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The term electrowetting is commonly used for phenomena where shape and wetting behavior of
liquid droplets are changed by the application of electric fields. We develop and analyze a model
for electrowetting that combines the Navier–Stokes system for fluid flow, a phase-field model of
Cahn–Hilliard type for the movement of the interface, a charge transport equation, and the potential
equation of electrostatics. The model is derived with the help of a variational principle due to Onsager
and conservation laws. A modification of the model with the Stokes system instead of the Navier–
Stokes system is also presented. The existence of weak solutions is proved for several cases in two
and three space dimensions, either with non-degenerate or with degenerate electric conductivity
vanishing in the droplet exterior. Some numerical examples in two space dimensions illustrate the
applicability of the model.
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1. Introduction

The wetting behavior of electrically conductive liquids in an insulating ambient fluid can be
modified by the application of electric fields. This phenomenon is called electrowetting. As an
example, a simple electrowetting experiment is sketched in Figure . When a voltage is applied
between an electrically conductive droplet and a hydrophobic or partially wettable substrate, the
apparent contact angle is reduced and the droplet starts to spread. This effect has been discovered
by Lippmann more than a century ago [23]. Based on his experimental findings, he suggested the
following relation for the dependence of the contact angle Θ(V ) on the voltage V :

cosΘ(V ) = cosΘ(0)+ ε0ε

2dγ
V 2. (1.1)

Here, Θ(0) is the contact angle given by Young–Laplace theory [38], ε0 and ε0ε are the dielectric
permittivity in the vacuum and the dielectric layer between the droplet and the electrode respectively,
γ is the surface tension coefficient between the droplet and the ambient fluid, and d the thickness
of the insulating layer. Obviously, this formula can hold only in a small voltage regime. In
particular, it claims that for sufficiently high voltages the complete wetting regime should be
reached. Experiments by Vallet et al. [36] and by Mugele and Herminghaus [27], however, suggest
the occurrence of saturation effects at small angles. Moreover, the formation of tiny satellite droplets
at the contact line is observed which are connected to the bulk by liquid bridges [27]. A careful
analysis by Mugele and Bührle [26] (see also [7]) indicates that the contact angle change predicted
by Lippmann [23] is merely a macroscopic effect and that microscopically the Young angle persists.
This result is confirmed by physical experiment (cf. [26]). In particular, contact angle changes
consistent with the Lippmann formula (1.1) are observed only on lengthscales above the thickness of
the insulator layer. All these results pertain to the stationary case, but to the best of our knowledge,
the dynamical setting has not been theoretically addressed yet.

Besides these fundamental questions, the phenomenon of electrowetting is of major interest for
technological applications related to microfluidics, more precisely the possibility of manipulating
motion and shape of small amounts of fluid. A particular advantage compared to other methods
studied recently is the enhanced flexibility of electrowetting since the control of the motion and
wetting properties of fluids by suitably applied electric fields can be realized without valves, pumps
or even fixed channels.

Important examples of technological applications are pixelated optical filters [30], adaptive
lenses [21], [5], and curtain coating [6]. Similarly, fast switching electrowetting displays take

FIG. 1. Sketch of electrowetting phenomenon: A voltage difference is applied between the electrode in the water and a
counter electrode present underneath the partially wettable insulator material. As a result of the voltage, the droplet spreads,
i.e. the wettability of the surface increases strongly (see also [10] for a discussion of different experimental set-ups).
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FIG. 2. Sketch of an optical switch.

advantage of the observation that stable films of colored oil sandwiched between water and
hydrophobic insulators immediately contract to droplets when an external electric field is applied.

Models for electrowetting include a description for the movement of the liquid droplet. The
classical formulation leads to a free boundary problem for the interface between the droplet and
the ambient fluid. It is often convenient to approximate such problems by a phase-field model.
This approximation has been established by Allen and Cahn [2] in connection with the kinetics
of melted Fe-Al alloys; it has been proved rigorously in many subsequent works and extended to
some other rather different contexts. Phase-field models are typically derived by a gradient flow
for a free energy functional of Ginzburg–Landau type that models the properties of the interface.
Using the standard L2 metric in the gradient flow gives models for non-conserved phases that have
the form of non-linear parabolic equations of second order; these models are used to describe
phase transitions. If the volume of the different phases is conserved it is advantageous to use
the H−1 metric in the gradient flow, which leads to a fourth order parabolic equation, the so
called Cahn–Hilliard model [8]. The corresponding models are appropriate for phase separation
and for free surface problems in fluids. Phase-field models have several advantages. Substitution
of the equation for the movement of the free boundary by a partial differential equation simplifies
the numerical solution and provides an easy way to handle topological changes in the domains
occupied by each phase. It is, moreover, possible to include properties of the interface as e.g.
surface tension into the model rather easily by choosing suitable constitutive functions. The idea
of coupling interface problems in fluid mechanics with phase-field models has been explored only
recently. The main idea consists in obtaining accurate representations of surface tension forces,
acting on interfaces between fluids, in terms of the phase-field (see [24], [3] and the references
therein). A mathematical proof of global (in time) existence of weak solutions of a particular
model has been provided in [14], [15] (see also [1] for existence results for two-phase models
with general densities). Another remarkable result of [14], [15] is the proof of convergence of
finite element discretizations of the original model and of both phase-field models and their
discretizations, in a suitable sense, to the original sharp interface problem. Additional difficulties
arise if also the motion of contact lines is to be modeled, where liquid interfaces meet with
a solid substrate. In [31], versions of phase-field models adequate for such wetting phenomena
are proposed. Numerical experiments indicate that these approaches match quite accurately with
molecular dynamics simulations.

In this paper we shall proceed a step further and study the problem in which the motion of
interfaces is affected by the electric field produced by electric charges moving in the bulk of the
fluids. In this way we provide a method to simulate phenomena such as electrowetting in the same
spirit as in the above mentioned papers.
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A different approach to model aspects of electrowetting has been pursued by Lu et al. [25]. They
propose a diffuse interface model—based on degenerate Cahn–Hilliard-dynamics—for a liquid drop
in a Hele–Shaw geometry. A comparison of numerical simulations and physical experiments shows
good agreement with respect to shape dynamics and topology changes.

In the earlier paper [37], Walker and Shapiro studied also electrowetting in a Hele–Shaw
cell. They combine level-set methods with Darcy’s law to simulate droplet splitting and other
microfluidical applications. The coupling with the electric field is performed by an explicit
prescription of contact angles which are obtained from previous studies in the stationary case. By
comparison with experiment, it becomes evident that models based only on the Lippmann theory
lead qualitatively to numerical results being at variance with experimental data. In contrast, when
also contact angle saturation effects are included, the matching between experiment and simulation
is considerably improved.

Let us give the outline of the paper. In Section 2, the model is derived. First, we introduce the
relevant energies—fluid-fluid as well as fluid-solid surface energies, electrostatic energy, kinetic
energy and the free energy associated with charge distributions. Using Onsager’s variational
principle combined with conservation laws, we obtain a coupled pde system (see system (3.1)) for
phase-field, velocity field, charge distribution and electrostatic potential. It is worth mentioning that
the phase-field equation is subject to non-standard boundary conditions relating with each other a
nonlinear term and derivatives with respect to time and to the normal direction. Recently, dynamical
boundary conditions for the Cahn–Hilliard equation have been discussed in [32], with different
techniques than in the present paper. Section 3 is devoted to the analysis of the model. In space
dimension d = 2 we obtain existence results for both the cases of degenerate and of non-degenerate
conductivities. Due to a lack of regularity, in three space dimensions the case of degenerate conduc-
tivities can so far be treated only under the additional assumption of phase-independent dielectric
parameters. In Section 4, we sketch the changes necessary to obtain related results in the case of
negligible acceleration terms. Finally, in Section 5 some first numerical examples are presented to
underline the applicability of our model. In particular, the numerical results are in accordance with
the aforementioned results by Mugele and Bührle on the local persistence of the Young angle.

We finish the introduction with some remarks on notation. We use the usual notation for
Lebesgue and Sobolev spaces as well as for derivatives with respect to space and time. We write
Ω for the spatial domain in which the two fluids are contained. By Ω∗, we denote a larger spatial
domain containing Ω which also takes effects of the isolating wall into account. Therefore, phase
field, velocity field, and charge density are only defined on Ω, whereas the electric field has to be
considered onΩ∗.We often write I for the time interval (0, T ), and we also abbreviateΩ×I byΩT .
Here, of course, other combinations of domain and end-point in time are possible and will be used
throughout the paper. Vector fields will be denoted in bold face, and we write U ,V,W for the spaces
H 1

0 (Ω
∗), {v ∈ (H 1

0 (Ω))
d | ∇ · v = 0}, and H 1(Ω), respectively. Tangential components of vector

fields will be indicated by an index τ , and we write ρ̇ = ρt + v · ∇ρ for the material time derivative.
Generically, 〈·, ·〉 denotes the L2 scalar product, other dual pairings will be defined when needed.

2. The model

Our model is derived from basic principles in thermodynamics of irreversible processes near
equilibrium. A related approach, in the simpler setting of a droplet spreading over a flat surface
and confined to quasi-stationary motion, has been explored in [31]. In order to formulate the desired
phase-field model, we introduce first the phase-field φ with the property that values of φ = +1 or
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φ = −1 correspond to the liquid droplet or the ambient fluid, respectively. Since the processes to be
considered will take place at a temperature that we assume to be fixed, the natural thermodynamical
quantity to describe these transformations is the so called free energy. Surface energies are included
into phase-field models by a contribution to the free energy of the type (see [8] for instance)

Fφ = γ0

∫
Ω

(
δ
2 |∇φ|2 + 1

δ
W(φ)

)
where Ω is the domain occupied by both the droplet and ambient fluid, γ0 is the surface tension, δ
is a small positive parameter and W(φ) is a double-well potential; for simplicity of presentation it
will be defined as W(φ) = (1 − φ2)2. In the present case, where our fluid is in contact with solid
surfaces at ∂Ω , we have to introduce another term due to the interfacial energy at the fluid-solid
interface,

Ff s =
∫
∂Ω

γf s(φ).

Here, γf s(φ) is—up to a constant—a smooth function which interpolates the values of the fluid-

Ω

Ω∗

φ ≈ −1

φ ≈ +1

charge source q

V = V̄

FIG. 3. Sketch of the physical setting: The two liquids are contained in Ω . Ω∗ is a larger domain which takes
the dielectric layer into account.

solid interface energies of the different fluids. We may take, for instance,

γf s(φ) =
γ
(1)
f s − γ (2)f s

2
sin

πφ

2
.

The numbers γ (i)f s , i = 1, 2, stand for the surface energies between the solid and the i-th fluid.
The electric field adds to the total free energy a contribution (see [22])

FD = 1
2

∫
Ω

|D|2
ε(φ)

(2.1)

where ε(φ) is the dielectric constant and D = ε(φ)E the (electric) displacement vector. We neglect
the effects of induced magnetic fields in our model, so that the electric field is curl-free (by Maxwell
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equations), and we can express it in terms of the electrostatic potential by means of the relation
E = −∇V .

The inertia of the fluid would add a kinetic energy to the free energy of the form

Fv = 1
2

∫
Ω

d(φ)|v|2

where d(φ) is the density of the fluid material. We expect the effects caused by relative variations
in density to be marginal in electrowetting. Hence, we will assume the density to be independent of
φ and to be equal to 1.

Additionally we include a term in the free energy due to space distribution of charges ρ of the
form

Fρ = λ

2

∫
Ω

ρ2

where λ� 1. This term will serve as a useful regularization for our model, by transforming surface
densities of charges that typically arise in static electricity to thin volume layers that are better suited
for combination with phase-field models. In fact, this term will lead to a diffusive flux of charges,
which combined with the flux associated to the term (2.1) will make the thickness of the charge
layer typically of the order of

√
λε(0), setting an upper bound for the grid size of the numerical

methods necessary to resolve such a layer.
The total free energy is then

F = Fφ + Ff s + FD + Fv + Fρ .
The phase-field φ will evolve in time following a convective Cahn–Hilliard equation

∂φ

∂t
+∇ · (φv) = −∇ · Jφ, (2.2)

where Jφ and v denote flux and velocity fields, respectively.
The displacement vector D will evolve according to Maxwell’s equations (cf. [19]). Since fluid

and charge velocities are small in comparison to the velocity of light, magnetic effects due to the
motion of charges will be neglected, which leaves us with the equation

Dt = −ρv− JD (2.3)

where the subscript t denotes the partial time derivative. The flux is given by the sum of convective
motion of charges and a flux JD which is a combination of conduction across the medium following
Ohm’s law and diffusive flux of charges.

A second equation from Maxwell’s system is

∇ · D = ρ, (2.4)

which we assume to hold in a larger domain Ω∗ such that Ω ⊂ Ω∗ (with ρ = 0 at Ω∗ \Ω). Such
a construction is needed as we have to take into account dielectric layers which separate the liquids
from the counter electrodes. Hence, the boundary conditions on V will be imposed at ∂Ω∗, and
the presence of different materials in Ω and in Ω∗ \ Ω will be reflected by a dependence of the
dielectric constant ε on the spatial coordinates and the phase-field.
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Taking the divergence in (2.3) and the time derivative of (2.4), the following evolution equation
for ρ can easily be derived:

∂ρ

∂t
= −∇ · (ρv)−∇ · JD. (2.5)

Finally, the velocity field v satisfies the Navier–Stokes equations

∂v
∂t
+ v · ∇v = ∇ ·Π + F, (2.6)

∇ · v = 0, (2.7)

where F is the field of external forces exerted on the fluids and

Π = η(φ)T(v)− pI
denotes the stress tensor, with viscosity η = η(φ), strain velocity tensor T(v) = 1

2 (∇v+ ∇vt ) and
pressure p.

We assume the normal velocity v · n and the fluxes Jφ · n and JD · n to vanish at the boundary
of Ω . Then one can compute the variation of F = F(φ,D, v, ρ). Let us begin with the variation
with respect to φ,

δF =
∫
Ω

µδφ +
∫
∂Ω

Lδφ,

where we write briefly

µ := γ0(−δ∆φ + 1
δ
W ′(φ))− ε′(φ)

2ε2(φ)
|D|2, (2.8)

L := γ ′f s(φ)+ γ0δ
∂φ

∂n

for the chemical potential in the bulk and at the solid surface.
Altogether, for the variation of F we obtain

δF =
∫
Ω

v · δv+
∫
Ω

µδφ +
∫
∂Ω

Lδφ +
∫
Ω

E · δD+ λ
∫
Ω

ρ δρ.

We write the variation of F with respect to time by integrating the local variations of the free energy
over the whole domain Ω ,

dF
dt
=
∫
Ω

v · ∂v
∂t
+
∫
Ω

µ
∂φ

∂t
+
∫
∂Ω

L
∂φ

∂t
+
∫
Ω

E · ∂D
∂t
+ λ

∫
Ω

ρ
∂ρ

∂t
. (2.9)

Integration by parts of (2.9) and using (2.2), (2.5)–(2.7) and the fact that the normal component of
the velocity and the fluxes vanish at ∂Ω allow us to conclude

dF
dt
=
∫
∂Ω

n · (Πvτ )−
∫
Ω

Π : ∇v+
∫
Ω

v · F

+
∫
Ω

µ(−∇ · (φv)−∇ · Jφ)+
∫
∂Ω

L(φ̇ − vτ · (∇φ)τ )

+
∫
Ω

E · (−ρv− JD)+ λ
∫
Ω

ρ(−∇ · (ρv)−∇ · JD). (2.10)
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Here, φ̇ is a short notation for the material derivative, and the subscript τ denotes the tangential
component of a vector field defined on ∂Ω. Identifying the rate of change of the mechanical work
with

dW
dt
=
∫
Ω

v · F−
∫
Ω

µv · ∇φ −
∫
Ω

ρv · E + λ
∫
Ω

ρv · ∇ρ (2.11)

and writing

dS
dt
= − 1

T

(
−
∫
Ω

Π : ∇v−
∫
Ω

E · JD + λ
∫
Ω

∇ρ · JD +
∫
Ω

∇µ · Jφ

+
∫
∂Ω

Lφ̇ +
∫
∂Ω

n · (Πvτ )−
∫
∂Ω

Lvτ (∇φ)τ
)

(2.12)

for the change of entropy in time, we find that equation (2.10) is in accordance with the well known
thermodynamic equation

dF
dt
= dW

dt
− T dS

dt
.

Since no external forces are included into our model, we conclude that no net work is being produced
by or in the bulk. Therefore, treating v as arbitrary in the expression (2.11) for the variation of the
free energy, we find that such a condition on the mechanical work necessarily leads to the following
expression for the force:

F = µ∇φ + ρE−∇(λ2ρ2).
The Navier–Stokes system (2.6), (2.7) can then be written, after redefining p by adding (λ/2)ρ2, as

∂v
∂t
+ v · ∇v = ∇ ·Π + Fst + Fp + Fe (2.13)

where

Fst = γ0(−δ∆φ + 1
δ
W ′(φ))∇φ, (2.14a)

Fp = − 1
2ε
′(φ)|E|2∇φ, (2.14b)

Fe = ρE (2.14c)

correspond to surface tension, Maxwell stress and electrostatic forces, respectively.
A variational principle by Onsager (see [29]) establishes that, in absence of mechanical work,

the variation with respect to the fluxes of the difference between the rate of change of the entropy and
the energy dissipation has to cancel during the evolution of the system. This principle, applied to our
case where mechanical work is actually produced (see [31] where a similar approach is introduced),
leads to

δJ(Ḟ (J)+Φ(J, J)) = 0 (2.15)

where the fluxes are
J = (Π, φ̇, Jφ, JD, vτ ).

The usual expression for the dissipation function is the sum of quadratic terms in the fluxes with
phenomenological parameters M(φ), α−1, K(φ), η(φ) and β:

Φ(J, J) =
∫
Ω

|Jφ |2
2M(φ)

+
∫
∂Ω

φ̇2

2α−1 +
∫
Ω

|JD|2
2K(φ)

+
∫
Ω

|Π |2
2η(φ)

+
∫
∂Ω

β

2
|vτ |2 (2.16)
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and it equals half the total rate of energy dissipation. For the dissipation associated to the viscous
flow we have used (cf. [18, Chapter XII]) ∫

Ω

|Π |2
2η(φ)

.

The classical boundary condition for fluids in contact with solid surfaces is the no-slip boundary
condition, v = 0 at ∂Ω . This would cancel out the last term on the right-hand side of (2.16). When
one imposes that only the normal component of the velocity field vanishes, this term describes,
for β > 0, some viscous dissipation caused by the tangential movement of the fluid at the
boundary; it leads to the so-called Navier boundary condition (see [28], [31]). This condition has
been proposed as a means to solve the contact line paradox, that is, the development of unbounded
energy dissipations due to the motion of contact lines over the substrate, in the neighborhood of the
contact line. Nevertheless, numerical evidence (see [3]) suggests that phase-field models introduce
a regularization sufficient to solve the contact line paradox and to allow for moving contact lines.
In this spirit, in the present work we shall consider the no-slip boundary condition, but we will also
give the equations in the case of partial slip for the sake of completeness.

Solving the variational problem (2.15), we obtain the fluxes

Jφ = −M(φ)∇µ in Ω , (2.17)
JD = K(φ)(E− λ∇ρ) in Ω , (2.18)

αφ̇ = −L(φ) = −
(
γ ′f s(φ)+ γ0δ

∂φ

∂n

)
on ∂Ω, (2.19)

together with the Navier condition

βvτ = −η(φ)(T(v)n)τ + L(φ)(∇φ)τ . (2.20)

Recalling (2.2), we observe that the phase-field φ evolves according to Cahn–Hilliard dynamics

∂φ

∂t
+∇ · (φv)−∇ · (M(φ)∇µ) = 0.

Equation (2.18) allows us to identify JD as the flux due to the sum of a conductive flux described
by Ohm’s law, J(1)D = K(φ)E withK(φ) the electric conductivity, and a diffusive flux for the electric
charges J(2)D = −D(φ)∇ρwhere the diffusion coefficient D(φ) is proportional to the conductivity
with a proportionality constant λ. The diffusive flux will always be considered small in comparison
to the conductive flux. In fact, we shall take

D(φ)

K(φ)
= λ� 1. (2.21)

In the literature (cf. [34]), the case of electrolytes (negative or positive ions) moving in a dielectric
medium is also considered so that the conductive flux is not merely K(φ)E but ν(φ)ρE with the
charge mobility ν(φ) in the medium. In this case, the relation between mobility and diffusivity,
ν(φ)/D(φ) is known to be constant, once in statistical equilibrium, and according to Einstein’s
relation, inversely proportional to temperature. Relation (2.21) may be considered a reminiscence
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of this fact, but for our purposes it is merely a technical device that will make our calculations
simpler without changing the models in a significant manner.

Notice that the resulting equations for the fluxes (2.17)–(2.19) are linear combinations of the
thermodynamic forces (in the notation introduced by Onsager in his study of thermodynamical
processes close to equilibrium, see [18]) −∇µ, E = −∇V , −∇ρ, ∇v, −L. In the same spirit, the
entropy production (2.12) may be viewed as T −1 times the sum of the products of the fluxes Ji in
J = (Π, φ̇, Jφ, JD) and thermodynamic forces Xi in X = (∇v,−L,−∇µ,E − λ∇ρ),

dS
dt
= 1
T

∑
Ji · Xi,

as established in the celebrated theory of irreversible processes introduced by Onsager in 1931 (see
[29] and [18]).

To summarize, we are left with a system consisting of (2.2) with Jφ given by (2.17) and µ by
(2.8) with boundary conditions Jφ · n = 0 and

αφ̇ = −L(φ) = −
(
γ ′f s(φ)+ γ0δ

∂φ

∂n

)
on ∂Ω,

∂µ

∂n
= 0 on ∂Ω,

equations (2.4) and (2.5) with D = ε(φ)E = −ε(φ)∇V and boundary conditions

V = V at ∂Ω∗, JD · n = 0 at ∂Ω,

and equation (2.13) with forces given by (2.14) and boundary conditions

v · n = 0 on ∂Ω,
vτ = 0 or βvτ = −η(φ)(T(v)n)τ + L(∇φ)τ on ∂Ω.

In the case of negligible acceleration of the fluid, we may replace the Navier–Stokes system by
a quasi-stationary Stokes system. The deduction of the corresponding system from thermodynamic
principles would follow essentially the same path except for the absence of Fv in the total free
energy. The terms

∫
Ω

v · F and
∫
Ω
Π : ∇v would still be present in the variation of total work and

entropy respectively since they are balanced through the Stokes system:

∇ ·Π + F = 0.

Hence the expressions for all the different forces and fluxes will be exactly the same in this case.
Finally, it might happen in the context of electrowetting that the potential has to be kept constant

between two electrodes, which can be achieved by placing an appropriate amount of charge in them
at a constant potential. Assume an amount of charges q(x, t) per unit time and unit volume is placed
at the point x at time t . We can think for instance of the charge being placed at Γ0, denoting the
region occupied by an electrode inside the droplet. Therefore, the equation for ρ will be, instead of
(2.5),

∂ρ

∂t
+∇ · (ρv)+∇ · (K(φ)(E− λ∇ρ)) = q

with the boundary condition

K(φ)(E− λ∇ρ) · n = 0 at ∂Ω.
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3. Existence of weak solutions

In this section we present results on the existence of solutions to our model. This is done in two
steps: first we consider a model with non-degenerate electric conductivity, where K(φ) > K− > 0
for every value of φ. From the physical point of view, this model is rather unrealistic as it allows
for diffusive and field-induced charge transport also outside the conductive phase. Here, it only
serves mathematically for approximation purposes. In Subsection 3.4, we shall analyze the case of
a degenerate conductivity K(−1) = 0—in two space dimensions without any further restrictions,
in three space dimensions under the assumption of a phase-independent dielectric parameter.

Assuming constant unit mass density (d ≡ 1), the model consists of the following differential
equations:

vt + (v · ∇)v−∇ · (η(φ)T(v))+∇p − µ∇φ + ρ∇V = 0 in ΩT ,
∇ · v = 0 in ΩT ,

ρt + v · ∇ρ −∇ · (K(φ)∇(V + λρ)) = q in ΩT ,
φt + v · ∇φ −∇ · (M(φ)∇µ) = 0 in ΩT ,

−∇ · (ε̄[φ]∇V ) =
{
ρ in Ω ∀t ∈ (0, T ),
0 in Ω∗ \Ω ∀t ∈ (0, T ).

(3.1)

Here, the velocity strain tensor T and the chemical potential µ are given by

T(v) = 1
2 (∇v+ (∇v)t ),

µ = γ0(−δ∆φ + 1
δ
W ′(φ))− 1

2ε
′(φ)|∇V |2. (3.2)

We further assume γ0 ≡ 1 without loss of generality. As boundary conditions, we have

v = 0,
K(φ)∇(V + λρ) · n = 0,

∂

∂n
µ = 0,

γ0δ
∂

∂n
φ = −γ ′f s(φ)− αφt

(3.3)

on ∂Ω × (0, T ) and
V = V on ∂Ω∗ × (0, T ). (3.4)

Let us specify our assumptions on domains and data.

(H0) The domains Ω ⊂ Ω∗ ⊂ Rd , d = 2, 3, are either bounded with boundary of class C1,1

or bounded and convex with Lipschitz boundary.
(H1) The dielectric parameter ε(·) ∈ C1,1(R) satisfies 0 < ε− 6 ε(φ) 6 ε+ <∞ for all φ ∈ R

and is monotone with supp(ε′) ⊂ [−1, 1]. On Ω∗T , we will also consider the function

ε̄[φ](t, x) :=
{
ε(φ(t, x)) if x ∈ Ω̄,
ε∗(x) if x ∈ Ω̄∗ \ Ω̄.

Here, ε∗ ∈ L∞(Ω∗ \Ω) is bounded from below by a positive parameter.
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(H2) The mobilityM(·) ∈ C1,1(R)∩L∞(R) is bounded from below by a positive constantM−.
(H3) The interfacial energy γf s ∈ C1(R) and the viscosity function η ∈ C1,1(R) are monotone

on [−1, 1] with supp(γ ′f s) ⊂ [−1, 1].
(H4) The conductivity function K(·) ∈ C1(R) satisfies 0 6 K(·) 6 K+ <∞ and is monotone

increasing with supp(K ′) ⊂ [−1, 1].
(H4-bis) Special case of non-degenerate conductivities: there is a positive constant K− such that

K(·) > K− on R.
(H5) V̄ ∈ L∞(I ;W 1,r(Ω∗)) ∩ H 1(I ;H 1(Ω∗)) for an exponent r > 2 and arbitrary time

intervals I .

Note that (H1), (H3), (H4), and (H4-bis) put into simple mathematical terms the physical fact
that we are dealing with a mixture of two different liquids and therefore the physical quantities
of dielectricity, interfacial energy, viscosity, and conductivity depend on the phase-field. (H2) and
(H5) are merely technical assumptions.

3.1 Weak formulation

We introduce the function spaces

V := {v ∈ (H 1
0 (Ω))

d | ∇ · v = 0}
for the velocity field,

W := H 1(Ω)

for the functions ρ, φ, µ, and
U := H 1

0 (Ω
∗)

for the potential excess V − V̄ . Moreover, we will sometimes use the notation S ′d for the dual space
of Sd := {v ∈ (W 1,d

0 (Ω))d | ∇ · v = 0}, d ∈ {2, 3}. Of course, S ′2 = V ′.
The weak formulation of the problem is as follows.

DEFINITION 3.1 Let p satisfy 2 < p <∞ if d = 2, and p = 3 if d = 3. Assume the source term
q to be an element of L2(ΩT ). For given initial data v0 ∈ V , φ0 ∈ W , and ρ0 ∈ L2(Ω), we call a
quintuple (ρ, φ, v, µ, V ) with

ρ ∈ L∞(I ;L2(Ω)) ∩H 1(I ;W 1,p(Ω)′),
φ ∈ L∞(I ;H 1(Ω)) ∩H 1(I ;H 1(Ω)′) ∩H 1(I ;L2(∂Ω)),

v ∈ L∞(I ;L2(Ω)) ∩ L2(I ;V) ∩W 1,6/5(I ;S ′d),
µ ∈ L2(I ;H 1(Ω)),

V − V ∈ L∞(I ;H 1(Ω))

a weak solution of (3.1)–(3.4) if the following hold:∫ T

0
〈vt ,w〉1 +

∫
ΩT

((v · ∇)v · w+ η(φ)T(v) : T(w))+
∫
ΩT

(ρ∇V − µ∇φ) · w = 0, (3.5a)∫ T

0
〈ρt , ψ1〉2 +

∫
ΩT

(K(φ)∇(V + λρ)− ρv) · ∇ψ1 =
∫
ΩT

qψ1, (3.5b)
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0
〈φt , ψ2〉3 +

∫
ΩT

(v · ∇φψ2 +M(φ)∇µ · ∇ψ2) = 0, (3.5c)∫
ΩT

µψ3 =
∫
ΩT

(δ∇φ · ∇ψ3 + 1
δ
W ′(φ)ψ3 − 1

2ε
′(φ)|∇V |2ψ3)+

∫ T

0

∫
∂Ω

(αφt + γ ′f s(φ))ψ3,

(3.5d)∫
Ω∗T
ε̄[φ]∇V · ∇χ =

∫
ΩT

ρχ (3.5e)

for every w ∈ L6(I ;Sd), ψ1 ∈ L2(I ;W 1,p(Ω)), ψ2 ∈ L2(I ;H 1(Ω)), ψ3 ∈ L2(I ;H 1(Ω)) ∩
L1(I ;L∞(Ω)), and χ ∈ L2(I ;U). Here, 〈·, ·〉1, 〈·, ·〉2 and 〈·, ·〉3 denote the dual pairings on the
spaces L6(I ;Sd), L2(I ;W 1,p(Ω)), and L2(I ;H 1(Ω)), respectively.

3.2 A formal energy estimate

The key result for the subsequent analysis is an energy estimate which comes as a natural
consequence of the derivation of the model. Taking w = v in (3.5a), ψ1 = λρ + V in (3.5b),
ψ2 = µ in (3.5c) and ψ3 = φt in (3.5d), as well as differentiating the integrand of (3.5e) with
respect to time and choosing χ = V − V as a test function gives after adding all relations

[∫
Ω

( 1
2 |v|2 + λ

2ρ
2 + δ

2 |∇φ|2 + 1
δ
W(φ)

)+ ∫
Ω∗

1
2 ε̄[φ]|∇V |2 +

∫
∂Ω

γf s(φ)

]T
0

+
∫
ΩT

[η(φ)|T(v)|2 +K(φ)|∇(V + λρ)|2 +M(φ)|∇µ|2]+
∫ T

0

∫
∂Ω

α|φt |2

=
∫
ΩT

q(V + λρ)+
[∫

Ω∗
ε(φ)∇V · ∇V

]T
0

−
∫
ΩT

ε̄[φ]∇V ∂t∇V̄ −
[∫

Ω

ρV̄

]T
0
+
∫
ΩT

ρV̄t . (3.6)

By standard absorption techniques, we find∫
Ω

ρ2(·, T )+
∫
Ω∗
ε̄[φ]|∇V |2(·, T )

6 R0(v0, ρ0, φ0)+ C1

{∫
ΩT

q2 +
∫
ΩT

|∂t∇V̄ |2 +
∫
ΩT

|V̄t |2 + sup
t∈[0,T ]

∫
Ω

|V̄ |2
}

+ C2

{∫
ΩT

ρ2 +
∫
ΩT

ε(φ)|∇V |2
}

with constants C1, C2 depending only on data and time T . In particular, R0 is a non-negative term
which collects the contributions of initial data. Applying Gronwall’s lemma, we infer that

sup
t∈[0,T ]

{∫
Ω

ρ2(·, t)+
∫
Ω∗
ε̄[φ]|∇V |2(·, t)

}
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is bounded by a constant C <∞ which only depends on data and time T . Inserting this in (3.6) and
using Korn’s inequality, we finally have

‖ρ‖L∞(I ;L2(Ω)) + ‖φ‖L∞(I ;H 1(Ω)) + ‖W(φ)‖L∞(I ;L1(Ω)) + ‖V ‖L∞(I ;H 1(Ω∗)) + ‖v‖L∞(I ;L2(Ω))

+ ‖v‖L2(I ;H 1(Ω)) + ‖K(φ)1/2∇ρ‖L2(ΩT )
+ ‖∇µ‖L2(ΩT )

+ ‖φt‖L2(∂Ω×I ) 6 C (3.7)

with a constant C that only depends on the given data and time T . This estimate also holds for the
case of degenerate electric conductivity; the lower bound for K(φ) may be zero.

Estimate (3.7) and equations (3.5b), (3.5c) imply

‖φt‖L2(I ;H 1(Ω)′) + ‖ρt‖L2(I ;(W 1,p(Ω))′) 6 C (3.8)

with

p =
{

2+ ν for d = 2,
3 for d = 3

and arbitrary positive ν.

3.3 The case of non-degenerate electric conductivity

The existence of a solution to system (3.5) with K(φ) > K− > 0 is established by the Faedo–
Galerkin method. We use finite-dimensional subspaces

Vn := span{w1, . . . ,wn} of V,
Wn := span{ψ1, . . . , ψn} ofW,
Un := span{χ1, . . . , χn} of U .

Here, wi, i ∈ N, form a complete system of L2-orthonormal eigenfunctions of the Stokes operator
with homogeneous Dirichlet boundary conditions. Similarly, ψi, χi , i ∈ N, are a basis of L2-
orthonormal eigenfunctions of the Laplace operator with homogeneous Neumann or Dirichlet
boundary conditions, respectively.1 It is well known that the spaces

⋃
n∈N Vn,

⋃
n∈NWn ,

⋃
n∈N Un

are dense in V,W,U , respectively. Under condition (H0) for the domains Ω and Ω∗, the elements
of Vn, Wn, Un are bounded. The solutions to be computed are approximated by elements of these
spaces,

v(t, x) ∼ v(n)(t, x) :=
n∑
j=1

v̂
(n)
j (t)wj (x),

ρ(t, x) ∼ ρ(n)(t, x) :=
n∑
j=1

ρ̂
(n)
j (t)ψj (x),

φ(t, x) ∼ φ(n)(t, x) :=
n∑
j=1

φ̂
(n)
j (t)ψj (x),

1 Recall that eigenfunctions for the Laplace operator with homogeneous Neumann boundary conditions are a good choice
to discretize corresponding boundary value problems with Robin and also with non-homogeneous Neumann boundary
conditions. In contrast, for Dirichlet boundary conditions eigenfunctions for the Laplace operator with homogeneous
Dirichlet boundary conditions are to be preferred. Hence our choice of the Faedo–Galerkin method.
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µ(t, x) ∼ µ(n)(t, x) :=
n∑
j=1

µ̂
(n)
j (t)ψj (x),

V (t, x) ∼ V (n)(t, x) := V (t, x)+
n∑
j=1

V̂
(n)
j (t)χj (x).

Generally, we denote Galerkin functions and their coefficients by the same letter and we emphasize
coefficients by hats. The Galerkin approximation is given by:

Find v(n) ∈ C1(I ;Vn), ρ(n), φ(n), µ(n) ∈ C1(I ;Wn), V (n) ∈ C(I ;Un) such that for every t ∈ I ,
w ∈ Vn, ψ1, ψ2, ψ3 ∈Wn, χ ∈ Un,∫
Ω

[v(n)t · w+ (v(n) · ∇)v(n) · w+ η(φ(n))T(v(n)) : T(w)− µ(n)∇φ(n) · w+ ρ(n)∇V (n) · w] = 0,

(3.9a)∫
Ω

[ρ(n)t ψ1 + (−ρ(n)v(n) +K(φ(n))∇(V (n) + λρ(n))) · ∇ψ1] =
∫
Ω

qψ1, (3.9b)∫
Ω

[φ(n)t ψ2 + v(n) · ∇φ(n)ψ2 +M(φ(n))∇µ(n) · ∇ψ2] = 0, (3.9c)∫
Ω

µ(n)ψ3 =
∫
Ω

(δ∇φ(n) · ∇ψ3 + 1
δ
W ′(φ(n))ψ3 − 1

2ε
′(φ(n))|∇V (n)|2ψ3)

+
∫
∂Ω

(αφ
(n)
t + γ ′f s(φ(n)))ψ3, (3.9d)∫

Ω∗
ε̄[φ(n)]∇V (n) · ∇χ =

∫
Ω

ρ(n)χ. (3.9e)

Existence of solution to the discrete problem. It is advantageous to first eliminate the potential V
from all the equations. The discrete version of the equation for the potential can be transformed to
the following linear equation for the vector V̂ = (V̂1, . . . , V̂n) of coefficients:

A0(φ
(n))V̂ (n) = b0(φ

(n), ρ(n)),

where (A0(φ
(n)))ij =

∫
Ω∗ ε̄[φ

(n)]∇χj · ∇χi and

b0i(φ
(n), ρ(n)) =

∫
Ω∗
(ρ(n)χi − ε̄[φ(n)]∇V · ∇χi).

Note that we extended ρ(n) by zero to Ω∗ \ Ω̄. The matrix A0 is positive definite, therefore

V (n) = A−1
0 (φ(n))b0(φ

(n), ρ(n)) = V (n)(φ(n), ρ(n)).
The remaining discrete equations take the form

A1v̂(n)t = F1(φ
(n), ρ(n), v(n), µ(n)),

−A2µ̂
(n) + B1φ̂

(n)
t = F2(φ

(n), ρ(n)),

A2φ̂
(n)
t + A3(φ

(n))µ̂(n) = F3(φ
(n), v(n)),

A2ρ̂
(n)
t = F4(φ

(n), ρ(n), v(n)).

(3.10)



274 C. ECK ET AL.

Here, the stiffness and mass matrices are given as

A1 =
(∫

Ω

wj · wi
)n
i,j=1

,

A2 =
(∫

Ω

ψjψi

)n
i,j=1

, B1 =
(∫

∂Ω

αψiψj

)n
i,j=1

,

A3(φ) =
(∫

Ω

M(φ)∇ψj · ∇ψi
)n
i,j=1

.

The right-hand sides in (3.10) are defined as

F1(φ, ρ, v, µ) :=
(
−
∫
Ω

((ρ∇V (n)(φ, ρ)+(v ·∇)v−µ∇φ)wi+η(φ)T(v) : T(wi))
)n
i=1
,

F2(φ, ρ) :=
(
−
∫
Ω

(δ∇φ ·∇ψi+ 1
δ
W ′(φ)ψi− 1

2ε
′(φ)|∇V (n)(φ, ρ)|2ψi)+

∫
∂Ω

γ ′f s(φ)ψi
)n
i=1
,

F3(φ, v) :=
(
−
∫
Ω

v ·∇φψi
)n
i=1
,

F4(φ, ρ, v) :=
(∫

Ω

(qψi+ρv ·∇ψi−K(φ)∇(V (n)(φ, ρ)+λρ) ·∇ψi)
)n
i=1
.

Our goal is to write this system as an autonomous ODE system

∂t

v̂(n)

φ̂(n)

ρ̂(n)

 = F
v̂(n)

φ̂(n)

ρ̂(n)

 . (3.11)

Taking the invertibility of A1 into account, we note that the first equation of (3.10) already has the
desired form, provided we are able to express µ̂ as a function of v̂, φ̂, and ρ̂ only. This is possible if
the matrix

M =
 −A2 B1 0
A3(φ) A2 0

0 0 A2


is regular independently of φ. In this case the last three rows of (3.10) can be transformed by
the Gauß algorithm to diagonal form, which implies a representation µ̂(n) = µ̂(n)(φ(n), ρ(n), vn).
Assume a = (µ̄, φ̄, ρ̄)t satisfies Ma = 0. Multiplying Ma by b := (φ̄, µ̄, 0)t , we obtain

0 = btMa = φ̄tB1φ̄ + µ̄tA3µ̄.

Since B1, A3 are symmetric and positive semidefinite, this implies B1φ̄ = 0 and A3µ̄ = 0. Observe
that A2 is positive definite. From the first component of Ma = 0 we infer that µ̄ is zero. Similarly,
the second and third rows imply successively that φ̄ and ρ̄ are zero too. Hence the kernel of M is
trivial. It is therefore possible to rewrite the discrete system in the form of equations (3.11).

Since all the coefficient functions φ 7→ η(φ), φ 7→ ε(φ), φ 7→ ε′(φ), φ 7→ K(φ), φ 7→ M(φ)

and φ 7→ γf s(φ) are Lipschitz, the functions F1, F2, F3, F4, and the matrices A0 and M are
uniformly Lipschitz with respect to φ, ρ, and v, and uniformly bounded if (φ, ρ, v) is taken from a
fixed, bounded subset of R3n. The inverse ofA0 is also bounded and Lipschitz, because φ 7→ A0(φ)

is Lipschitz, bounded and positive definite with Lipschitz constant and upper and lower bound
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independent of φ. This also implies that the function (φ, ρ) 7→ V (n)(φ, ρ) is Lipschitz and bounded.
It remains to verify that the inverse of M is also Lipschitz and bounded. Assume that M−1(φ) were
unbounded for φ in some compact set. Then there would be a sequence (φ(n)) with limit φ such that
the matrix norm of M−1(φ(n)) tends to +∞ as n → +∞. However, since M is continuous, this
implies that M(φ) has a nontrivial kernel. Hence, for every bounded set K ⊂ Rn there is a constant
cK such that ‖M−1(φ)‖ 6 cK for φ ∈ K . As a consequence, the function (v, φ, ρ) 7→ F(v, φ, ρ)
in (3.11) is Lipschitz in every bounded set. Hence, applying the Picard–Lindelöf theorem, we obtain
a solution of the discrete system that is unique and exists as long as it stays bounded.

Convergence of the discrete solutions. Under the assumptions (H0)–(H5), including (H4-bis), we
derive an a priori estimate in the spirit of (3.7) for the discrete system (3.9). The time derivative of
(3.9e) for time-independent χ leads to∫

Ω∗

d
dt
(ε̄[φ(n)]∇V (n)) · ∇χ =

∫
Ω∗
ρ
(n)
t χ.

For a test function χ = V (n) − V we obtain∫
Ω∗

[
d
dt

( 1
2 ε̄[φ

(n)]|∇V (n)|2)+ 1
2ε
′(φ(n))φ(n)t |∇V (n)|2 − ρ(n)t V (n)

]
=
∫
Ω∗

[
d
dt
(ε̄[φ(n)]∇V (n)) · ∇V − ρ(n)t V

]
. (3.12)

Setting w = v(n) in (3.9a), ψ1 = V (n) + λρ(n) in (3.9b), ψ2 = µ(n) in (3.9c), ψ3 = φ(n)t in (3.9d)
and adding the results to (3.12) yields

d
dt

[∫
Ω

{ 1
2 |v(n)|2 + λ

2 |ρ(n)|2 + δ
2 |∇φ(n)|2 + 1

δ
W(φ(n))

}+ ∫
∂Ω

γf s(φ
(n))+

∫
Ω∗

1
2 ε̄[φ

(n)]|∇V (n)|2
]

+
∫
Ω

[η(φ(n))|T(v(n))|2 +K(φ(n))|∇(V (n) + λρ(n))|2 +M(φ(n))|∇µ(n)|2]+
∫
∂Ω

α|φ(n)t |2

=
∫
Ω

q(V (n) + λρ(n))+
∫
Ω∗

[
d
dt
(ε̄[φ(n)]∇V (n)) · ∇V − ρ(n)t V

]
.

Integration with respect to t over (0, t0) with some t0 in combination with the partial integration∫
Ω∗t0

[
d
dt
(ε̄[φ(n)]∇V (n)) · ∇V − ρ(n)t V

]

=
[∫

Ω∗
(ε̄[φ(n)]∇V (n) · ∇V − ρ(n)V )

]t0
0
−
∫
Ω∗t0

[(ε̄[φ(n)]∇V (n)) · ∇V t − ρ(n)V t ]

and some Young and Hölder estimates yields the estimate

‖ρ(n)‖L∞(I ;L2(Ω)) + ‖φ(n)‖L∞(I ;H 1(Ω)) + ‖V (n)‖L∞(I ;H 1(Ω∗)) + ‖v(n)‖L∞(I ;L2(Ω))

+ ‖v(n)‖L2(I ;H 1(Ω)) + ‖∇µ(n)‖L2(ΩT )
+ ‖(K(φ(n)))1/2∇ρ(n)‖L2(ΩT )

+ ‖φ(n)t ‖L2(∂Ω×I ) 6 C. (3.13)

The L∞ bounds for φ(n), ρ(n), and v(n) imply that the solutions to (3.11) exist globally in time.
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Let us prove regularity with respect to time for the velocity field. We denote byPn the orthogonal
L2-projection onto Vn. We have

LEMMA 3.2 For the approximate solutions to the non-degenerate problem, there is a positive
constant C depending on K− such that in space dimensions d 6 3 and uniformly in n ∈ N we
have

‖v(n)t ‖L6/5(I ;V ′) 6 C. (3.14)

Proof. We choose w ∈ L6(I ;V) arbitrarily and take Pnw as a test function in the discrete version
of the v-equation. Hence, suppressing the index n, we have pointwise almost everywhere in time

|〈vt ,w〉| = |〈vt ,Pnw〉|
6

∣∣∣∣∫
Ω

(v · ∇)vPnw
∣∣∣∣+ ∣∣∣∣∫

Ω

η(φ)T(v) : T(Pnw)
∣∣∣∣+ ∣∣∣∣∫

Ω

µ∇φ · Pnw
∣∣∣∣+ ∣∣∣∣∫

Ω

ρ∇V · Pnw
∣∣∣∣

6 C{‖v‖L3(Ω)‖∇v‖L2(Ω)+‖v‖H 1(Ω)+‖µ‖L3(Ω)‖∇φ‖L2(Ω)+‖ρ‖L3(Ω)‖∇V ‖L2(Ω)}‖w‖H 1(Ω).

Here, we have used Sobolev’s embedding theorem as well as the fact that the projections Pn are
uniformly bounded as operators in L(V,V). Combining the embedding (cf. [12])

L∞(I ;L2(Ω)) ∩ L2(I ;H 1(Ω)) ↪→ Lp(ΩT ) for p = 2d + 4
d

(3.15)

with the energy estimate (3.13), we obtain∣∣∣∣∫ T

0
〈vt ,w〉

∣∣∣∣ 6 ‖v‖L3(ΩT )
‖∇v‖L2(ΩT )

‖w‖L6(I ;H 1(Ω))

+ ‖µ‖L2(I ;L3(Ω))‖∇φ‖L∞(I ;L2(Ω))‖w‖L2(I ;H 1(Ω))

+ ‖v‖L2(I ;H 1(Ω))‖w‖L2(I ;H 1(Ω)) + ‖ρ‖L3(ΩT )
‖∇V ‖L∞(I ;L2(Ω))‖w‖L3/2(I ;H 1(Ω))

6 C(T )‖w‖L6(I ;H 1(Ω)).

Hence, v(n)t is uniformly bounded in L6/5(I ;V ′). 2

In a similar fashion, we may prove

COROLLARY 3.3 There is a positive constant C independent of n and K(·) such that

‖φ(n)t ‖L2(I ;H 1(Ω)′) +
√
K−‖ρ(n)t ‖L2(I ;H 1(Ω)′) 6 C. (3.16)

Together with the compactness results in space (see (3.13), note in particular the uniform
positivity ofK(·)) and by use of the Aubin–Lions lemma, we deduce the existence of a subsequence
again labeled by n such that

v(n) ⇀ v in L2(I ;H 1(Ω)d) ∩W 1,6/5(I ;V ′) ∩ L∞(I ;L2(Ω)d)

and strongly in L2(ΩT ),

ρ(n) ⇀ ρ in H 1(I ;H 1(Ω)′) ∩ L2(I ;H 1(Ω)) ∩ L∞(I ;L2(Ω))

and strongly in L2(ΩT ),

φ(n) ⇀ φ in H 1(I ;H 1(Ω)′) ∩ L∞(I ;H 1(Ω)) and strongly in L2(ΩT ),

φ(n)→ φ strongly in L2(∂Ω × I ),
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φ
(n)
t ⇀ φt in L2(∂Ω × I ),

φ(n)(t, x)→ φ(t, x) for almost every t ∈ I, x ∈ Ω,
∇µ(n) ⇀ ∇µ in L2(ΩT ),

V (n) ⇀∗ V in L∞(I ;H 1(Ω∗)),
1
2ε
′(φ(n))|∇V (n)|2 ⇀ Θ in the sense of measures.

By compensated compactness (see [11], [35]), we obtain easily

v(n) · ∇ρ(n) ⇀ v · ∇ρ and v(n) · ∇φ(n) ⇀ v · ∇φ in Lp(ΩT ),

for some p > 1, since ∇ · v(n) = 0 and ∇ρ(n),∇φ(n) are L2-integrable gradient fields. Since
φ(n)→ φ almost everywhere, we also have for a subsequence

ε(φ(n))→ ε(φ), ε′(φ(n))→ ε′(φ) and η(φ(n))→ η(φ)

almost everywhere. We recall the boundedness of ε, ε′, and η and obtain easily the strong
convergence in Lp(ΩT ) for arbitrary p < ∞. These convergences allow us to pass to the limit
in the Galerkin discretization. In equation (3.5a) the convergence∫

ΩT

ρ(n)∇V (n) · w→
∫
ΩT

ρ∇V · w

follows from the strong convergence of ρ in L2(ΩT ); the convergence∫
ΩT

µ(n)∇φ(n) · w→
∫
ΩT

µ∇φ · w

is derived after an integration by parts from∫
ΩT

φ(n)∇µ(n) · w→
∫
ΩT

φ∇µ · w.

As a consequence, the limit functions v, ρ, φ, µ, V solve the system (3.5) except for (3.5d) which
has to be replaced by∫

ΩT

µψ3 =
∫
ΩT

(δ∇φ · ∇ψ3 + 1
δ
W ′(φ)ψ3)

−
∫ T

0
〈Θ,ψ3〉M(Ω)×L∞(Ω) +

∫ T

0

∫
∂Ω

(αφt + γ ′f s(φ))ψ3.

It remains to prove Θ = 1
2ε
′(φ)|∇V |2. It is sufficient to show that the convergence V (n) → V is

strong in L2(I ;H 1(Ω)) as it implies

‖ε′(φ(n))|∇V (n)|2 − ε′(φ)|∇V |2‖L1(ΩT )

6 ‖ε′(φ(n))(|∇V (n)|2 − |∇V |2)‖L1(ΩT )
+ ‖(ε′(φ(n))− ε′(φ))|∇V |2‖L1(ΩT )

6 ‖ε′(φ(n))‖L∞(ΩT )‖∇(V (n) − V )‖L2(ΩT )
‖∇(V (n) + V )‖L2(ΩT )

+ ‖(ε′(φ(n))− ε′(φ))|∇V |2‖L1(ΩT )

→ 0 as n→∞.
The last term here converges to zero due to the Lebesgue dominated convergence theorem.



278 C. ECK ET AL.

In order to prove the strong convergence of V (n) in L2(I ;H 1(Ω)) we take the test function
V (n) − V − Pn(V − V ) in the Galerkin discretization (3.9e) with solution V (n) and V − V (n) in
(3.5e) with solution V , add both relations and integrate over t . Here Pn is the orthogonal projection
of H 1

0 (Ω
∗) onto Un. This projection has ‖Pn‖ = 1. Since ‖∇(Pn(V − V̄ )− (V − V̄ ))‖L2(Ω∗) tends

to 0 as n→∞ for almost every t ∈ I , we obtain by the Lebesgue dominated convergence theorem

lim
n→∞ ‖∇(Pn(V − V̄ )− (V − V̄ )‖L2(Ω∗T ) = 0. (3.17)

We have∫
I

∫
Ω∗
ε̄[φ(n)]|∇(V (n) − V )|2 6

∫
I

∫
Ω∗
ε̄[φ(n)]∇V (n) · ∇(Pn(V − V )− (V − V ))

+
∫
ΩT

(ε(φ(n))− ε(φ))∇V · ∇(V − V (n))+ R(n)

where

R(n) :=
∣∣∣∣∫
ΩT

(ρ(n) − ρ)(V (n) − V )+
∫
ΩT

ρ(n)(V − V̄ − Pn(V − V̄ ))
∣∣∣∣.

Observe that R(n) = on(1). Indeed, using (H0), the compact embedding L2(Ω) ↪→↪→ H 1(Ω)′ as
well as the continuous embedding H 1(Ω)′ ↪→ W 1,p(Ω)′ for p > 2 , we infer from (3.8), (3.13)
and the Aubin–Lions lemma the existence of a subsequence again labeled by n such that ρn strongly
converges to ρ in L2(I ;H 1(Ω)′). Again by (3.13), (a subsequence of) V (n) − V converges to zero
in the weak topology of L2(I ;H 1(Ω)). Together with (3.17), this shows the on(1)-property of R(n).
Altogether,

‖∇(V (n) − V )‖2
L2(Ω∗T )

6 C1‖∇V (n)‖L2(Ω∗T )‖∇(Pn(V − V )− (V − V ))‖L2(Ω∗T )

+ C2‖(ε(φ(n))− ε(φ))∇V ‖2L2(ΩT )
+ on(1)

→ 0.

The second norm here again converges due to the Lebesgue dominated convergence theorem.
We have thus proved the following existence theorem:

THEOREM 3.4 Let Ω , Ω∗ satisfy assumption (H0) and suppose ε(·), η(·), M(·), γf s(·), K(·),
and V̄ satisfy assumptions (H1)–(H4-bis) and (H5). Assume the initial data ρ0, φ0, v0 are in
L2(Ω),H 1(Ω; [−1, 1]), and V , respectively. Then there is a quintuple (ρ, φ, v, µ, V ) with ρ ∈
L∞(I ;L2(Ω)) ∩ L2(I ;H 1(Ω)) ∩ H 1(I ;H 1(Ω)′), φ ∈ L∞(I ;H 1(Ω)) ∩ H 1(I ;H 1(Ω)′) ∩
H 1(I ;L2(∂Ω)), v ∈ L∞(I ;L2(Ω)) ∩ L2(I ;H 1(Ω)) ∩ W 1,6/5(I ;V ′), µ ∈ L2(I ;H 1(Ω)), and
V ∈ L∞(I ;H 1(Ω)) which solves (3.1)–(3.4) in the sense of Definition 3.1.

3.4 The case of degenerate conductivity—higher regularity for the phase-field

We now consider the case where the electric conductivity K(φ) is zero for φ 6 −1. In this case
the charge transport equation is degenerate parabolic, and we cannot expect to obtain an estimate
for ∇ρ in L2(ΩT ). As a consequence, time-compactness for the velocity field has to be established
differently. For the existence proof, we proceed as follows. We first approximate the problem by a
family of problems with non-degenerate conductivities (Kη(φ))η→0 satisfying (H4) and (H4-bis)
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such that |Kη(φ)−K(φ)| 6 η. Theorem 3.4 gives the existence of solutions (vη, ρη, φη, Vη, µη) to
this problem.

We plan to pass to the limit η → 0 for a suitable weakly convergent subsequence. It will be
crucial to prove some more regularity for the phase-field φ in the interior of Ω to compensate for
the weak regularity of ρ when passing to the limit in nonlinear terms like K(φ)∇ρ · w. Moreover,
we have to prove W 1,6/5(I ;V ′)-regularity for the flow field vη uniformly in η → 0 without using
any integrability estimates on ∇ρ. We begin with a result on higher regularity of the electrostatic
potential.

LEMMA 3.5 Let V̄ satisfy (H5). For η > 0, consider the solution (vη, ρη, φη, Vη, µη) of the non-
degenerate problem (3.5) corresponding to the non-degenerate conductivity Kη. Then there exists
an exponent p > 1 and a positive constant C independent of η such that

‖∇Vη‖L∞(I ;L2p(Ω∗)) 6 C. (3.18)

Proof. For ease of presentation we omit the index η throughout this proof. To guarantee
homogeneous Dirichlet boundary conditions, we write the last equation of system (3.1) in the form

−∇ · (ε̄[φ]∇(V − V̄ )) = ρ̄ +∇ · (ε̄[φ]∇V̄ ) (3.19)

where ρ̄ is defined as

ρ̄ :=
{
ρ in (0, T ]× Ω̄,
0 in (0, T ]× (Ω̄∗ \ Ω̄).

Obviously, ρ̄ ∈ L∞(I ;L2(Ω∗)). Similarly, ε̄[φ(n)]∇V̄ ∈ L∞(I ;Lr(Ω∗)) by assumption (H5).
Observe that ε(·) is uniformly bounded from above and from below independently of η. Hence, we
may apply a standard result on p-integrability of gradients (cf. Theorem 2.1 in [4]) to conclude. 2

This result is the key to establishing locally higher regularity in the space for the phase-field. We
have

LEMMA 3.6 Let Ω ′ ⊂⊂ Ω and d = 2, 3. If d = 3, assume in addition ε(·) ≡ const. Then there
exist

p∗ >
{

1 if d = 2,
6/5 if d = 3,

and a positive constant Cp∗ which does not depend on η such that

‖φη‖L2(I ;W 2,p∗ (Ω ′)) < Cp∗ . (3.20)

REMARK 3.7 Note that W 2,p∗(Ω ′) ↪→↪→ H 1(Ω ′) in space dimensions d = 2, 3.

Proof. By theW 2,p-interior estimates for Poisson’s equation (see e.g. [16, Theorem 9.11]), applied
to

−∆φη = δ−1µη − δ−2W ′(φη)+ 1
2δ
ε′(φη)|∇Vη|2 =: fη,

we obtain for fη ∈ Lp(Ω)
‖φη‖W 2,p(Ω ′) 6 C(‖fη‖Lp(Ω) + ‖φη‖L2(Ω)) (3.21)
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with C depending only on Ω and Ω ′. The main task therefore is to prove that fη is bounded in
Lp(ΩT ) uniformly with respect to η. From (3.7) and the embeddingH 1(Ω) ⊂ L6(Ω) (which holds
for space dimensions d 6 3), we conclude that W ′(φη) and µη are bounded in L2(ΩT ). Hence the
main difficulty is to handle the term 1

2δ ε
′(φη)|∇Vη|2 as the a priori estimate (3.7) reduces to an

estimate of this term in L∞(I ;L1(Ω)) only. If ε(φ) is independent of φ, then this term disappears,
and (3.21) is proved with p = 2. This gives the result for d = 3.

We now concentrate on the case d = 2, ε(·) depending on the phase-field φ. Lemma 3.5 provides
a uniform bound for ‖∇V ‖L∞(I ;L2p(Ω)) with p > 1. As a result, the term ε′(φη)|∇Vη|2 is bounded
in L∞(I ;Lp(Ω)) uniformly with respect to η, with some p > 1 independent of η. This gives the
result for d = 2. 2

Next, we prove

LEMMA 3.8 Let d ∈ {2, 3}. Then there exists a constant C > 0 independent of η > 0 such that

‖∂tvη‖L6/5(I ;S ′d ) 6 C. (3.22)

Proof. The proof mimics the one of Lemma 3.2. The only term to be treated differently is∫
ΩT
ρη∇Vη · w. Using the L∞(I ;L2p(Ω∗))-regularity established in Lemma 3.5 for ∇Vη with

some p > 1 and also Sobolev’s embedding result, we may estimate, with a parameter q satisfying
1/2+ 1/(2p)+ 1/q = 1,∣∣∣∣∫

ΩT

ρη∇Vη · w
∣∣∣∣ 6 C

∫ T

0
‖ρη‖L2(Ω)‖∇Vη‖L2p(Ω)‖w‖Lq (Ω)

6 C‖ρη‖L∞(I ;L2(Ω))‖∇Vη‖L∞(I ;L2p(Ω))‖w‖L2(I ;W 1,d (Ω)). 2

Using the fact that Sd is a closed subspace of (W 1,d
0 (Ω))d , d ∈ {2, 3}, and therefore reflexive,

we may combine the Aubin–Lions lemma with the uniform bounds on ‖vη‖L2(I ;V) and on
‖∂tvη‖W 1,6/5(I ;S ′d ) to establish

COROLLARY 3.9 For η → 0, there is a subsequence η′ → 0 such that (vη′)η′→0 converges
strongly in L2(ΩT ) to a flow field v ∈ L2(ΩT ).

Summing up, we infer the existence of a subsequence of solutions, again denoted by
(vη, ρη, φη, Vη, µη), such that the following convergences hold:

vη ⇀ v in L2(I ;V) ∩W 1,6/5(I ;S ′d) and strongly in L2(ΩT ),

ρη ⇀ ρ in L∞(I ;L2(Ω)),

φη ⇀ φ in H 1(I ;H 1(Ω)′) ∩ L∞(I ;H 1(Ω)) ∩H 1(I ;L2(∂Ω))

and strongly in L2(ΩT ),

µη ⇀ µ in L2(I ;H 1(Ω)),

Vη ⇀ V in L∞(I ;W 1,2p(Ω∗)) for some p > 1,
1
2ε
′(φη)|∇Vη|2 ⇀ Θ in L∞(I ;Lp(Ω∗)) for some p > 1.

By passing to a further subsequence we have

K(φη)∇ρη ⇀ Ψ in L2(ΩT ).
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We now have to identifyΨ withK(φ)∇ρ. Letψ ∈ C∞0 (ΩT ) be a test function andΩ ′ ⊂⊂ Ω be
a domain such that suppψ ⊂ I ×Ω ′ and dist(Ω ′, ∂Ω) > 0. Note that the regularity estimate (3.20)
combined with the uniform bound for φη in H 1(I ;H 1(Ω)′), the compact imbeddingW 2,p(Ω ′) ↪→
H 1(Ω ′) (p the exponent in (3.20)), and the Aubin–Lions lemma gives a subsequence φη′ which
strongly converges in L2(I ;H 1(Ω ′)) to φ.

Integration by parts yields∫
ΩT

K(φη)∇ρη · ψ = −
∫
ΩT

ρη(K
′(φη)∇φη · ψ +K(φη)∇ · ψ).

Here the right-hand side converges to

−
∫
ΩT

ρ(K ′(φ)∇φ · ψ +K(φ)∇ · ψ)

while the limit of the left-hand side is
∫
ΩT
Ψ · ψ. This shows Ψ = K(φ)∇ρ in the sense of

distributions.
The convergences we have established allow us to pass to the limit η → 0 in the weak

formulation of the problem for smooth test functions. The limits in the convective terms are taken
after an integration by parts,∫

ΩT

vη · ∇ρηψ = −
∫
ΩT

ρηvη · ∇ψ →−
∫
ΩT

ρv · ∇ψ. (3.23)

Here we use the weak convergence ρη ⇀ ρ in L2(ΩT ) and the strong convergence of (vη)η→0 in
L2(ΩT ). The other limits are the same as in the Galerkin approximation in Section 3.3. The strong
convergence Vη → V in L2(I ;H 1(Ω∗)) is also proved as before, giving rise to the identification

lim
η→0

ε′(φη)|∇Vη|2 = ε′(φ)|∇V |2.

Hence the following theorem is verified:

THEOREM 3.10 Let Ω , Ω∗ satisfy assumption (H0) and suppose η(·), ε(·), M(·), γf s(·), K(·),
and V̄ to be in accordance with (H1)–(H4) and (H5). Assume the initial data ρ0, φ0, v0 to be given
in L2(Ω),H 1(Ω; [−1, 1]), and V , respectively. Let d = 2, 3, and for d = 3 assume in addition
that ε is independent of φ. Then there is a quintuple (ρ, φ, v, µ, V ) which solves (3.1)–(3.3) in the
sense of Definition 3.1.

Note that uniqueness remains an open problem due to the intricate coupling of the various terms
involved. On account of its importance for control problems, we intend to come back to this issue
in the future.

REMARK 3.11 By Lemma 3.5, ∇V is an element of L∞(I ;L2p(Ω∗)) for a parameter p > 1. In
space dimension d = 2, this is sufficient to show that for almost each t ∈ I equation (3.5a) defines
a linear functional on (H 1

0 (Ω))
d which vanishes on V . Therefore, we may apply standard methods

(e.g. Lemma 2.1 of [17]) to prove the existence of a pressure field p(·, t) ∈ L2(Ω) such that for
almost every t ∈ I ,

〈vt ,w〉1 +
∫
Ω

((v · ∇)v · w+ η(φ)T(v) : T(w)− µ∇φ · w+ ρ∇V · w) = −〈gradp,w〉1

for all w ∈ (H 1
0 (Ω))

d .
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4. The case of negligible acceleration terms in the flow field

As we expect the effect of acceleration terms in the equation for the velocity field to be small in
general, it is worthwhile to study also the following system based on the quasi-stationary Stokes
approximation:

−∇ · (η(φ)T(v))+∇p − µ∇φ + ρ∇V = 0 in ΩT , (4.1a)
ρt + v · ∇ρ −∇ · (K(φ)∇(V + λρ)) = q in ΩT , (4.1b)
φt + v · ∇φ −∇ · (M(φ)∇µ) = 0 in ΩT , (4.1c)

µ = −δ∆φ + 1
δ
W ′(φ)− 1

2ε
′(φ)|∇V |2 in Ω ∀t ∈ (0, T ), (4.1d)

−∇ · (ε̄[φ]∇V ) = ρ in Ω∗ ∀t ∈ (0, T ). (4.1e)

Keeping the boundary conditions (3.3), (3.4) and slightly modifying the argument of Subsection 3.2,
the following a priori estimates can be easily derived:

‖ρ‖L∞(I ;L2(Ω)) + ‖φ‖L∞(I ;H 1(Ω)) + ‖W(φ)‖L∞(I ;L1(Ω)) + ‖V ‖L∞(I ;H 1(Ω∗)) + ‖v‖L2(I ;H 1(Ω))

+ ‖K(φ)1/2∇ρ‖L2(ΩT )
+ ‖∇µ‖L2(ΩT )

+ ‖φt‖L2(∂Ω×I ) 6 C. (4.2)

Similarly,
‖φt‖L2(I ;H 1(Ω)′) + ‖ρt‖L2(I ;W 1,p(Ω)′) 6 C (4.3)

with

p =
{

2+ ε, d = 2,
3, d = 3,

and arbitrary positive ε.
Following similar strategies to those in Section 3, we obtain an existence result.

THEOREM 4.1 Let Ω , Ω∗ satisfy assumption (H0) and suppose η(·), ε(·), M(·), γf s(·), K(·), and
V̄ to be in accordance with (H1)–(H4) and (H5). Assume the initial data ρ0, φ0 to be given in
L2(Ω),H 1(Ω; [−1, 1]). Let d = 2, 3, and for d = 3 assume in addition that ε is independent
of φ. Then there is a quintuple (ρ, φ, v, µ, V ) with ρ ∈ L∞(I ;L2(Ω)) ∩ H 1(I ;W 1,p(Ω)′), φ ∈
L∞(I ;H 1(Ω)) ∩ H 1(I ;H 1(Ω)′) ∩ H 1(I ;L2(∂Ω)), v ∈ L2(I ;V), µ ∈ L2(I ;H 1(Ω)), and V ∈
L∞(I ;H 1(Ω)) which solves (4.1, 3.3, 3.4) in the following sense:∫

Ω

[η(φ)T(v) : T(w)+ (ρ∇V − µ∇φ) · w] = 0 ∀t ∈ I, (4.4a)∫ T

0
〈ρt , ψ1〉2 +

∫
ΩT

(K(φ)∇(V + λρ)− ρv) · ∇ψ1 =
∫
ΩT

qψ1, (4.4b)∫ T

0
〈φt , ψ2〉3 +

∫
ΩT

(v · ∇φψ2 +M(φ)∇µ · ∇ψ2) = 0, (4.4c)∫
ΩT

µψ3 =
∫
ΩT

(δ∇φ · ∇ψ3 + 1
δ
W ′(φ)ψ3 − 1

2ε
′(φ)|∇V |2ψ3)+

∫ T

0

∫
∂Ω

(αφt + γ ′f s(φ))ψ3,

(4.4d)∫
Ω∗T
ε̄[φ]∇V · ∇χ =

∫
ΩT

ρχ (4.4e)
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for every w ∈ V , ψ1 ∈ W 1,∞(ΩT ), ψ2 ∈ L2(I ;H 1(Ω)), ψ3 ∈ L2(I ;H 1(Ω)) ∩ L1(I ;L∞(Ω)),
and χ ∈ L2(I ;U). Here, 〈·, ·〉2 and 〈·, ·〉3 denote the dual pairings on the spaces L2(I ;W 1,p(Ω)),
and L2(I ;H 1(Ω)), respectively.

REMARK 4.2 Let us indicate the main changes in the proof.

• Instead of (3.10), we write the discrete system with right-hand sides depending only on φ and ρ.
One easily observes that the corresponding matrix on the left-hand side is bijective, hence we may
express µ̄ and v̄ in terms of φ̄ and ρ̄ only. Local existence and uniqueness follows immediately
by Picard–Lindelöf.
• The existence proof for the non-degenerate auxiliary problems as well as for the degenerate

problem cannot rely on strong convergence of the velocity field any longer. This affects in
particular the passage to the limit in the convective term vη · ∇ρηψ (cf. equation (3.23)). We
proceed as follows:∫

ΩT

vη · ∇ρηψ = −
∫
ΩT

ρηvη · ∇ψ = 〈ρη, vη · ∇ψ〉L2(I ;H 1(Ω)′)∩L2(I ;H 1(Ω)).

Note that (ρη)η→0 is uniformly bounded in the space L2(ΩT ) ∩ H 1(I ;W 1,p(Ω)′) for arbitrary
p > 2 if d = 2, and for p = 3 if d = 3. Using L2(Ω) ↪→↪→ H 1(Ω)′ ↪→ W 1,p(Ω)′ and the
Aubin–Lions lemma, we may pass to the limit η→ 0 to obtain for a subsequence,

lim
η→0
〈ρη, vη ·∇ψ〉L2(I ;H 1(Ω)′)∩L2(I ;H 1(Ω)) = 〈ρ, v ·∇ψ〉L2(I ;H 1(Ω)′)∩L2(I ;H 1(Ω)) =

∫
ΩT

ρv ·∇ψ,

which gives the result.

5. Numerical experiments

In this section, we present first numerical experiments in two space dimensions. For ease of
implementation, we confine ourselves to system (4.1), i.e. we assume the effect of acceleration
terms in the hydrodynamic equations to be small. In the present paper, we will only give a rather
coarse description of the method; further details will be presented elsewhere.

5.1 Discretization of the system

For the convection-diffusion equations (4.1b) and (4.1c), we use a finite-volume scheme. For
the Stokes system, a mixed approximation based on stable Taylor–Hood elements has been
implemented. The electrostatic potential V is computed using standard FE-methods (see [13]
and [9]).

The rectangular domainsΩ andΩ∗ are discretized by a simplicial triangulation with rectangular
elements. We allow for heuristic adaptivity in space based on the magnitude of |∇φ| and |∇ρ|
as refinement criteria. In particular, this guarantees a refined spatial discretization in the diffuse
interface region. In our experiments, the minimum grid size considered is given by h ≈ 5.5 · 10−2,
which would correspond in the case of a uniform triangulation to 33000 grid points.

For the convection-diffusion equations, we discretize diffusive terms implicitly and convective
terms explicitly. For the latter, we combine Engquist–Osher methods with linear reconstruction and
min-mod limiters to achieve higher order precision (cf. [20]).
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We decouple the non-stationary equations of (4.1) and use a semi-implicit splitting scheme. In
the k-th time step, it reads as follows

• Find φk+1/2 which solves φ
k+1/2−φk
∆t

= ∇ ·(M(φk+1/2)∇µk+1/2), where µk+1/2 = −δ∆φk+1/2+
1
δ
W ′(φk+1/2)− 1/2ε′(φk)|∇V k|2.

• Find V k+1 which solves −∇(ε̄[φk+1/2]∇V k+1) = ρk .
• Find ρk+1/2 which solves ρk+1/2−ρk

∆t
= ∇ · (K(φk+1/2)∇(V k+1 + λρk+1/2)).

• Find vk+1 and pk+1 which solve −∇ · (η(φk+1/2)T(vk+1)) + ∇pk+1 = µk+1/2∇φk+1/2 −
ρk+1/2∇V k+1 and ∇ · vk+1 = 0.
• Compute φk+1 and ρk+1 via φk+1−φk+1/2

∆t
= −vk+1 ·∇φk+1/2 and ρk+1−ρk+1/2

∆t
= −vk+1 ·∇ρk+1/2,

respectively.

The arising non-linear system of equations is solved using Newton’s method with Armijo
rule. For the fourth order problem, a standard BiCGstab solver has been implemented (see [33]).
The discrete Stokes problem gives rise to an indefinite Galerkin matrix; we use a preconditioned
MinRES solver to compute the velocity field v (cf. [13]).

5.2 Experiments

Charged droplet on a surface. For our first experiments we consider a setting similar to Figure . A
detailed sketch is given in Figure 4. We embed the domain Ω into a larger domain Ω∗. This is for
two purposes. First, we need Ω∗ to take the insulating and dielectric layer into account. Secondly,
it enables us to solve the potential equation on a larger domain—this way reducing the bias caused
by approximate boundary conditions for the electric field. Physically, the setΩ∗ \Ω can be thought
of as a solid, insulating box surrounding Ω .

For the dielectric parameters in Ω∗ \Ω , we assume

ε∗(x) =
{

100 if x ∈ Ω∗1 ,
1 if x ∈ Ω∗2 .

Ω

supp ρ0

φ0 = −1

φ0 = 1

V
=

V̄

Ω∗
1 Ω∗

2

FIG. 4. Setting for the first experiment (charged droplet on a surface). The thickness of the dielectric layerΩ∗1 is d = 0.625.
Dimensions are Ω = [0, 5]× [−5, 5], Ω∗ = Ω∗1 ∪Ω ∪Ω∗2 .
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As initial data, we choose

φ0(x) = − tanh
(√2
δ
(|x|2 − 1)

)
and ρ0(x) = ρ0 · χΓ0(x).

Here, Γ0 stands for the initial support of charges and will be specified below.
For the electric conductivity K(φ) we take

K(φ) =


K− if φ < 0,
1
2 (K− +K+ + (K+ −K−) sin((φ − 1

2 )π)) if 0 6 φ 6 1,
K+ if φ > 1,

in accordance with (H1) and (H4), with values (K−,K+) = (0, 103).
The viscosity η(φ) is taken to be constant (η ≡ 0.01), as is the mobility (M ≡ 0.01) and the

dielectric parameter in Ω (ε ≡ 1). We set α = 0, δ = 0.1, λ = 0.05 and γ0 = 50.
Here we present the results of three experiments with ∆γf s = γ

(1)
f s − γ (2)f s ∈ {−γ0, 0, γ0}.

This corresponds to equilibrium contact angles Θ(0) smaller than, equal to or larger than π/2,
respectively.

In absence of charges (left plot in Figures 5, 7 and 9), we observe a very quick evolution
from the initial data given by half-circles to stationary states. The contact angle can be measured
numerically—it turns out to be in accordance with Young’s formula

γ0 cosΘ(0) = 3
√

2
8 ∆γf s .

If the initial charge is positive, the droplet starts to spread. In Figures 5, 7 and 9, one can clearly
see that the droplet flattens very quickly before it becomes nearly stationary. We observe a significant
difference between contact angles on a macroscopic and a microscopic scale. In particular, the
microscopic contact angle seems not to decrease during the evolution. Moreover, visual inspection
indicates that for stationary states the Young angle persists. In fact, in view of boundary condition
(2.19) this is no surprise. Note that (2.19) reduces in a quasi-steady state approximately to the
identity γ0δ

∂φ
∂n +γ ′f s(φ) = 0. This is exactly the diffuse interface version of Young’s formula for the

equilibrium contact angle (cf. [31]). Hence, with regard to equilibrium configurations, our numerical
results are in accordance with the observation by Mugele et al. (cf. [7] and [26]) mentioned in the
introduction that the contact angle change predicted by Lippmann is merely a macroscopic effect.

During long-time computations, it might happen after the phase-field has become nearly
stationary that charges move across the interface into the non-conductive phase. This effect seems
to be due to the diffusivity of the interface—it strongly depends on the parameters chosen.

Charged droplet in a potential. The second class of experiments investigates the effect charges
exert on an elliptic droplet between grounded electrodes. We take Ω = Ω∗ = [−5, 5]2 and initial
data

φ0(x) = − tanh
(√

2
δ

(
x2

1
a2 +

x2
2
b2 − 1

))
with x = (x1, x2) ∈ R2, where a = 3/2 and b = 2/3 are the major and minor semi-axes of an
ellipse. The initial charge is given by

ρ0(x) = ρ0 · |Γ0|−1 · χΓ0(x) where Γ0 = {x ∈ Ω : |x| 6 1/4},
with ρ0 ∈ {2−1/2Q, 21/2Q} and Q = 27/4π

√
γ0.
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FIG. 5. Charged droplet on a partially wettable surface (∆γf s = −γ0, Θ(0) ≈ 1
3π ). The plots show the zero-level of φ at

times t = 0 (dashed), 0.001, 0.0025, 0.005, 0.0075, 0.01. Each plot shows a different choice of ρ0 = 0, 200, 400, 600 (from
left to right).

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

 
0

20

40

60

80

100

120

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

 
0

10

20

30

40

50

60

70

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

 
0

10

20

30

40

50

60

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

 
0

10

20

30

40

50

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

 
0

10

20

30

40

50

FIG. 6. Charged droplet on a partially wettable surface (∆γf s = −γ0, Θ(0) ≈ 1
3π ). The plots show the charge density ρ at

times t = 0.001, 0.0025, 0.005, 0.0075, 0.01 (from left to right). ρ0 = 200.
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FIG. 7. Charged droplet on a surface (∆γf s = 0, Θ(0) = π
2 ). The plots show the zero-level of φ at times t = 0 (dashed),

0.001, 0.0025, 0.005, 0.0075, 0.01. Each plot shows a different choice of ρ0 = 0, 200, 400, 600 (from left to right). Note
also the temporary increase in the microscopic contact angle.
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FIG. 8. Snapshot of the velocity field v, corresponding to the sequence on the right of Figure 7.

On the boundary of Ω∗, we prescribe homogeneous Dirichlet boundary conditions for the
potential V , and we take ∆γf s = 0. The other parameters are the same as in the first experiment.

We observe different evolution behavior depending on the amount of charge ρ0 injected in the
droplet. Having ρ0 = 2−1/2Q, the elliptic droplet evolves to a circular shape as seen in the left plot
of Figure 10. Choosing a larger ρ0 may cause the droplet to stay elliptic (right plot). A more detailed
investigation of this probably critical value Q will be presented elsewhere.
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FIG. 9. Charged droplet on a hydrophobic surface (∆γf s = γ0, Θ(0) ≈ 2
3π ). The plots show the zero-level of φ at times

t = 0 (dashed), 0.001, 0.0025, 0.005, 0.0075, 0.01. Each plot shows a different choice of ρ0 = 0, 200, 400, 600 (from left to
right).
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FIG. 10. Charged droplet in a potential. The plot shows the zero-level of φ at times t = 0 (dashed), 0.0025, 0.005, 0.05. Each
plot shows a different choice of ρ0 = 2−1/2Q (left) and ρ0 = 21/2Q (right). The left plot (smaller ρ0) shows the evolution
to a circular shape, the right plot shows the evolution to an elliptic shape.
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