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We study, by means of Γ -convergence, the asymptotic behavior of a variational model for
dislocations moving on a slip plane. The variational functional is a two-dimensional multi-phase
transition-type energy given by a nonlocal term and a nonlinear potential which penalizes noninteger
values for the components of the phase. In the limit we obtain an anisotropic sharp interfaces model.
The relevant feature of this problem is that optimal sequences in general are not given by a one-
dimensional profile, but they can create microstructure.

1. Introduction

We study, by means of Γ -convergence, the asymptotic behavior as ε→ 0 of the functionals

Fε(u) =
1
|log ε|

∫
T 2

∫
T 2
(u(x)− u(y))T J(x − y) (u(x)− u(y)) dx dy

+
1

ε|log ε|

∫
T 2

dist2(u(x),ZN ) dx, (1)

where ε > 0 is a small parameter, T 2
= R2/Z2 is the unit torus of R2, u : T 2

→ RN is a 1-periodic
vector field, J : T 2

→ MN×N is a singular matrix-valued kernel which defines a quadratic form
equivalent to the square of theH 1/2 seminorm of u and dist(·,ZN ) is the distance function from the
set ZN of multi-integers.

An energy of type (1) has been proposed by Koslowski and Ortiz ([17], and also [16]) as a
multi-phase model for planar dislocations in crystals, inspired by the classical model of Nabarro–
Peierls (see [8]). When an external stress is imposed, the specific geometry of the crystal constrains
deformations along planes (slip planes), on which some preferred slip directions (slip systems)
are identified. This process, known as crystallographic slip, may produce crystal lattice defects
of topological kind. Dislocations are one-dimensional defects that can move along slip planes with
a low energy cost, drastically modifying the mechanical properties of the crystal. In particular,
dislocations are responsible for many interesting phenomena, such as plasticity and hardening ([8]).
In [17] the authors consider an elastic crystal with a single slip plane undergoing periodic plastic
slips, described by a vector field u (defined on the torus T 2). The plastic slip is given by a linear
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combination of N slip systems (with coefficients given by u), where N depends on the geometry of
the crystal. In the functional (1), the first term represents the long-range elastic distortion induced
by the slip and the second term penalizes slips that are not compatible with the lattice structure.

The asymptotic behavior of the energy (1) as ε→ 0 provides an anisotropic line-tension model
for line defects, in which dislocations are identified with the discontinuity lines of a ZN -valued
slip field where all the energy concentrates. It is well known that Γ -convergence of energies is
essentially equivalent to the convergence of the corresponding minimum problems and that it is
stable with respect to the addition of lower-order terms (like external stresses or a twist boundary
condition). This means that a minimum problem involving the Nabarro–Peierls model can be
replaced by the corresponding minimum problem for the line-tension model.

In analytical terms, the functional (1) belongs to the class of multi-well functionals singularly
perturbed by a higher-order term. We show that their limit is given by a sharp interface model as
expected in these cases. Nevertheless, the interest of these functionals lies in that the behavior of
the optimal sequences may be very different from the usual one and the interfaces may produce
microstructure, which is the main result of this paper.

Starting with the well-known Γ -convergence result by Modica and Mortola ([20]), related
to the Cahn–Hilliard model for two-phase fluids (see [12] and [19]), a large literature is now
available where sharp interface models describe the asymptotic behavior of multi-well potentials
singularly perturbed by local regularizations of Dirichlet type (see e.g. [9] and [10]) or nonlocal
terms described by integrable interaction kernels, as in the Ising models with Kac potentials (see
for instance [1]–[3]). In all these cases it is well known that the line tension energy density of the
Γ -limit is characterized by an optimal-profile problem, involving both terms of the approximating
energy, the nonconvex potential and the singular perturbation.

More recently, the analysis of nonlocal variants of the Cahn–Hilliard model, namely phase
transitions with a boundary line tension, led to the study of functionals in which the perturbation
corresponds to the H 1/2 seminorm, i.e., it is described by a nonintegrable interaction kernel with
critical singularity ([4], [5]). Due to the singularity of the interaction kernel a logarithmic rescaling
of the functional is needed in order to produce a nontrivial limit energy; the effect of this rescaling
is that the Γ -limit functional does not require an optimal-profile problem, all transitions between
two wells are optimal as far as they occur on a layer of width ε around the interface. Moreover, the
line tension energy density does not depend on the precise shape of the potential, but only on the
position of its zeros.

The functional of dislocations (1) is a generalization of the case considered in [4]: the nonlocal
term is anisotropic, i.e., it is only equivalent to the H 1/2 seminorm, and the set of wells of the
potential in the local term is not compact (see also [18]).

A first Γ -convergence result for functionals (1) has been obtained in [15] under the additional
assumption that the crystallographic slip is driven by a single slip direction. This condition modifies
the nature of the functional reducing it to a functional of the same type, but defined on scalar
functions. In this case the Γ -limit functional is an anisotropic sharp interface functional of the
form ∫

Su

γ (n)|[u]| dH1,

where u is an integer-valued phase-field representing the slip in a given direction, Su is the jump set
of u, nu the normal vector of Su and [u] the jump of u. The behavior of optimal sequences in this
case is similar to what happens in the simpler case studied in [4]. The transition between two phases
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does not depend on the specific choice of the nonconvex potential that penalizes the misfit of the
lattice and occurs along flat optimal interfaces. In particular, optimal sequences can be obtained by
mollifying the limit configuration at a scale ε. This implies that the anisotropic line tension energy
density γ (n) is explicitly computed by integrating the anisotropic kernel on fibers orthogonal to the
vector n.

Dealing with the general case, we find out a relevant difference with respect to the scalar case.
We can in fact show that optimal sequences in general are not given by one-dimensional interfaces
and can occur in complex patterns, strongly depending on the normal to the singular set of the slip
fields, which takes into account the anisotropy of the elastic interactions between the atoms of the
crystal. This makes the identification of the Γ -limit of functionals (1) a hard task and suggests
approaching the problem in a nonconstructive way. By means of integral representation theory for
Γ -limits defined on Caccioppoli partitions ([6], [7]) we prove (see Section 3) that there exists a
subsequence εh→ 0 and a function ϕ : ZN × S1

→ R such that the functionals Fεh Γ -converge to∫
Su

ϕ([u], nu) dH1, u ∈ BV (T 2,ZN ).

In Section 4, by means of an explicit example in the simple case of a cubic lattice, we show that the
flat interfaces are in general not optimal. Indeed, we construct a sequence of transitions that produce
interfacial microstructure and that give an energy lower than the one obtained with one-dimensional
transitions.

The main point of this phenomenon is that the limit energy obtained by taking only flat interfaces
(i.e. by mollification of the limit configurations) is in general not lower semicontinuous and its
relaxation is responsible for the formation of microstructure. The question that remains open is
whether this relaxation is actually the Γ -limit that we construct abstractly. We conjecture that this
is the case.

2. The functional of dislocations

2.1 Derivation of the multi-phase model

In this section we briefly discuss the phase-transition model for dislocations proposed by Koslowski
and Ortiz in [17] (see also [16]). For the detailed rescaling argument in the derivation of the model
see [14]. We consider an elastic crystal, in the context of small strains, on which the plastic slip
occurs only on one plane, the plane x3 = 0. Following the Nabarro–Peierls model for dislocations,
in absence of an applied force-field, the total energy of the crystal is then given by

E = EElastic
+ EPeierls. (2)

The first term EElastic is the long range elastic interaction energy and represents the elastic distortion
induced by a given slip on the plane x3 = 0; while EPeierls is the short range interatomic interaction
energy and can be expressed by an interplanar potential which describes the misfits of the crystal
lattice due to the slip.

We assume the additional condition that the slip is periodic and so, after rescaling, we identify
the slip plane with the torus T 2 of R2. The plastic slip v : T 2

→ R2 is then identified with a
vector field u : T 2

→ RN that describes the plastic deformations induced by N slip systems, where
N depends on the crystal lattice structure. More precisely, if {si}i=1,...,N are the N slip directions
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active on the slip plane T 2, the slip field v can be expressed through the multi-phase slip field
u : T 2

→ RN as follows:

v =

N∑
i=1

uisi,

where ui is the ith component of u. Then the misfit energy of the crystal attains its minima when all
the components of u are integral multiples of slip directions, i.e.,

ui = ξisi, ξi ∈ Z, i = 1, . . . , N.

These special slips determine the location of the wells of the interplanar potential W , which can be
given for instance by the following piecewise quadratic function:

W(u) =
µ

2ε

N∑
i=1

min
ξi∈Z
|ui − ξi |

2
=
µ

2ε
dist2(u,ZN ),

where ε is a small parameter proportional to the interplanar distance and µ is the elastic modulus of
the crystal. Then the short range interaction energy of dislocations is

EPeierls(u) =

∫
T 2
W(u(x)) dx. (3)

The long range elastic interaction energy EElastic in (2) can be obtained as follows. We assume
that crystal deformations are described by a displacement field U : T 2

× R→ R3 and decompose
the gradient ∇U in the Kröner additive form:

∇U = βe + βp, (4)

where βe, βp denote the elastic and plastic distortion tensors respectively. Since crystallographic
slip is all supported on T 2 we write the plastic distortion as

βp = ([U ]⊗ e3)H2 T 2, (5)

where [U ] = ([U1], [U2], [U3]) is the jump of the displacement across the slip plane, e3 =

(0, 0, 1) is the unit normal to T 2, and H2 T 2 represents the two-dimensional Hausdorff measure
concentrated on T 2. It follows that

βp(x1, x2, x3) =

0 0 [U1](x1, x2)

0 0 [U2](x1, x2)

0 0 0

H2 T 2. (6)

Then we can obtain the long range elastic interactions energy EElastic, induced by the slip v =∑N
i=1 uisi , by solving the following minimum problem:

EElastic(v) = min
[U ]=v

E(U), (7)

where E(U) is the linear isotropic elastic energy

E(U) =
∫
T 2×R

(
µ|e(βe)|2 +

λ

2
|tr e(βe)|2

)
dx1 dx2 dx3, (8)

e(βe) = 1
2 (β

e
+ βeT ) and µ, λ are the Lamé coefficients of the crystal.
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The minimization in (7) can be explicitly carried out by means of Fourier variables. It follows
that

EElastic(̂v) =
1

(2π)2
µ

4

∑
k∈2πZ2

v̂(k)T Â(k) v̂∗(k), (9)

where the interaction matrix Â is given by

Â(k) =


1

1− ν
k2

1
|k|
+
k2

2
|k|

ν

1− ν
k1k2

|k|

ν

1− ν
k1k2

|k|

1
1− ν

k2
2
|k|
+
k2

1
|k|

 (10)

and ν = λ
2(µ+λ) is the Poisson ratio of the crystal. It is easy to check that Â has the two eigenvalues

λ1 = |k|, λ2 =
1

1− ν
|k|, ν ∈ (−1, 1/2).

Then (9) defines a positive quadratic form equivalent to the square of the H 1/2 seminorm. More
precisely,

C1[v]2
H 1/2(T 2)

6 EElastic(̂v) 6 C2[v]2
H 1/2(T 2)

, (11)

where
C1 =

1
(2π)2

µ

4
, C2 =

1
1− ν

1
(2π)2

µ

4

and
[v]H 1/2(T 2) =

( ∑
k∈2πZ2

|k| |̂v(k)|2
)1/2

. (12)

In space variables and in terms of the multi-phase u, the energy (9) can be rewritten as

EElastic(u) =
µ

2

∫
T 2

∫
T 2
(u(x)− u(y))T J(x − y)(u(x)− u(y)) dx dy, (13)

where J : T 2
→MN×N is given by

Jij (x) :=
∑
k∈Z2

sTi J0(x + k)sj , i, j = 1, . . . , N,

and J0 is the following matrix homogeneous of degree −3:

J0(x) =
1

8π(1− ν)|x|3


ν + 1− 3ν

x2
2
|x|2

3ν
x1x2

|x|2

3ν
x1x2

|x|2
ν + 1− 3ν

x2
1
|x|2

 .
The following properties hold:

(i) J is 1-periodic, i.e., defined on T 2;
(ii) J(x) = O(|x|−3) as |x| → 0;
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(iii) J defines a positive quadratic form equivalent to the square of the H 1/2 seminorm;
(iv) J satisfies

lim
δ→0

δ3(J(δx))ij = sTi J0(x)sj , i, j = 1, . . . , N,

uniformly on {x ∈ R2 : |x| 6 σ } for every σ > 0.

Finally, we put (3) and (13) in (2), we divide by the constant factor µ/2, and we get

Eε(u) :=
∫
T 2

∫
T 2
(u(x)− u(y))T J(x − y)(u(x)− u(y)) dx dy

+
1
ε

∫
T 2

dist2(u(x),ZN ) dx.

The functional above belongs to the class of multi-well potentials singularly perturbed by a
higher-order term. The minimization of this energy with the addition of lower-order terms (as
external loads or imposing a twist boundary condition) gives rise to a competition between the two
terms in Eε: the potential forces the slip field u to be close to the phases, namely to assume integer
values almost everywhere; while the kernel J prefers to reduce the long range elastic interactions
(the H 1/2 seminorm of u) by separating the phases as much as possible. This competition is then
resolved by slip fields which make transitions between the phases, inside small regions of width
proportional to the interatomic distance ε, the so called cores of dislocations. The corresponding
elastic distortion due to the presence of the dislocations is of the order of the logarithm of the core
radius, i.e., in this transition between two integer multi-phases on a layer of width ε the field u has
an H 1/2 norm of order |log ε|.

After normalizing the energy by |log ε| one expects, in the limit as ε goes to zero, that the
cores of dislocations collapse to lines on which the energy concentrates. Dislocation lines are then
described by the singular sets of slip fields of pure phases (i.e., ZN -valued) and the amount of energy
carried by each dislocation is proportional to its length, locally weighted by the kernel J which takes
into account the anisotropy of the elastic interactions.

2.2 What is known in the scalar case

A first analysis of the asymptotic behavior for the model presented above is due to Garroni and
Müller [15] under the special assumption that the crystallographic slip on the slip plane T 2 is driven
by a single slip direction. This assumption reduces the functional to be defined only on scalar slip
functions. More precisely, they consider slip fields of the form u e1, where e1 is the first element of
the canonical basis of R2 and u : T 2

→ R is a 1-periodic scalar function. In this case the functional
Eε of dislocations reduces to

Eε(u) :=
∫
T 2

∫
T 2

J(x − y)|u(x)− u(y)|2 dx dy +
1
ε

∫
T 2

dist2(u(x),Z) dx, (14)

where the kernel J : T 2
→ R is given by

J(x) =
∑
k∈Z2

J0(x + k), J0(x) =
1

8π(1− ν)|x|3

(
ν + 1− 3ν

x2
2
|x|2

)
and has the same properties of the kernel J stated above.

The following Γ -convergence result holds.
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THEOREM 1 ([15]) Let Eε be the energy defined in (14). Then the functional

Iε(u) =


1
|log ε|

Eε(u) if u ∈ H 1/2(T 2),

∞ otherwise in L1(T 2),

(15)

Γ (L1)-converges to

I (u) =


∫
Su

γ (n)|[u]| dH1 if u ∈ BV (T 2,Z),

∞ otherwise in L1(T 2),

where n ∈ S1 is the normal on Su, [u] is the jump of u across Su in the direction n and γ (n) is an
anisotropic line tension which only depends on the kernel J:

γ (n) := 2 lim
δ→0

δ2
∫
x·n=δ

J(x) dH1
= 2

∫
x·n=1

J0(x) dH1. (16)

Moreover, for every sequence {uε} ⊆ L1(T 2) such that

sup
ε>0

Iε(uε) <∞

there exists a sequence {aε} ⊂ Z such that {uε−aε} is bounded in L2(T 2) and strongly pre-compact
in L1(T 2); every cluster point of {uε − aε} belongs to BV (T 2,Z).

We remark that the density γ (n) does not depend on the kernel J, but only on the homogeneous
part J0. This implies that the problem is actually not affected by periodic boundary conditions and
Theorem 1 still holds for any kernel equivalent to the H 1/2 seminorm.

Due to the lack of coerciveness of the interplanar potentials in Iε, the compactness property
stated in Theorem 1 turns out to be a quite subtle result and requires a delicate a priori estimate for
the L2 norm of sequences uε with equibounded energy. On the other hand, the phenomenology of
the Γ -convergence result is similar to what one has for the simpler case considered in [4]. In fact,
in [15] it is shown that the optimal sequences for a given function u ∈ BV (T 2,Z), with |[u]| = 1,
are given by any sequence of the form vε = u ∗ ϕε, where ϕε(x) = ε−2ϕ(x/ε) is any arbitrary
mollifier. We refer to this fact as the flat optimal interface (or one-dimensional optimal profile). As
for the case of a limiting configuration with jumps larger than 1, one has to first split the jumps into
jumps of size 1 and then mollify.

The main step in proving the existence of a flat optimal interface is based on a truncation and then
a blow-up argument that shows that sequences uε with finite energy are essentially one-dimensional
interfaces (i.e. uε take values almost at the bottom of the wells of the potential up to a small strip
of approximate width ε around the jumps of the limit). As we will see with an explicit example in
Section 4, this argument cannot be used in the general case of multiple slip systems (corresponding
to the vectorial functional of dislocations). The example shows actually that in the general case we
cannot expect a flat optimal interface, i.e., the optimal sequences cannot be constructed explicitly
as in the scalar case, since a relaxation phenomenon can produce microstructure for the optimal
sequences.

Our strategy to attack the general vector case will then be to prove the existence of the Γ -limit
of the rescaled functional of dislocations in a nonconstructive way, by means of a compactness
argument together with an integral representation result. This will be done in the next section.
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3. The Γ -limit of the functional of dislocations

This section is devoted to the Γ -convergence result as ε → 0 for the functional of dislocations,
which we rewrite here by introducing logarithmic rescaling:

Fε(u) =
1
|log ε|

∫
T 2

∫
T 2
(u(x)− u(y))T J(x − y)(u(x)− u(y)) dx dy

+
1

ε|log ε|

∫
T 2

dist2(u(x),ZN ) dx. (17)

We prove that, up to subsequences in ε, there exists a density function ϕ : ZN × S1
→ [0,∞) such

that Fε Γ (L1(T 2))-converges to

F(u) =

∫
Su

ϕ([u], nu) dH1. (18)

According to the variational model discussed in Section 2, the singular set Su of the phase-field u
represents dislocation line ensembles where the energy concentrates as ε→ 0. The density function
ϕ(s, n) estimates at every point x0 ∈ Su the anisotropic elastic interactions of the crystal, in terms
of the normal vector n = nu(x0) and the jump s = [u](x0) across dislocation lines.

From now on for the reader’s convenience we will use the following notation:

Jε[u](x, y) :=
1
|log ε|

(u(x)− u(y))T J(x − y)(u(x)− u(y)),

Wε[u](x) :=
1

ε|log ε|
dist2(u(x),ZN ).

We also introduce the localization of Fε on the open sets A(T 2) in T 2 by

Fε(u,A) :=


∫
A×A

Jε[u](x, y) dx dy +
∫
A

Wε[u](x) dx if u ∈ H 1/2(T 2),

+∞ otherwise.
(19)

Note that the functional Fε is invariant with respect to integer translations, i.e.

Fε(u+ c) = Fε(u), ∀c ∈ ZN ,

and that the kernel J defines a quadratic form equivalent to the square of the H 1/2(T 2) seminorm.
In particular, J(x) = O(|x|−3) as |x| → 0 and there exist constants C1, C2 > 0 such that

C1

|x|3
|v|2 6 vT J(x)v 6

C2

|x|3
|v|2, ∀v ∈ RN and ∀x ∈ T 2. (20)

The main result of this section is the following.

THEOREM 2 For every sequence {εh} of positive real numbers such that εh → 0 there exists a
subsequence, denoted again by {εh}, such that the functionals Fεh defined in (19) Γ (L1)-converge
as h→∞. More precisely:
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(i) (Coerciveness) For every sequence {uh} ⊆ L1(T 2) such that

sup
h∈N

Fεh(uh, T
2) <∞

there exists a sequence {ah} ⊂ ZN such that {uh − ah} is bounded in L2(T 2) and strongly
pre-compact in L1(T 2); every cluster point of {uh − ah} belongs to BV (T 2,ZN ).

(ii) (Γ -convergence) There exists a density function ϕ : ZN×S1
→ [0,∞) such that, as h→∞,

the functional
F(u,A) = Γ (L1)- lim

h→∞
Fεh(u,A)

exists for all (u,A) ∈ L1(T 2)×A(T 2) and can be written as

F(u,A) =


∫
Su∩A

ϕ([u], nu) dH1 if u ∈ BV (T 2,ZN ),

+∞ otherwise.
(21)

In particular, for every s ∈ ZN and n ∈ S1 we have

ϕ(s, n) = F(uns ,Q
n), (22)

where Qn is the unit square centered in the origin with a side parallel to n and where uns is the
step function defined by uns (x) = sχ{x·n>0}.
More precisely:

(a) (Γ -liminf inequality) For every sequence {uh} converging to u in L1(T 2) the following
inequality holds:

F(u,A) 6 lim inf
h→∞

Fεh(uh, A).

(b) (Recovery sequence) For every u ∈ BV (T 2,ZN ) there exists a sequence {uh} converging
to u in L1(T 2) such that

F(u,A) > lim sup
h→∞

Fεh(uh, A).

REMARK 3 We remark that (20) is the only assumption on the kernel J we use in the proof of
Theorem 2. Hence our result can also be applied to different problems, e.g. different boundary
conditions. Similarly the potential dist2(·,ZN ) can be replaced by any other nonnegative function
vanishing exactly on ZN with some additional assumption on the behavior near the wells.

We will prove Theorem 2 in a nonconstructive way (see [11, Chapter 16] for an overview of the
so called localization method). For a given sequence εh → 0 we define the Γ (L1)-liminf and the
Γ (L1)-limsup of Fεh respectively:

F ′(u,A) := inf {lim inf
h→∞

Fεh(uεh , A) : uεh
L1
→ u}, (23)

F ′′(u,A) := inf {lim sup
h→∞

Fεh(uεh , A) : uεh
L1
→ u}. (24)

When the Γ -limit exists, it coincides with the Γ -limsup and the Γ -liminf. If the Γ -limit F(u,A)
exists for all open sets A, we extend it by inner regularity to any Borel subset B ∈ B(T 2), and we
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treat it as a set function for any given u ∈ L1(T 2). The aim is to prove that for any ZN -valued slip
field u, F(u, ·) is a measure with suitable properties that guarantee an integral representation of the
type (18).

In view of the coerciveness result we expect that the natural domain for the limit energy will
be the space BV (T 2,ZN ), thus we will apply a well-known integral representation result for
functionals defined on Caccioppoli partitions, due to Ambrosio and Braides, which we state below
for the reader’s convenience in a form suited to our case (see [6], [7] and [11] for details).

THEOREM 4 ([6]) LetG : BV (T 2,ZN )×B(T 2)→ [0,∞) be a functional satisfying the following
assumptions:

(i) G(u, ·) is a measure on T 2 for all u ∈ BV (T 2,ZN );
(ii) G is local onA(T 2), i.e.,G(u,A) = G(v,A) for all A ∈ A(T 2) and u, v ∈ BV (T 2,ZN ) such

that u = v a.e. on A;
(iii) G(·, A) is L1-lower semicontinuous on BV (T 2,ZN ) for all A ∈ A(T 2);
(iv) there exist positive constants c1 and c2 such that, for all u ∈ BV (T 2,ZN ) and B ∈ B(T 2),

c1(Hn−1(B ∩ Su)+ |Du|(B)) 6 G(u,B) 6 c2(Hn−1(B ∩ Su)+ |Du|(B)).

Then G admits the following integral representation:

G(u,B) =

∫
Su∩B

ϕ(x, u+, u−, nu) dH1, u ∈ BV (T 2,ZN ), B ∈ B(T 2), (25)

with ϕ : T 2
× ZN × ZN × S1

→ [0,∞) defined by

ϕ(x, i, j, n) = lim sup
ρ→0+

1
ρ

min{G(u,Qn
ρ(x)) : u ∈ X (Qn

ρ(x))} (26)

and
X (Qn

ρ(x)) = {u ∈ BV (T
2,ZN ) : u = un xij on T 2

\Qn
ρ(x)}, (27)

where Qn
ρ(x) denotes the square centered at x with side of length ρ parallel to n, Qn

ρ(x) its closure
and un xij : T 2

→ ZN is the step function defined by

un xij (y) :=

{
i if (y − x) · n > 0,
j if (y − x) · n 6 0.

The proof of Theorem 2 follows from Section 3.1 where the coerciveness is easily derived by
the scalar case, then from the Fundamental Estimate proved in Section 3.2 which permits one to
prove the inner regularity of the Γ -limsup and Γ -liminf and hence existence of the Γ -limit up to a
subsequence, and finally from an application of the representation theorem above in Section 3.3.

3.1 Coerciveness

In this section we briefly deduce the coerciveness result stated in Theorem 2(i), as a consequence of
the analogous result for the scalar case stated in Theorem 1.
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Since

dist2(uε,ZN ) =
N∑
i=1

dist2(uiε,Z),

by (20) we get

min{C1, 1}
N∑
i=1

(
1
|log ε|

∫
T 2

∫
T 2

|uiε(x)− u
i
ε(y)|

2

|x − y|3
dx dy +

1
ε|log ε|

∫
T 2

dist2(uiε,Z) dx
)

6 Fε(uε, T
2).

Then all components uiε of uε satisfy

sup
ε>0

Iε(u
i
ε) <∞ for all i = 1, . . . , N,

where Iε is the scalar functional of dislocations (15), corresponding to the choice J(x) = |x|−3 for
the elastic interaction kernel.

By Theorem 1, for all i = 1, . . . , N there exists a sequence {aiε} ⊂ Z such that {uiε − a
i
ε} is

bounded in L2(T 2,R) and strongly pre-compact in L1(T 2,R). Moreover, every cluster point of the
translated sequence belongs to BV (T 2,Z). We conclude by setting aε = (a1

ε , . . . , a
N
ε ).

3.2 Existence of the Γ -limit: the Fundamental Estimate

In this section we establish the following compactness result.

THEOREM 5 Let Fε(u,A) : L1(T 2) × A(T 2) → [0,∞] be the functional defined in (19). For
every sequence {εh} of positive real numbers such that εh → 0 there exists a subsequence, denoted
again by {εh}, such that the Γ -limit

F(u,A) = Γ (L1) - lim
h→∞

Fεh(u,A) (28)

exists for all (u,A) ∈ L1(T 2)×A(T 2).

For a fixed a sequence εh → 0, we begin by considering the Γ (L1)-liminf F ′(u,A) and the
Γ (L1)-limsup F ′′(u,A) defined in (23) and (24). Since the functional Fεh is nonnegative, it follows
that for all u ∈ L1(T 2), the functions F ′(u, ·), F ′′(u, ·) are increasing set functions:

F ′(u,A) 6 F ′(u, B), F ′′(u,A) 6 F ′′(u, B), ∀A,B ∈ A(T 2) : A ⊆ B.

The main step is to prove that F ′ and F ′′ have the inner regularity property:

F ′(u,A) = sup{F ′(u,A′) : A′ ∈ A(T 2), A′ ⊂⊂ A},

F ′′(u,A) = sup{F ′′(u,A′) : A′ ∈ A(T 2), A′ ⊂⊂ A}.
(29)

This property is ensured by the Fundamental Estimate for the functional Fε, contained in the
next theorem. In what follows, by a cut-off function between A′ and A, with A,A′ ∈ A(T 2) and
A′ ⊂⊂ A, we mean a function ϕ : A→ R such that ϕ ∈ C∞0 (A), 0 6 ϕ 6 1 and ϕ ≡ 1 on A′.
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THEOREM 6 (The Fundamental Estimate) For any A,A′, B ∈ A(T 2) with A′ ⊂⊂ A and every
σ > 0, there exists a positive constant Cσ = C(σ,A,A′, B) such that, for all u, v ∈ L1(T 2), there
exists a cut-off function ϕ between A′ and A such that

Fε(ϕu+ (1− ϕ)v,A′ ∪ B)

6 (1+ σ)(Fε(u,A)+ Fε(v, B))+
Cσ

|log ε|

(∫
A

|u|2 dx +
∫
B

|v|2 dx
)
. (30)

Proof. By the definition of Fε it is enough to consider pairs of functions u, v ∈ H 1/2(T 2), otherwise
(30) holds trivially.

We set δ = dist(A′, ∂A) and for any given n ∈ N we define the following sets:

A0 = A
′, Ak = {x ∈ A : dist(x,A′) < kδ/n}, k ∈ {1, . . . , n}.

For any fixed k ∈ {1, . . . , n} let ϕ ≡ ϕk be a cut-off function between Ak−1 and Ak such that
|∇ϕ| 6 n/δ. We set

Ci = (Ai \ Ai−1) ∩ B, i = 1, . . . , n,

U = A0 ∪

k−1⋃
i=1

Ci, V = B \ Ak.

A

A
,

B

Ck

FIG. 1. Choice of a good slice for the cut-off function.

It follows that {U,Ck, V } is a partition of A′ ∪ B, as shown in Figure 1. Then we set w := ϕu +
(1− ϕ)v and we compute its energy in A′ ∪ B:

Fε(w,A
′
∪ B) =

∫
A′∪B

∫
A′∪B

Jε[w](x, y) dx dy +
∫
A′∪B

Wε[w](x) dx

6
∫
U

∫
U

Jε[w](x, y) dx dy +
∫
Ck

∫
Ck

Jε[w](x, y) dx dy

+

∫
V

∫
V

Jε[w](x, y) dx dy + 2
∫
U

∫
Ck

Jε[w](x, y) dx dy

+ 2
∫
V

∫
Ck

Jε[w](x, y) dx dy + 2
∫
U

∫
V

Jε[w](x, y) dx dy

+

∫
A

Wε[w](x) dx +
∫
B

Wε[w](x) dx.
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By the definition of ϕ it follows that w = u on U , w = v on V and U ⊂ A, V ⊂ B, and hence

Fε(w,A
′
∪ B) 6 Fε(u,A)+ Fε(v, B)+

∫
Ck

∫
Ck

Jε[w](x, y) dx dy

+ 2
∫
U

∫
V

Jε[w](x, y) dx dy + 2
∫
U

∫
Ck

Jε[w](x, y) dx dy + 2
∫
V

∫
Ck

Jε[w](x, y) dx dy. (31)

By (20) the four double integrals in (31) can be controlled respectively by

I1 :=
C2

|log ε|

∫
Ck

∫
Ck

|w(x)− w(y)|2

|x − y|3
dx dy, I2 :=

2C2

|log ε|

∫
U

∫
V

|w(x)− w(y)|2

|x − y|3
dx dy,

I3 :=
2C2

|log ε|

∫
U

∫
Ck

|w(x)− w(y)|2

|x − y|3
dx dy, I4 :=

2C2

|log ε|

∫
V

∫
Ck

|w(x)− w(y)|2

|x − y|3
dx dy.

We evaluate the differences |w(x)− w(y)|2 in each integral. For every (x, y) ∈ Ck × Ck it follows
that

|w(x)− w(y)|2 =

N∑
i=1

|wi(x)− wi(y)|2

=

N∑
i=1

|ϕ(x)ui(x)+ (1− ϕ(x))vi(x)− ϕ(y)ui(y)− (1− ϕ(y))vi(y)|2

=

N∑
i=1

|ϕ(x)(ui(x)− ui(y))+ (1− ϕ(x))(vi(x)− vi(y))+ (ϕ(x)− ϕ(y))(ui(y)− vi(y))|2

6 C
N∑
i=1

(
|ui(x)− ui(y)|2 + |vi(x)− vi(y)|2 + |ϕ(x)− ϕ(y)|2|ui(y)− vi(y)|2

)
,

and then

I1 6
C

|log ε|

∫
Ck

∫
Ck

(
|u(x)− u(y)|2

|x − y|3
+
|v(x)− v(y)|2

|x − y|3
+
|ϕ(x)− ϕ(y)|2

|x − y|3
(|u(y)|2+|v(y)|2)

)
dx dy.

(32)
For every (x, y) ∈ U × V we have

|w(x)− w(y)|2 =

N∑
i=1

|ui(x)− vi(y)|2 6 C(|u(x)|2 + |v(y)|2),

and

I2 6
C

|log ε|

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x − y|3
dx dy. (33)
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For every (x, y) ∈ U × Ck we have

|w(x)− w(y)|2 =

N∑
i=1

|ui(x)− ϕ(y)ui(y)− (1− ϕ(y))vi(y)|2

=

N∑
i=1

|(ui(x)− ui(y))+ (1− ϕ(y))(ui(y)− vi(y))|2

6 C
N∑
i=1

(
|ui(x)− ui(y)|2 + |ϕ(x)− ϕ(y)|2|ui(y)− vi(y)|2

)
and

I3 6
C

|log ε|

∫
U

∫
Ck

(
|u(x)− u(y)|2

|x − y|3
+
|ϕ(x)− ϕ(y)|2

|x − y|3
(|u(y)|2 + |v(y)|2)

)
dx dy. (34)

Similarly for every (x, y) ∈ V × Ck it follows that

I4 6
C

|log ε|

∫
V

∫
Ck

(
|v(x)− v(y)|2

|x − y|3
+
|ϕ(x)− ϕ(y)|2

|x − y|3
(|u(y)|2 + |v(y)|2)

)
dx dy. (35)

We set I := I1 + I2 + I3 + I4 and from (32)–(35) we get

I 6
C

|log ε|

{∫
U∪Ck

∫
Ck

|u(x)− u(y)|2

|x − y|3
dx dy +

∫
V∪Ck

∫
Ck

|v(x)− v(y)|2

|x − y|3
dx dy

+

∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2
|u(y)|2 + |v(y)|2

|x − y|3
dx dy +

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x − y|3
dx dy

}
.

Again by (20) and from the fact that U ∪ Ck ⊂ A, V ∪ Ck ⊂ B, we conclude that

I 6 C

(∫
A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy
)

+
C

|log ε|

∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2
|u(y)|2 + |v(y)|2

|x − y|3
dx dy

+
C

|log ε|

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x − y|3
dx dy. (36)

We now remark that

n∑
k=1

(∫
A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy
)

6
∫
A

∫
A

Jε[u](x, y) dx dy +
∫
B

∫
B

Jε[v](x, y) dx dy 6 Fε(u,A)+ Fε(v, B).

Then we can choose k ∈ {1, . . . , n} such that∫
A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy 6
1
n
(Fε(u,A)+ Fε(v, B)). (37)
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On the other hand, the cut-off function ϕ satisfies

|ϕ(x)− ϕ(y)| 6
n

δ
|x − y|

by construction and ∫
A′∪B

dx
|x − y|

[z=x−y]
=

∫
(A′∪B)−y

dz
|z|
6
∫
D

dz
|z|
6 C,

where D is a disc containing the set (A′ ∪ B)− y for all y ∈ Ck . Therefore it follows that∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2

|x − y|3
(|u(y)|2 + |v(y)|2) dx dy

6

(
n

δ

)2 ∫
Ck

(∫
A′∪B

dx
|x − y|

)
(|u(y)|2 + |v(y)|2) dy

6 C

(
n

δ

)2 ∫
Ck

(|u(y)|2 + |v(y)|2) dy. (38)

Finally, for every (x, y) ∈ U × V we have |x − y| > δ/n and

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x − y|3
dx dy 6

(
n

δ

)3(
|V |

∫
U

|u(x)|2 dx + |U |
∫
V

|v(y)|2 dy
)

6 max{|A|, |B|}
(
n

δ

)3(∫
U

|u(x)|2 dx +
∫
V

|v(y)|2 dy
)
. (39)

We now set
C = C(n,A,A′, B) = Cmax{(n/δ)2,max{|A|, |B|}(n/δ)3}.

and from (31) and (36)–(39) we conclude that

Fε(ϕ u+ (1− ϕ)v,A′ ∪ B)

6

(
1+

C

n

)
(Fε(u,A)+ Fε(v, B))+

C

|log ε|

(∫
U∪Ck

|u|2 dx +
∫
V∪Ck

|v|2 dx
)
.

Now choose n = nσ := [C/σ ] + 1 and set Cσ := C(nσ , A,A
′, B). Since U ∪ Ck ⊂ A and

V ∪ Ck ⊂ B it follows that

Fε(ϕ u+ (1− ϕ)v,A′ ∪B) 6 (1+ σ)(Fε(u,A)+Fε(v, B))+
Cσ

|log ε|

(∫
A

|u|2 dx +
∫
B

|v|2 dx
)
,

and this finishes the proof. 2

We now prove the inner regularity property of the Γ -liminf and the Γ -limsup of Fε.

PROPOSITION 7 For every u ∈ L1(T 2) the set functions F ′(u, ·), F ′′(u, ·) : A(T 2) → [0,∞]
defined in (23) and (24) have the inner regularity property (29).
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Proof. By the coercivity property of Fε it is enough to consider functions u ∈ BV (T 2,ZN ). For
every sequence {εh} of positive real numbers such that εh → 0 and every A,B ∈ A(T 2), let
{uh}, {vh} ⊂ L

1(T 2) be recovery sequences for F ′(u,A) and F ′′(u, B) respectively, i.e.,

uh
h→∞
−−−→ u in L1(T 2), F ′(u,A) = lim inf

h→∞
Fεh(uh, A),

vn
h→∞
−−−→ u in L1(T 2), F ′′(u, B) = lim sup

h→∞

Fεh(vh, B).

For all h ∈ N we apply the fundamental estimate (30) to uh and vh: for every A′ ∈ A(T 2) with
A′ ⊂⊂ A and every σ > 0 there exists a constant Cσ > 0 such that

Fεh(ϕhuh + (1− ϕh)vh, A
′
∪ B)

6 (1+ σ)(Fεh(uh, A)+ Fεh(vh, B))+
Cσ

|log εh|

(∫
A

|uh|
2
+

∫
B

|vh|
2
)
, (40)

where {ϕh} is a suitable sequence of cut-off functions between A′ and A. Moreover,

|ϕhuh + (1− ϕh)vh − u| 6 |ϕh| |uh − u| + |1− ϕh| |vh − u| 6 |uh − u| + |vh − u|,

i.e., ϕhuh + (1 − ϕh)vh also converges to u in L1(T 2). Again by the coercivity property we may
assume that the sequences {uh} and {vh} are bounded in L2(T 2). Taking the limit in (40) as h→∞
we get

F ′(u,A′ ∪ B) 6 lim inf
h→∞

Fεh(ϕhuh + (1− ϕh)vh, A
′
∪ B)

6 (1+ σ)(lim inf
h→∞

Fεh(uh, A)+ lim sup
h→∞

Fεh(vh, B))

6 (1+ σ)(F ′(u,A)+ F ′′(u, B))

for all σ > 0, where the first inequality holds by the definition of F ′. By the arbitrariness of σ we
conclude

F ′(u,A′ ∪ B) 6 F ′(u,A)+ F ′′(u, B) . (41)

Similarly we get
F ′′(u,A′ ∪ B) 6 F ′′(u,A)+ F ′′(u, B). (42)

Since F ′ and F ′′ are increasing set functions, for every W,A ∈ A(T 2) with A ⊂⊂ W it follows
that

F ′(u,W) > sup{F ′(u,A) : A ⊂⊂ W }, F ′′(u,W) > sup{F ′′(u,A) : A ⊂⊂ W }.

In order to prove the inner regularity property we have to prove the opposite inequalities. Consider
a compact set K and A′, A,W ∈ A(T 2) such that K ⊂⊂ A′ ⊂⊂ A ⊂⊂ W . We apply (41) and
(42) with B = W \K:

F ′(u,W) 6 F ′(u,A)+ F ′′(u,W \K), F ′′(u,W) 6 F ′′(u,A)+ F ′′(u,W \K).

Taking the supremum over all open sets A ⊂⊂ W , it follows that

F ′(u,W) 6 sup{F ′(u,A) : A ⊂⊂ W } + F ′′(u,W \K),
F ′′(u,W) 6 sup{F ′′(u,A) : A ⊂⊂ W } + F ′′(u,W \K).

(43)
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We now prove that the term F ′′(u,W \ K) vanishes as K grows in W . From the fact that the
functional Fε is nonnegative and by (20), for every sequence {uh} converging to u in L1(T 2), we
get

0 6 Fεh(uh,W \K) 6 C
N∑
i=1

Iεh(u
i
h,W \K), (44)

where Iεh(u
i
h,W \ K) is the localization over W \ K of the scalar functional of dislocations (15),

evaluated on the ith component of {uh} and corresponding to the choice J(x) = |x|−3. By Theorem 1
the functional Iεh Γ (L

1)-converges to

I (v,W \K) =

∫
Sv∩(W\K)

γ (n)|[v]| dH1, ∀v ∈ BV (T 2,Z),

where, for every n ∈ S1,

γ (n) = 2
∫
x·n=1

|x|−3 dH1(x) = 2
∫

R
(1+ x2

2)
−3/2 dx2 = 4[x2(1+ x2

2)
−1/2]∞0 = 4.

We choose {uh} such that for all i = 1, . . . , N , the sequence {uih} is a recovery sequence for
I (ui,W \K). Then, taking the limit in (44) as h→∞, we conclude that

0 6 F ′′(u,W \K) 6 lim sup
h→∞

Fεh(uh,W \K) 6 C
N∑
i=1

∫
S
ui
∩(W\K)

|[ui]| dH1

6 C|Du|(W \K), (45)

where the second inequality holds by definition of F ′′. Finally, we take the supremum over all
compact sets K ⊂ W , so that the last term in (45) goes to zero. The proof is complete. 2

The existence of the Γ -limit of the functional of dislocations Fε is now a simple consequence of
Proposition 7.

Proof of Theorem 5. We denote byR(T 2) the family of all finite unions of rectangles of T 2 whose
vertices have rational coordinates.

By the compactness of the Γ -convergence and a diagonal argument, we can extract a
subsequence from {εh}, again denoted by {εh}, such that the limit

F(u,R) = Γ (L1) - lim
h→∞

Fεh(u, R) = F
′(u, R) = F ′′(u, R)

exists for all u ∈ L1(T 2) andR ∈ R(T 2). Using the inner regularity property stated in Proposition 7
we can show that this limit also exists for all open sets. Indeed, for every A′, A ∈ A(T 2) with
A′ ⊂⊂ A there exists an open set R ∈ R(T 2) such that A′ ⊂⊂ R ⊂⊂ A. Then, by inner regularity
of F ′ and F ′′, it follows that

F ′(u,A) = sup{F ′(u,A′) : A′ ⊂⊂ A} = sup{F ′(u, R) : R ⊂⊂ A}
= sup{F ′′(u, R) : R ⊂⊂ A} = sup{F ′′(u,A′) : A′ ⊂⊂ A} = F ′′(u,A),

i.e.
F(u,A) := F ′(u,A) = F ′′(u,A), ∀(u,A) ∈ L1(T 2)×A(T 2),

which concludes the proof of the existence of the Γ -limit. �
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3.3 Integral representation

In this section we complete the proof of Theorem 2, i.e., we obtain the integral representation (21)
for the Γ -limit F constructed in the previous section. We apply the integral representation result
by Ambrosio and Braides (Theorem 4) and use the properties of our functional Fε to simplify the
general formula (26) for the energy density ϕ.

THEOREM 8 The Γ (L1)-limit F obtained in (28) admits, for every u ∈ BV (T 2,ZN ) and B ∈
B(T 2), the following integral representation:

F(u, B) =

∫
Su∩B

ϕ([u], nu) dH1.

The energy density function ϕ : ZN × S1
→ [0,∞) is given by

ϕ(s, n) = F(uns ,Q
n), (46)

where Qn is the unit square centered at the origin with a side parallel to n and uns (x) = sχ{x·n>0}.

Proof. We have to verify that the functional F has properties (i)–(iv) of Theorem 4.
We first remark that, by definition, F inherits from F ′ and F ′′ the inner regularity property

(Proposition 7). In particular, replacing F ′′ with F in (42), it follows that

F(u,A′ ∪ B) 6 F(u,A)+ F(u, B).

Taking the supremum over all A′ ∈ A(T 2) such that A′ ⊂⊂ A, we obtain that F is sub-additive.
We now prove that F is also superadditive. For every A,B ∈ A(T 2) with A ∩ B = ∅, let {uh}

be a recovery sequence for F(u,A ∪ B). We have

F(u,A ∪ B) = lim
h→∞

Fεh(uh, A ∪ B)

= lim
h→∞

(∫
A∪B

∫
A∪B

Jεh [uh](x, y) dx dy +
∫
A∪B

Wεh [uh](x) dx
)

= lim
h→∞

(
Fεh(uh, A)+ Fεh(uh, B)+ 2

∫
A

∫
B

Jεh [uh](x, y) dx dy
)

> lim inf
h→∞

Fεh(uh, A)+ lim inf
h→∞

Fεh(uh, B) > F(u,A)+ F(u, B),

where we used the positivity of the quadratic form Jεh and the Γ - lim inf inequality for the
functional Fεh .

By the characterization of measures as increasing, subadditive, superadditive and inner-regular
set functions (see the well known result by De Giorgi and Letta [13]), we deduce that F(u, ·) is a
Borel measure on T 2, i.e., property (i) of Theorem 4 holds.

On the other hand, properties (ii) and (iii) of Theorem 4 directly follow from the definition
of F(u,A); in particular, it is known that each Γ (L1)-limit is always lower semicontinuous with
respect to the L1 topology.

Finally, by the estimate (20) on the kernel J we get (as in (44) and (45))

C1|Du|(A) 6 F(u,A) 6 C2|Du|(A).
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Since u ∈ BV (T 2,ZN ) we have |Du|(A) =
∫
A∩Su
|[u]| dH1 and |[u]| > 1 H1-a.e. on Su. Then

C1

2
(H1(A ∩ Su)+ |Du|(A)) 6 F(u,A) 6 C2(H1(A ∩ Su)+ |Du|(A)),

yielding property (iv) of Theorem 4 restricted to A(T 2), which can be exended to B(T 2) using the
fact that F(u, ·) is actually a measure.

Applying Theorem 4 we then obtain the following integral representation for the functional F :

F(u, B) =

∫
Su∩B

ϕ(x, u+, u−, nu) dH1, u ∈ BV (T 2,ZN ), B ∈ B(T 2),

with ϕ : T 2
× ZN × ZN × S1

→ [0,∞) defined by

ϕ(x, i, j, n) = lim sup
ρ→0+

1
ρ

min{F
(
u,Qn

ρ(x)
)

: u ∈ X } (47)

and
X = {u ∈ BV (T 2,ZN ) : u = un xij on T 2

\Qn
ρ(x)}. (48)

To conclude it remains to prove that formula (47) for the density ϕ reduces to (46).
In what follows we will highlight the dependence of the class X on parameters, setting

X = X (x, s1, s2, n, ρ) with x ∈ T 2, s1, s2 ∈ ZN , n ∈ S1, ρ > 0.

Moreover, when we evaluate F(u, ·) on closed sets Qn
ρ(x) we mean that we define it by outer

approximation considering open sets A ∈ A(T 2) such that Qn
ρ(x) ⊂⊂ A.

The proof of formula (46) is split into three steps.

STEP 1: ϕ does not depend separately on s1, s2 ∈ ZN , but only on s := s1−s2. Fix (x, n) ∈ T 2
×S1.

For every s1, s2 ∈ ZN , A ∈ A(T 2) such that Qn
ρ(x) ⊂⊂ A and every u ∈ X (x, s1, s2, n, ρ), let

{uh} be a recovery sequence for F(u,A). For every c ∈ ZN it follows that uh + c → u + c in
L1(T 2) and

F(u+ c,A) 6 lim
h→∞

Fεh(uh + c,A) = lim
h→∞

Fεh(uh, A) = F(u,A),

where we have used the Γ -liminf inequality and the integer translation invariance of Fεh . Swapping
u and u + c we get the opposite inequality, so that the functional F is also integer translation
invariant.

Choose c = −s2 and set v := u+ c. It follows that v ∈ X (x, s1 − s2, 0, n, ρ) and

min{F(u,Qn
ρ(x)) : u ∈ X (x, s1, s2, n, ρ)} = min{F(v,Qn

ρ(x)) : v ∈ X (x, s1 − s2, 0, n, ρ)}

and hence
ϕ(x, s1, s2, n) = ϕ(x, s1 − s2, 0, n).

STEP 2: ϕ does not depend on x ∈ T 2. Fix (s, n) ∈ ZN × S1 and set, with a little abuse of
notations, X (x, s, n, ρ) = X (x, s, 0, n, ρ) and ϕ(x, s, n) = ϕ(x, s, 0, n). For every x0, x1 ∈ T

2,
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u ∈ X (x0, s, n, ρ) and A ∈ A(T 2) such that Qn
ρ(x0) ⊂⊂ A, we define

τ [u](x) := u(x + x0 − x1) and τ−1(A) := A+ (x1 − x0),

so that τ [u] ∈ X (x1, s, n, ρ) and Qn
ρ(x1) ⊂⊂ τ

−1(A) ∈ A(T 2).
Let {uh} be a recovery sequence for F(u,A). Then τ [uh] → τ [u] in L1(T 2) and by a change

of variables and the Γ -liminf inequality for the functional Fεh we get

F(u,A) = lim
h→∞

Fεh(uh, A) = lim
h→∞

Fεh(τ [uh], τ−1(A)) > F(τ [u], τ−1(A)).

Similarly, we get the opposite inequality, so that we conclude that

min{F(u,Qn
ρ(x0)) : u ∈ X (x0, s, n, ρ)} = min{F(v,Qn

ρ(x1)) : v ∈ X (x1, s, n, ρ)}

and hence
ϕ(x0, s, n) = ϕ(x1, s, n).

STEP 3: ϕ(s, n) = F(uns ,Q
n) for every s ∈ ZN and n ∈ S1. This step trivially follows from the

integral representation of F and from the fact that ϕ does not depend on x. In fact,

F(uns ,Q
n) =

∫
Suns∩Q

n

ϕ(s, n) dH1
= ϕ(s, n),

and hence the proof of Theorem 8 is complete. 2

REMARK 9 Note that by the fact that F is a Γ -limit we automatically know that it is lower
semicontinuous with respect to the L1 topology. As a consequence its energy density ϕ defined in
(46) must satisfy the necessary and sufficient condition for the lower semicontinuity of functionals
defined on partitions, the so called BV-ellipticity. We say that ϕ is BV-elliptic if it satisfies the
following condition:

ϕ(s, n) = min
{∫

Su∩Qn
ϕ([u], nu) dH1 : u ∈ X (Qn)

}
(49)

for all s ∈ ZN and n ∈ S1, i.e., the step function uns (x) = sχ{x·n>0} minimizes the above minimum
problem.

It is proved in [6] that a necessary (but in general not sufficient) condition for the BV-ellipticity
is the following pair of properties:

(i) (Subadditivity in s) For any n ∈ S1 and every s1, s2 ∈ ZN ,

ϕ(s1 + s2, n) 6 ϕ(s1, n)+ ϕ(s2, n).

(ii) (Convexity in n) For every s ∈ ZN the positively homogeneous extension of degree 1 of the
function ϕ(s, ·) : S1

→ R to the whole of R2 is convex. This condition can be equivalently
expressed as

ϕ(s, n) 6 l1ϕ(s, n1)+ l2ϕ(s, n2)

for all n, n1, n2 ∈ S
1 and l1n1 + l2n2 = n.
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4. Interfacial microstructure for the cubic lattice

In this section we consider the case of the functional of dislocations for a cubic lattice and we discuss
with an example the important difference between the case under consideration and the scalar case
presented in Section 2.2, which is due to the vector nature of slip fields and the anisotropy of the
elastic interactions of the crystal. More precisely, we find that the structure of the core of a transition
between two phases now plays a fundamental role in the optimization of the limit energy, depending
on the orientation of the normal to dislocation lines.

We consider a crystal with a cubic lattice, in which the crystallographic slip is driven by two slip
directions e1 and e2 (the canonical basis of R2). Then the functional Fε of dislocations, rescaled by
the factor |log ε|, reduces to

Fε(u)=
1
|log ε|

∫
T 2

∫
T 2
(u(x)−u(y))T J(x−y)(u(x)−u(y)) dx dy+

1
ε|log ε|

∫
T 2

dist2(u(x),Z2) dx,

where u : T 2
→ R2 is a 1-periodic vector field and the kernel J is given by

J(x) =
∑
k∈Z2

J0(x + k), J0(x) =
1

8π(1− ν)|x|3


ν + 1− 3ν

x2
2
|x|2

3ν
x1x2

|x|2

3ν
x1x2

|x|2
ν + 1− 3ν

x2
1
|x|2

 .
By Theorem 2 the Γ -limit functional F of Fε exists up to subsequences in ε and can be

represented, for every slip field u ∈ BV (T 2,Z2), by the integral on the singular set Su of a density
function ϕ(s, n), which is implicitly defined, for every s = (s1, s2) ∈ Z2 and n ∈ S1, as the value
F(uns ,Q

n), where uns = sχ{x·n>0} is a step field. The characterization of ϕ is equivalent to the
construction of a recovery sequence for F , i.e., a transition uε such that

uε
ε→0
−→ uns and lim

ε→0
Fε(uε,Q

n) = F(uns ,Q
n) = ϕ(s, n).

Let us fix s = (1, 1). In view of what happens in the scalar case let us try as a possible recovery
sequence the mollification at scale ε of the step function uns . In other words, let us compute the
limit energy for a flat transition. We choose an arbitrary function φ ∈ C∞0 (Q

n) such that φ > 0,∫
Qn
φ dx = 1 and set uε := uns ∗ φε with φε(x) = ε−2φ(x/ε). Since uε agrees with uns outside the

ε-neighborhood of Suns , it follows that

lim
ε→0

1
ε|log ε|

∫
Qn

dist2(uε,Z2) dx 6 lim
ε→0

Cε

ε|log ε|
= 0

and

lim
ε→0

Fε(uε,Q
n) = lim

ε→0

1
|log ε|

∫
Qn

∫
Qn
(uε(x)− uε(y))

T J0(x − y)(uε(x)− uε(y)) dx dy

= sT γ (n)s = γ11(n)+ γ22(n)+ 2γ12(n) =: Fflat(u
n
s ), (50)

where γ (n) is the anisotropic line tension matrix defined by

γij (n) := 2
∫
x·n=1

(J0(x))ij dH1, i, j = 1, 2.
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This formula for γ (n) can be obtained as in the scalar case (see [14] for details). Roughly speaking,
the terms γ11(n) and γ22(n) in (50) represent the energy cost of a unit jump in the first and in the
second component of uns respectively, and γ12(n) is the energy associated to a simultaneous jump
of the two components.

The matrix γ (n) can be explicitly computed and is given by

γ (n) = γ (θ) =
1

4π(1− ν)

(
2− 2ν sin2 θ ν sin 2θ

ν sin 2θ 2− 2ν cos2 θ

)
, (51)

where n ∈ S1 is given by n = (cos θ, sin θ) with θ ∈ [−π, π). Since the Poisson ratio ν of the
crystal ranges in (−1, 1/2), it is not difficult to check that the matrix γ (n) is positive definite, as it
should be, and the entries γ11(θ) and γ22(θ) are both strictly positive for every θ ∈ [−π, π). The
relevant fact is that the entry γ12(θ) changes sign. For instance if ν > 0, then γ12(θ) is negative if
θ < 0. This property has an important consequence. In fact, if θ > 0 we can obtain a limit energy
smaller than Fflat(u

n
s ) by approximating uns with a slip field whose components never jump together.

For example, fix θ = π/4 and suppose that ν > 0. For every δ � 1 we consider the slip field uδ
in Figure 2. The singular set Suns is replaced by its δ-neighborhood Nδ , in which the third phase

n

nL! us = (0,0)
"

(1,1)1

!

!
2L

0!
=!u

N (1,1)

(1,0)

!

(0,0)

FIG. 2. Splitting the jumps is energetically favorable.

(1, 0) appears and the jump sets of the two components of uδ (segments L1
δ and L2

δ respectively)
are disjoint. We choose a sequence δ = δε converging to zero such that δε � ε (precisely such
that |log δε|/|log ε| → 0). Clearly uδε ∗ φε → uns , where φε is a mollifier, and since γ12(θ) > 0 it
follows that

lim
ε→0

Fε(uδε ∗ φε,Q
n) = γ11(θ)+ γ22(θ) < γ11(θ)+ γ22(θ)+ 2γ12(θ) = lim

ε→0
Fε(u

n
s ∗ φε,Q

n).

On the other hand, if θ < 0 as in Figure 3 then γ12(θ) < 0. In this case it is better not to split the
jump and have the two components jumping together, i.e., with the same notation as above we have

lim
ε→0

Fε(u
n
s ∗ φε,Q

n) = γ11(θ)+ γ22(θ)+ 2γ12(θ) < γ11(θ)+ γ22(θ) = lim
ε→0

Fε(uδε ∗ φε,Q
n).

Here is the main difference with respect to the scalar case: the anisotropy and the additional phase
(1, 0) (or equivalently (0, 1)) make a good transition between (0, 0) and (1, 1) dependent on the
orientation of the interface; in some directions it is better to split the jumps of uns , in others it is
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n

nnnL1

2L!

N!

!

!

(1,1)"(0,0)=suus = (0,0) (1,1)(1,1)(0,0)=su
0!

=!u
(1,1)

(1,0)

(0,0)

FIG. 3. Piling up the jumps is energetically favorable.

better to pile them up. This suggests that in some cases these two effects may combine and create a
more complex good transition.

We now describe an interesting construction, which uses the observations above, for the interface
with normal n = e1, corresponding to the choice θ = 0. Since γ12(0) = 0, in this case the splitting
of the jump of uns has no effect on the limit energy value. We then consider, for every σ � 1,
the following three-phase field uσ := (u1

σ , u
2
σ ), as in Figure 4. The singular set Suσ is the union

n

1

2

n1

2

1

n

n
n

L2

L

2

1S1

S
S

S

4

5

S3!

!(0,0)

(1,1)

! 0u! = u

(1,0)

zig−zag= (1,1)
(0,0)

2"

1"

FIG. 4. A new combination of jumps.

of the segments Si , with i = 1, . . . , 5, the first four of which delimit a small region filled by the
third phase (1, 0). Note that u1

σ jumps only across S1, S2, u2
σ across S3, S4, and both across S5.

Moreover, the normal n1 to S2, S3, corresponding to θ1, is such that γ12(θ1) > 0, the normal n2
to S5, corresponding to θ2, satisfies γ12(θ2) < 0, and the length of S1 and S4 is of order σ . We
choose a sequence σ = σε converging to zero such that σε � ε and compute the limit energy of a
regularization of uσε . It follows that

lim
ε→0

Fε(uσε ∗ φε,Q
n) = (γ11(θ1)+ γ22(θ1))|L1| + (γ11(θ2)+ 2γ12(θ2)+ γ22(θ2))|L2|, (52)

where L1, L2 and θ1, θ2 denote respectively the jump sets and the angles of the corresponding
normals of the phase field uzig-zag := limσ→0 uσ (see Figure 4). The key point is that we can choose
θ1 and θ2 such that

Fzig-zag(u
n
s ) := (γ11(θ1)+ γ22(θ1))|L1| + (γ11(θ2)+ 2γ12(θ2)+ γ22(θ2))|L2|

< γ11(0)+ γ22(0) = Fflat(u
n
s ), (53)
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where the right hand side is the limit energy of a regularization of uns : the greater length of the
jump set Suzig-zag with respect to Suns is compensated by the fact that γ12(θ2) is negative along L2,
so that the total energy decreases. The existence of such a choice for the angles θ1 and θ2 can be
determined analytically or justified as in Remark 10. This observation finally permits us to construct
a good competitor in the approximation of uns .

s nnu!," =

"

(0,0)

!

(1,1)

(1,1)

! (0,0)
"

=

0
0 u

FIG. 5. Zig-zag approximation.

We extend uσ onto R2 by periodicity in the variable x2 and constant for |x1| > 1/2, namely
equal to (0, 0) if x1 < −1/2 and equal to (1, 1) if x1 > 1/2. For every δ such that σ � δ � 1,
we define the slip field uσ,δ(x) = uσ (x/δ), which is shown in Figure 5. Finally, we choose two
sequences σ = σε, δ = δε converging to zero such that ε � σε � δε, with |log σε|/|log ε| → 0.
By (52) and (53) we then conclude that

lim
ε→0

Fε(uσε,δε ∗ φε,Q
n) < lim

ε→0
Fε(u

n
s ∗ φε,Q

n).

This example shows another important feature of the vector problem: in general the profile of a
recovery sequence for the Γ -limit functional of dislocations cannot be one-dimensional, i.e., it
cannot be obtained, as in the scalar case, by means of a simple regularization of the flat interface of
step fields, not even in the case of unit jumps.

REMARK 10 The zig-zag construction given above can be motivated by the following argument.
We write ϕsplit(θ) and ϕpile-up(θ) for the two energies obtained by splitting or piling up the jumps
as in Figures 2 and 3 respectively, namely

ϕsplit(θ) = γ11(θ)+ γ22(θ), ϕpile-up(θ) = γ11(θ)+ γ22(θ)+ 2γ12(θ).

Then the corresponding homogeneous extensions of degree 1 (still denoted by ϕsplit and ϕpile-up)
are completely determined by their level 1 set (represented in Figure 6 below). In view of the
necessary condition for the BV-ellipticity of energy densities for functionals defined on partitions
(see Remark 9) we deduce that the function ϕ(s, n) given by Theorem 2 must be smaller than the
convex envelope of the minimum of ϕsplit and ϕpile-up. In terms of level sets this means that the level
1 set of the homogeneous extension of degree 1 of ϕ must contain the convex envelope of the union
of the corresponding sets for ϕsplit and ϕpile-up. Thus, as shown in Figure 6, the lower bound for
the energy of the step function uns , with n = e1 (i.e. θ = 0) and s = (1, 1), as constructed in the
zig-zag example above, is nothing other than the approximation of the point in the convex envelope
obtained by mixing with inclination θ1 and θ2 the splitting and piling up energy respectively.
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θ1

θ2

{ϕsplit =1}

{ϕpile-up=1}

FIG. 6. Zig-zag approximation in terms of the level sets of the energy density.

We conclude this paper by highlighting that a crucial point in the construction above is that
for every u ∈ BV (T 2,ZN ) the energy Fflat(u) obtained by taking the limit of Fε(u ∗ φε) is in
general not lower semicontinuous with respect to theL1 topology. In other words, the energy density
ϕflat(s, n) := sT γ (n)s of Fflat is not BV -elliptic. Clearly its BV -elliptic envelope ϕflat(s, n) is an
upper bound for the energy density ϕ(s, n) of the Γ -limit. In view of the necessary conditions
for the BV -ellipticity (see Remark 10), the convex envelope of the minimum of the homogeneous
extensions of degree 1 of ϕsplit(θ) and ϕpile-up(θ) is a good candidate for ϕflat(s, n) (or at least is
greater than ϕflat(s, n) and smaller than ϕflat(s, n)).

The idea is then that if the sequences with low energy are essentially regularizations of some
multi-phase field in BV (T 2,ZN ) without too fine microstructures, then one could first reduce the
functional Fε to the sharp interface limit (given by Fflat) and then relax. This gives rise to the
following conjecture.

CONJECTURE The energy density of the Γ -limit of Fε, ϕ(s, n), is given by the BV -elliptic
envelope of ϕflat(s, n) = s

T γ (n)s, i.e.

ϕ(s, n) = ϕflat(s, n) := min
{∫

Su∩Qn
ϕflat([u], nu) dH1 : u ∈ X (Qn)

}
for all s ∈ ZN and n ∈ S1, where the notations are those of Remark 9.

REFERENCES

1. ALBERTI, G., & BELLETTINI, G. A non-local anisotropic model for phase transitions: asymptotic
behavior of rescaled energies. Eur. J. Appl. Math. 9 (1998), 261–284. Zbl 0932.49018 MR 1634336

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0932.49018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1634336


316 S. CACACE AND A. GARRONI

2. ALBERTI, G., & BELLETTINI, G. A non-local anisotropic model for phase transitions. The optimal
profile problem. Math. Ann. 310 (1998), 527–560. Zbl 0891.49021 MR 1612250

3. ALBERTI, G., BELLETTINI, G., CASSANDRO, M., & PRESUTTI, E. Surface tension in Ising systems
with Kac potential. J. Statist. Phys. 82 (1996), 743–796. Zbl 1042.82539 MR 1372427
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