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Two-phase flows involving capillary barriers in heterogeneous porous media
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Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
E-mail: porretta@mat.uniroma2.it

[Received 11 November 2007 and in revised form 2 September 2008]

We consider a simplified model of a two-phase flow through a heterogeneous porous medium, in
which convection is neglected. This leads to a nonlinear degenerate parabolic problem in a domain
divided into an arbitrary finite number of homogeneous porous media. We introduce a new way to
connect capillary pressures on the interfaces between the homogeneous domains, which leads to a
general notion of solution. We then compare this notion of solution with an existing one, showing
that it allows one to deal with a larger class of problems. We prove the existence of such a solution
in a general case, and the existence and uniqueness of a regular solution in the one-dimensional case
for initial data regular enough.
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1. Presentation of the problem

Models of immiscible two-phase flows are widely used in petroleum engineering, particularly in
basin modelling, whose aim can be the prediction of the migration of hydrocarbon components at
geological time scale in a sedimentary basin.

The heterogeneousness of the porous medium leads to the phenomena of oil-trapping and
oil-expulsion, which is modelled with discontinuous capillary pressures between the different
geological layers.

The physical and mathematical models can be found in [4, 5, 12, 13, 14]. The phenomenon
of capillary trapping has been considered only in simplified cases (see [6]), and several numerical
methods have been developed (see e.g. [16, 15]).

The aim of this paper is to introduce a new notion of weak solution, which allows us to deal with
more general cases than those treated in [15], while it is equivalent to the notion of weak solution
introduced in [15] in the already treated cases. We will consider a simplified model (P) (page 242),
in which convection is neglected.

We then give a uniqueness result in the one-dimensional case which is inspired from the result
in [6] and extends it to more general situations, by requiring weaker assumptions on the solutions
and applying to a larger class of initial data.

We have to make some assumptions on the heterogeneous porous medium:
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ASSUMPTIONS 1 (Geometrical assumptions)

1. The heterogeneous porous medium is represented by a polygonal bounded connected domain
Ω ⊂ Rd with measRd (Ω) > 0, where measRn is the Lebesgue measure on Rn.

2. There exist a finite number N of polygonal connected subdomains (Ωi)16i6N of Ω such that:

(a) for all i ∈ [[1, N]], measRd (Ωi) > 0,
(b)

⋃N
i=1Ω i = Ω ,

(c) for (i, j) ∈ [[1, N]]2 with i 6= j , Ωi ∩Ωj = ∅.

Each Ωi represents a homogeneous porous medium. For all (i, j) ∈ [[1, N]]2, one denotes by
Γi,j ⊂ Ω the interface between the geological layers Ωi and Ωj , defined by Γ ij = ∂Ωi ∩ ∂Ωj .
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FIG. 1. An example of the domain Ω .

We consider an incompressible and immiscible oil-water flow through Ω , and thus through
eachΩi . By Darcy’s law, the conservation of oil and water phases is given for all (x, t) ∈ Ωi×]0, T [
by the equations

φi∂tui(x, t)−∇ ·
(
ηo,i(ui(x, t))(∇po,i(x, t)− ρog)

)
= 0,

−φi∂tui(x, t)−∇ ·
(
ηw,i(ui(x, t))(∇pw,i(x, t)− ρwg)

)
= 0,

po,i(x, t)− pw,i(x, t) = πi(ui(x, t)),

(1)

where ui ∈ [0, 1] is the oil saturation in Ωi (and therefore 1 − ui the water saturation), φi ∈
]0, 1[ is the porosity of Ωi , which is supposed to be constant in each Ωi for the sake of simplicity,
πi(ui(x, t)) is the capillary pressure, and g is the gravity acceleration. The indices o and w stand
for the oil and the water phases respectively. Thus, for σ = o,w, pσ,i is the pressure, ησ,i is the
mobility, and ρσ is the density of the phase σ .

We now have to make assumptions on the data to specify the transmission conditions through
the interfaces Γi,j :

ASSUMPTIONS 2 (Assumptions on the data)

1. For all i ∈ [[1, N]], πi ∈ C1([0, 1],R), with π ′i (x) > 0 for x ∈ ]0, 1[.
2. For all i ∈ [[1, N]], ηo,i ∈ C([0, 1],R+) is an increasing function with ηo,i(0) = 0.
3. For all i ∈ [[1, N]], ηw,i ∈ C([0, 1],R+) is a decreasing function with ηw,i(1) = 0.
4. The initial data u0 belongs to L∞(Ω), 0 6 u0 6 1.
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FIG. 2. Graphs for the capillary pressures.

We set αi = lims→0 πi(s) and βi = lims→1 πi(s). We can now define the monotonic graphs π̃i
by

π̃i(s) =

πi(s) if s ∈ ]0, 1[,
]−∞, αi] if s = 0,
[βi,+∞[ if s = 1.

(2)

As shown in [15], the following conditions must be satisfied on the traces of ui , pσ,i and ∇pσ,i on
Γi,j × ]0, T [, still denoted respectively ui , pσ,i and ∇pσ,i (see [5]):

1. For any σ = o,w, and (i, j) ∈ [[1, N]]2 such that Γi,j 6= ∅, the flux of the phase σ through Γi,j
must be continuous:

ησ,i(ui)(∇pσ,i − ρσg) · ni + ησ,j (uj )(∇pσ,j − ρσg) · nj = 0, (3)

where ni denotes the outward normal to Γi,j pointing to Ωi .
2. For any σ = o,w, and (i, j) ∈ [[1, N]]2 such that Γi,j 6= ∅, either pσ is continuous or ησ = 0.

Since the saturation is itself discontinuous across Γi,j , one must express the mobility at the
upstream side of the interface. This gives

ησ,i(ui)(pσ,i − pσ,j )
+
− ησ,j (uj )(pσ,j − pσ,i)

+
= 0. (4)

The conditions (4) have direct consequences for the behaviour of the capillary pressures on both
sides of Γi,j . Indeed, if 0 < ui, uj < 1, then the partial pressures po and pw both have to be
continuous, and so we have the continuity of the capillary pressures πi(ui) = πj (uj ). If ui = 0
and 0 < uj < 1, then po,i > po,j and pw,i = pw,j , thus πj (uj ) 6 πi(0). The same way, ui = 1
and 0 < uj < 1 implies πj (uj ) > πi(1). If ui = 0, uj = 1, then po,i > po,j and pw,i 6 pw,j ,
so πi(0) > πj (1). Checking that the definition of the graphs π̃i and π̃j implies π̃i(0) ∩ π̃j (0) 6= ∅,
π̃i(1) ∩ π̃j (1) 6= ∅, we can claim that (4) leads to

π̃i(ui) ∩ π̃j (uj ) 6= ∅. (5)

We introduce the global pressure in Ωi ,

pi(x, t) = pw,i(x, t)+

∫ ui (x,t)

0

ηo,i(a)

ηo,i(a)+ ηw,i(a)
π ′i (a) da (6)
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(see e.g. [3] or [12]), and the global mobility in Ωi ,

λi(ui(x, t)) =
ηo,i(ui(x, t))ηw,i(ui(x, t))

ηo,i(ui(x, t))+ ηw,i(ui(x, t))
, (7)

which satisfies λi(0) = λi(1) = 0, and λi(s) > 0 for 0 < s < 1. Taking into account (6) and (7)
in (1), and adding the conservation laws, leads to, for (x, t) ∈ Ωi × ]0, T [,

φi∂tui(x, t)−∇ ·
(
ηo,i(ui(x, t))(∇pi(x, t)− ρog)− λi(ui(x, t))∇πi(ui(x, t))

)
= 0,

−∇ ·

( ∑
σ=o,w

ησ,i(ui(x, t))(∇pi(x, t)− ρσg)
)
= 0. (8)

We neglect the convective effects, so that we focus on the mathematical modelling of flows with
discontinuous capillary pressures, which seems necessary to explain the phenomena of oil trapping.
This simplification will allow us to neglect the coupling with the second equation of (8). Then we
get the simple degenerate parabolic equation in Ωi × ]0, T [:

φi∂tui(x, t)−∇ · (λi(ui(x, t))∇πi(ui(x, t))) = 0 in Ωi × ]0, T [. (9)

In this simplified framework, the transmission condition (3) on the fluxes through Γi,j can be
rewritten

λi(ui(x, t))∇(πi(ui(x, t))) · ni + λj (uj (x, t))∇(πj (uj (x, t))) · nj = 0 on Γi,j × ]0, T [. (10)

We suppose furthermore that ui(x, 0) = u0(x) for x ∈ Ωi . In the remainder of this paper, we
assume a homogeneous Neumann boundary condition. The existence of a weak solution proven
in Section 3 can be extended to the case of nonhomogeneous Dirichlet conditions. Nevertheless,
homogeneous Neumann boundary conditions are needed to prove Theorem 4.1, and thus to prove
the final Theorem 5.4.

Taking into account the equations (5), (9), (10), the boundary condition, and the initial condition,
we can write the problem we aim to solve this way: for all i ∈ [[1, N]], and all j ∈ [[1, N]] such that
Γi,j 6= ∅, 

φi∂tui −∇ · (λi(ui)∇πi(ui)) = 0 in Ωi × ]0, T [,
π̃i(ui) ∩ π̃j (uj ) 6= ∅ on Γi,j × ]0, T [,
λi(ui)∇(πi(ui)) · ni + λj (uj )∇(πj (uj )) · nj = 0 on Γi,j × ]0, T [,
λi(ui)∇(πi(ui)) · ni = 0 on ∂Ωi ∩ ∂Ω × ]0, T [,
ui(·, 0) = u0(x) in Ωi .

(P)

All the results presented in this paper still hold if one does not neglect the effect of gravity and
if one assumes that the global pressure is known, that is, for problems of the type

φi∂tui +∇ ·
(
qfi(ui)+ λi(ui)(ρo − ρw)g− λi(ui)∇πi(ui)

)
= 0 in Ωi × ]0, T [,

π̃i(ui) ∩ π̃j (uj ) 6= ∅ on Γi,j × ]0, T [,∑
k=i,j

(qfk(uk)+ λk(uk)(ρo − ρw)g− λk(uk)∇πk(uk)) · nk = 0 on Γi,j × ]0, T [,(
qfi(ui)+ λi(ui)(ρo − ρw)g− λi(ui)∇πi(ui)

)
· ni = 0 on ∂Ωi ∩ ∂Ω × ]0, T [,

ui(·, 0) = u0(x) in Ωi,
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where fi is supposed to be a C1([0, 1],R) increasing function, λi is also supposed to belong to
C1([0, 1],R+) and q satisfies

• ∀i, q ∈ (C1(Ω i × [0, T ]))d ,
• ∇ · q = 0 in Ωi × ]0, T [,
• q|Ωi · ni + q|Ωj · nj = 0 on Γi,j × ]0, T [,
• q · n = 0.

In order to ensure the uniqueness result stated in Theorem 5.1, we assume the technical condition
(see [2] or [27])

∀i, fi ◦ ϕ
−1
i , λi ◦ ϕ

−1
i ∈ C

0,1/2([0, ϕi(1)],R).

REMARK 1.1 In the modelling of two-phase flows, irreducible saturations are often taken into
account. One can suppose that there exist si and Si (0 < si < Si < 1) such that λi(s) = 0 if
s /∈ ]si, Si[. In such a case, the problem (P) becomes strongly degenerate, but a convenient scaling
eliminates this difficulty (at least if si 6 u0 6 Si a.e. in Ωi). Moreover, the dependence of the
capillary pressure on the saturation can be weak, at least for saturations not too close to 0 or 1. Thus
the effects of capillarity are often neglected for the study of flows in homogeneous porous media,
leading to the Buckley–Leverett equation (see e.g. [19]). Looking for degeneracy of u 7→ πi(u) is
a more complex problem, particularly if convection is not neglected as above. Suppose for example
that πi(u) = εu + Pi , where Pi are constants, and let ε tend 0. Nonclassical shocks can appear at
the level of the interfaces Γi,j (see [10]). Thus the notion of entropy solution used by Adimurthi, J.
Jaffré, and G. D. Veerappa Gowda [1] is not sufficient to deal with this problem. This difficulty has
to be overcome when considering degenerate parabolic problems. But it seems clear that the notion
of entropy solution developed by K. H. Karlsen, N. H. Risebro and J. D. Towers [20, 21, 22] is not
suitable for our problem.

2. The notion of weak solution

In this section, we introduce the notion of weak solution to the problem (P), which is more general
than the notion of weak solution given in [14, 15]. Indeed, we are able to define such a solution even
in the case of an arbitrary finite number of different homogeneous porous media. Furthermore, the
notion of weak solution introduced in this paper is still available in cases where the one defined in
[15] does not make sense any more. We finally show that the two notions of solution are equivalent
in the case where the notion of [15] is well defined. Proving the existence of a weak solution to the
problem (P) in a wider case is the aim of Section 3.

We denote by ϕi the C1([0, 1],R+) function which naturally appears in the problem (P) and
which is defined by

ϕi(s) =

∫ s

0
λi(a)π

′

i (a) da ∀s ∈ [0, 1]. (11)

REMARK 2.1 The assumptions on the data ensure that ϕ′i > 0 on ]0, 1[, and so we can define an
increasing continuous function ϕ−1

i : [0, ϕi(1)]→ [0, 1].

We are now able to define the notion of weak solution to the problem (P).

DEFINITION 2.1 Under Assumptions 1 and 2, a function u is said to be a weak solution to the
problem (P) if
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1. u ∈ L∞(Ω × ]0, T [), 0 6 u 6 1 a.e. in Ω × ]0, T [,
2. for all i ∈ [[1, N]], ϕi(ui) ∈ L2(0, T ;H 1(Ωi)), where ui denotes the restriction of u to Ωi ×

]0, T [,
3. π̃i(ui) ∩ π̃j (uj ) 6= ∅ a.e. on Γi,j × ]0, T [,
4. for all ψ ∈ D(Ω × [0, T [),

N∑
i=1

∫
Ωi

∫ T

0
φiui(x, t)∂tψ(x, t) dx dt +

N∑
i=1

∫
Ωi

φiu0(x)ψ(x, 0) dx

−

N∑
i=1

∫
Ωi

∫ T

0
∇ϕi(ui(x, t)) · ∇ψ(x, t) dx dt = 0. (12)

The third point of the definition, which ensures the continuity in the graph sense of the capillary
pressures on the interfaces between several porous media, is well defined. Indeed, since ϕi(ui)
belongs to L2(0, T ;H 1(Ωi)), it admits a trace still denoted ϕi(ui) on Γi,j × ]0, T [. Thanks to
Remark 2.1, we can define the trace of ui on Γi,j × ]0, T [.

REMARK 2.2 One can equivalently replace the third point of Definition 2.1 by the condition

3bis. π̆i(ui) ∩ π̆j (uj ) 6= ∅ a.e. on Γi,j × ]0, T [,

where π̆i is the monotonic graph given by

π̆i(s) =


πi(s) if s ∈ ]0, 1[,
[min
j
(αj ), αi] if s = 0,

[βi,max
j
(βj )] if s = 1.

(13)

We will now quickly show the equivalence between the notion of weak solution to the
problem (P) and the notion of weak solution given in [15], in the case where the latter is well
defined, i.e. N = 2 and max(α1, α2) = α < β = min(β1, β2). We denote as in [15] the truncated
capillary pressures by π̂1 = max(α, π1), π̂2 = min(β, π2), and we introduce the problem (P̃),
which is treated in [15]:

φi∂tui −∇ · (λi(ui)∇πi(ui)) = 0 in Ωi × ]0, T [,
π̂1(u1) = π̂2(u2) on Γi,j × ]0, T [,
λ1(u1)∇(π1(u1)) · n1 + λ2(u2)∇(π2(u2)) · n2 = 0 on Γi,j × ]0, T [,
λi(ui)∇(πi(ui)) · ni = 0 on ∂Ωi ∩ ∂Ω × ]0, T [,
ui(·, 0) = u0(x) in Ωi .

(P̃)

Then it is easy to check that for all (s1, s2) ∈ [0, 1]2,

π̂1(s1) = π̂2(s2) ⇔ π̃1(s1) ∩ π̃2(s2) 6= ∅ ⇔ π̆1(s1) ∩ π̆2(s2) 6= ∅. (14)

In order to recall the definition of weak solution, we have to introduce the function

Ψ : [α, β]→ R, p 7→

∫ p

α

min
j=1,2

(λj ◦ π
−1
j (a)) da.

Ψ is increasing, and for i = 1, 2, Ψ ◦ π̂i ◦ ϕ−1
i is a Lipschitz continuous function.
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FIG. 3. Truncated capillary pressures.

DEFINITION 2.2 A function u is said to be a weak solution to the problem (P̃) if

1. u ∈ L∞(Ω × ]0, T [), 0 6 u 6 1 a.e. in Ω × ]0, T [,
2. ϕi(ui) ∈ L2(0, T ;H 1(Ωi)) for i ∈ {1, 2},
3. w : Ω × ]0, T [→ R, defined for (x, t) ∈ Ωi × ]0, T [ by w(x, t) = Ψ ◦ π̂i(ui)(x, t), belongs to
L2(0, T ;H 1(Ω)),

4. for all ψ ∈ D(Ω × [0, T [),

N∑
i=1

∫
Ωi

∫ T

0
φiui(x, t)∂tψ(x, t) dx dt +

N∑
i=1

∫
Ωi

φiu0(x)ψ(x, 0)dx

−

N∑
i=1

∫
Ωi

∫ T

0
∇ϕi(ui(x, t)) · ∇ψ(x, t) dx dt = 0.

REMARK 2.3 The notion of weak solution to the problem (P̃) can be adapted to the case where
there are N > 2 homogeneous domains, but we then need compatibility conditions on (αi)16i6N
and (βi)16i6N .

Proof of the equivalence of weak solutions. If u is a weak solution to the problem (P̃) in the sense
of Definition 2.2, then for a.e. t ∈ (0, T ), w(·, t) ∈ H 1(Ω), and in particular w(·, t) admits a trace
on Γi,j , whose value is at the same time Ψ (π̂i(ui(·, t))) and Ψ (π̂j (uj (·, t))). Since Ψ is increasing,
π̂i(ui(x, t)) = π̂j (uj (x, t)) for a.e. (x, t) ∈ Γi,j × ]0, T [. Using (14), we conclude that any weak
solution to the problem (P̃) is a weak solution to the problem (P) in the sense of Definition 2.1.

Conversely, if u is a weak solution to the problem (P) in the sense of Definition 2.1, then thanks
to (14), for almost every (x, t) ∈ Γi,j × ]0, T [,

π̂i(ui(x, t)) = π̂j (uj (x, t))⇔ Ψ ◦ π̂i ◦ ϕ
−1
i (ϕi(ui(x, t))) = Ψ ◦ π̂j ◦ ϕ

−1
j (ϕj (uj (x, t))). (15)

Since Ψ ◦ π̂i ◦ ϕ−1
i is a Lipschitz continuous function, the second point in Definition 2.1 ensures

that Ψ ◦ π̂i(ui) belongs to L2(0, T ;H 1(Ωi)) for i = 1, 2, and (15) ensures the continuity of the
traces on Γi,j × ]0, T [, so the third condition of Definition 2.2 is fulfilled and u is a weak solution
to the problem (P̃). 2
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REMARK 2.4 We can define a function π̃−1
i , i ∈ [[1, N]], which satisfies π̃−1

i ◦ π̃i(s) = s for
any s ∈ [0, 1]. Using the function defined on R by Ψ̃ (p) =

∫ p
−∞

minj=1,2(λj ◦ π̃
−1
j (a)) da, it

is easy to check that we can equivalently substitute the function Ψ̃ ◦ πi(ui) for Ψ ◦ π̂i(ui) in the
third point of Definition 2.2. This function is still defined if α > β, but it becomes identically 0, so
the notion of weak solution to the problem (P̃) is weaker than the notion of weak solution to the
problem (P). Indeed, u(x, t) = u0(x) = a ∈ ]0, 1[ for any (x, t) ∈ Ω × ]0, T [ is a weak solution
to the problem (P̃), but it does not satisfy the third condition in Definition 2.1.

3. Existence of a weak solution

The aim of this section is to prove the following theorem, which states the existence of a weak
solution to the problem (P). This result has already been proven in Section 2 in the case N = 2
and α > β, for which the notion of weak solution in the sense of Definition 2.1 is equivalent to the
notion of weak solution in the sense of Definition 2.2.

THEOREM 3.1 (Existence of a weak solution) Under Assumptions 1 and 2, there exists a weak
solution to the problem (P) in the sense of Definition 2.1.

Proof. We build a sequence of solutions to approximate problems (16), which converges, up to a
subsequence, toward a weak solution to the problem (P). The approximate problems do not involve
capillary barriers, so existence and uniqueness of such approximate solutions is given in [9]. We
leave the proof of the following technical lemma to the reader.

LEMMA 3.2 There exist sequences (λi,n)n, (πi,n)n belonging to (C∞([0, 1],R))N such that, for
i ∈ [[1, N]], and for n large enough:

• λi,n|[0,1/n]∪[1−1/n,1] = 1/n2, λi,n(s) > 1/2n2 for all s ∈ [0, 1], and λi,n → λi uniformly on
[0, 1],
• πi,n(0) = πj,n(0) → −∞, πi,n(1) = πj,n(1) → +∞, Kn3/2 > π ′i,n > 1/n, πi,n → πi in
L1(0, 1), πi,n→ πi and π ′i,n→ π ′i uniformly on any compact subset of ]0, 1[,
• the function ϕi,n : s 7→

∫ s
0 λi,n(a)π

′

i,n(a) da satisfies ϕi,n([0, 1]) = ϕi([0, 1]) and ϕi,n → ϕi in
W 1,∞(0, 1).

We also define the increasing functions:

Ψn : [an, bn]→ R, p 7→

∫ p

an

min
j∈[[1,N ]]

(λj,n ◦ π
−1
j,n (a)) da.

The conditions on the functions on the intervals [0, 1/n] ∪ [1 − 1/n, 1] ensure that for any fixed
large n, the functions (ϕi,n ◦π−1

i,n ◦Ψ
−1
n )′ are Lipschitz continuous. Then thanks to [9], for all n, the

approximate problem
φi∂tui,n −∇ · (λi,n(ui,n)∇πi,n(ui,n)) = 0 in Ωi × ]0, T [,
πi,n(ui,n) = πj,n(uj,n) on Γi,j × ]0, T [,
λi,n(ui,n)∇(πi,n(ui,n)) · ni+λj,n(uj,n)∇(πj,n(uj,n)) · nj = 0 on Γi,j × ]0, T [,
λi,n(ui,n)∇(πi,n(ui,n)) · ni = 0 on ∂Ωi ∩ ∂Ω × ]0, T [,
ui,n(x, 0) = u0(x) in Ω.

(16)

admits a unique weak solution in the sense of Definition 3.1 below, and this solution belongs to
C([0, T ], Lp(Ω)) for 1 6 p <∞.
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DEFINITION 3.1 A function un is said to be a weak solution to the problem (16) if:

1. un ∈ L∞(Ω × ]0, T [), 0 6 un 6 1 a.e. in Ω × ]0, T [,
2. ϕi,n(ui,n) ∈ L2(0, T ;H 1(Ωi)) for i ∈ {1, 2},
3. wn : Ω × ]0, T [→ R, defined on Ωi × ]0, T [ by wn = Ψn ◦ πi,n(ui,n), belongs to
L2(0, T ;H 1(Ω)),

4. for all ψ ∈ D(Ω × [0, T [),

N∑
i=1

∫
Ωi

∫ T

0
φiui,n(x, t)∂tψ(x, t) dx dt +

N∑
i=1

∫
Ωi

φiu0(x)ψ(x, 0) dx

−

N∑
i=1

∫
Ωi

∫ T

0
∇ϕi,n(ui,n(x, t)) · ∇ψ(x, t) dx dt = 0. (17)

The proof of existence of a weak solution, given in [9], shows that there exists C1 > 0 not
depending on n such that, for all i ∈ [[1, N]] and all n,

‖ϕi,n(ui,n)‖
2
L2(0,T ;H 1(Ωi ))

6 C1‖πi,n‖L1(0,1); (18)

thus (ϕi,n(ui,n))n is a bounded sequence in L2(0, T ;H 1(Ωi)) by Lemma 3.2. A study of the proof
of the time translate estimate used in [9, 15], and detailed in [17, Lemma 4.6], leads to the existence
of C2 not depending on n such that

‖ϕi,n(ui,n(·, · + τ))− ϕi,n(ui,n(·, ·))‖
2
L2(Ωi×]0,T−τ [) 6 τC2‖πi,n‖L1(0,1)‖ϕ

′

i,n‖L∞(0,1). (19)

Lemma 3.2 and estimates (18), (19) allow us to apply Kolmogorov’s compactness criterion (see
e.g. [8]) to deduce the relative compactness of the sequence (ϕi,n(ui,n))n in L2(Ωi × ]0, T [). There
exists fi ∈ L2(0, T ;H 1(Ωi)) such that

ϕi,n(ui,n)→ fi in L2(Ωi × ]0, T [),

ϕi,n(ui,n)→ fi weakly in L2(0, T ;H 1(Ωi)).

Let us now recall a very useful lemma, classically called Minty’s trick, and introduced in this
framework by Leray and Lions in the famous paper [25].

LEMMA 3.3 (Minty’s trick) Let (φn)n : R→ R be a sequence of nondecreasing functions and let
φ : R→ R be a nondecreasing continuous function such that:

• φn→ φ pointwise,
• there exists g ∈ L1

loc(R) such that |φn| 6 g.

Let O be an open subset of Rk , k > 1. Let (un)n ∈ (L∞(O))N, let u ∈ L∞(O) and let f ∈ L1(O)
be such that:

• un→ u in the L∞(O)-weak∗ sense,
• φn(un)→ f in L1(O).

Then f = φ(u).
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Since 0 6 ui,n 6 1, (ui,n)n converges up to a subsequence to ui in the L∞(Ωi × ]0, T [)-weak∗

sense. (ϕi,n)n converges uniformly toward ϕi on [0, 1], and we can easily check, using Minty’s
trick, that fi = ϕi(ui) ∈ L2(0, T ;H 1(Ωi)). Thus we can pass to the limit in the formulation (17)
to obtain the required weak formulation:

N∑
i=1

∫
Ωi

∫ T

0
φiui(x, t)∂tψ(x, t) dx dt +

N∑
i=1

∫
Ωi

φiu0(x)ψ(x, 0) dx

−

N∑
i=1

∫
Ωi

∫ T

0
∇ϕi(ui(x, t)) · ∇ψ(x, t) dx dt = 0.

To complete the proof of Theorem 3.1 we need the convergence of the traces of the approximate
solutions (ui,n)n on Γi,j × ]0, T [ toward the trace of ui , and to verify that π̃i(ui) ∩ π̃j (uj ) 6= ∅ a.e.
on Γi,j × ]0, T [.

Since Ωi has a Lipschitz boundary, there exists an operator P , continuous from H 1(Ωi) into
H 1(Rd), and also from L2(Ωi) into L2(Rd), such that Pv|Ωi = v for all v ∈ L2(Ωi). Then P is
continuous from H s(Ωi) into H s(Rd) for all s ∈ [0, 1]. One has, for all v ∈ H s(Ωi),

‖v‖H s (Ωi ) 6 ‖Pv‖H s (Rd ) 6 ‖Pv‖s
H 1(Rd )‖Pv‖

1−s
L2(Rd ) 6 C‖v‖s

H 1(Ωi )
‖v‖1−s

L2(Ωi )
.

One deduces from this inequality and from (19) that for all s ∈ ]0, 1[ and τ ∈ ]0, T [, there exists
C3 not depending on n, τ such that

‖ϕi,n(ui,n(·, · + τ))− ϕi,n(ui,n(·, ·))‖
2
L2(0,T−τ ;H s (Ωi ))

6 τ 1−sC3. (20)

For s1 > s2, H s1 is compactly imbedded in H s2 , and so estimate (20) implies that the sequence
(ϕi,n(ui,n))n is relatively compact in L2(0, T ;H s(Ωi)) for all s ∈ ]0, 1[. In particular, one can
extract a subsequence converging toward ϕi(ui) in L2(0, T ;H s(Ωi)). We can claim, using Minty’s
trick once again, that the traces of (ϕi,n(ui,n))n on Γi,j also converge toward the trace of ϕi(ui), still
denoted ϕi(ui), in L2(0, T ;H s−1/2(Γi,j )), and in particular for almost every (x, t) ∈ Γi,j × ]0, T [.
Since ϕi is increasing, (ui,n(x, t))n converges almost everywhere on Γi,j × ]0, T [ toward ui(x, t).

Let us now check that π̃i(ui) ∩ π̃j (uj ) 6= ∅ a.e. on Γi,j × ]0, T [. For almost every (x, t) ∈
Γi,j × ]0, T [ the sequence (πi,n(ui,n(x, t)))n converges (up to a new subsequence) to γi(x, t) ∈ R.
Since πi,n(ui,n(x, t)) = πj,n(uj,n(x, t)) for all n, one has

γi(x, t) = γj (x, t) a.e. on Γi,j × ]0, T [. (21)

If ui(x, t) ∈ ]0, 1[, then γi(x, t) = πi(ui(x, t)). If ui(x, t) = 0, then γi(x, t) 6 αi , and
γi(x, t) ∈ π̃i(0). In the same way, if ui(x, t) = 1, then γi(x, t) ∈ π̃i(1).

This completes the proof of Theorem 3.1, because relation (21) ensures the connection of the
traces in the sense of

π̃i(ui) ∩ π̃j (uj ) 6= ∅ a.e. on Γi,j × ]0, T [. 2

4. A regularity result

In this section and in Section 5, we show the existence and uniqueness of a solution with bounded
flux to the problem (P) in the one-dimensional case. We give the proofs in the case where there
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are only two subdomains Ω1 = ]−1, 0[ and Ω2 = ]0, 1[, but a straightforward adaptation gives
the same result for any finite number of Ωi , each of an arbitrary finite measure. We now state the
main result of this section, which states the existence of a solution with bounded spatial derivatives
on Qi , where Qi = Ωi × ]0, T [. We also set Q = ]−1, 1[× ]0, T [ and Γ = {x = 0}.

THEOREM 4.1 (Existence of a bounded flux solution) Let u0 ∈ L
∞(−1, 1), 0 6 u0 6 1, be such

that

• ϕi(u0) ∈ W
1,∞(Ωi),

• π̃1(u0,1) ∩ π̃2(u0,2) 6= ∅ on Γ .

Then there exists a weak solution u to the problem (P) such that ∂xϕi(ui) ∈ L∞(Qi).

All the section will be devoted to the proof of this theorem. As in Section 3, we will get
this existence result by taking the limit of a sequence of solutions to approximate problems (16)
involving no capillary barriers, whose data have the properties stated in Lemma 3.2.

Proof. We will build a sequence of approximate initial data (u0,n) adapted to the sequence of
approximate problems.

LEMMA 4.2 Let u0 be as in Theorem 4.1. Then there exists (u0,n)n such that, for all n:

• 0 6 u0,n 6 1,
• π1,n(u0,n,1) = π2,n(u0,n,2) on Γ ,

and furthermore

lim
n→∞
‖u0,n − u0‖∞ = 0, ‖∂xϕi,n(u0,n)‖L∞(Ωi ) 6 ‖∂xϕi(u0)‖L∞(Ωi ). (22)

Proof. Since π̃1(u0,1) ∩ π̃2(u0,2) 6= ∅, there exists (a1,n, a2,n) ∈ [0, 1]2 such that π1,n(a1,n) =

π2,n(a2,n) and |a1,n − u0,1| + |a2,n − u0,2| → 0. We set, for x ∈ Ωi ,

u0,n(x) = ϕ
−1
i,n (Tϕi [ϕi(u0)+ ϕi,n(ai,n)− ϕi(u0,i)])

where

Tϕi (s) =

 s if s ∈ [0, ϕi(1)] = [0, ϕi,n(1)],
ϕi,n(1) if s > ϕi(1),
0 if s < 0.

Then the sequence (u0,n) converges uniformly toward u0. Moreover, for all n, 0 6 u0,n 6 1 and
either ∂xϕi,n(u0,n) = ∂xϕi(u0), or ∂xϕi,n(u0,n) = 0. 2

By [9], the approximate problem (16) admits a unique solution un which belongs to
C([0, T ], L1(Ω)). Now, in order to get an L∞(Qi)-estimate of the sequence (∂xϕi,n(un))n, we
introduce a new family of approximate problems (23) for which the spatial dependence of the data
is smooth.

Let θ ∈ C∞(R) with 0 6 θ 6 1, θ(x) = 0 if x < −1, and θ(x) = 1 if x > 1. For all k ∈ N?,
we set

φk(x) = (1− θ(kx))φ1 + θ(kx)φ2,

λn,k(s, x) = (1− θ(kx))λ1,n(s)+ θ(kx)λ2,n(s),

πn,k(s, x) = (1− θ(kx))π1,n(s)+ θ(kx)π2,n(s).
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We will now take a new approximation of the initial data. We set

u0,n,k(x) =


u0,n

(
k

k − 1

(
x +

1
k

))
if x < −1/k,

u0,n

(
k

k − 1

(
x −

1
k

))
if x > 1/k.

In the layer [−1/k, 1/k], u0,n,k is defined by the relation

(1− θ(kx))π1,n(u0,n,k(x))+ θ(kx)π2,n(u0,n,k(x)) = π1,n(a1,n) = π2,n(a2,n),

so that the approximate capillary pressure πn,k(u0,n,k, ·) is constant throughout the layer.
Moreover, one has either

λn,k(u0,n,k, x)∂x(πn,k(u0,n,k, x)) =
k

k − 1
∂xϕi,n(u0,n) if |x| > 1/k,

or
∂x(πn,k(u0,n,k, x)) = 0 if |x| < 1/k.

So from the definition of u0,n,k we directly deduce the following lemma:

LEMMA 4.3 Let n > 1 and 0 6 u0,n 6 1 with ϕi,n(u0,n) ∈ W
1,∞(Ωi) and π1,n(u0,n,1) =

π2,n(u0,n,2). Then there exists a sequence (u0,n,k)k such that, for all k > 2, 0 6 u0,n,k 6 1 and

‖λn,k(u0,n,k, ·)∂x(πn,k(u0,n,k, ·))‖∞ 6 2 max
i=1,2
‖∂xϕi,n(u0,n)‖∞,

and
u0,n,k → u0,n in L1(Ω) as k→∞.

For any fixed k > 2 and n large enough, we can now introduce the smooth nondegenerate
parabolic problem 

φk(x)∂tun,k − ∂x(λn,k(un,k, x)∂xπn,k(un,k, x)) = 0,
∂xun,k(−1, t) = ∂xun,k(1, t) = 0,
un,k(x, 0) = u0,n,k(x).

(23)

Moreover, one can furthermore suppose, up to a new regularization, that u0,n,k ∈ C
∞([−1, 1]).

Then (23) admits a unique strong solution un,k ∈ C∞([0, T ]× [−1, 1]) (see for instance [18, 24]).
Now one sets fn,k(x, t) = λn,k(un,k, x)∂xπn,k(un,k, x), so the main equation of (23) can be

rewritten
φk∂tun,k = ∂xfn,k.

A short calculation shows that fn,k(x, t) is the solution of the problem
∂tfn,k = an,k∂

2
xxfn,k + bn,k∂xfn,k,

fn,k(−1, t) = fn,k(1, t) = 0,
fn,k(x, 0) = λn,k(u0,n,k, ·)∂x(πn,k(u0,n,k, ·)),

(24)
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where an,k, bn,k are the regular functions defined by

an,k = λn,k(un,k, x)
(πn,k)

′(un,k, x)

φk(x)
> 0,

bn,k = (λn,k)
′(un,k, x)

∂x[πn,k(un,k, x)]
φk(x)

+ λn,k(un,k, x)∂x

[
(πn,k)

′(un,k, x)

φk(x)

]
.

The fact that u0,n,k is supposed to be regular allows us to write the problem (24) in a strong sense
(this is necessary, because this problem cannot be written in a conservative form). In particular, fn,k
satisfies the maximum principle, and thus

‖fn,k‖L∞(]−1,1[×]0,T [) 6 ‖λn,k(u0,n,k, ·)∂x(πn,k(u0,n,k, ·))‖L∞(−1,1).

Thanks to Lemmas 4.3 and 4.2, we have a uniform bound on (fn,k):

‖fn,k‖L∞(]−1,1[×]0,T [) 6 2 max
i=1,2
‖∂xϕi(u0)‖∞. (25)

Since the problem (23) is fully nondegenerate (recall that λi,n > 1/2n2 and π ′i,n >
1/n) it follows that ∂xun,k and ∂tun,k are uniformly bounded respectively in L∞(Qi) and in
L2(0, T ;H−1(Ωi)) with respect to k; then the sequence (un,k)k converges toward un in L2(Qi),
and the limit un satisfies, thanks to the estimate (25),

‖∂xϕi,n(un)‖L∞(Qi ) 6 2 max
i=1,2
‖∂xϕi(u0)‖∞. (26)

For all ψ ∈ D([−1, 1]× [0, T [), one has∫ T

0

∫ 1

−1
φkun,k∂tψ +

∫ 1

−1
φkuk0,nψ0 −

∫ T

0

∫ 1

−1
fn,k∂xψ = 0. (27)

Thanks to (25),

lim
k→∞

∫ T

0

∫ 1/k

−1/k
fn,k∂xψ = 0.

One has un,k → un in the L∞(Q)-weak∗ and L2(Q) senses, and u0,n,k → u0,n in L1(−1, 1) thanks
to Lemma 4.3. Moreover, by (25), ∂xπi,n,k(un,k)→ ∂xπi,n(un,k) in the L∞(Q)-weak∗ sense. Thus
we can let k tend toward∞ in (27) to get∫ T

0

∑
i=1,2

∫
Ωi

φiun∂tψ +
∑
i=1,2

∫
Ωi

φiu0,nψ0 −

∫ T

0

∑
i=1,2

∫
Ωi

λi,n(un)∂xπi,n(un)∂xψ = 0. (28)

Furthermore, using the fact that πn,k(un,k, x) belongs to L2(0, T ;H 1(Ω)) and, even more, that
∂x(πn,k(un,k, x)) is bounded uniformly in k, we can claim that π1,n(u1,n) = π2,n(u2,n), and so un
is the unique weak solution to the approximate problem (16) with initial data u0,n.

When n tends toward ∞, the sequence (un)n converges, up to a subsequence, toward a weak
solution to the problem (P), as seen in Section 3, and the estimate (26) ensures that

∂xϕi(u) ∈ L
∞(Qi).

This completes the proof of Theorem 4.1. 2
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5. A uniqueness result

In this section, we give a uniqueness result in the one-dimensional case in a framework where
the existence results are stronger than the general existence result stated in Theorem 3.1. Under a
regularity assumption on the initial data u0, we have proved in Section 4 the existence of a solution
having bounded flux, for which we give a uniqueness result in Theorem 5.1 and Corollary 5.2.
The bound on the flux will be necessary to prove that the contraction property is also available
in the neighbourhood of the interface {x = 0}. Then we show in Theorem 5.4 the existence and
uniqueness of the weak solution which is the limit of bounded flux solutions for any initial data
u0 with 0 6 u0 6 1. Indeed, the set of initial data giving a bounded flux solution is dense in
L∞(Ω) for the L1(Ω) topology, and Theorem 5.1 implies that the contraction property can be
extended to a larger class of solutions, defined for all initial data in L∞(Ω). Unfortunately, we can
only characterize them by a limit of bounded flux solutions, and we cannot exhibit a weak solution
which is not the limit of bounded flux solutions.

THEOREM 5.1 (L1-contraction principle for bounded flux solutions) Let u, v be two weak solu-
tions to the problem (P) for the initial data u0, v0. Then, if ∂xϕi(ui) and ∂xϕi(vi) belong toL∞(Qi),
we have the following L1-contraction principle: for all t ∈ [0, T ],∑

i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
± dx 6

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
± dx. (29)

The first part of this section is devoted to the proof of Theorem 5.1, which, with Theorem 4.1,
admits the following straightforward consequence:

COROLLARY 5.2 (Uniqueness of the bounded flux solution) For all u0 ∈ L
∞(−1, 1) with 0 6

u0 6 1 such that ϕi(u0) ∈ W
1,∞(Ωi) for i = 1, 2 and π̃1(u0,1)∩π̃2(u0,2) 6= ∅, there exists a unique

weak solution to the problem (P) in the sense of Definition 2.1 and such that ∂xϕi(u) ∈ L∞(Qi);
moreover, u ∈ C([0, T ], Lp(Ω)) for all 1 6 p <∞.

Proof. The proof of Theorem 5.1 is based on entropy inequalities, obtained through the method of
doubling variables, first introduced by S. Kružkov [23] for first order equations, and then adapted
by J. Carrillo [11] to degenerate parabolic problems. Note that in the present setting, we only need
doubling with respect to the time variable, as, for instance, in F. Otto [27] for elliptic-parabolic
problems (or in [7] for Stefan-type problems).

We will only give the comparison∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
+ dx 6

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
+ dx.

The comparison with (·)− instead of (·)+ can be proven exactly the same way.
Let u be a bounded flux solution to the one-dimensional problem, i.e. ∂xϕi(u) ∈ L∞(Qi),

i = 1, 2. The weak formulation of Definition 2.1 adapted to the one-dimensional framework of this
section can be rewritten, for all ψ ∈ D(Ω × [0, T [),∫ T

0

∑
i=1,2

∫
Ωi

φiu(x, t)∂tψ(x, t) dx dt +
∑
i=1,2

∫
Ωi

φiu0(x)ψ(x, 0) dx

−

∫ T

0

∑
i=1,2

∫
Ωi

∂xϕi(u)(x, t)∂xψ(x, t) dx dt = 0. (30)
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This formulation clearly implies, for i = 1, 2, and all ψ ∈ C∞c (Ω i × [0, T [) with ψ(0, t) = 0,∫ T

0

∫
Ωi

φiu(x, t)∂tψ(x, t) dx dt +
∫
Ωi

φiu0(x)ψ(x, 0) dx

−

∫ T

0

∫
Ωi

∂xϕi(u)(x, t)∂xψ(x, t) dx dt = 0. (31)

Classical computations (see e.g. [7, 11, 27]) on equation (31) lead to the following entropy
inequalities: for all weak solutions u, v, initial data u0, v0, and ξ ∈ D+(Ω i × [0, T [ × [0, T [)
such that ξ(0, t, s) = 0,∫ T

0

∫ T

0

∫
Ωi

φi(u(x, t)− v(x, s))
+(∂tξ(x, t, s)+ ∂sξ(x, t, s)) dx dt ds

+

∫ T

0

∫
Ωi

φi(u0(x)− v(x, s))
+ξ(x, 0, s) dx ds

+

∫ T

0

∫
Ωi

φi(u(x, t)− v0(x))
+ξ(x, t, 0) dx dt

−

∫ T

0

∫ T

0

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, s))
+∂xξ(x, t, s) dx dt ds > 0. (32)

Let us note here an important consequence of the entropy inequality (32) (and of the
corresponding one for (u− v)−), namely that u can be proved to satisfy

ess-lim
t→0

∫
Ωi

|u(x, t)− u0(x)| dx = 0. (33)

Indeed, this follows by taking v to be a constant in (32) and using an approximation argument (see
e.g. Lemma 7.41 in [26]). We deduce the time continuity at t = 0 for any solution and in particular
for both u and v taken above.

Now, let ρ ∈ C∞c (R,R+)with supp(ρ) ⊂ [−1, 1] and
∫
R ρ(t) dt = 1. Define ρm(t) = mρ(mt).

Let ψ ∈ D+([−1, 1]× [0, T [) with ψ(0, ·) = 0. Form large enough, ξ(x, t, s) = ψ(x, t)ρm(t − s)
belongs toD+([−1, 1]×[0, T [×[0, T [), and we can take it as a test function in (32). Then summing
on i = 1, 2 leads to∫ T

0

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, s))
+∂tψ(x, t)ρm(t − s) dx dt ds

+

∫ T

0

∑
i=1,2

∫
Ωi

φi(u0(x)− v(x, s))
+ψ(x, 0)ρm(−s) dx ds

+

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v0(x))
+ψ(x, t)ρm(t) dx dt

−

∫ T

0

∫ T

0

∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, s))
+∂xψ(x, t)ρm(t − s) dx dt ds > 0. (34)
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We can now let m tend toward∞ in (34), and using (33) for u and v, and the theorem of continuity
in the mean, we get: for all ψ ∈ D+(Ω × [0, T [) such that ψ(0, t) = 0,

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
+∂tψ(x, t) dx dt

+

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
+ψ(x, 0) dx

−

∫ T

0

∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
+∂xψ(x, t) dx dt > 0. (35)

We now aim to extend the inequality (35) to the case where ψ(0, t) 6= 0, and in particular to the
case ψ(x, t) = θ(t), so that the third term disappears in (35).

To this end, let ui(t) = ui(0, t) denote the trace of ui at the interface Γ (and correspondingly,
vi(t) = vi(0, t)). We introduce the following subsets of ]0, T [:

Eu>v = {t ∈ [0, T ] | u1(t) > v1(t) or u2(t) > v2(t)},

Eu6v = {t ∈ [0, T ] | u1(t) 6 v1(t) and u2(t) 6 v2(t)},

so that Eu6v is the complement of Eu>v in [0, T ].
For all ε > 0, one defines ψε(x) = max(1 − |x|/ε, 0). For all θ ∈ D+([0, T [), we take

(x, t) 7→ θ(t)(1− ψε(x)) instead of ψ(x, t) as a test function in (35), to get

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
+∂tθ(t)(1− ψε(x)) dx dt

+

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
+(1− ψε)(x)θ(0) dx

−

∫ T

0

θ(t)

ε

(
(ϕ1(u)(−ε, t)− ϕ1(v)(−ε, t))

+
− (ϕ1(u1)(t)− ϕ1(v1)(t))

+

+ (ϕ2(u)(ε, t)− ϕ2(v)(ε, t))
+
− (ϕ2(u2)(t)− ϕ2(v2)(t))

+

)
dt > 0.

For almost every t ∈ Eu6v , the function (ϕi(u) − ϕi(v))+(·, t) admits a nil trace on {x = 0}, thus
the third term in the previous inequality can be reduced to the set Eu>v , yielding

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
+∂tθ(t)(1− ψε(x)) dx dt

+

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
+(1− ψε)(x)θ(0) dx

+

∫
Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
+∂xψε(x) dx dt > 0. (36)

We now turn to the crucial point of the uniqueness proof, which is the following lemma.
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LEMMA 5.3 For all θ ∈ D+([0, T [), if u, v are both bounded flux solutions, that is,
∂xϕi(u), ∂xϕi(v) ∈ L

∞(Qi), then

lim sup
ε→0

∫
Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
+∂xψε(x) dx dt 6 0.

Using the weak formulation (30), we can claim that for any ϑ ∈ D([0, T [),

lim
ε→0

∫ T

0
ϑ(t)

∑
i=1,2

∫
Ωi

∂x(ϕi(u)− ϕi(v))∂xψε(x) dx dt = 0. (37)

Since ∂x(ϕi(u)− ϕi(v)) belongs to L∞(Ωi × ]0, T [) for i = 1, 2, one has∣∣∣∣∫ T

0
ϑ(t)

∑
i=1,2

∫
Ωi

∂x(ϕi(u)− ϕi(v))∂xψε(x) dx dt
∣∣∣∣ 6 C‖ϑ‖L1(0,T ).

Then a density argument shows that (37) still holds for any ϑ ∈ L1(0, T ), and in particular for
ϑ(t) = θ(t)1Eu>v (t). Thus there exists A(ε) tending to 0 as ε tends to 0 such that∫

Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))∂xψε(x) dx dt = A(ε). (38)

If we split up ϕi(u)(x, t)− ϕi(v)(x, t) into the positive and negative parts, (38) becomes∫
Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
+∂xψε(x) dx dt

=

∫
Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
−∂xψε(x) dx dt + A(ε). (39)

It is at this point that we actually use the monotonicity of the transmission condition, i.e. condition 3
in Definition 2.1. Indeed, the conditions π̃1(u1(t)) ∩ π̃2(u2(t)) 6= ∅ and π̃1(v1(t)) ∩ π̃2(v2(t)) 6= ∅

ensure that
u1 > v1 ⇒ u2 > v2 and u1 < v1 ⇒ u2 6 v2. (40)

Therefore, recalling the definition of the set Eu>v and of ψε, the first term in the right member
of (39) is nonpositive, and we conclude

lim sup
ε→0

∫
Eu>v

θ(t)
∑
i=1,2

∫
Ωi

∂x(ϕi(u)(x, t)− ϕi(v)(x, t))
+∂xψε(x) dx dt 6 0.

This completes the proof of Lemma 5.3, and allows us to let ε→ 0 in inequality (36). Then for all
ψ ∈ D+([0, T [), one gets

−

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
+∂tψ(t) dx dt 6

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
+ψ(0) dx. (41)
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One can also prove in exactly the same way that

−

∫ T

0

∑
i=1,2

∫
Ωi

φi(u(x, t)− v(x, t))
−∂tψ(t) dx dt 6

∑
i=1,2

∫
Ωi

φi(u0(x)− v0(x))
−ψ(0) dx. (42)

These inequalities still hold for ψ = T − t , and then if u0 = v0, one has u = v almost everywhere
in Q. Moreover, we can take ψ(t) = 1[0,s](t) as a test function in (41) to get the L1-contraction
principle (29) stated in Theorem 5.1. 2

In the following, we prove that for any u0 in L∞(−1, 1) with 0 6 u0 6 1, there exists a unique
weak solution of the problem (P) which is the limit of a sequence (un)n of bounded flux solutions,
i.e. ∂xϕi(un) ∈ L∞(Qi) for all n > 1.

THEOREM 5.4 (Existence and uniqueness of the SOLA) Let u0 ∈ L
∞(−1, 1), 0 6 u0 6 1, and let

(u0,n)n>1 be a sequence of bounded flux initial data, i.e. for all n > 1,

• 0 6 u0,n 6 1,
• ϕi(u0,n) ∈ W

1,∞(Ωi),
• π̃1(u0,n,1) ∩ π̃2(u0,n,2) 6= ∅,

such that
lim
n→∞
‖u0,n − u0‖L1(Ω) = 0.

Let (un)n>1 be the sequence of the bounded flux solutions to the problem (P) for u0,n as initial data.
Then the sequence (un)n>1 converges toward u in C(]0, T [, Lp(−1, 1)), 1 6 p < ∞, where u is
a solution to the problem (P), called a Solution Obtained as the Limit of Approximations (SOLA).
Furthermore, if u, v are two SOLAs, for initial data u0, v0, one has the following L1-contraction
principle: for all t ∈ [0, T ],

N∑
i=1

∫
Ωi

φi(u(x, t)− v(x, t))
± dx 6

N∑
i=1

∫
Ωi

φi(u0(x)− v0(x))
± dx. (43)

This in particular leads to the uniqueness of the SOLA.

Proof. Let (u0,n) be a regular sequence of initial data converging toward u0 in L1(−1, 1); one can
take e.g. u0,n ∈ C

∞
c (]−1, 0[ ∪ ]0, 1[). Then (u0,n) is a Cauchy sequence, and thanks to (29), for all

t ∈ [0, T ],

N∑
i=1

∫
Ωi

φi |un(x, t)− um(x, t)| dx 6
N∑
i=1

∫
Ωi

φi |u0,n(x)− u0,m(x)| dx.

Thus (un)n is a Cauchy sequence in C([0, T ], L1(Ω)) and converges to a function u in
C([0, T ], L1(Ω)). Since (un)n is bounded in L∞(Q), one has un→u in C([0, T ], Lp(−1, 1)).

We now have to check that u is a weak solution to the problem (P). It is easy to check, using
the L∞-bound of un, that ϕi(un) tends toward ϕi(u) in Lp(Ωi × ]0, T [) for all p ∈ [1,∞[. Thanks
to (18), the sequence (ϕi(un))n is bounded in L2(0, T ;H 1(Ωi)), and thus ϕi(un)→ ϕi(u) weakly
in L2(0, T ;H 1(Ωi)), and ϕi(un) converges in L2(0, T ;H s(Ωi)), for all s ∈ ]0, 1[, still toward
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ϕi(u). In particular, un,i(t) tends toward ui(t). Since the set {(a, b) ∈ [0, 1]2
| π̃1(a) ∩ π̃2(b) 6= ∅}

is closed, we can claim that

π̃1(u1(t)) ∩ π̃2(u2(t)) 6= ∅ for a.e. t ∈ [0, T ].

We can also pass to the limit in the weak formulation in order to conclude that u is a weak solution
to the problem (P), proving the existence of a SOLA u.

Let now v be another SOLA, obtained through a sequence (v0,n)n of regular initial data
converging toward v0. Thanks to (29), one has

N∑
i=1

∫
Ωi

φi |un(x, t)− vn(x, t)| dx 6
N∑
i=1

∫
Ωi

φi |u0,n(x)− v0,n(x)| dx,

whose limit as n tends toward∞ gives the desired L1-contraction principle:

N∑
i=1

∫
Ωi

φi |u(x, t)− v(x, t)| dx 6
N∑
i=1

∫
Ωi

φi |u0(x)− v0(x)| dx,

and so the uniqueness of the SOLA, completing the proof of Theorem 5.4. 2
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