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We consider the Monge–Kantorovich problem with transportation cost equal to distance and a
relaxed mass balance condition: instead of optimally transporting one given distribution of mass onto
another with the same total mass, only a given amount of mass, m, has to be optimally transported.
In this partial problem the given distributions are allowed to have different total masses and m
should not exceed the least of them. We derive and analyze a variational formulation of the arising
free boundary problem in optimal transportation. Furthermore, we introduce and analyse the finite
element approximation of this formulation using the lowest order Raviart–Thomas element. Finally,
we present some numerical experiments where both approximations to the optimal transportation
domains and the optimal transport between them are computed.
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1. Introduction

The classical Monge–Kantorovich (MK) problem in optimal transportation consists in finding an
optimal mass preserving map from one distribution of mass, f+, onto another one, f−. In the
relaxed formulation of this problem due to Kantorovich, the map is replaced by a transport plan, a
measure minimizing the transportation cost

C :=
∫

Ω×Ω
c(x, y) γ (x, y) (1.1)

among all measures γ ∈M+(Ω ×Ω) satisfying
∫
A×Ω γ =

∫
A
f+ and

∫
Ω×A γ =

∫
A
f− for any

Borel set A ⊆ Ω . Here Ω is a connected bounded open set in Rn such that the supports of f+ and
f− are inΩ; and c(x, y) is the cost function, usually determined by the distance dΩ(x, y)measured
inside Ω . In addition, M+(·) is the set of nonnegative Radon measures, whilst the set of all Radon
measures will be denoted by M(·). Clearly, if a solution exists, the two distributions should have
the same mass, m = ∫

Ω
f+ = ∫

Ω
f− <∞.

The problem has a variety of applications and has been studied recently with a renewed interest
(see [1, 13, 14, 21]). Numerical methods have been derived for the quadratic cost function (cost
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equals square of the distance; see [7, 3] and the references therein); and, more recently, for the so
called L1 MK problems where the cost function is linear (cost equals distance; see [5]).

In the latter work the cost c(x, y) of transporting one unit of mass from a point x ∈ Ω to a point
y ∈ Ω was assumed equal to the generalized distance

dΩ,k(x, y) = inf
{∫ 1

0
k(s(t))|s′(t)| dt : s ∈ C0,1([0, 1];Ω), s(0) = x, s(1) = y

}
, (1.2)

where k : Ω → R>0 is a given function. In this case an equivalent dual formulation of the MK
problem (see [8] and also [1, 19]) can be written for a vectorial measure q, representing the transport
flux,

C = min
{∫

Ω

k|q| : ∇ . q = f+ − f− in Ω and q . ν = 0 on ∂Ω
}
. (1.3)

Here ∂Ω is the boundary of Ω with normal ν; and the constraints are understood in the sense

−〈q,∇ϕ〉C(Ω) = 〈f+ − f−, ϕ〉C(Ω) ∀ϕ ∈ C1(Ω), (1.4)

where 〈·, ·〉C(D) is the duality pairing on [C(D)]∗×C(D) withM(D) ≡ [C(D)]∗ being the dual of
C(D), and is naturally extended to vector arguments. The dual formulation (1.3) was the basis of the
present authors’ numerical approximation in [5]. We note that the flux contains all the information
on the direction and density of the optimal transportation and its cost; but there as well as in this
paper, we do not find the optimal plan γ .

If the total masses do not agree, the maximal mass that can be transferred from f+ to f− ism =
min{∫

Ω
f+,

∫
Ω
f−}. Determining an optimal transportation plan for this amount m will be called

an unbalanced MK problem. One can also seek an optimal transportation plan for a given amount
of mass, m < min{∫

Ω
f+,

∫
Ω
f−}, which we will call a partial MK problem. The unbalanced and

partial MK problems are free boundary problems, as the optimal transportation domains, as well
as the optimal plan, have to be found. These problems have recently been introduced and studied
theoretically, mainly for the quadratic cost function, by Caffarelli and McCann [10]. In this work
we consider the unbalanced and partial MK problems with the linear transportation cost (L1 MK
problems).

First, we reformulate the problem as a balanced one over an extended region ΩE ⊃ Ω by
introducing fictitious sources and an auxiliary zone of free transportationΣ (a free Dirichlet region,
see [9]) in such a way that if the balanced transportation plan is optimal, only the required mass m
is directly transported in Ω from f+ to f−, and this part of the transport plan is a solution to the
partial MK problem.

Secondly, we make use of the dual formulation (1.3), which is equivalent to the balanced L1 MK
problem also if there is a closed free Dirichlet set. In this case dΩE ,k(x, y) becomes a semidistance,
since k|Σ = 0, and the equivalence was shown by Pratelli [19] under the assumption that k > k0 > 0
inΩE\Σ and is a lower semicontinuous function. We will assume for simplicity that k ≡ 1 inΩ and
is extended to 1 inΩE\Σ , and make use of the special structure of the auxiliary balanced problem to
simplify the flux formulation (1.3), and arrive at a new variational formulation of the partial L1 MK
problem (see (2.7) below). A further simplification is possible for the unbalanced problem, where
some constraints can be accounted for directly (see (2.10)); and this is our reason to distinguish
between these two cases. We note that a different approach to the resolution of unbalanced L2 MK
problems has been suggested in [6].
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Recently, Ekeland [11] has studied theoretically, for the quadratic cost function, the following
optimal matching problem. Several kinds of goods, whose spatial distributions are given measures
f (i) ∈ M+(Ω) with the same total

∫
Ω
f (i) = m, have to be brought together to produce m units

of a final product (one unit of each of these constitutive parts is necessary to manufacture one unit
of the final product). It is required to determine the measure g ∈ M+(Ω) such that

∫
Ω
g = m

and the total cost of transporting all the measures f (i) onto g is minimal. Here we show that our
variational formulation of the unbalanced MK problem can be easily adapted (see (2.11) below),
and used for the numerical approximation of the partial L1 optimal matching problem for a given
m = ∫

Ω
g 6 min{∫

Ω
f (i)} with the measures f (i) not necessarily balanced.

To approximate the problems numerically, we first regularize the nondifferentiable function
|v| in (2.7), (2.10) and (2.11) by (1/r)|v|r . In Section 3, we prove existence and uniqueness for
the Euler–Lagrange equations of these regularized problems; and, in addition, show subsequence
convergence, as r → 1, for the Euler–Lagrange inequality systems associated with (2.7), (2.10) and
(2.11). This proves existence of a solution to these inequality systems and hence to the associated
minimization problems (2.7), (2.10) and (2.11).

In Section 4 we discretize the resulting regularized Euler–Lagrange systems using the Raviart–
Thomas finite element of the lowest order with vertex sampling on nonlinear terms. We prove well-
posedness of these approximations; moreover, we prove convergence as the mesh parameter, h, goes
to zero. In Section 5 we introduce, and prove convergence of, augmented Lagrangian methods to
handle the constraints in the resulting problems. In Section 6 we discuss algorithms to solve the
resulting nonlinear algebraic systems. Finally, in Section 7 we present numerical experiments to
show the effectiveness of our approach. In these experiments, we use adaptive mesh refinement
to improve the accuracy of the flux near its singularities and to enhance the resolution of the free
boundaries surrounding the domains in Ω from/to which the mass is directly transported.

Finally, we note that our formulation for the unbalanced MK problem collapses in the classical
balanced case to an interesting modification of the standard variational formulation in terms of the
transport flux. In addition, the derived numerical method for the unbalanced MK problem solves the
balanced problem at least as efficiently as the mixed scheme in [5].

2. Unbalanced and partial L1 MK problems

Let Ω ⊂ Rn be a connected bounded open Lipschitz set, f+, f− ∈ M+(Ω) be the two
nonnegative mass distributions and m ∈ (0,min{∫

Ω
f+,

∫
Ω
f−}] be the amount of mass that

should be transported from f+ to f−. Following [10] we define the set Γ6(f
+, f−) as the subset

of M+(Ω × Ω) whose left and right marginals are dominated by f+ and f−, respectively, i.e.
γ ∈ Γ6(f

+, f−) if γ ∈M+(Ω ×Ω) and
∫

A×Ω
γ 6

∫

A

f+ and
∫

Ω×A
γ 6

∫

A

f−

for all Borel sets A ⊆ Ω .
Our aim is to solve the partial (unbalanced) L1 MK problem, i.e. to minimize the cost functional

∫

Ω×Ω
dΩ,1(x, y) γ (x, y)

over all measures in Γ m6 (f
+, f−) := {γ ∈ Γ6(f

+, f−) :
∫
Ω×Ω γ = m}. For ease of exposition,

we have assumed here that k ≡ 1 in Ω .



204 J. W. BARRETT AND L. PRIGOZHIN

q+

q−

Q
f + f −

∫
Ω

f̃ + = ∫
Ω

f − − m

∫
Ω

f̃ − = ∫
Ω

f + − m

−ℓ

0

ℓ

FIG. 1. The planes, sources and fluxes.

Let us imbed the space Rn ≡ {x} ≡ {x1, . . . , xn} into Rn+1 ≡ {x, xn+1} as the subspace
xn+1 = 0. We then define two auxiliary sources, f̃−, f̃+ ∈ M+(Ω), supported in two parallel
hyperplanes, xn+1 = ` and xn+1 = −`, respectively, where

` > 1
2 max{dΩ,1(x, y) : x ∈ supp(f+), y ∈ supp(f−)} (2.1)

and such that ∫

Ω

f̃+ =
∫

Ω

f− −m and
∫

Ω

f̃− =
∫

Ω

f+ −m; (2.2)

see Figure 1. We assume that the transport in these two auxiliary hyperplanes, xn+1 = ±`, is free,
i.e. k = 0 on them, so that the distribution of the sources in these hyperplanes is unimportant. We
assume that k = 1 everywhere else in Rn+1. On noting (2.2), the resulting MK problem is then
balanced in ΩE := Ω × [−`, `] with
∫

ΩE

[f+(x)δ(xn+1)+ f̃+(x)δ(xn+1+`)] =
∫

Ω

[f++ f̃+] =
∫

Ω

[f++f−]−m =
∫

Ω

[f−+ f̃−]

=
∫

ΩE

[f−(x)δ(xn+1)+ f̃−(x)δ(xn+1−`)],

where δ ∈M(R) with
∫
R δ = 1 and supp(δ) = {0}. Since the auxiliary hyperplanes, xn+1 = ±`,

are at distance ` from the main one, xn+1 = 0, it follows from (2.1) that the transportation cannot
be optimal if any material is transported to the main hyperplane from an auxiliary one (or vice
versa) and then back. Let Ω± be open Lipschitz sets such that supp(f±) ⊆ Ω± ⊆ Ω . Then as
the transport in the auxiliary hyperplanes is free, optimal interplane transport brings, via straight
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transport rays orthogonal to the main hyperplane and all having the same length `, the mass
∫
Ω
f̃+

from the lower auxiliary hyperplane to Ω− in the main hyperplane, and transfers the mass
∫
Ω
f̃−

from Ω+ in the main hyperplane to the upper hyperplane. We denote the corresponding fluxes as
q±(x) en+1, x ∈ Ω±, respectively, where en+1 ∈ Rn+1 is the unit vector orthogonal toΩ and in the
direction of increasing xn+1. We also introduce the characteristic function χA such that χA(y) = 1
if y ∈ A, and otherwise χA(y) = 0. The optimal flux, q ∈ Rn+1, in ΩE should then have the
following form:

q(x, xn+1) =
[
Q(x)

0

]
δ(xn+1)+ [q+(x)χ(0,`)(xn+1)+ q−(x)χ(−`,0)(xn+1)]en+1

+
[
q+
F
(x)

0

]
δ(xn+1 − `)+

[
q−
F
(x)

0

]
δ(xn+1 + `) ∀x ∈ Ω, xn+1 ∈ [−`, `]. (2.3)

Here Q(x) ∈ Rn is the flux confined to the main hyperplane, xn+1 = 0, and q±
F
(x) ∈ Rn is the free

transport flux in the auxiliary hyperplanes xn+1 = ±`. In the above and below, we have extended
q± from Ω± to Ω by zero.

The equivalent dual flux formulation (1.3) of our auxiliary balanced MK problem with a free
Dirichlet set on ΩE (see [19]) is

min
{∫

ΩE

k|q| : −〈q,∇ϕ〉C(ΩE)
= 〈f̃ , ϕ〉C(ΩE)

∀ϕ ∈ C1(ΩE)

}
,

where f̃ = (f+ − f−)δ(xn+1) + f̃+δ(xn+1 + `) − f̃−δ(xn+1 − `). Substituting (2.3) into this
formulation we obtain ∫

ΩE

k|q| =
∫

Ω

[|Q| + `(|q+| + |q−|)]. (2.4)

Furthermore, the constraint on q over the domain ΩE reduces to three mass balance conditions
over Ω:

−〈Q,∇ϕ〉C(Ω) + 〈q+ − q−, ϕ〉C(Ω) = 〈f+ − f−, ϕ〉C(Ω) ∀ϕ ∈ C1(Ω), (2.5a)

〈q+
F
,∇ϕ〉C(Ω) + 〈q+, ϕ〉C(Ω) = 〈f̃−, ϕ〉C(Ω) ∀ϕ ∈ C1(Ω), (2.5b)

−〈q−
F
,∇ϕ〉C(Ω) + 〈q−, ϕ〉C(Ω) = 〈f̃+, ϕ〉C(Ω) ∀ϕ ∈ C1(Ω). (2.5c)

As we are not directly interested in the free flux q±
F

, since it does not appear in (2.4), and the
distribution of the auxiliary sources f̃± in Ω is not important, we only need to consider constant
test functions ϕ in the equations (2.5b,c). In which case, they collapse, on noting (2.2), to the mass
balance equations

∫

Ω

q+ =
∫

Ω

f+ −m and
∫

Ω

q− =
∫

Ω

f− −m. (2.6)

Defining KP ⊂ [M(Ω)]n ×M(Ω+) ×M(Ω−) as the set of triples (Q, q+, q−) satisfying
(2.5a) and (2.6), we arrive at the following variational formulation of the partial L1 MK problem
for given ` satisfying (2.1):
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(P) Minimize ∫

Ω

[|v| + `(|v+| + |v−|)] (2.7)

over all (v, v+, v−) ∈ KP .

We now show that a minimizer (Q, q+, q−) ∈ KP of (P) is such that q± > 0; that is, under the
assumption (2.1), moving mass to/from an auxiliary plane and back cannot be optimal. If q+ 6> 0,
then q+ = g+−g−, where g± ∈M+(Ω+) with g− 6≡ 0. It follows from (2.6) that

∫
Ω+(g

+−f+)
> −m. Let q̃+ = αg+, where α = (∫

Ω+ f
+ −m)/ ∫

Ω+ g
+, so that

∫
Ω+ (̃q

+ − f+) = −m. Let Q̃
solve the balanced L1 MK problem

min
{∫

Ω

|v| : −〈v,∇ϕ〉C(Ω) = 〈q+ − q̃+, ϕ〉C(Ω) ∀ϕ ∈ C1(Ω)

}
. (2.8)

It is easily deduced that (Q+ Q̃, q̃+, q−) ∈ KP . Furthermore, as Q̃ optimally transfers the positive
part of q+− q̃+, [q+− q̃+]+ = (1−α)g+, to the negative part g−, we have

∫
Ω
g− = (1−α) ∫

Ω
g+

and
∫

Ω

|̃q+| + `
∫

Ω

|̃q+| < 2`(1− α)
∫

Ω

g+ + `α
∫

Ω

g+ = `
∫

Ω

g+ + `
∫

Ω

g− = `
∫

Ω

|q+|.

It follows that
∫

Ω

[|Q+ Q̃| + `(|̃q+| + |q−|)] 6
∫

Ω

[|Q| + |Q̃| + `(|̃q+| + |q−|)]

<

∫

Ω

[|Q| + `(|q+| + |q−|)],

which contradicts (Q, q+, q−) ∈ KP being a minimizer of (P). Therefore q+ ∈ M+(Ω+).
Similarly, we deduce that q− ∈ M+(Ω−). Hence, the minimum value of (2.7) over KP is∫
Ω
|Q| + `[∫

Ω
(f+ + f−) − 2m], and it follows that a minimizer (Q, q+, q−) ∈ KP of (2.7)

is such that Q is the optimal flux for the original partial L1 MK problem.
In the unbalanced case the problem can be simplified. For example, if m = ∫

Ω
f+ 6

∫
Ω
f−,

then it follows from the above that a minimizer (Q, q+, q−) of (2.7) is such that q+ ≡ 0. Therefore
(2.5a) yields q− = ∇ .Q − f+ + f− in Ω and Q. ν = 0 on ∂Ω in a weak sense. Hence both
conditions in (2.6) are satisfied automatically; similarly, if m = ∫

Ω
f− 6

∫
Ω
f+. Setting

VM0 (Ω) := {v ∈ [M(Ω)]n : ∃w := ∇ . v ∈M(Ω) such that

〈w, ϕ〉C(Ω) = −〈v,∇ϕ〉C(Ω) ∀ϕ ∈ C1(Ω)}, (2.9)

we have the following variational formulation of the unbalanced L1 MK problem for given `
satisfying (2.1):

(U) Minimize ∫

Ω

[|v| + `|∇ . v − f+ + f−|] (2.10)

over all v ∈ VM0 (Ω).
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For the balancedL1 MK problem, we deduce from (2.7), as q+ ≡ q− ≡ 0, the known variational
formulation (1.3) with k ≡ 1. However, here we also obtain (2.10) as an alternative formulation,
which is equivalent provided ` satisfies the inequality (2.1).

Let us now assume we are given measures f (i) ∈M+(Ω), i = 1→ I, and we want to transport
the same amount of mass,m 6 min{∫

Ω
f (i)}, from each of these distributions onto another measure,

g ∈M+(Ω) with
∫
Ω
g = m. We need then to solve I unbalanced MK problems (2.10) with f+ =

f (i), f− = g. Since these problems are independent, the optimal transportation fluxes Q(i) can
also be found, if g was given, by minimizing over {v(i)}Ii=1, where v(i) ∈ VM0 (Ω), the functional∑I
i=1

∫
Ω

[|v(i)| + `|∇ . v(i) − f (i) + g|] with ` sufficiently large; e.g. ` > 1
2 diam(Ω). The partial

optimal matching problem consists in determining the measure g ∈ M+(Ω) for which the total
transportation cost

∑I
i=1

∫
Ω
|v(i)| is minimal. This leads to the following variational formulation of

the partial L1 optimal matching problem for given ` > 1
2 diam(Ω):

(PM) Minimize
I∑

i=1

∫

Ω

[|v(i)| + `|∇ . v(i) − f (i) + g|] (2.11)

over all {v(i)}Ii=1, v(i) ∈ VM0 (Ω), and g ∈M+(Ω) satisfying
∫
Ω
g = m.

We note that in some applications one may want to restrict the support of g to a given set
Ωg ⊂ Ω , and hence seek g ∈ M+(Ωg) satisfying

∫
Ωg
g = m. In addition, one can simplify the

problem by assuming that g ∈ L∞(Ωg) with g 6 G for a given constant G > m/|Ωg|, which we
shall do in this paper.

We end this section with a few remarks about the notation employed in this paper. Throughout
we adopt the standard notation for Sobolev spaces on a bounded Lipschitz open set D, denoting
the norm of W j,p(D) (j ∈ N, p ∈ [1,∞]) by ‖ · ‖j,p,D and the seminorm by | · |j,p,D . Of course,
we have | · |0,p,D ≡ ‖ · ‖0,p,D . We extend these norms and seminorms in the natural way to the
corresponding spaces of vector-valued functions. For p = 2, W j,2(D) will be denoted by H j (D)

with the associated norm and seminorm written as, respectively, ‖ · ‖j,D and | · |j,D . We introduce
L
p
M(D) := {η ∈ Lp(D) :

∫
D
η dx = 0}, and recall the Poincaré inequality for any p ∈ [1,∞]:

|η|0,p,D 6 C∗D|∇η|0,p,D ∀η ∈ W 1,p
M (D) := W 1,p(D) ∩ LpM(D), (2.12)

where C∗D depends on D, but is independent of p. The measure of D will be denoted by |D|.
Throughout, for any Banach space V , its dual will be denoted by V ∗.

For our regularized problems in the next section we require, for r ∈ (1,∞), the reflexive Banach
space

V r0(Ω) := {v ∈ V r(Ω) : v . ν = 0 on ∂Ω}, (2.13a)

where

V r(Ω) := {v ∈ [Lr(Ω)]n : ∇ . v ∈ Lr(Ω)}, (2.13b)

with norm

‖v‖V r (Ω) := [|v|r0,r,Ω + |∇ . v|r0,r,Ω ]1/r . (2.13c)
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We note that V r0(Ω) is the strong closure of [C∞0 (Ω)]
n in the norm ‖ · ‖V r (Ω); this can be shown

e.g. by a simple extension of the argument for the case r = 2 in [18, pp. 26–29].
Let C(D) denote the space of continuous functions on D, and CM(D) := {η ∈ C(D) :

∫
D
η

= 0}. As one can identify L1(D) with a closed subspace of M(D), it is convenient to adopt the
notation

∫

D

|µ| ≡ ‖µ‖M(D) := sup
η∈C(D)
|η|0,∞,D61

〈µ, η〉C(D) <∞. (2.14)

We note that if {µj }j>0 is a bounded sequence in M(D), then there exist a subsequence {µj`}j`>0

and a µ ∈M(D) such that as j`→∞,

µj` → µ vaguely in M(D), i.e. 〈µj` − µ, η〉C(D)→ 0 ∀η ∈ C(D). (2.15)

In addition, we have

lim inf
j`→∞

∫

D

|µj` | >
∫

D

|µ|; (2.16)

see e.g. [12, p. 5] and [17, p. 223]. Moreover, we note that for all v ∈ VM0 (Ω), there exists vj ∈
[C∞0 (Ω)]

n such that

vj → v vaguely in [M(Ω)]n, ∇ . vj → ∇ . v vaguely in M(Ω) as j →∞, (2.17a)

lim sup
j→∞

∫

Ω

|vj | 6
∫

Ω

|v|; (2.17b)

e.g. see the proof of Lemma 2.4 in [5], which is based on the standard techniques of partition of
unity, local change of variable and mollification. Similarly to (2.17a,b), for all v ∈ M(Ω) there
exists vj ∈ C∞0 (Ω) such that

vj → v vaguely in M(Ω) as j →∞, and lim sup
j→∞

∫

Ω

|vj | 6
∫

Ω

|v|. (2.18)

Finally, throughout C denotes a generic positive constant independent of the regularization
parameter, r ∈ (1,∞), and the mesh parameter h, whereas Cs1,s2,···sI denotes a generic positive
constant dependent on {si}Ii=1.

3. Existence theory for (P), (U) and (PM) via regularization

Firstly, we gather together our assumptions on the data.

(A1) Let Ω ⊂ Rn, n > 1, be a bounded connected open set with a Lipschitz boundary ∂Ω , if
n > 2. For (P) we assume that f± ∈M+(Ω±) withΩ± an open Lipschitz subset ofΩ , and
m ∈ (0,min{∫

Ω± f
±}]. In all cases, for simplicity, we choose the parameter ` > 1

2 diam(Ω)
with respect to dΩ,1 (recall (1.2)).

Of course, one could assume the relaxed version (2.1) in the case of (P) and (U).
Throughout, we extend functions defined on subsets D of Ω by zero to Ω; and in addition, we

define (η1, η2)D := ∫
D
η1η2 dx, and this is naturally extended to vector functions.
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For any r > 1, we regularize the nondifferentiable nonlinearity |·| by the strictly convex function
(1/r)| · |r . We note that for all b, c ∈ Rn,

1
r

∂|b|r
∂bi
= |b|r−2bi, so |b|r−2b . (b − c) >

1
r

[|b|r − |c|r ]. (3.1)

In addition, for r ∈ (1, 2] and all b, c ∈ Rn we have

(|b|r−2b − |c|r−2c) . (b − c) = (|b|r−1 − |c|r−1)(|b| − |c|)+ (|b|r−2 + |c|r−2)(|b||c| − b . c)
> (r − 1)(|b| + |c|)r−2[(|b| − |c|)2 + 2(|b| |c| − b . c)]
> (r − 1)(|b| + |c|)r−2|b − c|2. (3.2)

3.1 Existence for (P)

For a given r > 1, on setting p = r/(r − 1) so that 1/r + 1/p = 1, we consider the following
problem for given f±r ∈ Lr(Ω±r ) with Ω± ⊆ Ω±r ⊆ Ω and (f±r , 1)Ω±r =

∫
Ω± f

±:

(Pr) Find Qr ∈ V r0(Ω), q±r ∈ Lr(Ω±r ), ur ∈ LpM(Ω) and λ±r ∈ R such that

(|Qr |r−2Qr , v)Ω = (ur ,∇ . v)Ω ∀v ∈ V r0(Ω), (3.3a)

`(|q+r |r−2q+r , v+)Ω+r = (ur − λ+r , v+)Ω+r ∀v+ ∈ Lr(Ω+r ), (3.3b)

`(|q−r |r−2q−r , v−)Ω−r = −(ur + λ−r , v−)Ω−r ∀v− ∈ Lr(Ω−r ), (3.3c)

(∇ .Qr , η)Ω = (f+r − q+r , η)Ω+r − (f−r − q−r , η)Ω−r ∀η ∈ Lp(Ω), (3.3d)

(f+r − q+r , 1)Ω+r = (f−r − q−r , 1)Ω−r = m. (3.3e)

For ρ ∈ LrM(Ω), let

Xr(ρ) := {v ∈ V r0(Ω) : (∇ . v, η)Ω = (ρ, η)Ω ∀η ∈ Lp(Ω)}. (3.4)

In addition, we introduce

Y r(f+r , f−r , m) := {(v, v+, v−) ∈ Xr([f+r − v+]− [f−r − v−])× Lr(Ω+r )× Lr(Ω−r ) :

(f+r − v+, 1)Ω+r = (f−r − v−, 1)Ω−r = m}. (3.5)

It follows from (3.1), (3.4) and (3.5) that a solution of (Pr ) is such that (Qr , q
+
r , q

−
r ) ∈

Y r(f+r , f−r , m) and

Er`(Qr , q
+
r , q

−
r ) 6 Er`(v, v

+, v−) := 1
r

[∫

Ω

|v|r dx + `
∫

Ω+r
|v+|r dx + `

∫

Ω−r
|v−|r dx

]

∀(v, v+, v−) ∈ Y r(f+r , f−r , m); (3.6)

that is, a regularized version of (P).
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LEMMA 3.1 Let the Assumptions (A1) hold. Then for all r > 1 and p = r/(r − 1), given ρ ∈
LrM(Ω) there exists Qρ

r ∈ Xr(ρ) and

‖Qρ
r ‖V r (Ω) 6 (C∗Ω + 1)|ρ|0,r,Ω , (3.7)

where C∗Ω is the constant appearing in (2.12) with D ≡ Ω . Hence it follows that

inf
η∈LpM (Ω)

sup
v∈V r0(Ω)

(∇ . v, η)Ω
‖v‖V r (Ω)|η|0,p,Ω > β−1, (3.8)

where β = 2(C∗Ω + 1) and so is independent of r .

Proof. See the proof of Lemma 2.1 in [5]. 2

THEOREM 3.1 Let the Assumptions (A1) hold. Then for any given r ∈ (1, 2] there exists a unique
solution, (Qr , q

+
r , q

−
r , ur , λ

+
r , λ

−
r ) ∈ V r0(Ω) × Lr(Ω+r ) × Lr(Ω−r ) × LpM(Ω) × R × R, to (Pr).

In addition, we have

‖Qr‖rV r (Ω) + `|q+r |r0,r,Ω+r + `|q
−
r |r0,r,Ω−r 6 CΩ,`[|f+r |r0,r,Ω+r + |f

−
r |r0,r,Ω−r ], (3.9a)

‖ur‖1,p,Ω + |Ω+|(r−1)/r |λ+r | + |Ω−|(r−1)/r |λ−r | 6 CΩ,`[|f+r |r−1
0,r,Ω+r

+ |f−r |r−1
0,r,Ω−r

], (3.9b)

where p = r/(r − 1).

Proof. To prove the existence and uniqueness of a solution to (Pr) and the bounds (3.9a,b), we
adapt the proof of Theorem 2.2 in [5] for the balanced case, when m = (f±r , 1)Ω±r , q±r ≡ 0, and
λ±r = 0.

Firstly, we define qf,±r ∈ L∞(Ω) such that

q
f,±
r :=

{
[(f±r , 1)Ω±r −m]/|Ω±r | > 0 in Ω±r ,
0 in Ω \Ω±r ,

so (f±r − qf,±r , 1)Ω±r = m. (3.10)

It follows from (3.10) that
|qf,±r |0,r,Ω±r 6 |f±r |0,r,Ω±r . (3.11)

Next, we set ρ := [f+r −qf,+r ]− [f−r −qf,−r ] ∈ LrM(Ω). It follows from (3.7) and (3.11) that there
exists Qρ

r ∈ Xr(ρ) and

‖Qρ
r ‖V r (Ω) 6 (C∗Ω + 1)|ρ|0,r,Ω 6 2(C∗Ω + 1)[|f+r |0,r,Ω+r + |f−r |0,r,Ω−r ]. (3.12)

Therefore, on setting Q̂
r

:= Qr −Qρ
r and q̂±r := q±r − qf,±r , the problem (Pr), (3.3a–e), can be

reduced to: Find (Q̂
r
, q̂+r , q̂−r ) ∈ Y r(0, 0, 0) such that

(|Q̂
r
+Qρ

r |r−2(Q̂
r
+Qρ

r ), v)Ω + `(|̂q+r + qf,+r |r−2(̂q+r + qf,+r ), v+)Ω+r
+ `(|̂q−r + qf,−r |r−2(̂q−r + qf,−r ), v−)Ω−r = 0 ∀(v, v+, v−) ∈ Y r(0, 0, 0); (3.13)

which, on recalling (3.6) and (3.1), is the Euler–Lagrange equation for the minimization problem

inf
(v,v+,v−)∈Y r (0,0,0)

Er`(v +Qρ
r , v
+ + qf,+r , v− + qf,−r ). (3.14)
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As Er`(·, ·) is strictly convex and continuous over the convex set Y r(0, 0, 0), there exists a unique
solution (Q̂r , q̂

+
r , q̂

−
r ) ∈ Y r(0, 0, 0) to (3.13). On setting Qr = Q̂r +Qρ

r and q±r = q̂±r + qf,±r , it
follows from (3.13) that (Qr , q

+
r , q

−
r ) ∈ Y r(f+r , f−r , m) is such that

(|Qr |r−2Qr , v)Ω + `(|q+r |r−2q+r , v+)Ω+r + `(|q−r |r−2q−r , v−)Ω−r = 0

∀(v, v+, v−) ∈ Y r(0, 0, 0); (3.15a)

and hence, in particular with v± ≡ 0, that

(|Qr |r−2Qr , v)Ω = 0 ∀v ∈ Xr(0). (3.15b)

It is also easily deduced from (3.3a–e) and (3.5) that any solution (Qr , q
±
r ) of (Pr ) solves (3.15a),

and from (3.2) that it is unique. In addition, it follows from (3.14) and (3.5) that

|Qr |r0,r,Ω + `|q+r |r0,r,Ω+r + `|q
−
r |r0,r,Ω−r 6 |Qρ

r |r0,r,Ω + `|qf,+r |r0,r,Ω+r + `|q
f,−
r |r0,r,Ω−r , (3.16a)

|∇ .Qr |r0,r,Ω 6 [|f+r − q+r |0,r,Ω+r + |f−r − q−r |0,r,Ω−r ]r . (3.16b)

The bound (3.9a) follows immediately from (3.16a,b), (3.12) and (3.11). Obviously, the introduction
of (3.14) is not necessary for proving the existence and uniqueness for (3.6); but it is convenient in
obtaining the bounds (3.9a,b).

Let B ≡ ∇. Then it follows from (2.13a,b) that B : V r0(Ω)→ [LpM(Ω)]
∗ and the dual operator

B∗ : LpM(Ω) → [V r0(Ω)]
∗. Moreover, it follows from (3.8), on noting Lemma I.4.1 and Remark

I.4.2 in [18], that B∗ is an isomorphism fromL
p
M(Ω) ontoZ := {v∗ ∈ [V r0(Ω)]

∗ : 〈v∗, v〉V r0(Ω) = 0
∀v ∈ ker(B) ⊂ V r0(Ω)}, where 〈·, ·〉V r0(Ω) is the duality pairing on [V r0(Ω)]

∗ × V r0(Ω). Hence it
follows from (3.15b), as ker(B) ≡ Xr(0), that there exists a unique ur ∈ LpM(Ω) satisfying (3.3a).
In addition, from (3.8) and (3.3a) we have

|ur |0,p,Ω 6 β sup
v∈V r0(Ω)

(|Qr |r−2Qr , v)Ω

‖v‖V r (Ω) 6 β|Qr |r−1
0,r,Ω . (3.17)

Choosing v∓ ≡ 0 in (3.15a), we have v± = ∓∇ . v; and hence, on noting (3.3a), it follows that
`|q±r |r−2q±r ∓ ur are constant on Ω±r . On choosing

λ±r = −`|q±r |r−2q±r ± ur , (3.18)

we see that (3.3b,c) hold for general v± ∈ Lr(Ω±r ). We have thus proved that there exists a unique
solution to (Pr), (3.3a–e), which is equivalent to the minimization problem (3.6). Furthermore, we
deduce from (3.18) that

|λ±r | 6 |Ω±r |−(r−1)/r [`|q±r |r−1
0,r,Ω±r

+ |ur |0,p,Ω ]. (3.19)

Finally, it follows from (3.3a) that

|(ur ,∇ . v)Ω | = |(|Qr |r−2Qr , v)Ω | 6 |Qr |r−1
0,r,Ω |v|0,r,Ω ∀v ∈ V r0(Ω). (3.20)

Therefore noting thatΩ± ⊆ Ω±r , and combining (3.17), (3.9a), (3.19) and (3.20) immediately yield
the desired result (3.9b). 2
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Next we are more precise about our choice of regularized data f±r for (Pr). With f± ∈M+(Ω±)
being the data for problem (P), we choose, for any r > 1, corresponding regularized data f±r as
follows. If f± ∈ Lr(Ω±) we set f±r ≡ f±, whereas if Ω± ⊂ Ω we set

f±r (x) := 1
|B(x, r − 1)|

∫

B(x,r−1)
f± ∀x ∈ Ω, (3.21)

where B(x, ρ) is the closed ball in Rn centred at x with radius ρ > 0 and f± is extended from Ω±
to Rn by zero. It follows for r − 1 sufficiently small that

Ω± ⊆ Ω±r := Ω± ∪ supp(f±r ) ⊆ Ω, f±r ∈ Lr(Ω±r ),
with f±r > 0 a.e. in Ω and (f±r , 1)Ω±r =

∫

Ω±
f±; (3.22a)

moreover,

lim
r→1
|Ω±r \Ω±| = 0, lim sup

r→1
|f±r |r0,r,Ω±r 6

∫

Ω±
|f±|,

f±r → f± vaguely in M(Ω) as r → 1.
(3.22b)

For general f± ∈M+(Ω), the construction (3.21) can be modified so that (3.22a,b) still hold. For
example, one can partition Ω into a finite number of strictly star-shaped sets Dj , with “centres” xj
and outward unit normals νj on their boundaries ∂Dj , so that (y−xj ) . νj > c > 0 for a.e. y ∈ ∂Dj .
Then employ the local change of variable τ t (x) = xj + t (x − xj ) for t ∈ (0, 1), inducing a push
forward measure, before applying the mollification (3.21); for details see the proof of Lemma 2.4
in [5], where these techniques are used.

In the theorem below, we will show subsequence convergence, as r → 1, of the unique solution
of (Pr), with the above choice of data f±r , to a solution of:

(P̂) Find Q ∈ VM0 (Ω), q± ∈M(Ω±), u ∈ CM(Ω) and λ± ∈ R such that

∫

Ω

|v| −
∫

Ω

|Q| > 〈∇ . (v −Q), u〉C(Ω) ∀v ∈ VM0 (Ω), (3.23a)

`

[∫

Ω+
|v+| −

∫

Ω+
|q+|

]
> 〈v+ − q+, u− λ+〉

C(Ω+) ∀v+ ∈M(Ω+), (3.23b)

`

[∫

Ω−
|v−| −

∫

Ω−
|q−|

]
> −〈v− − q−, u+ λ−〉

C(Ω−) ∀v− ∈M(Ω−), (3.23c)

〈∇ .Q, η〉C(Ω) = 〈f+ − q+, η〉C(Ω+) − 〈f− − q−, η〉C(Ω−) ∀η ∈ C(Ω), (3.23d)
∫

Ω+
(f+ − q+) =

∫

Ω−
(f− − q−) = m. (3.23e)

We now introduce the measure analogues of (3.4) and (3.5). For ρ ∈MM(Ω) := {µ ∈M(Ω) :∫
Ω
µ = 0}, let

XM(ρ) := {v ∈ VM0 (Ω) : 〈∇ . v, η〉C(Ω) = 〈ρ, η〉C(Ω) ∀η ∈ C(Ω)}, (3.24)
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and

YM(f+, f−, m) :=
{
(v, v+, v−) ∈ XM([f+ − v+]− [f− − v−])×M(Ω+)×M(Ω−) :

∫

Ω+
(f+ − v+) =

∫

Ω−
(f− − v−) = m

}
. (3.25)

It follows from (3.23a–e), (3.24) and (3.25) that a solution of (P̂) is such that (Q, q+, q−) ∈
YM(f+, f−, m) and

EM` (Q, q+, q−) 6 EM` (v, v+, v−) :=
∫

Ω

|v| + `
∫

Ω+
|v+| + `

∫

Ω−
|v−|

∀(v, v+, v−) ∈ YM(f+, f−, m); (3.26)

that is (P), (2.7), but with the support of q± restricted to Ω±. Hence, proving existence for (P̂)
yields existence for (P) too. However, as the solution of (P) is possibly not unique, we do not have
the equivalence of the problems (P̂) and (P).
THEOREM 3.2 Let the Assumptions (A1) hold. Then there exists a subsequence {(Qrj ,

q±rj , urj , λ
±
rj
)}rj>1 of {(Qr , q

±
r , ur , λ

±
r )}r>1, where (Qr , q

+
r , q

−
r , ur , λ

+
r , λ

−
r ) ∈ V r0(Ω) × Lr(Ω+r )

×Lr(Ω−r )×LpM(Ω)×R×R is the unique solution of (Pr) with f±r satisfying (3.22a,b), such that
as rj → 1,

Qrj → Q vaguely in [M(Ω)]n, (3.27a)

∇ .Qrj → ∇ .Q vaguely in M(Ω), (3.27b)

q±rj → q± vaguely in M(Ω), (3.27c)

urj → u strongly in C(Ω), (3.27d)

λ±rj → λ± . (3.27e)

Moreover, (Q, q+, q−, u, λ+, λ−) ∈ VM0 (Ω) ×M(Ω+) ×M(Ω−) × CM(Ω) × R × R solves
(P̂), (3.23a–e).

Proof. It follows from (3.9a,b) and (3.22a,b) that for all r sufficiently close to 1,

|Qr |0,1,Ω + |∇ .Qr |0,1,Ω + |q±r |0,1,Ω+r + ‖ur‖1,p∗,Ω + |λ±r | 6 CΩ,Ω±,`,f± , (3.28)

where p∗ > n. The subsequence convergence results (3.27a–e), where {Q, q±, u, λ±} ∈ VM0 (Ω)×
M(Ω)×M(Ω)×C(Ω)×R×R, then follow immediately from (3.28), (2.9) and noting the compact
Sobolev embedding W 1,p∗(Ω) ↪→↪→ C(Ω). As (ur , 1)Ω = 0 for all r > 1, and recalling (3.1), it
follows that the limits {q±, u} are in M(Ω±)× CM(Ω).

Passing to the rj → 1 limit in the rj versions of (3.3d) with η ∈ C(Ω) and (3.3e) shows, on
noting (3.27b,c) and (3.22b), that (3.23d,e) hold.

For any ξ ∈ [C∞0 (Ω)]
n, we choose v = ξ −Qrj in the rj version of (3.3a) to deduce, on noting

(3.1), that

(urj ,∇ . (Qrj − ξ))Ω = (|Qrj |rj−2Qrj ,Qrj − ξ)Ω >
1
rj

∫

Ω

|Qrj |rj dx − 1
rj

∫

Ω

|ξ |rj dx. (3.29)
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For all ξ ∈ [C∞0 (Ω)]
n, we have

1
r

∫

Ω

|ξ |r dx →
∫

Ω

|ξ | dx as r → 1; (3.30)

and it follows from (3.27b,d) that

(∇ . (Qrj − ξ), urj )Ω → 〈∇ . (Q− ξ), u〉C(Ω) as rj → 1. (3.31)

Next we note from (3.27a) and (2.16) that

lim inf
rj→1

1
rj

∫

Ω

|Qrj |rj dx > lim inf
rj→1

∫

Ω

|Qrj | dx >
∫

Ω

|Q|. (3.32)

Combining (3.29)–(3.32) yields
∫

Ω

|ξ | −
∫

Ω

|Q| > 〈∇ . (ξ −Q), u〉C(Ω) ∀ξ ∈ [C∞0 (Ω)]
n. (3.33)

Noting (2.17a,b) yields the desired result (3.23a).
Similarly, using (3.27c–e) one can pass to the limit in the rj versions of (3.3b,c) with v± =

ξ± − q±rj , for any ξ± ∈ C∞0 (Ω±), to obtain (3.23b,c) with v± = ξ±. Noting (2.18) then yields the

desired results (3.23b,c). Hence (Q, q±, u, λ±) ∈ VM0 (Ω)×M(Ω+)×M(Ω−)×CM(Ω)×R×R
solves (P̂). 2

In the next two subsections, we adapt the arguments above for (P) to show the existence for (U),
(2.10), and (PM), (2.11), respectively. In both cases, we just briefly state the key differences.

3.2 Existence for (U)

As we saw in Section 2, if we solve (P), (2.7), with
∫
Ω+ f

+ = m <
∫
Ω− f

− then q+ ≡ 0,
and similarly if

∫
Ω− f

− = m <
∫
Ω+ f

+ then q− ≡ 0. Hence existence of a solution to (U),
(2.10), follows immediately from our existence proof for (P) above. However, as our numerical
approximation of (U) is based on the discretization of a regularized problem (Ur) for r > 1, we now
show subsequence convergence, as r → 1, of the unique solution of (Ur) to a solution of (U).

We shall assume here, in addition to the assumptions (A1), that Ω is star-shaped and f± ∈
Lr0(Ω±) for some r0 > 1. Let f := f+ − f−.

For a given r ∈ (1, r0), we then consider the following problem:

(Ur) Find Qr ∈ V r0(Ω) such that

(|Qr |r−2Qr , v)Ω + `(|∇ .Qr − f |r−2(∇ .Qr − f ),∇ . v)Ω = 0 ∀v ∈ V r0(Ω). (3.34)

(Ur) is the Euler–Lagrange equation for the following strictly convex minimization problem: Find
Qr ∈ V r0(Ω) such that

Er`(Qr) 6 Er`(v) := 1
r

∫

Ω

[|v|r + `|∇ . v − f |r ] dx ∀v ∈ V r0(Ω). (3.35)
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Hence, there exists a unique solution Qr ∈ V r0(Ω) to (Ur), (3.34) and (3.35) are equivalent
problems; and moreover,

|Qr |r0,r,Ω + `|∇ .Qr − f |r0,r,Ω 6 `|f |r0,r,Ω . (3.36)

It follows from (3.36) that there existsQ ∈ VM0 (Ω) such that there exists a subsequence {Qrj }rj>1,
where Qr is the unique solution of (Ur), such that (3.27a,b) hold as rj → 1.

For any ξ ∈ [C∞0 (Ω)]
n, we haveE

rj
` (ξ) > E

rj
` (Qrj ). Similarly to (3.32), we conclude on noting

(3.27a,b) and (2.16) that

lim inf
rj→1

E
rj
` (Qrj ) >

∫

Ω

[|Q| + `|∇ .Q− f |]. (3.37)

Similarly to (3.30), we have

lim sup
rj→1

E
rj
` (ξ) 6

∫

Ω

[|ξ | + `|∇ . ξ − f |]. (3.38)

Hence, it follows on combining the above that Q ∈ VM0 (Ω) is such that
∫

Ω

[|ξ | + `|∇ . ξ − f |] >
∫

Ω

[|Q| + `|∇ .Q− f |] ∀ξ ∈ [C∞0 (Ω)]
n. (3.39)

Without loss of generality, we assume that the “centre” of the star-shaped Ω is the origin, and
set d := dist(0, ∂Ω). Let j ∈ C∞(Rn), with compact support in B(0, 1), be such that

∫

B(0,1)
j (x) dx = 1, j (x) > 0 and j (−x) = j (x).

For any ε > 0, let Jε : M(Rn)→ C∞0 (R
n) be such that

(Jεη)(x) = 〈η(·), jε(x − ·)〉C(Rn) ∀x ∈ Rn,

where jε(x) = ε−nj (ε−1x); and let τ ε : Rn → Rn be such that τ ε(x) = (1 + ε)−1x inducing the
push forward τ ε# : M(Rn) → M(Rn) (see e.g. [2, p. 32]). We extend Jε and τ ε# in the natural
way, so that J ε : [M(Rn)]n → [C∞0 (R

n)]n and τ ε# : [M(Rn)]n → [M(Rn)]n. It follows for any
v ∈ M(Ω) that vk := J d

3k
(τ 1

k
#v) ∈ C∞0 (Ω) and {vk}k>1 satisfy (2.18) as k → ∞; and for any

v ∈ VM0 (Ω) that vk := J d
3k
(τ 1

k
#v) ∈ [C∞0 (Ω)]

n and {vk}k>1 satisfy (2.17a,b) as k→∞. We note
that

∇ . (J d
3k
(τ 1

k
#v)) = J d

3k
(∇ . (τ 1

k
#v)) = (1+ 1/k)J d

3k
(τ 1

k
#(∇ . v)) ∀v ∈ VM0 (Ω), (3.40)

and ∫

Ω

|J d
3k
(τ 1

k
#v)| dx 6

∫

Ω

|τ 1
k

#v| 6
∫

Ω

|v| ∀v ∈M(Ω). (3.41)

In addition, we note that for any r ∈ [1,∞) and any v ∈ Lr(Ω),
|v − J d

3k
(τ 1

k
#v)|0,r,Ω → 0 as k→∞. (3.42)
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For any v ∈ VM0 (Ω), we then choose ξ ≡ J d
3k
(τ 1

k
#v) in (3.39). It follows from (2.17b), (3.40),

(3.41) and (3.42) that

lim sup
k→∞

∫

Ω

[|J d
3k
(τ 1

k
#v)| + `|∇ . (J d

3k
(τ 1

k
#v))− f |]

6
∫

Ω

|v| + ` lim sup
k→∞

∫

Ω

[|∇ . (J d
3k
(τ 1

k
#v))− J d

3k
(τ 1

k
#f )| + |f − J d

3k
(τ 1

k
#f )|]

6
∫

Ω

|v| + ` lim sup
k→∞

∫

Ω

|(1+ 1/k)(∇ . v)− f | 6
∫

Ω

[|v| + `|∇ . v − f |]. (3.43)

Hence, a solution to

(U) Find Q ∈ VM0 (Ω) such that

∫

Ω

[|v| + `|∇ . v − f |] >
∫

Ω

[|Q| + `|∇ .Q− f |] ∀v ∈ VM0 (Ω), (3.44)

that is, (2.10), exists (which is already known for more general data via (P)) and, moreover, is the
limit of solutions to the regularized problems (Ur ) as r → 1.

3.3 Existence for (PM)

Similarly to the previous subsection, we shall assume here, in addition to the assumptions (A1), that
Ω is star-shaped and that the nonnegative f (i), i = 1 → I , for some r0 > 1 are in Lr0(Ω).
In addition, we assume that m ∈ (0,mini=1→I {

∫
Ω
f (i)}], and Ωg is an open Lipschitz subset

of Ω . Moreover, we will consider the simplified problem, as mentioned previously in Section 2,
and assume that for a given constant G > m/|Ωg|,

g ∈ KG(m) :=
{
η ∈ KG :

∫

Ωg

η dx = m
}
,

where
KG := {η ∈ L∞(Ωg) : η ∈ [0,G] a.e. in Ωg}; (3.45)

as opposed to g ∈M+(Ωg), with
∫
Ωg
g = m.

For a given r ∈ (1, r0), we then consider the following problem:

(PMr) Find Q(i)
r ∈ V r0(Ω), i = 1→ I , and gr ∈ KG(m) such that

(|Q(i)
r |r−2Q(i)

r , v)Ω + `(|∇ .Q(i)
r − f (i) + gr |r−2(∇ .Q(i)

r − f (i) + gr),∇ . v)Ω = 0
∀v ∈ V r0(Ω), i = 1→ I, (3.46a)

I∑

i=1

(|∇ .Q(i)
r − f (i) + gr |r−2(∇ .Q(i)

r − f (i) + gr), η − gr)Ωg > 0

∀η ∈ KG(m). (3.46b)
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(PMr) is the Euler–Lagrange system for the following strictly convex minimization problem: Find
Q
(i)
r ∈ V r0(Ω), i = 1→ I , and gr ∈ KG(m) such that

Er`({Q(i)
r }Ii=1, gr) 6 Er`({v(i)}Ii=1, η) := 1

r

I∑

i=1

∫

Ω

[|v(i)|r + `|∇ . v(i) − f (i) + η|r ] dx

∀v(i) ∈ V r0(Ω), i = 1→ I, ∀η ∈ KG(m). (3.47)

Hence, there exists a unique solution ({Q(i)
r }Ii=1, gr) to (PMr), (3.46a,b) and (3.47) are equivalent

problems; and moreover,

I∑

i=1

[|Q(i)
r |r0,r,Ω + `|∇ .Q(i)

r − f (i) + gr |r0,r,Ω ] 6 `

I∑

i=1

∣∣∣∣
m

|Ωg| − f
(i)

∣∣∣∣
r

0,r,Ω
. (3.48)

It follows from (3.48) that there exist Q(i) ∈ VM0 (Ω), i = 1→ I , and g ∈ KG(m) such that there

exists a subsequence {{Q(i)
rj }Ii=1, grj }rj>1, where ({Q(i)

r }Ii=1, gr) is the unique solution of (PMr),
such that

Q(i)
rj
→ Q(i) vaguely in [M(Ω)]n, i = 1→ I, (3.49a)

∇ .Q(i)
rj
→ ∇ .Q(i) vaguely in M(Ω), i = 1→ I, (3.49b)

grj → g vaguely in L∞(Ωg) (3.49c)

as rj → 1.
For any ξ (i) ∈ [C∞0 (Ω)]

n, i = 1 → I , and η ∈ Kg(m), we have E
rj
` ({ξ (i)}Ii=1, η) >

E
rj
` ({Q(i)

rj }Ii=1, grj ). Similarly to (3.32), we conclude on noting (3.49a–c) and (2.16) that

lim inf
rj→1

E
rj
` ({Q(i)

rj
}Ii=1, grj ) >

I∑

i=1

∫

Ω

[|Q(i)| + `|∇ .Q(i) − f (i) + g|]. (3.50)

Similarly to (3.30), we have

lim sup
rj→1

E
rj
` ({ξ (i)}Ii=1, η) 6

I∑

i=1

∫

Ω

[|ξ (i)| + `|∇ . ξ (i) − f (i) + η|]. (3.51)

Hence, it follows on combining the above that Q(i) ∈ VM0 (Ω), i = 1 → I , and g ∈ KG(m) are
such that

I∑

i=1

∫

Ω

[|ξ (i)| + `|∇ . ξ (i) − f (i) + η|] >
I∑

i=1

∫

Ω

[|Q(i)| + `|∇ .Q(i) − f (i) + g|]

∀ξ (i) ∈ [C∞0 (Ω)]
n, i = 1→ I, ∀η ∈ KG(m). (3.52)
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For any v(i) ∈ VM0 (Ω), we then choose ξ (i) ≡ J d
3k
(τ 1

k
#v
(i)) in (3.52). It follows from (2.17b)

and (3.40)–(3.42) that for any η ∈ KG(m),

lim sup
k→∞

∫

Ω

[|J d
3k
(τ 1

k
#v
(i))| + `|∇ . (J d

3k
(τ 1

k
#v
(i)))− f (i) + η|]

6
∫

Ω

|v(i)| + ` lim sup
k→∞

∫

Ω

[|∇ . (J d
3k
(τ 1

k
#v
(i)))− J d

3k
(τ 1

k
#(f

(i) − η))|

+ |(f (i) − η)− J d
3k
(τ 1

k
#(f

(i) − η))|]

6
∫

Ω

|v(i)| + ` lim sup
k→∞

∫

Ω

|(1+ 1/k)(∇ . v(i))− f (i) + η|

6
∫

Ω

[|v(i)| + `|∇ . v(i) − f (i) + η|]. (3.53)

Hence, there exists a solution to

(PM) Find Q(i) ∈ VM0 (Ω), i = 1→ I , and g ∈ KG(m), such that

∫

Ω

[|v| + `|∇ . v − f (i) + g|] >
∫

Ω

[|Q(i)| + `|∇ .Q(i) − f (i) + g|]

∀v ∈ VM0 (Ω), i = 1→ I, (3.54a)
I∑

i=1

∫

Ω

|∇ .Q(i) − f (i) + η| >
I∑

i=1

∫

Ω

|∇ .Q(i) − f (i) + g| ∀η ∈ KG(m); (3.54b)

that is, (2.11), with the restriction of g to Ωg and the upper bound constraint G on g.

4. Finite element approximation of (Pr), (Ur) and (PMr)

For ease of exposition, we assume the following.

(A2) Let n 6 3 with Ω , Ω± and Ωg polytopes, if n > 2. Let {T h}h>0 be a regular family of
partitionings ofΩ into disjoint open simplices σ with hσ := diam(σ ) and h := maxσ∈T h hσ ,
so that

Ω =
⋃

σ∈T h
σ , with Ω± =

⋃

σ∈T h±
σ and Ωg =

⋃

σ∈T hg
σ , (4.1)

where T h± ⊂ T h and T hg ⊂ T h. We shall also assume that there exists r0 ∈ (1, 4/3], required
for the proof of Lemma 4.1 below, such that for all r ∈ (1, r0),

Ω±r ≡ Ω±. (4.2)

We note that the assumption (4.2) can always be achieved by defining Ω± appropriately and
using the general construction for f±r as stated after (3.22a,b), because we require only that
supp(f±) ⊆ Ω±.
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We introduce the lowest order Raviart–Thomas finite element spaces

V h := {vh ∈ [L∞(Ω)]n : vh|σ = aσ + bσx, aσ ∈ Rn, bσ ∈ R ∀σ ∈ T h} ⊂ V∞(Ω), (4.3a)

Sh := {ηh ∈ L∞(Ω) : ηh|σ = cσ ∈ R ∀σ ∈ T h}, (4.3b)

Sh± := {ηh ∈ L∞(Ω±) : ηh|σ = cσ ∈ R ∀σ ∈ T h± }, (4.3c)

Shg := {ηh ∈ L∞(Ωg) : ηh|σ = cσ ∈ R ∀σ ∈ T hg }, (4.3d)

V h0 := {vh ∈ V h : vh . ν = 0 on ∂Ω} and ShM := {ηh ∈ Sh : (ηh, 1)Ω = 0}. (4.3e)

Here the constraint V h ⊂ V∞(Ω) implies for all vh ∈ V h and for all adjacent triangles σ, σ ′ ∈ T h
that

vh|σ . ν∂σ + vh|σ ′ . ν∂σ ′ = 0 on ∂σ ∩ ∂σ ′, (4.4)

where ν∂σ is the outward unit normal to ∂σ , the boundary of σ .
In order for our finite element approximation to be practical, we introduce

(v, z)h :=
∑

σ∈T h
(v, z)hσ with (v, z)hσ := 1

n+ 1
|σ |

n+1∑

j=1

v(P σj ) . z(P
σ
j )

∀v, z ∈ [C(σ)]n, ∀σ ∈ T h, (4.5)

where {P σj }n+1
j=1 are the vertices of σ . Therefore (v, z)h averages the integrand v . z over each simplex

σ at its vertices and hence is exact if v . z is piecewise linear over the partitioning T h. For any r > 1
and for any vh ∈ V h, we know from the equivalence of norms for vh and the convexity of | · |r that

Cr(|vh|r , 1)hσ 6
∫

σ

|vh|r dx 6 (|vh|r , 1)hσ := 1
n+ 1

|σ |
n+1∑

j=1

|vh(P σj )|r ∀σ ∈ T h . (4.6)

4.1 Approximation of (Pr)

Our fully practical approximation of (Pr ) for given r ∈ (1, r0) (recall (4.2)), by V h0 and Sh, on
employing (4.5), is then:

(Phr ) Find Qh
r ∈ V h0 , q±,hr ∈ Sh±, uhr ∈ ShM and λ±,hr ∈ R such that

(|Qh
r |r−2Qh

r , v
h)h = (uhr ,∇ . vh)Ω ∀vh ∈ V h0, (4.7a)

`(|q+,hr |r−2q+,hr , v+,h)Ω+ = (uhr − λ+,hr , v+,h)Ω+ ∀v+,h ∈ Sh+, (4.7b)

`(|q−,hr |r−2q−,hr , v−,h)Ω− = −(uhr + λ−,hr , v−,h)Ω− ∀v−,h ∈ Sh−, (4.7c)

(∇ .Qh
r , η

h)Ω = (f+r − q+,hr , ηh)Ω+ − (f−r − q−,hr , ηh)Ω− ∀ηh ∈ Sh, (4.7d)

(f+r − q+,hr , 1)Ω+ = (f−r − q−,hr , 1)Ω− = m. (4.7e)

Let P h(±) : L1(Ω(±))→ Sh(±) be such that

((I − P h(±))z, ηh)Ω(±) = 0 ∀ηh ∈ Sh(±), (4.8)
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where (±) means with or without these subscripts and superscripts. It follows that for all z ∈
Ls(Ω(±)), where s ∈ [1,∞],

|P h(±)z|0,s,Ω(±) 6 |z|0,s,Ω(±) and lim
h→0
|(I − P h(±))z|0,s,Ω(±) = 0. (4.9)

Then, similarly to (3.4) and (3.5), we introduce, for ρ ∈ L1
M(Ω),

Xh(ρ) := {vh ∈ V h0 : (∇ . vh, ηh)Ω = (ρ, ηh)Ω ∀ηh ∈ Sh}, (4.10)

and

Y h(f+r , f−r , m) := {(vh, v+,h, v−,h) ∈ Xh(P h([f+r − v+,h]− [f−r − v−,h]))× Sh+ × Sh− :

(f+r − v+,h, 1)Ω+ = (f−r − v−,h, 1)Ω− = m}. (4.11)

It follows from (3.1), (4.10) and (4.11) that a solution of (Phr ) is such that (Qh
r , q
+,h
r , q

−,h
r ) ∈

Y h(f+r , f−r , m) and

E
r,h
` (Qh

r , q
+,h
r , q−,hr ) 6 E

r,h
` (vh, v+,h, v−,h) := 1

r
[(|vh|r , 1)h+`(|v+,h|r , 1)Ω++`(|v−,h|r , 1)Ω− ]

∀(vh, v+,h, v−,h) ∈ Y h(f+r , f−r , m). (4.12)

For r > 1, let Ih : V r0(Ω) ∩ [W 1,r(Ω)]n → V h0 be the generalised interpolation operator
satisfying

∫

∂iσ

(v − Ihv) . ν∂iσ ds = 0, i = 1→ n+ 1, ∀σ ∈ T h, (4.13)

where ∂σ ≡⋃n+1
i=1 ∂iσ and ν∂iσ are the corresponding outward unit normals on ∂iσ . It follows that

(∇ . (v − Ihv), ηh) = 0 ∀ηh ∈ Sh. (4.14)

In addition, for all σ ∈ T h and any s ∈ (1,∞] we have

|v − Ihv|0,s,σ 6 Cshσ |v|1,s,σ and |Ihv|1,s,σ 6 Cs |v|1,s,σ (4.15a)

(see e.g. [15, Lemma 3.1]; the proof given there for s > 2 is also valid for any s ∈ (1,∞]); and, if
v is sufficiently smooth,

|∇ . (v − Ihv)|0,σ 6 Ch|∇ . v|1,σ (4.15b)

(see e.g. [20, p. 553]). Furthermore, we note from (3.1), (4.5) and (4.15a) that for all σ ∈ T h and
v ∈ [W 1,∞(σ )]n,

∣∣∣∣
∫

σ

|v|r dx − (|Ihv|r , 1)hσ

∣∣∣∣ 6
∫

σ

| |v|r − |Ihv|r | dx +
∣∣∣∣
∫

σ

|Ihv|r dx − (|Ihv|r , 1)hσ

∣∣∣∣

6 r(|v|r−1
0,∞,σ + |Ihv|r−1

0,∞,σ )[|v − Ihv|0,1,σ + h|Ihv|1,1,σ ]

6 Crh‖v‖r1,∞,σ . (4.16)

We have the following discrete version of Lemma 3.1:
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LEMMA 4.1 Let the Assumptions (A1) and (A2) hold. Then for all r ∈ (1, r0) and p = r/(r − 1),
given ρh ∈ ShM there exists Qρh,h

r ∈ Xh(ρh) and

‖Qρh,h
r ‖V r (Ω) 6 µr |ρh|0,r,Ω , (4.17)

where µr ∈ R>0 is independent of h, but possibly dependent on r . Hence it follows that

inf
ηh∈ShM

sup
vh∈V h0

(∇ . vh, ηh)
‖vh‖V r (Ω)|ηh|0,p,Ω > [2µr ]−1. (4.18)

Proof. See the proof of Lemma 3.1 in [5]. 2

THEOREM 4.1 Let the Assumptions (A1) and (A2) hold. Then for any given r ∈ (1, r0) there
exists a unique solution, (Qh

r , q
+,h
r , q

−,h
r , uhr , λ

+,h
r , λ

−,h
r ) ∈ V h0 ×Sh+×Sh−×ShM ×R×R, to (Phr ).

In addition,

‖Qh
r ‖rV r (Ω) + `|q+,hr |r0,r,Ω+ + `|q−,hr |r0,r,Ω− 6 CΩ,`,r [|f+r |r0,r,Ω+ + |f−r |r0,r,Ω− ], (4.19a)

|uhr |0,p,Ω + |Ω+|(r−1)/r |λ+,hr | + |Ω−|(r−1)/r |λ−,hr | 6 CΩ,`,r [|f+r |r−1
0,r,Ω+ + |f−r |r−1

0,r,Ω− ], (4.19b)

where p = r/(r − 1).

Proof. The proof is a discrete analogue of the proof of Theorem 3.1. First, we define ρ :=
[f+r − qf,+r ] − [f−r − qf,−r ] ∈ LrM(Ω), where qf,±r are defined by (3.10). It follows from (4.17),
(4.9) and (3.11) that there exists Qρ,h

r ∈ Xr(P hρ) and

‖Qρ,h
r ‖V r (Ω) 6 CΩ,r |P hρ|0,r,Ω 6 CΩ,r |ρ|0,r,Ω 6 CΩ,r [|f+r |0,r,Ω+ + |f−r |0,r,Ω− ]. (4.20)

Therefore, on setting Q̂h

r
:= Qh

r −Qρ,h
r and q̂±,hr := q±,hr − P h±qf,±r , the problem (Phr ), (4.7a–e),

can be reduced to: Find (Q̂h

r
, q̂
+,h
r , q̂

−,h
r ) ∈ Y h(0, 0, 0) such that

(|Q̂h

r
+Qρ,h

r |r−2(Q̂
h

r
+Qρ,h

r ), vh)h + `(|̂q+,hr + P h+qf,+r |r−2(̂q+,hr + P h+qf,+r ), v+,h)Ω+

+ `(|̂q−,hr + P h−qf,−r |r−2(̂q−,hr + P h−qf,−r ), v−,h)Ω− = 0 ∀(vh, v+,h, v−,h) ∈ Y h(0, 0, 0),
(4.21)

which is the Euler–Lagrange equation for the strictly convex minimization problem

inf
(vh,v+,h,v−,h)∈Y h(0,0,0)

E
r,h
` (vh +Qρ,h

r , v+,h + P h+qf,+r , v−,h + P h−qf,−r ). (4.22)

Hence there exists a unique solution (Q̂
h

r
, q̂
+,h
r , q̂

−,h
r ) ∈ Y h(0, 0, 0) to (4.21). On setting

Qh
r = Q̂

h

r
+ Qρ,h

r and q±,hr = q̂
±,h
r + P h±qf,±r , it follows from (4.21) that (Qh

r , q
+,h
r , q

−,h
r ) ∈

Y h(f+r , f−r , m) is such that

(|Qh
r |r−2Qh

r , v
h)h + `(|q+,hr |r−2q+,hr , v+,h)Ω+ + `(|q−,hr |r−2q−,hr , v−,h)Ω− = 0

∀(vh, v+,h, v−,h) ∈ Y h(0, 0, 0), (4.23a)
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and hence, in particular with v±,h ≡ 0, that

(|Qh
r |r−2Qh

r , v
h)h = 0 ∀vh ∈ Xr,h(0). (4.23b)

It is also easily deduced from (4.7a–e) and (4.11) that any solution (Qh
r , q
±,h
r ) of (Phr ) solves

(4.23a), and from (3.2) that it is unique. In addition, it follows from (4.22), (4.6), (4.9) and (4.11)
that

|Qh
r |r0,r,Ω + |q+,hr |r0,r,Ω+ + |q−,hr |r0,r,Ω− 6 CΩ,`,r [|Qρ,h

r |r0,r,Ω + |qf,+r |r0,r,Ω+ + |qf,−r |r0,r,Ω− ],
(4.24a)

|∇ .Qh
r |r0,r,Ω 6 [|f+r − q+,hr |0,r,Ω+ + |f−r − q−,hr |0,r,Ω− ]r . (4.24b)

The bound (4.19a) follows immediately from (4.24a,b), (4.20) and (3.11).
Similarly to the proof of Theorem 3.1, we show that there exists a unique uhr ∈ ShM satisfying

(4.7a). In addition, from (4.18), (4.7a) and (4.6) we have

|uhr |0,p,Ω 6 2µr sup
vh∈V r0(Ω)

(|Qh
r |r−2Qh

r , v
h)h

‖vh‖V r (Ω) 6 Cr |Qh
r |r−1

0,r,Ω . (4.25)

Choosing v∓,h ≡ 0 in (4.23a), we see that v±,h = ∓∇ . vh; and hence, on noting (4.7a), that
`|q±,hr |r−2q

±,h
r ∓ uhr are constant on Ω±. On choosing

λ±,hr = −`|q±,hr |r−2q±,hr ± uhr , (4.26)

we deduce that (4.7b,c) hold for general v±,h ∈ Sh±. Therefore, we have proved that there exists
a unique solution to (Phr ), (4.7a–e), which is equivalent to the minimization problem (4.12).
Furthermore, we infer from (4.26) that

|λ±,hr | 6 |Ω±|−
r−1
r [`|q±,hr |r−1

0,r,Ω± + |uhr |0,p,Ω ]. (4.27)

Combining (4.25), (4.19a) and (4.27) yields the desired result (4.19b). 2

THEOREM 4.2 Let the Assumptions (A1) and (A2) hold. For all r ∈ (1, r0), the unique solution
(Qh

r , q
+,h
r , q

−,h
r , uhr , λ

+,h
r , λ

−,h
r ) of (Phr ) is such that as h→ 0,

Qh
r → Qr weakly in [Lr(Ω)]n, (4.28a)

∇ .Qh
r → ∇ .Qr weakly in Lr(Ω), (4.28b)

q±,hr → q±r weakly in Lr(Ω±), (4.28c)

uhr → ur weakly in Lp(Ω), (4.28d)

λ±,hr → λ±r , (4.28e)

where (Qr , q
+
r , q

−
r , ur , λ

+
r , λ

−
r ) is the unique solution of (Pr ).

Proof. The results (4.28a–e) follow immediately for a subsequence {(Qhj
r , q

±,hj
r , u

hj
r , λ

±,hj
r )}hj>0

of {(Qh
r , q
±,h
r , uhr , λ

±,h
r )}h>0 from (4.19a,b).
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It follows from (4.28c) that we may pass to the limit in the hj version of (4.7e) to obtain (3.3e),
on recalling (4.2). For any η ∈ Lp(Ω), we choose ηh = P hη ∈ Sh in the hj version of (4.7d).
Noting (4.28b,c), and (4.9), we obtain the desired result (3.3d).

For any ξ ∈ [C∞0 (Ω)]
n and ξ± ∈ C∞0 (Ω), we choose vh = Ihj ξ −Qhj

r and v±,h = P h±ξ± in
the hj versions of (4.7a–c). Hence, on noting (3.1), we have

(u
hj
r ,∇ . (Qhj

r − Ihj ξ))Ω = (|Qhj
r |r−2Q

hj
r ,Q

hj
r − Ihj ξ)hj

>
1
r
(|Qhj

r |r − |Ihj ξ |r , 1)hj , (4.29a)

(u
hj
r − λ+,hjr , q

+,hj
r − P hj+ ξ+)Ω+ = `(|q+,hjr |r−2q

+,hj
r , q

+,hj
r − P hj+ ξ+)Ω+

>
`

r
(|q+,hjr |r − |P hj+ ξ+|r , 1)Ω+ , (4.29b)

−(uhjr + λ−,hjr , q
−,hj
r − P hj− ξ−)Ω− = `(|q−,hjr |r−2q

−,hj
r , q

−,hj
r − P hj− ξ−)Ω−

>
`

r
(|q−,hjr |r − |P hj− ξ−|r , 1)Ω− . (4.29c)

Summing the above, and noting (4.7d) and (4.14), yields

− (uhjr ,∇ . ξ )Ω + (f+r − P hj+ ξ+, uhjr )Ω+ − (f−r − P hj− ξ−, uhjr )Ω−
− (λ+,hjr , q

+,hj
r − P hj+ ξ+)Ω+ − (λ−,hjr , q

−,hj
r − P hj− ξ−)Ω−

= (uhjr ,∇ . (Qhj
r − Ihj ξ))Ω + (uhjr − λ+,hjr , q

+,hj
r − P hj+ ξ+)Ω+

− (uhjr + λ−,hjr , q
−,hj
r − P hj− ξ−)Ω−

>
1
r

[(|Qhj
r |r − |Ihj ξ |r , 1)hj + `(|q+,hjr |r − |P hj+ ξ+|r , 1)Ω+

+ `(|q−,hjr |r − |P hj− ξ−|r , 1)Ω− ]. (4.30)

We conclude from (4.6), (3.1) and (4.28a,c) that

lim inf
hj→0

(|Qhj
r |r , 1)hj > (|Qr |r , 1)Ω and lim inf

hj→0
(|q±,hj

r
|r , 1)Ω± > (|q±

r
|r , 1)Ω± . (4.31)

Passing to the limit hj → 0 in (4.30), and noting (4.28a–e), (4.9), (4.16) and (4.31), yields

−(ur ,∇ . ξ )Ω + (f+r − ξ+, ur)Ω+ − (f−r − ξ−, ur)Ω− − (λ+r , q+r − ξ+)Ω+ − (λ−r , q−r − ξ−)Ω−
>

1
r

[(|Qr |r − |ξ |r , 1)Ω + `(|q+r |r − |ξ+|r , 1)Ω+ + `(|q−r |r − |ξ−|r , 1)Ω− ]

∀(ξ , ξ+, ξ−) ∈ [C∞0 (Ω)]
n × C∞0 (Ω+)× C∞0 (Ω−). (4.32)

Recalling that V r0(Ω) and Lr(Ω±) are the strong closures of [C∞0 (Ω)]
n and C∞0 (Ω

±) in the norms
‖·‖V r (Ω) and | · |0,r,Ω± , respectively, we find that (4.32) remains true for all (ξ , ξ+, ξ−) ∈ V r0(Ω)×
Lr(Ω+)× Lr(Ω−).

Therefore choosing ξ = Qr ± εv and ξ± = q±r with v ∈ V r0(Ω) in (4.32), and noting (3.1) and
(3.3d), yields the desired result (3.3a), on letting ε→ 0. Similarly, choosing ξ = Qr and ξ± = q±r ±
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εv± with v± ∈ Lr(Ω±) in (4.32), and noting (3.1) and (3.3d), yields the desired results (3.3b,c),
on letting ε → 0. Hence (Qr , q

+
r , q

−
r , ur , λ

+, λ−) ∈ V r0(Ω) × Lr(Ω+) × Lr(Ω−) × Lp(Ω) ×
R×R solves (Pr ). As the solution of (Pr ) is unique, the whole sequence {(Qh

r , q
±,h
r , uhr , λ

±,h
r )}h>0

converges in (4.28a–e). 2

REMARK 4.1 Clearly, on combining Theorems 3.2 and 4.2 we have the subsequence convergence
of {(Qh

r , q
+,h
r , q

−,h
r , uhr , λ

+,h
r , λ

−,h
r )}(r>1,h>0) as rj → 1 and hj → 0 to (Q, q+, q−, u, λ+, λ−) ∈

VM0 (Ω) ×M(Ω+) ×M(Ω−) × CM(Ω) × R × R, which is a solution of (P̂), (3.23a–e). In the
absence of a uniqueness result for (P̂), we have only subsequence convergence here. We note that for
balanced L1 MK problems with no free Dirichlet sets, the uniqueness of the optimal transportation
flux q was proved under the assumption of convexity ofΩ and sufficient regularity of f± (see [16]).
Under similar assumptions, for problems with a free Dirichlet set, the uniqueness of the transport
density a = |q| outside of this set was shown in [9].

4.2 Approximation of (Ur)

Similarly to subsection 3.2, we assume that f := f+ − f− ∈ Lr0(Ω) for some r0 > 1. Then for a
given r ∈ (1, r0), we consider the following fully practical approximation of (Ur ) by V h0 :

(Uhr ) Find Qh
r ∈ V h0 such that

(|Qh
r |r−2Qh

r , v
h)h + `(|∇ .Qh

r − P hf |r−2(∇ .Qh
r − P hf ),∇ . vh)Ω = 0 ∀vh ∈ V h0 . (4.33)

(Uhr ) is the Euler–Lagrange equation for the following strictly convex minimization problem: Find
Qh
r ∈ V h0 such that

E
r,h
` (Qh

r ) 6 E
r,h
` (vh) := 1

r
[(|vh|r , 1)h + `(|∇ . vh − P hf |r , 1)Ω ] ∀vh ∈ V h0 . (4.34)

Hence, there exists a unique solutionQh
r ∈ V h0 to (Uhr ); and moreover, on noting (4.6) and (4.9), we

have

|Qh
r |r0,r,Ω + `|∇ .Qh

r − P hf |r0,r,Ω 6 C`,r |f |r0,r,Ω . (4.35)

It follows from (3.36) that there existsQr ∈ V r0(Ω) such that there exists a subsequence {Qhj
r }hj>0,

where Qh
r is the unique solution of (Uhr ), such that (4.28a,b) hold as hj → 0.

For any ξ ∈ [C∞0 (Ω)]
n, we deduce from (4.34) that E

r,hj
` (Q

hj
r ) 6 E

r,hj
` (Ihj ξ). Passing to the

hj → 0 limit in this, on noting (4.16), (4.9), (4.15b), (4.31), (4.28b) and (3.1), yields

(|Qr |r + `|∇ .Qr − f |r , 1)Ω 6 (|ξ |r + `|∇ . ξ − f |r , 1)Ω ∀ξ ∈ [C∞0 (Ω)]
n. (4.36)

Recalling that V r0(Ω) is the strong closure of [C∞0 (Ω)]
n in the norm ‖ · ‖V r (Ω) we conclude that

(4.36) remains true for all ξ ∈ V r0(Ω), which is equivalent to (Ur), (3.34). As the solution of (Ur )
is unique, the whole sequence {Qh

r }h>0 converges in (4.28a,b). Finally, the analogue of Remark 4.1
holds for (Uhr ).
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4.3 Approximation of (PMr)

Similarly to Subsection 3.3, we assume that the nonnegative f (i), i = 1 → I , for some r0 > 1
are in Lr0(Ω). In addition, for given constants m ∈ (0,mini=1→I {

∫
Ω
f (i)}] and G > m/|Ωg|, we

introduce the convex sets

Kh
G(m) :=

{
ηh ∈ Kh

G :
∫

Ωg

ηh dx = m
}
, where KG := {ηh ∈ Shg : 0 6 ηh 6 G}. (4.37)

For a given r ∈ (1, r0), we then consider the following fully practical approximation of (PMr ) by
V h0 and Sh:

(PMh
r ) Find Q(i),h

r ∈ V h0 , i = 1→ I , and ghr ∈ Kh
G(m) such that

(|Q(i),h
r |r−2Q(i),h

r , vh)h

+ `(|∇ .Q(i),h
r − P hf (i) + ghr |r−2(∇ .Q(i),h

r − P hf (i) + ghr ),∇ . vh)Ω = 0

∀vh ∈ V h0, i = 1→ I, (4.38a)
I∑

i=1

(|∇ .Q(i),h
r − P hf (i) + ghr |r−2(∇ .Q(i),h

r − P hf (i) + ghr ), ηh − ghr )Ωg > 0

∀ηh ∈ Kh
G(m). (4.38b)

(PMh
r ) is the Euler–Lagrange system for the following strictly convex minimization problem: Find

Q
(i),h
r ∈ V h0 , i = 1→ I , and ghr ∈ Kh

G(m) such that

E
r,h
` ({Q(i),h

r }Ii=1, g
h
r ) 6 E

r,h
` ({v(i),h}Ii=1, η

h)

:= 1
r

I∑

i=1

[(|v(i),h|r , 1)h + `(|∇ . v(i),h − P hf (i) + ηh|r , 1)Ω ]

∀v(i),h ∈ V h0, i = 1→ I, ∀ηh ∈ Kh
G(m). (4.39)

Hence, there exists a unique solution ({Q(i),h
r }Ii=1, g

h
r ) to (PMh

r ); and moreover, on noting (4.6)
and (4.9), we have

I∑

i=1

[|Q(i),h
r |r0,r,Ω + `|∇ .Q(i),h

r − P hf (i) + ghr |r0,r,Ω ] 6 C`,r

[
Imr

|Ωg|r−1 +
I∑

i=1

|f (i)|r0,r,Ω
]
. (4.40)

It follows from (4.40) that there exist Q(i)
r ∈ V r0(Ω), i = 1 → I , and gr ∈ KG(m) such that

there exists a subsequence {{Q(i),hj
r }Ii=1, g

hj
r }hj>0, where ({Q(i),h

r }Ii=1, g
h
r ) is the unique solution of

(PMh
r ), such that

Q
(i),hj
r → Q(i)

r weakly in [Lr(Ω)]n, i = 1→ I, (4.41a)

∇ .Q(i),hj
r → ∇ .Q(i)

r weakly in Lr(Ω), i = 1→ I, (4.41b)

g
hj
r → gr vaguely in L∞(Ωg) (4.41c)

as hj → 0.
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For any ξ (i) ∈ [C∞0 (Ω)]
n, i = 1 → I , and η ∈ KG(m), we deduce from (4.39) that

E
r,hj
` ({Q(i),hj

r }Ii=1, g
hj
r ) 6 E

r,hj
` ({Ihj ξ (i)}Ii=1, P

hj η). Passing to the hj → 0 limit in this, and noting
(4.16), (4.9), (4.15b), (4.41a–c) and (3.1), yields

I∑

i=1

(|Q(i)
r |r + `|∇ .Q(i)

r − f (i) + gr |r , 1)Ω 6
I∑

i=1

(|ξ (i)|r + `|∇ . ξ (i) − f (i) + η|r , 1)Ω

∀ξ (i) ∈ [C∞0 (Ω)]
n, i = 1→ I, ∀η ∈ KG(m). (4.42)

Recalling that V r0(Ω) is the strong closure of [C∞0 (Ω)]
n in the norm ‖ · ‖V r (Ω) we see that (4.42)

remains true for all ξ ∈ V r0(Ω), which is equivalent to (PMr), (3.46a,b). As the solution of (PMr )

is unique, the whole sequence {{Q(i),h
r }Ii=1, g

h
r }h>0 converges in (4.41a–c). Finally, the analogue of

Remark 4.1 holds for (PMh
r ).

5. Augmented Lagrangian methods for (Phr ) and (PMh
r )

In this section we introduce, and prove convergence of, algorithms to solve the problems (Phr ),
(4.7a–e), and (PMh

r ), (4.38a,b), which involve constraints, and hence Lagrange multipliers, as
opposed to (Uhr ), (4.33).

5.1 (Phr )

For a given constant µ > 0, we consider the following iterative method for solving the constrained
problem (4.7a–e):

For k > 0, given uh,kr ∈ Sh and λ±,h,kr ∈ R, find Qh,k+1
r ∈ V h0 and qh,±,k+1

r ∈ Sh± such that

(|Qh,k+1
r |r−2Qh,k+1

r , vh)h + µ(∇ .Qh,k+1
r − [f+r − q+,h,k+1

r ]+ [f−r − q−,h,k+1
r ],∇ . vh)Ω

= (uh,kr ,∇ . vh)Ω ∀vh ∈ V h0, (5.1a)

`(|q+,h,k+1
r |r−2q+,h,k+1

r , v+,h)Ω+ +µ(∇ .Qh,k+1
r − [f+r − q+,h,k+1

r ]+ [f−r − q−,h,k+1
r ], v+,h)Ω+

− µ[(f+r − q+,h,k+1
r , 1)Ω+ −m](v+,h, 1)Ω+ = (uh,kr − λ+,h,kr , v+,h)Ω+

∀v+,h ∈ Sh+, (5.1b)

`(|q−,h,k+1
r |r−2q−,h,k+1

r , v−,h)Ω− −µ(∇ .Qh,k+1
r − [f+r − q+,h,k+1

r ]+ [f−r − q−,h,k+1
r ], v−,h)Ω−

−µ[(f−r −q−,h,k+1
r , 1)Ω− −m](v−,h, 1)Ω− = (−uh,kr −λ−,h,kr , v−,h)Ω− ∀v−,h ∈ Sh−. (5.1c)

Then for a given constant ρ > 0, set

uh,k+1
r = uh,kr − ρ

[∇ .Qh,k+1
r − [P h+f+r − q+,h,k+1

r ]+ [P h−f−r − q−,h,k+1
r ]

] ∈ Sh, (5.2a)

λ±,h,k+1
r = λ±,h,kr − ρ[(f±r − q±,h,k+1

r , 1)Ω± −m] ∈ R. (5.2b)

We introduce the augmented Lagrangian associated with the minimization problem, (4.12), which
is equivalent to (Phr ):
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Lr,h`,µ(v
h, v+,h, v−,h, ηh, λ+, λ−)

:= 1
r

[(|vh|r , 1)h + `(|v+,h|r , 1)Ω+ + `(|v−,h|r , 1)Ω− ]− λ+[(f+r − v+,h, 1)Ω+ −m]

− λ−[(f−r − v−,h, 1)Ω− −m]− (∇ . vh − [f+r − v+,h]+ [f−r − v−,h], ηh)Ω

+ µ
2

[[(f+r − v+,h, 1)Ω+ −m]2 + [(f−r − v−,h, 1)Ω− −m]2]

+ µ
2
|∇ . vh − [f+r − v+,h]+ [f−r − v−,h]|20,Ω

∀(vh, v+,h, v−,h, ηh, λ+, λ−) ∈ V h0 × Sh+ × Sh− × Sh × R× R. (5.3)

Then (5.1a–c) is the Euler–Lagrange system for the minimization of Lr,h`,µ(v
h, v+,h, v−,h, uh,kr ,

λ
+,h,k
r , λ

−,h,k
r ) over vh ∈ V h0 and v±,h ∈ Sh± for given uh,kr ∈ Sh and λ±,h,kr ∈ R. As this is

a strictly convex minimization problem, we have existence and uniqueness of Qh,k+1
r ∈ V h0 and

q
±,h,k+1
r ∈ Sh± solving (5.1a–c).

THEOREM 5.1 For any µ > 0, and any uh,0r ∈ Sh and λ±,h,0r ∈ R, if ρ ∈ (0, 2µ), then the
sequence {(Qh,k

r , q
+,h,k
r , q

−,h,k
r , u

h,k
r , λ

+,h,k
r , λ

−,h,k
r )}k>0 generated by the algorithm (5.1a–c) and

(5.2a,b) is such that
Qh,k
r → Qh

r , q±,h,kr → q±,hr as k→∞, (5.4)

where (Qh
r , q
±,h
r , uhr , λ

±,h
r ) is the unique solution of (Phr ), (4.7a–e).

Proof. Let Q
k

:= Qh
r −Qh,k

r , q±,k := q±,hr − q±,h,kr , uk := uhr − uh,kr and λ±,k := λ±,hr − λ±,h,kr .
Then from (4.7a–e) and (5.1a–c) we have

(|Qh
r |r−2Qh

r − |Qh,k+1
r |r−2Qh,k+1

r ,Q
k+1
)h + µ|∇ .Qk+1 + q+,k+1 − q−,k+1|20,Ω

+ `(|q+,hr |r−2q+,hr − |q+,h,k+1
r |r−2q+,h,k+1

r , q+,k+1)Ω+ + µ[(q+,k+1, 1)Ω+ ]2

+ `(|q−,hr |r−2q−,hr − |q−,h,k+1
r |r−2q−,h,k+1

r , q−,k+1)Ω− + µ[(q−,k+1, 1)Ω− ]2

= (uk,∇ .Qk+1 + q+,k+1 − q−,k+1)Ω − (λ+,k, q+,k+1)Ω+ − (λ−,k, q−,k+1)Ω−; (5.5)

and from (4.7d,e) and (5.2a,b)

|uk+1|20,Ω = |uk|20,Ω − 2ρ(uk,∇ .Qk+1 + q+,k+1 − q−,k+1)Ω

+ ρ2|∇ .Qk+1 + q+,k+1 − q−,k+1|20,Ω , (5.6a)

|λ±,k+1|2 = |λ±,k|2 + 2ρλ±,k(q±,k+1, 1)Ω± + ρ2[(q±,k+1, 1)Ω± ]2. (5.6b)

Combining (5.5) and (5.6a,b) yields

|uk+1|20,Ω + |λ+,k+1|2 + |λ−,k+1|2 + 2ρ(|Qh
r |r−2Qh

r − |Qh,k+1
r |r−2Qh,k+1

r ,Q
k+1
)h

+ 2ρ`(|q+,hr |r−2q+,hr − |q+,h,k+1
r |r−2q+,h,k+1

r , q+,k+1)Ω+

+ 2ρ`(|q−,hr |r−2q−,hr − |q−,h,k+1
r |r−2q−,h,k+1

r , q−,k+1)Ω−

+ (2ρµ− ρ2)[|∇ .Qk+1 + q+,k+1 − q−,k+1|20,Ω + [(q+,k+1, 1)Ω+ ]2 + [(q−,k+1, 1)Ω− ]2]

= |uk|20,Ω + |λ+,k|2 + |λ−,k|2. (5.7)



228 J. W. BARRETT AND L. PRIGOZHIN

Hence for ρ ∈ (0, 2µ), the sequence {|uk|20,Ω + |λ
+,k|2 + |λ−,k|2}k>1 is monotonically decreasing

and bounded below. Therefore it must converge to a limit, and hence the desired result (5.4) holds
on noting (3.2). 2

5.2 (PMh
r )

For given constantsµ, ρ > 0, we consider the following iterative method for solving the constrained
problem (4.38a,b):

For k > 0, given F h,k0,r , F
h,k
G,r ∈ Shg and λh,kr ∈ R, find Q(i),h,k+1

r ∈ V h0 , i = 1 → I , and

g
h,k+1
r ∈ Shg such that

(|Q(i),h,k+1
r |r−2Q(i),h,k+1

r , vh)h

+ `(|∇ .Q(i),h,k+1
r − P hf (i) + gh,k+1

r |r−2(∇ .Q(i),h,k+1
r − P hf (i) + gh,k+1

r ),∇ . vh)Ω = 0

∀vh ∈ V h0, i = 1→ I, (5.8a)

`

I∑

i=1

(|∇ .Q(i),h,k+1
r − P hf (i) + gh,k+1

r |r−2(∇ .Q(i),h,k+1
r − P hf (i) + gh,k+1

r ), ηh)Ωg

− ([F h,k0,r − 2ρgh,k+1
r ]+ − [F h,kG,r + 2ρ(gh,k+1

r −G)]+, ηh)Ωg
+ µ[(gh,k+1

r , 1)Ωg −m](ηh, 1)Ωg = −(λh,kr , ηh)Ωg ∀ηh ∈ Shg . (5.8b)

Then set

F
h,k+1
0,r = [F h,k0,r − 2ρgh,k+1

r ]+ ∈ Shg , F
h,k+1
G,r = [F h,kG,r + 2ρ(gh,k+1

r −G)]+ ∈ Shg , (5.9a)

λh,k+1
r = λh,kr + ρ[(gh,k+1

r , 1)Ωg −m] ∈ R. (5.9b)

We introduce an augmented Lagrangian associated with the minimization problem (4.39):

Lr,h`,µ,ρ({v(i),h}Ii=1, η
h, F h0 , F

h
G, λ)

:= 1
r

I∑

i=1

[(|v(i),h|r , 1)h + `(|∇ . v(i),h − P hf (i) + ηh|r , 1)Ω ]+ λ[(ηh, 1)Ωg −m]

+ µ
2

[(ηh, 1)Ωg −m]2 + 1
4ρ
([F h0 − 2ρηh]2+ + [F hG + 2ρ(ηh −G)]2+, 1)Ωg

∀v(i),h ∈ V h0, i = 1→ I, ∀ηh, F h0 , F hG ∈ Shg , ∀ λ ∈ R. (5.10)

Here F h0 , F
h
G ∈ Shg are Lagrange multipliers associated with the inequality constraints on the convex

set KG. Then (5.8a,b) is the Euler–Lagrange system for the minimization of Lr,h`,µ,ρ({v(i),h}Ii=1, η
h,

F
h,k
0,r , F

h,k
G,r , λ

h,k
r ) over v(i),h ∈ V h0 , i = 1 → I , and ηh ∈ Shg for given F h,k0,r , F

h,k
G,r ∈ Shg and

λ
h,k
r ∈ R. As this is a strictly convex minimization problem, we have existence and uniqueness of
Q
(i),h,k+1
r ∈ V h0 , i = 1→ I , and gh,k+1

r ∈ Shg solving (5.8a,b).

THEOREM 5.2 For any µ > 0, and any F h,00,r , F
h,0
G,r ∈ Shg and λh,0r ∈ R, if ρ ∈ (0, 2µ), then

the sequence {({Q(i),h,k
r }Ii=1, g

h,k
r , F

h,k
0,r , F

h,k
G,r , λ

h,k
r )}k>0 generated by the algorithm (5.8a,b) and
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(5.9a,b) is such that

Q(i),h,k
r → Q(i),h

r , i = 1→ I, gh,kr → ghr as k→∞, (5.11)

where ({Q(i),h
r }Ii=1, g

h
r ) is the unique solution of (PMh

r ), (4.38a,b).

Proof. Firstly, we note that the unique solution ({Q(i),h
r }Ii=1, g

h
r ) of (PMh

r ), (4.38a,b) solves
(4.38a) and

`

I∑

i=1

(|∇ .Q(i),h
r − P hf (i) + ghr |r−2(∇ .Q(i),h

r − P hf (i) + ghr ), ηh)Ωg

= (F h0,r − F hG,r − λhr , ηh)Ωg ∀ηh ∈ Shg (5.12)

for some λhr ∈ R, and where

F h0,r = [F h0,r − 2ρghr ]+ ∈ Shg , F hG,r = [F hG,r + 2ρ(ghr −G)]+ ∈ Shg . (5.13)

Let Z(i),hr := ∇ .Q(i),h
r − P hf (i) + ghr ∈ Sh and Z(i),h,kr := ∇ .Q(i),h,k

r − P hf (i) + gh,kr ∈ Sh.

In addition, let Q
(i),k

:= Q
(i),h
r − Q(i),h,k

r , Z
(i),k

:= Z
(i),h
r − Z(i),h,kr , gk := ghr − gh,kr , F

k

0 :=
F h0,r − F h,k0,r , F

k

G := F hG,r − F h,kG,r and λk := λhr − λh,kr . Then from (4.38a), (5.12) and (5.8a,b) we
have

I∑

i=1

(|Q(i),h
r |r−2Q(i),h

r − |Q(i),h,k+1
r |r−2Q(i),h,k+1

r ,Q
(i),k+1

)h

+ `
I∑

i=1

(|Z(i),hr |r−2Z(i),hr − |Z(i),h,k+1
r |r−2Z(i),h,k+1

r , Z
k
)Ω + µ[(gk+1, 1)Ωg ]2

= (F k+1
0 − F k+1

G − λk, gk+1)Ωg ; (5.14)

and from (5.13) and (5.9a,b) we have

|F k+1
0 |20,Ωg 6 (F

k+1
0 , F

k

0 − 2ρgk+1)Ωg , |F k+1
G |20,Ωg 6 (F

k+1
G , F

k

G + 2ρgk+1)Ωg , (5.15a)

|λk+1|2 = |λk|2 + 2ρλk(gk+1, 1)Ωg + ρ2[(gk+1, 1)Ωg ]2. (5.15b)

Combining (5.14) and (5.15a,b) yields

|F k+1
0 |20,Ωg + |F

k+1
G |20,Ωg + |λ

k+1|2 + (2ρµ− ρ2)[(gk+1, 1)Ωg ]2

+ 2ρ
I∑

i=1

(|Q(i),h
r |r−2Q(i),h

r − |Q(i),h,k+1
r |r−2Q(i),h,k+1

r ,Q
(i),k+1

)h

+ 2ρ`
I∑

i=1

(|Z(i),hr |r−2Z(i),hr − |Z(i),h,k+1
r |r−2Z(i),h,k+1

r , Z
k+1
)Ω

6 |λk|2 + (F k+1
0 , F

k

0)Ωg + (F k+1
G , F

k

G)Ωg

6 |λk|2 + 1
2 [|F k+1

0 |20,Ωg + |F
k+1
G |20,Ωg + |F

k

0|20,Ωg + |F
k

G|20,Ωg ]. (5.16)
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Hence for ρ ∈ (0, 2µ), the sequence {|F k0 |20,Ωg+|F
k

G|20,Ωg+2|λk|2}k>1 is monotonically decreasing
and bounded below. Therefore it must converge to a limit, and hence the desired result (5.11) holds
on noting (3.2). 2

6. Solution of the nonlinear algebraic systems

All the resulting nonlinear algebraic systems obtained above for (Phr ), (Uhr ) and (PMh
r ) contain the

same type of nonlinearity, |v|r−2v or its vector form, and this is solved iteratively. This is in addition
to the external iterative loops, described in Section 5 above, to satisfy the constraints in the case of
the partial MK, (Phr ), and optimal matching (PMh

r ), problems. Clearly, replacing this nonlinear
term by |vj |r−2vj+1 at the (j + 1)th iteration is not possible as r < 2 and |vj | can be zero. Our
iterative scheme is based instead on the following regularized representation of this nonlinear term:

|vj |r−2
ε (vj+1/2 − vj )+ |vj |r−2vj , (6.1)

where |v|ε :=
√
|v|2 + ε2 for 0 < ε � 1, and so all terms are well defined. In addition, over-

relaxation vj+1 = αvj+1/2 + (1− α)vj with α > 1 is used to accelerate the convergence.
Below we present such an iterative procedure for the solution of the nonlinear system, (5.1a–c),

arising at the (k + 1)th iteration of the augmented Lagrangian method applied to (Phr ). Given
approximations to the Lagrange multipliers uh,kr ∈ Sh and λ±,h,kr ∈ R, and on setting Qh,k+1,0

r =
Q
h,k
r ∈ V h0 and q±,h,k+1,0

r
= q±,h,k

r
∈ Sh±, we apply the following iterative loop for j > 0, where

to simplify the notation, we will omit the indices involving k, r and h on the iterates:
Given Qj ≡ Qh,k+1,j

r ∈ V h0 and q±,j ≡ q±,h,k+1,j
r ∈ Sh±, find Qj+1/2 ∈ V h0 and q±,j+1/2 ∈

Sh± such that

(|Qj |r−2
ε Qj+1/2, vh)h + µ(∇ .Qj+1/2 + q+,j+1/2 − qj+1/2,∇ . vh)Ω
= (u+ µf+ − µf−,∇ . vh)Ω + ([|Qj |r−2

ε − |Qj |r−2]Qj , vh)h ∀vh ∈ V h0, (6.2a)

`(|q+,j |r−2
ε q+,j+1/2, v+,h)Ω+ + µ(∇ .Qj+1/2 + q+,j+1/2 − q−,j+1/2, v+,h)Ω+

= (u+ µf+ − µf− − λ+, v+,h)Ω+ + `([|q+,j |r−2
ε − |q+,j |r−2]q+,j , v+,h)Ω+

+ µ[(f+ − q+,j , 1)Ω+ −m](vh,+, 1)Ω+ ∀vh,+ ∈ Sh+, (6.2b)

`(|q−,j |r−2
ε q−,j+1/2, v−,h)Ω− − µ(∇ .Qj+1/2 + q+,j+1/2 − q−,j+1/2, v−,h)Ω−

= (−u− µf+ + µf− − λ−, v−,h)Ω− + `([|q−,j |r−2
ε − |q−,j |r−2]q−,j , v−,h)Ω−

+ µ[(f− − q−,j , 1)Ω− −m](v−,h, 1)Ω− ∀v−,h ∈ Sh−. (6.2c)

Then set Qj+1 = αQj+1/2 + (1 − α)Qj and q±,j+1 = αq±,j+1/2 + (1 − α)q±,j , and repeat
the above iteration until the difference of iterates satisfies a given tolerance before updating the
Lagrange multipliers. Note that the terms [(f± − q±,j , 1)Ω± −m] are lagged in order to maintain
the sparsity of the linear system (6.2a–c).

The unbalanced problem (Uhr ) is unconstrained, and was solved using an iterative scheme similar
to (6.2a–c), without any exterior Lagrange multiplier loop.

The additional nonlinearity, ξ(t) := [t]+, had to be dealt with in the partial matching problem,
(PMh

r ), because the augmented Lagrangian algorithm was employed also for the inequality
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constraints ghr > 0 and ghr 6 G. This nondifferentiable nonlinearity was regularized as ξε(t) :=
|[t]+|ε − ε ≡

√
[t]2+ + ε2 − ε for 0 < ε � 1, and linearized at each iteration, similarly to (6.1).

7. Numerical experiments

To test our numerical schemes we solved several two-dimensional examples. The Matlab Partial
Differential Equations toolbox was used for the domain triangulation, and subdomains, Ω± and
Ωg , with curved boundaries were approximated by a union of triangles. We refer to [4] for the
Matlab realization of the lowest order Raviart–Thomas element in R2. With probability one any
delta functions used as sources or sinks lied in the interior of a triangle, so no smoothing of these
discrete sources/sinks was necessary.

Solutions to MK and optimal matching problems are often singular; so to approximate such
solutions and to determine more accurately the free boundaries of the transportation domains
we used an adaptive finite element mesh; see [5] for the details of the refinement/coarsening
algorithm. In the partial MK problems, (Phr ), the mesh was refined wherever the fluxes Qh

r and
q
±,h
r changed rapidly. Typically, these rapid changes of the auxiliary fluxes q±,hr occur on the free

boundaries of transportation domains; we used this observation to determine the free boundaries
efficiently. Although the auxiliary fluxes are eliminated from the unbalanced and optimal matching
problems, (Uhr ) and (PMh

r ), we calculated them when solving these problems for the purposes
of mesh adaptation and the determination of the free boundary. Coarse initial meshes with 1300–
1800 triangles have been adaptively refined twice in most examples below, yielding final meshes
containing several thousand triangles.

In all the examples below we chose r = 1 + 10−7 and ε = 10−7. The domain Ω was either
a unit square, in which case we chose ` = 1/

√
2, or a unit square with a section removed; in the

latter case the value ` = 2 was sufficient to satisfy the necessary condition (2.1). We note that,
provided (2.1) was satisfied, the value of ` did not influence the solution and the auxiliary fluxes
were always nonnegative. However, the value of ` did influence the convergence of the iterations
and, although for the smaller value of ` we used over-relaxation with α = 1.5, which led to a
moderate acceleration in the partial and unbalanced MK problems, computations with ` = 2 were
performed with α = 1 (no over-relaxation). Similarly, no over-relaxation was used for the partial
optimal matching problems.

The parameters for the augmented Lagrangian method for the equality and the inequality
constraints in all examples were µ = ρ = 1. The iterations have been performed until all constraints
were satisfied up to a given tolerance εAL. Thus, for the partial MK problems, the conditions were

m−1|∇ .Qh,k
r − [P h+f+r − q+,h,kr ]+ [P h−f−r − q−,h,kr ]|0,1,Ω 6 εAL,

m−1|(f±r − q±,h,kr , 1)Ω± −m| 6 εAL;
(7.1)

and, for the partial matching problems,

m−1|(gh,kr , 1)Ωg −m| 6 εAL, −εAL 6 gh,kr 6 G(1+ εAL). (7.2)

Given a tolerance εNL, on the kth iteration of the augmented Lagrangian algorithm the solution of
the nonlinear algebraic system (5.1a–c) was computed using (6.2a–c) until the tolerance εkNL =
εNL/
√
k was achieved, so that the accuracy increased gradually with k. More precisely, let Eh be
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the set of all internal edges and φ
e
(x) the basis vector function associated with the edge e ∈ Eh

in the Raviart–Thomas finite element space V h0 (see [4]). Then any vh ∈ V h0 can be represented as∑
e∈Eh vhe φe and we define the norm ‖vh‖Eh :=∑e∈Eh |e| |vhe |. Our stopping criterion was

‖Qj+1 −Qj‖Eh
‖Qj+1‖Eh

6 εkNL and
|q±,j+1 − q±,j |0,1,Ω±
|q±,j+1
r |0,1,Ω±

6 εkNL (7.3)

in the partial MK problems, (6.2a–c); only the first quantity, with εkNL = εNL, in (7.3) for the
unbalanced problems, and

max
i=1→I

{‖Q(i),j+1 −Q(i),j‖Eh
‖Q(i),j+1‖Eh

}
6 εkNL and

|gj+1 − gj |0,1,Ωg
|gj+1|0,1,Ωg

6 εkNL (7.4)

for the partial matching problems. It should be noted that it was better to update the multipliers after
a few iterations of the nonlinear loop without necessarily satisfying the stopping criteria (7.3) and
(7.4); and demand the fulfilment of these conditions only near the convergence of the augmented
Lagrangian algorithm. Finally, we noticed that in all the partial matching examples that we solved,
the optimal distributions ghr were nonnegative even if the constraint ghr > 0 was omitted, and not
taken into account in the numerical procedure. We do not know, however, whether this condition is
automatically satisfied for all optimal partial matching problems.

The computation times for the examples below were approximately one hour for the partial
MK problems, and 15–20 minutes for the unbalanced MK and partial matching problems; all
computations have been performed on a personal computer.

EXAMPLE 1 (Partial MK problem, two ellipses) Let f+ = 1 and f− = 2 inside their supports
Ω±, the left and right ellipses, respectively (Fig. 2, top left), with semiaxes a+ = 2a− =
0.2, b+ = b− = 0.45, and the distance d = 0.6 between their axes of vertical symmetry. We
chose m = 1

2

∫
Ω
f+ = 1

2

∫
Ω
f− = πa−b−. In this case it is cheapest to move the mass along

horizontal paths from the right half of the left ellipse to the left half of the right one, with the axes of
vertical symmetry of the ellipses as the exact free boundaries. Elementary integration gives the total
cost of such transportation: C = a−b−(πd − 4a−) = 0.06682. The auxiliary fluxes q± are zero
inside the regions from/to where the mass is transported and are equal to f± outside. Numerical
calculations reproduced well this behavior and, since these jumps occur at the free boundaries, in
our numerical simulations these boundaries are shown as the level contours q±,hr = 1

2 max q±,hr .
The approximate total cost was calculated on an adapted mesh of about nine thousand triangles
as
∫
Ω
|Q| ≈ ∑

σ∈T h |σ | |Qh
r (oσ )| = 0.06671, where oσ denotes the centre of triangle σ . In this

example εAL = εNL = 10−4.

EXAMPLE 2 (Partial MK problem, two ellipses and an obstacle) Similar to the previous example
but with Ω being the unit square with a section removed, which leads to a change in the transport
paths (see Fig. 2, top right). The transport density becomes singular near the tip of the obstacle, with
the approximate total cost being 0.07776. The exact solution is unknown; the numerical results were
obtained with εAL = 2 · 10−5, εNL = 10−4 and a mesh containing about five thousand triangles
(Fig. 2, bottom).

EXAMPLE 3 (Partial MK problem with discrete sinks) Let f+ be constant inside its support Ω+,
the circle with radius R0 = 0.4, centre (0.5, 0.5), and with total mass

∫
Ω
f+ = 1; let f− be the
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FIG. 2. Partial MK problem. The left and right ellipses are supports of constant f+ and f−, respectively, and m =
1
2
∫
Ω
f+ = 1

2
∫
Ω
f−. Top left: Ω is a unit square; top right: same with a section removed leading to an obstacle to

transportation; bottom: the adapted mesh. Shown: the computed flux (arrows); the computed free boundary (red lines; for
colours, see pdf file); black dots in the left plot indicate the known position of the exact free boundaries.

sum of three unit delta functions placed at (0.1, 0.8), (0.4, 0.5) and (0.7, 0.7) (Fig. 3). We chose
m = 1/2. It is easy to see that mass from each point of the transportation domain should in this
case be transported to the closest δ-sink (each of them remains unsaturated) and all points on the
boundary of this transportation domain must be at the same unknown distance r0 from the closest
sink. Taking into account all possible intersections of the main circle and three circles of radius
r centred at the sinks, one can calculate the integral of f+ over such a domain as a function s(r).
Solving the nonlinear algebraic equation s(r0) = m, we found that r0 = 0.2034 and were able to plot
the exact free boundary together with the boundary determined numerically, which is represented
by the level contour q+,hr = 1

2 max q+,hr . The approximate masses transported to each sink were,
respectively, 0.0461, 0.2484 and 0.2055. In this example εAL = 0.5 · 10−4, εNL = 10−4 and, to
clarify the solution structure, we plotted not the optimal flux itself but the directions of optimal
transportation, the vector field Qh

r /|Qh
r |ε.

EXAMPLE 4 (Unbalanced MK problem, two ellipses) The same as Examples 1 and 2, except
f− = 1 inside the right ellipse, so m = 1

2

∫
Ω
f+ = ∫

Ω
f− and so the problems are unbalanced. In
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FIG. 3. Partial MK problem. f+ is distributed uniformly in the circle and has the total mass
∫
Ω
f+ = 1; f− is the sum

of three point sinks each of mass one (the blue dots). Left: the optimal transportation plan for m = 1/2; right: the adapted
mesh, about four thousand triangles. Shown: the computed directions of optimal transportation (arrows); the computed free
boundary (red lines); black dots in the left plot indicate the position of the exact boundary.

the first case (Fig. 4, left) Ω is the unit square and the optimal plan is again to move the mass from
the right half of the left ellipse along the horizontal paths; the only free boundary is the vertical axis
of symmetry of this ellipse, and the auxiliary flux q+ = f+−∇ .Q has a jump on this boundary. The
total cost of transportation, found by means of elementary integration, is C = a−b−(π d− 8

3a
−) =

0.07282. The numerical solution of (Uhr ) in this example was obtained on a crude mesh adapted
only once and containing about three thousand triangles with εNL = 4 · 10−6. Nevertheless, we
obtained an accurate total cost estimate,

∑
σ∈T h |σ | |Qh

r (oσ )| = 0.07270. The free boundary (red
line), approximated by the level contour q+,hr = 1

2 max q+,hr , is also close to the exact boundary
(black dots). The problem with an obstacle (Fig. 4, right) was solved on a mesh with about eight
thousand triangles, with εNL = 5 · 10−5, yielding an approximate cost 0.08971.

FIG. 4. Unbalanced MK problem. As in Fig. 2 but with m = 1
2
∫
Ω
f+ = ∫

Ω
f−.
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FIG. 5. Unbalanced and balanced MK problem with three discrete sources; as in Fig. 3, except the sink weights. Left: each
sink is a delta function with weight 1

6 , hencem = ∫
Ω
f− = 1

2
∫
Ω
f+. Right: each sink has weight 1

3 and hence the problem
is balanced, m = ∫

Ω
f− = ∫

Ω
f+. The green lines are the approximate boundaries of the sink attraction domains.

EXAMPLE 5 (Unbalanced and balanced MK problems with discrete sinks) If, in the configuration
of Example 3, we take f− to be the sum of three delta functions at the same locations as before, but
now each with its weight equal to the mass transported to that sink in Example 3, then the problem
is an unbalanced one with the same solution. Solving the unbalanced problem, (Uhr ), on a mesh of
approximately five thousand triangles with εNL = 3 · 10−5 we obtained free boundaries that are
visually identical to those obtained in Example 3; and the total cost estimates differed by 0.6%. We
present two more examples with the same source and three equal point sinks in the same locations as
before. In the first one (Fig. 5, left) the delta sinks each have the weight 1/6; this is again an unbal-
anced problem with m = 1/2. In the second the weights are 1/3, so m = ∫

Ω
f+ = ∫

Ω
f− and the

problem is balanced; and hence there is no free boundary as both auxiliary fluxes are zero. The solu-
tion (Fig. 5, right) was obtained from (Uhr ) with about thirteen thousand triangles, and εNL = 10−5.
Here the support of f+ is divided into three attraction domains corresponding to the three sinks. On
the boundaries of the attraction domains Q is zero and, approximately, these boundaries are repre-
sented by the level contour |Qh

r | = 2 · 10−3 max |Qh
r | (green line). We note that in the balanced MK

problem∇ .Q = f+−f− and, numerically, we obtained |P h(f+−f−)−∇ .Qh
r |0,∞,Ω = 2·10−6.

EXAMPLE 6 (Partial matching problem, two ellipses) The ellipses in Fig. 6 are as in
Example 1. We set f (1) = 1 in the left ellipse, f (2) = 2 in the right one; the matching
mass m = 1

2

∫
Ω
f (1) = 1

2

∫
Ω
f (2) = 0.045π , and Ωg is the rectangle between the two ellipses

having width 0.2. We chose firstG = 1 (Fig. 6, left). SinceG|Ωg| > m, a solution to (PM) exists.
In this case, the transport to Ωg along horizontal paths from the right half of the left ellipse and the
left half of the right one is admissible; this is the cheapest matching transportation. Note, however,
that for each pair of the meeting transport rays the matching with any distribution of g upon their
common segment lying inΩg has the same total cost, so there are infinitely many optimal matching
plans satisfying g ∈ [0,G]. However, a selection is made by our regularized formulation, (PMr).
The total cost of optimal matching is equal to the transportation cost in Example 1, C = 0.06682.
Solving (PMh

r ) using an adapted mesh with about eight thousand triangles and εAL = 10−4,
εNL = 10−3, we obtained C ≈∑σ∈T h |σ |[|Q(1),h

r (oσ )| + |Q(2),h
r (oσ )|] = 0.06671.
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FIG. 6. Partial matching problems. Left: G = 1, right: G = m/|Ωg |. Shown: the boundaries of the domain Ωg and the

supports of f (1) and f (2) (black lines); the optimal fluxes Q(1),hr and Q(2),hr (arrows); the computed boundaries of the
transportation domains (red lines). The exact boundaries are indicated by the black dots (left).

For G = m/|Ωg| (Fig. 6, right) the optimal matching plan also exists; in this case g must
be equal to G in the whole set Ωg and transportation along only horizontal rays is now not
possible. A numerical solution was obtained on a mesh with about seven thousand triangles,
εAL = εNL = 10−4, and the estimated cost was C ≈ 0.06821.

EXAMPLE 7 (Partial matching problem, two rectangles) Let f (1) = f (2) = 1 in their supports,
the left and right rectangles, respectively; and the circle be the matching domain Ωg (see Fig. 7).
We set m = 1

3

∫
Ω
f (1) = 1

2

∫
Ω
f (2). Solving (PMh

r ) with G = 2m/|Ωg| (Fig. 7, left), we obtain,
within the chosen tolerances, ghr = G in half of Ωg and ghr = 0 in the other half; in this case
the mesh contained about five thousand triangles. The matching domain shrinks as the value of

FIG. 7. Partial matching problems. Left: G = 2m/|Ωg |, right: G ≈ ∞. Shown: the boundaries of the domain

Ωg and the supports of f (1) and f (2) (black lines); the optimal fluxes Q(1),hr and Q(2),hr (arrows); the
computed boundaries of the transportation domains (red lines) and of the matching domains (blue lines).
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G increases; in the limit G → ∞ (not covered by our theoretical analysis) the optimal matching
occurs at the leading edge of the boundary of Ωg . Solving the same problem with G = 1010 and an
adapted mesh of about 3500 triangles (Fig. 7, right), we found that ghr is supported in a single layer
of triangles along the leading border of Ωg; the constraint g 6 G was inactive in this case. In both
of these examples we set εAL = 10−4 and εNL = 10−3.
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