary condition. By (1.8), T is a locally bounded tensor. With the additional
assumption (A), its regularity is improved. This is the object of our next result which confirms the
continuity of T and the nonsolvability of (1.1)–(1.2) for nonzero measures µ on a thin domain.

THEOREM 1.2 Assume that (A) is satisfied. Then

(i) T is continuous in Ω and h is equal to a constant c∗ on Σ .
(ii) If either λ1(Ω) > 1 or diam(Ω)|Ω|1/2 6 2π1/2 then (1.1)–(1.2) with c ≡ 0 has no solution

with a nonzero measure µ ∈ H−1(Ω).
(iii) If Ω = BR then (1.1)–(1.2) with c ≡ 0 has no solution with a nonzero measure µ ∈ H−1(Ω)

supported on a circle.

For the case µ ∈ Lp(Ω) for some p > 1 in case (2) of Theorem 1.1, it can be shown that
the measure µ is in fact given by a nonnegative L∞ function. In contrast, in our case with a more
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singular vorticity measure µ, there is no gain in the regularity of µ, except its density with respect
to the arclength measure on Σ . However, there is a gain in regularity for the stress-energy tensor T
and on h. As a simple consequence of the constancy of h on Σ , there is also an improvement in the
regularity of h on each side of Σ : h is C∞ up to the boundary on each side of Σ . Furthermore, µ is
absolutely continuous with respect to the arclength measure onΣ with smooth density f ∈ C∞(Σ)
(see (3.6)). In addition, we obtain further information on the sign of µ in the following

COROLLARY 1.1 Suppose that (1.1)–(1.2) and (A) are satisfied. Then

(i) µ is a Radon measure with a fixed sign.
(ii) If µ is a measure with constant density on Σ , then Σ is a circle.

(iii) If, in addition, h = 1 on ∂Ω andΩ is thin enough, i.e., λ1(Ω) > 1 or diam(Ω)|Ω|1/2 6 2π1/2,
then µ is a positive Radon measure.

Let us say a few words about the methods of proof. The proof of Proposition 1.1 is
straightforward from potential-theoretic arguments. For the proof of part (i) of Theorem 1.2, the
key idea is to express the stress-energy tensor T in the normal-tangential frame (ν, τ ) associated
with Σ . In this frame, due to the smoothness of Σ and assumption (A), we have the regularity of
T in the tangential direction. What prevents T from being continuous is the jump in the normal
derivative of h. At this point we use the divergence-free property of T to show that its normal
components are preserved and thus continuous through Σ . The constancy of h on Σ is crucial in
the proof of parts (ii) and (iii) of Theorem 1.2. It allows us to reflect part of the graph of the function
h in Ω−, the region enclosed by Σ , over the horizontal plane z = c∗ in R3. By this reflection, we
obtain equation (3.10) which is less singular than (1.2). Then we can use some type of Aleksandrov
weak maximum principle and the modified Bessel functions to conclude.

The paper is organized as follows. In Section 2, we prove Proposition 1.1. The proof of Theorem
1.2 and Corollary 1.1 is presented in Section 3. Our study leaves as many problems open as it solves.
We present a list of open questions and conjectures in Section 4.

2. Proof of Proposition 1.1

Before proving this proposition, we make a few simplifications. First, we can assume that c = 0.
Indeed, if c = 1 then we can split h = h0 + h1 where h0 and h1 solve the following equations
respectively:

−∆h0 + h0 = µ in Ω, h0 = 0 on ∂Ω,

and

−∆h1 + h1 = 0 in Ω, h1 = 1 on ∂Ω.

Because h1 ∈ C
∞(Ω) by standard regularity theory, the regularity of h is that of h0.

Second, we only need to establish the regularity results for the simpler equation{
−∆u = µ in Ω,
u = 0 on ∂Ω.

(2.1)

To see this, recall that by Remark 1.1 we have µ ∈ W−1,2p(Ω) and therefore, by elliptic regularity,
h ∈ W 1,2p(Ω). Let v solve −∆v = −h in Ω with v = 0 on ∂Ω. Then v ∈ W 3,2p(Ω) and thus
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v ∈ C2,1−1/p(Ω). Let H = h− v. Then H is the solution to (2.1). Therefore, the regularity (in C1)
of h is the same as that of H . From now on, by h we mean the solution to (2.1).

Third, we can assume that the smooth curve Σ , the support of µ, is a circle. This follows
from the fact that the regularity of an elliptic equation is unaltered through a conformal change of
variables. Let Ω− be the subdomain of Ω enclosed by Σ . We can find a smooth map (x, y) ∈
Br 7→ (f (x, y), g(x, y)) ≡ (X, Y ) ∈ Ω− with ∂f/∂x = ∂g/∂y, ∂f/∂y = −∂g/∂x. In Br , let
h̃(x, y) = h(X, Y ) = h(f (x, y), g(x, y)). Then a simple calculation gives

−∆h̃(x, y) = ∆h(X, Y )|∇f |2 = µ(X, Y )|∇f |2 = µ̃(x, y).

Note that dµ/(dH1
bΣ) and dµ̃/(dH1

b∂Br) have the same smoothness.
Finally, we can assume that Ω and Br are concentric discs. Indeed, let BR c Ω and let u solve

−∆u = µ in BR , u = 0 on ∂BR. Because suppµ b Ω b BR , we find that u is C∞ in BR \Ω up
to its boundary. Thus u = g ∈ C∞(∂Ω) on ∂Ω . We have{

−∆(u− h) = 0 in Ω,
u− h = g on ∂Ω.

By elliptic regularity, u − h ∈ C∞(Ω). Thus, the regularity of h is the same as that of u.
Consequently, by scaling, we assume that Ω is the unit disc, i.e., Ω = B1.

In conclusion, we only need to establish the regularity results for the simplest equation{
−∆u = µ in B1,

u = 0 on ∂B1,
(2.2)

with µ supported on a circle, say, ∂Br (0 < r < 1).
As a preparation for the proof of Proposition 1.1, we prove the following

LEMMA 2.1 If dµ(y) = f (y) dH1
b∂Br (0 < r < 1) where f ∈ W 2,p(∂Br) (p > 1) then the

function k defined by k(x) =
∫

log |x − y| dµ(y) belongs to W 2,p(∂Br) when restricted to ∂Br .

Proof. For x ∈ ∂Br , we write x = reit (0 6 t < 2π ) and define

k(t) = k(x) =

∫
log |reit − y| dµ(y).

Then, writing y = reiϕ (0 6 ϕ < 2π ) for y ∈ ∂Br , we have

|reit − y|2 = |reit − reiϕ |2 = r2
|1− ei(t−ϕ)|2 = 2r2(1− cos(t − ϕ))

and therefore

k(t) =
1
2

∫
log |x − y|2 dµ(y) =

1
2

∫
∂Br

log |x − y|2 dµ(y)

=
1
2

∫
log(2r2(1− cos(t − ϕ)))f (ϕ)r dϕ

=
1
2

∫
log(1− cos(t − ϕ))f (ϕ)r dϕ +

1
2

∫
log(2r2)f (ϕ)r dϕ.
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It follows that the regularity of k is that of g(t) =
∫

log(1 − cos(t − ϕ))f (ϕ) dϕ. We can rewrite
g as g(t) = w ∗ f (t) where w(s) = log(1 − cos(s)) ∈ L1(0, 2π). Now, if f ∈ W 2,p(∂Br) then
g ∈ W 2,p(0, 2π) and thus, when restricted to ∂Br , k ∈ W 2,p(∂Br) as claimed. 2

Now, after simplifications, the proof of Proposition 1.1 is reduced to that of the following

PROPOSITION 2.1 Let dµ(y) = f (y) dH1
b∂Br (0 < r < 1) where f ∈ W 2,p(∂Br) (p > 1).

Then the solution to the equation (2.2) is C1,1−1/p up to the boundary on each subdomain of Ω
enclosed by ∂Br and/or ∂B1.

Proof. We have u(x) =
∫
G(x, y) dµ(y) where G is the Green function associated with B1:

−∆yG = δx in B1, G = 0 on ∂B1.

An explicit formula for G(x, y) (see, e.g., [7]) is given by

G(x, y) = −
1

2π
log |x − y| +

1
2π

log
∣∣∣∣|x|(y − x

|x|2

)∣∣∣∣
= −

1
2π

log |x − y| +
1

2π
log

√
|x|2|y|2 − 2x · y + 1.

Thus

u(x) = −
1

2π

∫
log |x − y| dµ(y)+

1
4π

∫
log(|x|2|y|2 − 2x · y + 1) dµ(y)

= −
1

2π
k(x)+ smooth function in x.

By Lemma 2.1, when restricted to ∂Br , k is in W 2,p on ∂Br and so is u. Therefore u ∈ C1,1−1/p

on ∂Br . By a standard regularity result (see, e.g., [6]), the proposition follows. 2

3. Proofs of Theorem 1.2 and Corollary 1.1

Let Ω− (resp. Ω+) be the region in Ω enclosed by Σ (resp. by Σ and ∂Ω). On Σ , we choose the
unit normal vector ν pointing into Ω+. In the normal-tangential frame (ν, τ ), we have

T =

(
Tνν Tντ
Tτν Tττ

)
=

( 1
2 ((∂τh)

2
− (∂νh)

2
+ h2) −∂νh∂τh

−∂νh∂τh
1
2 ((∂νh)

2
− (∂τh)

2
+ h2)

)
.

Proof of Theorem 1.2(i). By assumption (A), the tangential derivative ∂τh exists and is continuous
on Σ , and in Ω− with the frame (ν, τ ), the normal derivative ∂νh exists and is continuous up to its
boundary Σ . Therefore, T is continuous on each side of Σ up to the curve Σ .

First, we prove the continuity of T through Σ . Indeed, since h is smooth off Σ , T has Σ as its
only curve of discontinuity. Denote by T +(Σ) (resp. T −(Σ)) the trace of T |Ω+ (resp. T |Ω− ) onΣ .
By the divergence-free property of T , we have∫

Ω

T · ∇ϕ = 0 (3.1)
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for all test functions ϕ ∈ C1
c (Ω).We now consider test functions ϕ whose supports crossΣ . Denote

by [T ] = T +(Σ)− T −(Σ) the jump of T across Σ . Then, integrating by parts the equation (3.1),
we see that

0 =
∫
Ω

T · ∇ϕ = −

∫
Ω+
(div T )ϕ −

∫
Ω−
(div T )ϕ −

∫
Σ

ϕ[T ] · ν dH1, (3.2)

whereH1 denotes the 1-dimensional Hausdorff measure. On the right hand side, the first two terms
are zero by the divergence-free property of T in the strong sense on each side of the curve Σ ;
hence the last term must vanish. Because ϕ is arbitrary, this implies that [T ] · ν = 0, meaning
that there is no jump in the normal components of T . Therefore, the normal components of T ,
Tνν = (∂τh)

2
− (∂νh)

2
+ h2 and Tτν = ∂νh∂τh, are continuous through Σ . Recall that (1.1)–

(1.2) implies (1.8) and thus h is continuous through Σ . Hence, it follows that (∂τh)2 − (∂νh)2 is
continuous through Σ , showing that T is continuous through Σ .

Next, we prove the constancy of h on Σ . Let h± be the restrictions of h on Ω±. Then we can
rewrite the equation µ = −∆h+ h in terms of h± as follows:

µ =

(
∂h−

∂ν
−
∂h+

∂ν

)
dH1
bΣ. (3.3)

By (1.8), |∇h|2 is continuous and as proved above, (∂τh)2− (∂νh)2 is continuous throughΣ . Thus,
(∂τh)

2 and (∂νh)2 are continuous through Σ . Consequently, on Σ , we have

∂h−

∂ν
= ±

∂h+

∂ν
. (3.4)

Because µ has a nowhere-zero density on Σ , we deduce from (3.3) and (3.4) that

∂h−

∂ν
= −

∂h+

∂ν
6= 0 (3.5)

and that

µ = 2
∂h−

∂ν
dHn−1

bΣ. (3.6)

Since ∂νh∂τh is continuous through Σ and ∂νh changes its sign through Σ , we must have ∂τh = 0
on Σ . This allows us to conclude that h is equal to a constant c∗ on Σ . 2

Proofs of parts (i) and (ii) of Corollary 1.1. (i) We first prove the nonchanging sign character of µ.
By (3.6), it suffices to prove that ∂h−/∂ν does not change sign, but this is a consequence of the
constancy of h− on Σ and Hopf’s Lemma.

(ii) Suppose that µ is a measure with constant density on Σ . Then, from (3.6), it follows that
∂h−/∂ν is a nonzero constant on Σ . Therefore, h− solves the following overdetermined system:

−∆h− + h− = 0 in Ω−, h− = constant on ∂Ω−,
∂h−

∂ν
= constant 6= 0 on ∂Ω−.

By a celebrated theorem of Serrin [12], we conclude that Ω− is a disc and thus Σ is a circle. 2
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Proof of parts (ii) and (iii) of Theorem 1.2. We argue by contradiction. Suppose that (1.1)–(1.2)
with c ≡ 0 has a solution hµ for a nonzero measure µ ∈ H−1(Ω). Recall by Corollary 1.1(i)
that µ is a Radon measure with a fixed sign. Because the boundary condition of h in (1.2) is 0, we
can assume without loss of generality that µ is a positive Radon measure. Thus, by the maximum
principle,

0 < h+ < c∗ in Ω+, 0 < h− < c∗ in Ω−. (3.7)

The proof will be easier once we reflect part of the graph of the function h inΩ− over the horizontal
plane z = c∗ in R3. More precisely, we consider the function v defined as follows:

v =

{
2c∗ − h− in Ω−,
h+ in Ω+.

(3.8)

Then, as in the proof of Theorem 1.2(i), we have the following identity on Σ :

−∆v + v =

(
∂v−

∂ν
−
∂v+

∂ν

)
dHn−1

bΣ =

(
−∂h−

∂ν
−
∂h+

∂ν

)
dHn−1

bΣ = 0. (3.9)

The last equality follows from (3.5). Thus, by a simple calculation, we get

−∆v + v = 2c∗χΩ− . (3.10)

By (3.7), we have 0 < v < c∗ in Ω+, v = c∗ on Σ , and c∗ < v < 2c∗ in Ω−. Therefore,
Ω− = {v > c∗}. Dividing both sides of (3.10) by c∗, we can assume that c∗ = 1 and the equation
(3.10) can be rewitten as

−∆v + v = 2χ{v>1}. (3.11)

The assertion of Theorem 1.2(ii) with the thinness assumption is now a consequence of the following

PROPOSITION 3.1 If either λ1(Ω) > 1 or diam(Ω)|Ω|1/2 6 2π1/2 then the equation{
−∆v + v = 2χ{v>1} in Ω,
v = 0 on ∂Ω,

(3.12)

has no nontrivial solution.

Proof. Suppose by contradiction that there exists such a nontrivial solution. Then w = {v > 1} has
positive Lebesgue measure. By the maximum principle, v > 0 in Ω .

CASE 1: λ1(Ω) > 1. Let ϕ > 0 be an eigenvector associated with λ := λ1(Ω). Then∫
w

2ϕ dx =
∫
Ω

2χ{v>1}ϕ dx =
∫
Ω

(−∆v + v)ϕ dx =
∫
Ω

(−∆ϕ + ϕ)v dx =
∫
Ω

(λ+ 1)ϕv dx

>
∫
w

(λ+ 1)ϕv dx > (λ+ 1)
∫
w

ϕ dx > 2
∫
w

ϕ dx.

This is impossible because ϕ > 0 and |w| > 0.

CASE 2: diam(Ω)|Ω|1/2 6 2π1/2. In this case v solves the equation −∆v = f where f =
2χ{v>1} − v. Observe that ‖f ‖L∞(Ω) 6 1. Therefore, v ∈ C0(Ω) ∩ W

2,2
loc (Ω) with supΩ v > 1

by the nontriviality of v. We are going to use the following weak maximum principle of A. D.
Aleksandrov to find a contradiction:
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LEMMA 3.1 ([7, Lemma 9.3]) For u ∈ C2(Ω) ∩ C0(Ω), we have

sup
Ω

u 6 sup
∂Ω

u+
diam(Ω)

2π1/2 ‖∆u‖L2(Γ +u )
. (3.13)

In the above lemma, Γ +u is the upper contact set of the continuous function u. It is defined as
the subset of Ω where the graph of u lies below a support hyperplane in R3, i.e.

Γ +u = {y ∈ Ω | u(x) 6 u(y)+ p.(x − y) for all x ∈ Ω for some p = p(y) ∈ R2
}.

In view of (3.13) and the fact that Γ +u ⊂ Ω , one finds that for u ∈ C2(Ω) ∩ C0(Ω),

sup
Ω

u 6 sup
∂Ω

u+
diam(Ω)

2π1/2 ‖∆u‖L2(Ω). (3.14)

By an approximation argument, we can extend the above inequality to functions u ∈ C0(Ω) ∩

W
2,2
loc (Ω). Now applying (3.14) to our function v, we obtain

1 < sup
Ω

v 6 sup
∂Ω

v +
diam(Ω)

2π1/2 ‖∆v‖L2(Ω) =
diam(Ω)

2π1/2 ‖f ‖L2(Ω) 6
diam(Ω)

2π1/2 |Ω|
1/2 6 1,

which is clearly a contradiction completing the proof of Proposition 3.1. 2

REMARK 3.1 For the unit disc B1, we have λ1(B1) = (J0(1))2 > 5 where J0(x) is the Bessel
function of the first kind.

The assertion of Theorem 1.2(iii) is confirmed by the following

PROPOSITION 3.2 For any disc domain Ω = BR , the equation (3.12) has no nontrivial solution
such that w = {v > 1} is a disc Br(x0).

Proof. If w is a disc, then from Theorem 5 in Sirakov [13], it follows that Ω and w are concentric.
Therefore, x0 = 0 and w = Br . It is now convenient to switch back to the potential function h.
Because h− and h+ are respectively the solutions to the equation −∆h+ h = 0 in Br and BR \Br ,
they must be radial: h−(x) = g−(|x|) and h+(x) = g+(|x|). For radial functions h(x) = g(|x|),
the equation −∆h+ h = 0 reads

−g′′(|x|)−
g′(|x|)

|x|
+ g(|x|) = 0.

This equation can be solved with the help of the modified Bessel functions as in Aydi [2]. We define
I0 and K0 to be respectively the modified Bessel function of the first kind and of the second kind:

I0(x) =

∞∑
n=0

x2n

(n!)222n , K0(x) = −(log(x/2)+ γ )I0(x)+

∞∑
n=0

x2n

(n!)222nφ(n),

where φ(n) =
∑n
k=1 1/k for n 6= 0, φ(0) = 0, and γ = limn→∞(φ(n) − log n). These functions

are continuous solutions to the ODE

−y′′ −
y′

x
+ y = 0 for 0 6 x <∞

with a singularity at 0 for K0. See Watson [14] for the alternative definitions and properties. Define
I1 and K1 to be respectively the derivative of I0 and −K0.
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Now, we can use the modified Bessel functions to find h−, g−, h+ and g+. Clearly, they have
the forms

h−(x) = g−(|x|) = aI0(|x|) in Br , h+(x) = g+(|x|) = bI0(|x|)+ cK0(|x|) in BR \ Br

where a, b, c are constants to be determined. Let us use the compatibility conditions on Σ = ∂Br
to find the relations between a, b, c. First, by the continuity of the function h on Σ , we require that
g−(r) = g+(r), which is equivalent to

aI0(r) = bI0(r)+ cK0(r).

Second, by the jump condition (3.5) of the normal derivative of the function h on Σ , we must have
∂g−

∂ν
(r) = −

∂g+

∂ν
(r), which is equivalent to

aI1(r) = −bI1(r)+ cK1(r).

Finding a, b in terms of c from these equations, we obtain

a =
c

2

(
K1(r)

I1(r)
+
K0(r)

I0(r)

)
, b =

c

2

(
K1(r)

I1(r)
−
K0(r)

I0(r)

)
. (3.15)

Observe the following property of Bessel functions:

d
dx
(−K0(x)I0(x)) = K1(x)I0(x)− I1(x)K0(x) > 0 for all x > 0.

Thus, a, b, c have the same sign. Because h− > 0, it follows that a, b, c > 0. Thus h+(R) > 0.
This is a contradiction with the zero Dirichlet boundary condition of h. 2

Proof of Corollary 1.1(iii). Suppose otherwise that µ is a negative Radon measure. Then we must
have c∗ < 0. Indeed, by (3.6) and the negativity of µ, we find that ∂h−/∂ν < 0. Therefore, h−

achieves its maximum at a point x0 inside Ω−. Note also that h− satisfies −∆h− + h− = 0 in Ω−.
Consequently, c∗ < h−(x0) = ∆h

−(x0) 6 0. Consider the function h+. It satisfies−∆h++h+ = 0
in the domain Ω+ and has boundary values h+ = c∗ < 0 on Σ and h+ = 1 on ∂Ω . Therefore, h+

is smooth in Ω+ and we can find a smooth closed curve Σ ′ ⊂ {x ∈ Ω+ | h+(x) = 0} in Ω+. Let
Ω ′ be the subdomain of Ω with boundary ∂Ω ′ = Σ ′. Then, by the thinness assumption on Ω , we
also have the thinness property ofΩ ′, i.e., λ1(Ω

′) > 1 or diam(Ω ′)|Ω ′|1/2 6 2π1/2. Now, consider
the function h′ = h|Ω ′ . It solves {

−∆h′ + h′ = µ 6= 0 in Ω ′,
h′ = 0 on ∂Ω,

with div T ′ = 0 where T ′ is the stress-energy tensor associated with h′ defined similarly to (1.7).
This is impossible by Theorem 1.2(ii) proved above. Thus µ must be a positive Radon measure.

4. Perspectives and open problems

4.1 Optimal regularity and maximum principle

It was proved in [10] that if the limiting vorticity µ is in Lp(Ω) for some p > 1 then the function
h solving (1.1)–(1.2) is in C1,α(Ω) for all α < 1, and furthermore 0 6 h 6 1 if its boundary value
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is 1. These conclusions are not true anymore if µ is only in H−1(Ω). The Lipschitz continuity of h
in this case is optimal as can be seen from the jump relation (3.5) for the normal derivatives of h on
each side of Σ . However, the reflected graph of h is C1,α(Ω) for all α < 1. Indeed, this reflected
graph is just the graph of the function v defined in (3.8). Because v solves−∆v+v = 2c∗χΩ− inΩ
with constant boundary value v = c on ∂Ω , by standard Lp-estimates, we have v ∈ W 2,p(Ω) for
all p > 1. By Sobolev embedding, we conclude that v ∈ C1,α(Ω) for all α < 1.

Now, we show by an example that the bounds 0 6 h 6 1 fail for µ ∈ H−1(Ω). We prove the
following

PROPOSITION 4.1 Let Ω = B1. Then there exists a largest number M > 1 such that for all
c∗ ∈ (1/I0(1),M], we can find r ∈ (0, 1) and a vorticity measure µ concentrated on ∂Br with the
following property: the function hµ solving (1.1)–(1.2) with c ≡ 1 satisfies hµ = c∗ on ∂Br .

Proof. We use the same notations as in the proof of Proposition 3.2. We are looking for a function
h of the form

h−(x) := h(x) = aI0(|x|) in Br , h+(x) := h(x) = bI0(|x|)+ cK0(|x|) in B1 \ Br ,

where a, b, c, r are to be determined such that

aI0(r) = bI0(r)+ cK0(r) = c
∗,

∂h−

∂ν
(r) = −

∂h+

∂ν
(r), bI0(1)+ cK0(1) = 1. (4.1)

As in (3.15), we now find b, c in terms of a from the first two equations in (4.1) to obtain
b = a

K1(r)I0(r)− I1(r)K0(r)

I0(r)K1(r)+K0(r)I1(r)
=

c∗

I0(r)

K1(r)I0(r)− I1(r)K0(r)

I0(r)K1(r)+K0(r)I1(r)
,

c = 2a
I0(r)I1(r)

I0(r)K1(r)+K0(r)I1(r)
=

2c∗

I0(r)

I0(r)I1(r)

I0(r)K1(r)+K0(r)I1(r)
.

Plugging these values of b and c into the last equation in (4.1), we get

q(r) :=
1

I0(r)

{K1(r)I0(r)− I1(r)K0(r)}I0(1)+ 2I0(r)I1(r)K0(1)
I0(r)K1(r)+K0(r)I1(r)

=
1
c∗
. (4.2)

Note that for modified Bessel functions (see [14, p. 80]), I0(r)K1(r)+K0(r)I1(r) = 1/r. Thus

q(r) = r
{K1(r)I0(r)− I1(r)K0(r)}I0(1)+ 2I0(r)I1(r)K0(1)

I0(r)
.

From the graph of q (see Figure 1), the proposition easily follows; observe that min06r61 q(r) 6
q(0.8) < 1 and thus we can choose M = 1/min06r61 q(r). 2

REMARK 4.1 For c∗ ∈ (1,M), there are exactly two pairs (r, µ) where r ∈ (0, 1) and the vorticity
measure µ concentrated on ∂Br with the property: the function h solving (1.1)–(1.2) with c ≡ 1
satisfies h = c∗ on ∂Br . This is a rather unexpected fact.

4.2 Links to the Euler equation and free boundary problems

Equation (1.1)–(1.2) serves as a stationary mean-field model (also called hydrodynamic limit)
for superconducting materials and it has many common features with the Euler equations for
incompressible flow in fluid mechanics. Consider the 2D Euler equation:

∂tv + div(v ⊗ v)+∇p = 0, div v = 0.
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FIG. 1. The graph of q

Introduce the stream function Ψ such that v = ∇⊥Ψ . Then the vorticity becomes

w = curl v = curl(∇⊥Ψ ) = ∆Ψ.

In our equation, µ plays the role of w and h plays the role of Ψ . If µ ∈ Lp(Ω) for some p > 1 then
it was proved in [11, Theorem 13.1] that for c ≡ 1 we have 0 6 hµ 6 1 and µ is a nonnegative L∞

function: µ = hµχ{|∇hµ|=0}. Thus µ is constant on each “patch“ in Ω . This is reminiscent of the
vortex patch problem. In this case, equation (1.2) becomes

−∆h+ h = hχ{|∇h|=0}

and its free-boundary regularity was investigated by Caffarelli–Salazar–Shahgholian [4].
When the limiting vorticity µ is supported on a curve, it has many common features with its

counterpart in the Euler equations: the vortex sheet. For more information on this, we refer to
Chapters 9–11 of Majda and Bertozzi [9].

4.3 Open problems

Our study leaves several open problems.

1. Can we deduce assumption (A) just from the regularity of Σ and the divergence-free property
of T ?

2. If we assume that µ is supported on just a one-dimensional rectifiable curve, can we obtain
similar results? Can we give the best regularity of the curve? Is there an improvement of
regularity?

3. Can the support of µ have a noninteger fractional dimension?
4. To our knowledge, not much is known on equations of the form (3.12) although they seem to be

interesting on their own. Natural questions that arise are:

• When the domain Ω is not thin, does (3.12) have nontrivial solution?
• If Ω is a ball, is the solution to (3.12) radially symmetric? If this is the case then Proposition

3.1 is still true without the thinness assumption on Ω = BR .
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Recall that for an equation of the form −∆u = f (u) in BR with zero Dirichlet boundary
condition, if either f has some suitable continuity (see, e.g., [5]) or f has a definite sign
(see, e.g., [8]) then u is radially symmetric. In our problem, f (u) = 2χ{u>1} − u is neither
continuous nor of a definite sign.
• What is the optimal regularity of the free boundary {v = 1}?
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