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In the theory of micromagnetics, the magnetization of a ferromagnetic sample has an energy that is
the sum of four components. We study the asymptotic behaviour of this functional when a parameter
(the so-called exchange length) tends to 0. The interaction of two of the components of the energy
permits the use of well-known methods from the theory of phase transitions. In the limit this gives
rise to a division of the sample into domains of constant magnetization, separated by domain walls.
We examine the contribution of a third energy (the energy of the stray field) to the limiting problem.
In particular, we derive an estimate for the energy density on the domain walls.

1. Introduction and motivation

Suppose that a bounded, open set Ω ⊂ R3 represents the shape of a sample of ferromagnetic
material. This ferromagnet has a magnetization described by a vector field m : Ω → R3. Below
the Curie temperature, the magnetization is saturated, which means that m is of constant length.
After a renormalization we have |m| = 1 inΩ , thusm can be interpreted as a map fromΩ into the
unit 2-sphere S2. In the theory of micromagnetics, an energy is associated to a given magnetization,
consisting of several components.

• The exchange energy is derived from the Heisenberg interaction of neighbouring spins in the
underlying atomic model. It is given by

ε2
∫
Ω

|∇m|2 dx,

where ε is a material constant, called the exchange length.
• The crystalline anisotropy of the material favours certain directions of the magnetization. This is

modelled by a smooth function Ψ : S2
→ R with several minima that correspond to the preferred

directions. The anisotropy energy is then ∫
Ω

Ψ (m) dx.

• The magnetization induces a stray field h on R3. By the static Maxwell equations, this is a
gradient field, that is, we have a potential function u on R3 with h = −∇u. Extending m by 0
outside of Ω , we further have

∆u = divm in R3. (1)

If we assume that u belongs to the Sobolev space H 1(R3), then this equation determines u
uniquely. The contribution of the stray field to the micromagnetic energy is∫

R3
|∇u|2 dx.

This is called the magnetostatic energy.
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• If there is an external magnetic fieldH , then it gives rise to the energy

−2
∫
Ω

H ·m dx.

The total micromagnetic energy is the sum of all four terms, i.e.,

E(m) =
∫
Ω

(ε2
|∇m|2 + Ψ (m)− 2H ·m) dx+

∫
R3
|∇u|2 dx.

More information about its derivation can be found, e.g., in books by Hubert and Schäfer [10] and
Bertotti [5].

If the external field is constant, then its energy and the anisotropy energy have a similar structure.
Setting Φ(m) = Ψ (m)− 2H ·m, we can combine them. Since adding a constant will not change
the qualitative behaviour of the functional, we normally assume that

min
S2
Φ = 0.

For the purpose of this paper, it is further convenient to divide the energy by ε. Thus we obtain the
functional

Eε(m) =

∫
Ω

(
ε|∇m|2 +

1
ε
Φ(m)

)
dx+

1
ε

∫
R3
|∇u|2 dx,

and it is natural to study it on the nonlinear Sobolev space

H 1(Ω, S2) = {m ∈ H 1(Ω,R3) : |m| = 1 almost everywhere}.

The exchange length ε is often very small relative to the size of the sample, thus it is reasonable
to consider the limit ε ↘ 0. The aim of this paper is to study the asymptotic behaviour of Eε for
this limit. In order to explain the structure of the expected limiting energy, we first describe some
known arguments for simplified versions of the problem.

At first, we neglect the magnetostatic energy. We assume that we have a family of magnetizations
mε such that

lim sup
ε↘0

∫
Ω

(
ε|∇mε |

2
+

1
ε
Φ(mε)

)
dx <∞.

If Φ has finitely many zeroes, say at a1, . . . ,an ∈ S
2, then we can use methods from the theory of

phase transitions (cf. Modica and Mortola [13], Modica [12], Sternberg [17], Fonseca and Tartar [9],
Baldo [4]). In the context studied here, they have first been used by Anzellotti, Baldo, and Visintin
[3]. The main idea is to equip the sphere S2 with a new metric depending on Φ. If g denotes the
standard Riemannian metric on S2, then we define

gΦ = 4Φg.

This is a Riemannian metric on S2
\{a1, . . . ,an}. At the points a1, . . . ,an it becomes degenerate,

but it still induces a metric δΦ on the whole of S2. Namely, for y, z ∈ S2, we consider the space
Γ (y, z) of Lipschitz continuous curves in S2 connecting them, i.e.,

Γ (y, z) = {γ ∈ C0,1([0, 1], S2) : γ(0) = y and γ(1) = z},
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and we define

δΦ(y, z) = inf
γ∈Γ (y,z)

∫ 1

0

√
gΦ(γ ′,γ ′) dt = 2 inf

γ∈Γ (y,z)

∫ 1

0

√
Φ(γ)|γ ′| dt.

For any z ∈ S2, the function
φ(y) = δΦ(y, z)

is Lipschitz continuous. Writing grad for the gradient on the sphere S2, we have

|gradφ(y)| 6 2
√
Φ(y)

almost everywhere on S2. Hence form ∈ H 1(Ω, S2) we obtain

|∇φ(m)| 6 2|∇m|
√
Φ(m) 6 ε|∇m|2 +

1
ε
Φ(m)

by Young’s inequality. We conclude that the functions φ(mε) are uniformly bounded in the space
of functions of bounded variation BV(Ω). Since this holds for any fixed z ∈ S2, it is then clear
that Ω is divided into domains Ω1, . . . ,Ωn such that for a suitable sequence εk ↘ 0, we have
mεk (x)→ ai almost everywhere in Ωi for i = 1, . . . , n.

When we require that even
lim sup
ε↘0

Eε(mε) <∞,

then we can of course use the same arguments. In addition, it follows that the mapm : Ω → S2 with
m(x) = ai for x ∈ Ωi , i = 1, . . . , n, must be divergence free in the sense of distributions. That is,
m is tangential at the boundary ∂Ω , and if the domains Ωi and Ωj have a common boundary, then
its tangent spaces must contain ai − aj . As m takes only finitely many values, the first condition
is inconsistent with most shapes of Ω . It is possible to choose Ω such that this problem does not
arise, but since we are interested in the behaviour of the magnetization in the interior of Ω , we
prefer to avoid this issue altogether by neglecting the contribution of ∂Ω to the stray field. This
may be justified if the boundary is very far away from the region that we study. (Incidentally, the
behaviour of the magnetization near the boundary shows interesting phenomena that are related to
this observation; cf. Choksi and Kohn [6] or Choksi, Kohn, and Otto [7].) The condition on the
interfaces between Ωi and Ωj , on the other hand, is crucial for the analysis in this paper.

The behaviour described above is consistent with the experimental observation of domains with
nearly constant magnetizations, separated by thin layers where it changes rapidly. In simplified
models, the transition layers are often replaced by sharp interfaces, called domain walls. Such an
approach requires information about the energy concentrated at the domain walls, and this is where
we turn our attention next. Again we first examine a simplified situation; we will see later that it is in
fact oversimplified, but nevertheless it demonstrates some of the questions that arise in this context.

We consider the profile of a transition between two minima of the function Φ, say a1 and a2,
across a domain wall parallel to R2

× {0}. We assume that the transition is described by a vector
fieldm : R3

→ S2 that depends only on the third variable. That is, we have

m(x1, x2, x3) = n(x3)

for a curve n : R→ S2 with

lim
x3→−∞

n(x3) = a1 and lim
x3→+∞

n(x3) = a2.
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Such a situation might occur as a limiting case if the maps mε in the previous considerations are
rescaled about a point on the domain wall. If we neglect the magnetostatic energy again, then this
gives rise to the functional

E∗(n) =

∫
∞

−∞

(|n′|2 +Φ(n)) dx3.

(The parameter ε is renormalized to 1 by the rescaling mentioned above.) Using the same arguments
as before, we see that

E∗(n) > δΦ(a1,a2).

Moreover, the transition profile with the least energy follows a shortest geodesic for the Riemannian
metric gΦ connecting a1 and a2.

Now we take the magnetostatic energy into account again. If we assume that u : R3
→ R is a

function of the form
u(x1, x2, x3) = v(x3),

then condition (1) becomes
v′′ = n′3.

Thus v′ and n3 differ by a constant, say n3 − v
′
= a. If we insist that∫

∞

−∞

(v′)2 dx3 <∞,

then a must satisfy
a = lim

x3→−∞
n3(x3) = lim

x3→+∞
n3(x3).

In particular, we have again the condition that a1 − a2 is tangential to the domain wall. Moreover,
we obtain the new functional

E#(n) =

∫
∞

−∞

(|n′|2 +Φ(n)+ (n3 − a)
2) dx3.

Setting F(y) = (y3 − a)
2, we conclude that

E#(n) > δΦ+F (a1,a2).

If a1 and a2 are connected by a shortest geodesic for gΦ that is entirely in the plane R2
× {a},

then
δΦ+F (a1,a2) = δΦ(a1,a2).

The optimal transition profile then follows exactly such a geodesic. The corresponding m has a
constant third component, thus it is divergence free, and there is no magnetostatic energy. A domain
wall with such a transition path is called a Bloch wall. In any other case, we have

δΦ+F (a1,a2) > δΦ(a1,a2).

That is, the magnetostatic energy contributes to the wall energy. The optimal transition path is now
a geodesic for gΦ+F . More details on an analysis of this model can be found in Section 3.6.1(F)
of [10].
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While such a reasoning may give some insight, it requires strong assumptions on the structure
of the domain wall and the magnetization vector field. Particularly important is the assumption that
the transition between two minima of Φ is described by a magnetization that depends only on one
variable. In this paper we derive rigorous estimates for the limiting domain wall energy without
using such assumptions. The results are stated in the next section, but we can summarize them now
with the following conclusions.

1. The magnetostatic energy contributes to the limiting energy. At least a part of this contribution
is given by the integral of a certain density function over the domain walls. In contrast to the
nonlocal expression |∇u|2, this function depends only on the local behaviour of the limiting
magnetization.

2. The limiting energy density depends on the orientation of the domain walls. The part coming
from the magnetostatic energy vanishes only where the transition path of a Bloch wall coincides
with the optimal transition path for the anisotropy energy.

3. The domain wall energy may be smaller, however, than the above analysis suggests. In certain
cases the development of fine structures near the domain walls can decrease the energy.

2. Statement of the results

In order to simplify the presentation of our analysis, we choose a specific function Φ for the rest of
the paper. This function corresponds to a uniaxial ferromagnetic material in an external magnetic
field perpendicular to the ‘easy axis’. More precisely, if we choose

Ψ (y) = y2
2 + y

2
3 , y ∈ S2,

then the anisotropy energy favours a magnetization parallel to R × {(0, 0)}. The minima of Ψ are
shifted to an asymmetric position by the influence of an external field of the form

H = (0, H2, H3)

with 0 < H 2
2 +H

2
3 < 1. We consider the function

Φ(y) = Ψ (y)− 2H · y + |H|2 = (y2 −H2)
2
+ (y3 −H3)

2

(the term |H|2 is added to make it nonnegative) with minima at

a+ =
(√

1−H 2
2 −H

2
3 , H2, H3

)
and a− =

(
−

√
1−H 2

2 −H
2
3 , H2, H3

)
.

In this situation we expect domain walls with normal vectors in the circle

N = {ν ∈ S2 : ν ⊥ a+ − a−}.

Since we will often compare the distances between a+ and a− for different metrics on S2, we
introduce an abbreviation. Suppose that Ξ : S2

→ [0,∞) is a smooth function with Ξ−1({0}) =
{a+,a−}. Then we set

D(Ξ) = δΞ (a+,a−),
where δΞ is defined as in the previous section. For example, we can compute

D(Φ) = 4
(√

1− |H|2 − |H| arccos |H|
)
.
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As mentioned previously, we ignore the effect of the boundary ∂Ω on the micromagnetic energy.
In fact, instead of using equation (1), we only require that u satisfies ∆u = divm in Ω henceforth.
We then consider the integral∫

Ω

(
ε|∇m|2 +

1
ε
(Φ(m)+ |∇u|2)

)
dx.

Rather than a functional of m alone, this is now a functional of m and the trace of u on ∂Ω
(provided that ∂Ω is sufficiently smooth to speak of a trace).

Before we can state the main result, we need to introduce a few notions from geometric measure
theory. First, we write H2 for the 2-dimensional Hausdorff measure. We have already used the
space BV(Ω), which consists of all functions f ∈ L1(Ω) such that the distributional derivative is
represented by a vector valued Radon measureDf on Ω . This means in particular thatDf can be
interpreted as and element of the dual space of C0

0(Ω,R
3). The Radon measure |Df | is defined by

|Df |(U) = sup
{∫

Ω

f div ξ dx : ξ ∈ C1
0(U,R

3) with sup
U

|ξ | 6 1
}

for any open set U ⊂ Ω . A subset A ⊂ Ω has finite perimeter in Ω if its characteristic function
χA belongs to BV(Ω). In this case, the reduced boundary FA of A is the set of all points x ∈
supp |DχA| ∩Ω such that the limit

νA(x) = lim
r↘0

DχA(Br(x))

|DχA|(Br(x))

exists and belongs to S2. The measure |DχA| is then the restriction of H2 to FA, i.e.,

|DχA| = H2 FA.

The set FA is the measure-theoretically relevant part of the boundary of A and νA is its normal
vector (pointing into A). More details can be found in a book by Ambrosio, Fusco, and Pallara [2].

THEOREM 2.1 There exists a function W : N → [D(Φ),∞) with

W−1({D(Φ)}) = {ν ∈ N : ν ⊥H},

such that the following holds. For ε ∈ (0, 1], suppose that mε ∈ H
1(Ω, S2) and uε ∈ H 2(Ω)

satisfy ∆uε = divmε in Ω . If

lim inf
ε↘0

∫
Ω

(
ε|∇mε |

2
+

1
ε
(Φ(mε)+ |∇uε |2)

)
dx <∞,

then there exist a sequence εk ↘ 0 and a setΩ+ of finite perimeter inΩ such thatmεk (x)→ a+ for
almost all x ∈ Ω+ and mεk (x)→ a− for almost all x ∈ Ω\Ω+. For H2-almost every x ∈ FΩ+,
the vector νΩ+(x) belongs to N . Moreover,∫

FΩ+
ηW(νΩ+) dH2 6 lim inf

k→∞

∫
Ω

η

(
εk|∇mεk |

2
+

1
εk
(Φ(mεk )+ |∇uεk |2)

)
dx (2)

for every nonnegative η ∈ C0
0(Ω).
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The convergence of a sequence as described in this theorem, and some of the other statements,
are consequences of the known arguments seen in Section 1. The main new aspect is inequality (2),
which gives an estimate for the energy density on the domain walls. Without the magnetostatic
energy, we would have a similar inequality with D(Φ) instead of W(νΩ+); therefore, the
magnetostatic energy contributes to the domain wall energy at least with the density W(νΩ+(x))−
D(Φ) at a point x ∈ FΩ+. This difference is positive unless νΩ+(x) is one of the two vectors in
N perpendicular to H . In particular, we conclude that the magnetostatic energy is not negligible
in the limit, unless the domain wall FΩ+ is contained in a collection of planes parallel to the
plane spanned by a+ − a− and H . The theorem does not give any further information about the
functionW , and although more explicit estimates could be obtained from the proof in principle, they
would probably be too complicated for practical purposes and certainly far from optimal. Further
work is clearly needed in this context.

It is not difficult to see that similar statements as in Theorem 2.1 hold if Φ is replaced
by a function with more than two (but finitely many) minima. This situation occurs, e.g., for
ferromagnetic materials with cubic anisotropy. In this case, the results are also relevant in the
absence of an external field. For the uniaxial model with no external field, on the other hand,
the walls with the least energy are the Bloch walls, for which there is no contribution from the
magnetostatic energy in the limit.

In view of the one-dimensional analysis in Section 1, it is tempting to conjecture that W(ν) =
D(Φ + Fν) for the function Fν(y) = (ν · (y − a+))2. But in fact this is not true, at least not if
|H| is small enough.

PROPOSITION 2.1 Suppose that Ω = (−1, 1)3 and H2 = 0, and let ν = (0, 0, 1). There exists a
number β ∈ (0, 1) such that whenever 0 < H3 6 β, there exist

• a sequence εk ↘ 0,
• a sequence of mapsmk ∈ H

1(Ω, S2) withmk → a− almost everywhere in (−1, 1)2 × (−1, 0)
andmk → a+ almost everywhere in (−1, 1)2 × (0, 1), and
• a sequence of functions uk ∈ H 2(Ω) with ∆uk = divmk in Ω ,

such that

lim sup
k→∞

∫
Ω

(
εk|∇mk|

2
+

1
εk
(Φ(mk)+ |∇uk|2)

)
dx < 4D(Φ + Fν).

This statement is restricted to a special situation in order to keep the construction in its proof
as simple as possible. But similar arguments work also more generally, and a further examination
would give an explicit upper bound for W . The construction that we use mimics a phenomenon
observed in experiments: under certain conditions, a domain wall perpendicular to the external field
tends to develop zigzag patterns (cf. Section 3.6.2(B) in [10] for a further discussion).

It is interesting to compare the problem studied here with the asymptotic analysis of Rivière and
Serfaty [15, 16]. In these papers, a two-dimensional model is studied, where the magnetization is
a map from a domain in R2 into the unit circle S1. The energy functional consists of two terms,
corresponding to the exchange energy and the magnetostatic energy, and there is no anisotropy
term. In three dimensions, we could have Bloch walls with no limiting energy in the absence
of an anisotropy energy. In two dimensions this is impossible, because the constraint |m| = 1
is incompatible with Bloch walls. Accordingly, Rivière and Serfaty find a non-vanishing limiting
energy. A different, but related model is studied by Alouges, Rivière, and Serfaty [1].
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The above observations suggest that the three-dimensional theory might be closer to a two-
dimensional model that replaces the constraint |m| = 1 with a penalizing term in the functional,
such as the integral of ε−1(1− |m|2)2. A problem of this kind has been studied by Jabin, Otto, and
Perthame [11] and by De Lellis and Otto [8], albeit in a different context. The methods used, and
the methods of the aforementioned papers [15, 16, 1] as well, depend on the fact that the domain is
two-dimensional. It is not clear how to generalize them to higher dimensions.

3. Energy estimates

In this section we derive the main tools for the proof of inequality (2). We work mostly in cubes and
cuboids here. For x ∈ R3 and r > 0, we define

Qr(x) = (x1 − r, x1 + r)× (x2 − r, x2 + r)× (x3 − r, x3 + r).

Because we often consider two-dimensional slices, we use the notation x = (x′, x3) = (x1, x2, x3)

for a generic point in R3. Similarly, we write ∇′ = (∂/∂x1, ∂/∂x2), so that ∇ = (∇′, ∂/∂x3). For
x′ ∈ R2 and r > 0, we define the square

Q′r(x
′) = (x1 − r, x1 + r)× (x2 − r, x2 + r).

An open ball in R3 with radius r and centre x is denoted by Br(x).
We fix a number τ > 0 (and it will stay fixed throughout this section). On S2, we then define

the function
Gτ (y) = (max{|y2

3 −H3| − τ, 0})2.

The following is the key ingredient in the proof of Theorem 2.1.

PROPOSITION 3.1 There exist two constants c and ε0 > 0, dependent only on τ , with the following
property. Suppose that ε ∈ (0, ε0]. Let m ∈ H 1(Q1(0), S2) and u ∈ H 2(Q1(0)) such that ∆u =
divm in Q1(0). Then for any θ ∈ (0, 1],∫

Q1(0)

(
ε|∇m|2 +

1
ε
(Φ(m)+ |∇u|2)

)
dx

>
∫
Q′1(0)

δ(1−cθ2)(Φ+θGτ )
(m(x′,−1),m(x′, 1)) dx′.

Before we can prove this result, we need some preparation. First we introduce an auxiliary
variational problem. For L > 1, let ΩL = Q′1(0) × (−L,L). If m∗ ∈ H 1(ΩL, S

2) and u∗ ∈
H 2(ΩL) are given, then we consider the space

AL(m∗) = {m ∈ H 1(ΩL, S
2) : m =m∗ on Q′1(0)× {−L,L}}.

Form ∈ AL(m∗), let u ∈ H 2(ΩL) be the unique solution of the boundary value problem

∆u = divm in ΩL,
νΩL · (∇u−m) = νΩL · (∇u∗ −m∗) on ∂ΩL

(3)

with ∫
ΩL

u dx =
∫
ΩL

u∗ dx.
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Then we define
JL(m;m∗, u∗) =

∫
ΩL

(|∇m|2 +Φ(m)+ |∇u|2) dx.

A minimizer of JL( · ;m∗, u∗) in AL(m∗) can always be constructed with the direct method.

LEMMA 3.1 There exists a constantΛ > 0, dependent only on τ , with the following property. For
L > 2, let m∗ ∈ H 1(ΩL, S

2) and u∗ ∈ H 2(ΩL). Suppose that m ∈ H 1(ΩL, S
2) is a minimizer

of JL( · ;m∗, u∗) in AL(m∗) and u ∈ H 2(Ω) is the corresponding solution of (3). Then for any
s ∈ [2− L,L− 2], eitherm ∈ C0(Q1(0, s), S2) with

osc
Q1(0,s)

m 6 τ/2,

or ∫
Q′1(0)×(s−2,s+2)

(|∇m|2 +Φ(m)+ |∇u|2) dx > Λ.

Proof. We use well-known methods from the theory of harmonic maps, combined with results
that are proved elsewhere. Nevertheless, we need to give a few details of the arguments, since the
nonlocal term in the functional JL( · ;m∗, u∗) requires some special attention.

Let s ∈ [2− L,L− 2] and set

λ =

∫
Q′1(0)×(s−2,s+2)

(|∇m|2 +Φ(m)+ |∇u|2) dx.

We may assume that λ 6 1. Let κ > 0 be a constant, the value of which will be determined later. In
the first step, we want to show that there exists a constant C1 = C1(κ) such that

1
r

∫
Br (x0)∩ΩL

|∇m|2 dx 6 C1λ+ κ (4)

for all x0 ∈ Q
′

1(0)× (s − 3/2, s + 3/2) and r ∈ (0, 1/2].
To this end, assume first that BR(x0) ⊂ ΩL. For ρ ∈ (0, R] consider the map

m̃(x) =

m(x) if |x− x0| > ρ,

m

(
x0 + ρ

x− x0

|x− x0|

)
if |x− x0| < ρ.

It is readily checked that∫
Bρ (x0)

(|∇m̃|2 +Φ(m̃)) dx 6 ρ

∫
∂Bρ (x0)

(|∇m|2 +Φ(m)) dH2.

Suppose that ũ ∈ H 2(ΩL) is the solution of (3) for m̃ instead ofm. Then∫
ΩL

|∇u−∇ũ|2 dx =
∫
ΩL

(∇u−∇ũ) · (m− m̃) dx

6

(
16π

3
ρ3
∫
ΩL

|∇u−∇ũ|2 dx
)1/2

.
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Thus ∫
ΩL

|∇u−∇ũ|2 dx 6
16π

3
ρ3

and ∫
ΩL

(|∇ũ|2 − |∇u|2) dx =
∫
ΩL

(|∇u−∇ũ|2 + 2(∇ũ−∇u) ·∇u) dx 6 C2ρ
3/2

for a universal constant C2. Since JL(m;m∗, u∗) 6 JL(m̃;m∗, u∗), we conclude that∫
Bρ (x0)

(|∇m|2 +Φ(m)) dx 6
∫
Bρ (x0)

(|∇m̃|2 +Φ(m̃)) dx+
∫
ΩL

(|∇ũ|2 − |∇u|2) dx

6 ρ

∫
∂Bρ (x0)

(|∇m|2 +Φ(m)) dH2
+ C2ρ

3/2.

Therefore
d

dρ

(
1
ρ

∫
Bρ (x0)

(|∇m|2 +Φ(m)) dx
)

> −
C2
√
ρ
,

and an integration over [r, R] yields

1
r

∫
Br (x0)

(|∇m|2 +Φ(m)) dx 6
1
R

∫
BR(x0)

(|∇m|2 +Φ(m)) dx+ 2C2
√
R.

Similar arguments work if x0 is on ∂Q1(0)× (−L,L), provided that BR(x0)∩ΩL is either exactly
half of a ball or exactly a quarter of a ball. We conclude that there exists a universal constant C3
such that

1
r

∫
Br (x0)∩ΩL

(|∇m|2 +Φ(m)) dx 6
C3

R

∫
BR(x0)∩ΩL

(|∇m|2 +Φ(m)) dx+ C3
√
R

for all x0 ∈ Q
′

1(0)× (s − 3/2, s + 3/2) and 0 < r 6 R 6 1/2. Choosing R = min{κ2/C2
3 , 1/2},

we now derive (4) for r 6 R. For r > R, the inequality is clear, as C1 may depend on κ .
In the second step, we use the Euler–Lagrange equation for minimizers of JL( · ;m∗, u∗). In

order to calculate it, let φ ∈ C∞0 (R
2
× (−L,L)) and define

mt =
m+ tφ

|m+ tφ|
.

Moreover, let ut ∈ H 2(ΩL) be the solution of (3) formt instead ofm. Then∫
ΩL

∇u · (∇ut −∇u) dx =
∫
ΩL

∇u · (mt −m) dx,

hence

d
dt

∣∣∣∣
t=0

∫
ΩL

|∇ut |2 dx = 2
∫
ΩL

∇u ·∇
∂ut

∂t

∣∣∣∣
t=0

dx = 2
∫
ΩL

(∇u · φ− (∇u ·m)(φ ·m)) dx.
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With the usual calculations, we find the derivatives of the other two terms of JL(mt ;m
∗, u∗), and

we conclude thatm satisfies

∆m+ |∇m|2m = f − (m · f)m in ΩL (5)

for the vector field
f =

1
2

gradΦ(m)+∇u.

We also have the boundary conditions

∂m

∂x1
= 0 on {−1, 1} × (−1, 1)× (−L,L),

∂m

∂x2
= 0 on (−1, 1)× {−1, 1} × (−L,L),

and of coursem =m∗ onQ′1(0)×{−L,L}. An even extension ofm across the faces of ∂Q′1(0)×
(−L,L) satisfies an equation similar to (5). Since we have (4), Theorem 1 in [14] implies m ∈
C0(Q1(0, s), S2) and

osc
Q1(0,s)

m 6 C4

(∫
Q′1(0)×(s−2,s+2)

|f |2 dx+ C1λ+ κ

)1/2

for a universal constant C4, provided that κ and λ are sufficiently small. We have

|f |2 6 2Φ(m)+ 2|∇u|2.

(Here we have used the special choice of Φ. A different function will give rise to other constants.)
Thus

osc
Q1(0,s)

m 6 C4
√
(C1 + 2)λ+ κ

if κ and λ are small enough. This immediately gives the desired result. 2

LEMMA 3.2 For any L0 > 1 there exists a constant C, depending only on L0, such that the
following is true. Let L ∈ [1, L0] and suppose that m ∈ H 1(ΩL, S

2) and u ∈ H 2(ΩL) with
∆u = divm in ΩL. If |m3 −H3| 6 τ on Q′1(0)× {−L}, then∫

ΩL

Gτ (m) dx 6 θ

∫
ΩL

|∇m3|
2 dx+ C

∫
ΩL

|∇′m|2 dx+
C

θ

∫
ΩL

|∇u|2 dx

for any θ ∈ (0, 1].

Proof. Define

ξ(x) =


m3(x)−H3 − τ if m3(x) > H3 + τ,

0 if H3 − τ 6 m3(x) 6 H3 + τ,

m3(x)−H3 + τ if m3(x) < H3 − τ,

so that Gτ (m) = ξ2. Let η ∈ C∞0 (Q
′

1(0)) with∫
Q′1(0)

η2 dx′ = 4.
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For s ∈ (−L,L), set

ζ(s) =
1
2

∫
Q′1(0)

η2(x′)ξ2(x′, s) dx′.

Then ζ(−L) = 0. For almost every s ∈ (−L,L), we have

ζ ′(s) =

∫
Q′1(0)

η2(x′)ξ(x′, s)
∂m3

∂x3
(x′, s) dx′

=

∫
Q′1(0)

η2(x′)ξ(x′, s)(∆u(x′, s)− div′m′(x′, s)) dx′,

where

div′m′ =
∂m1

∂x1
+
∂m2

∂x2
.

Thus for almost all x3 ∈ (−L,L), we find that

ζ(x3) =

∫ x3

−L

∫
Q′1(0)

η2(x′)ξ(x′, s)(∆u(x′, s)− div′m′(x′, s)) dx′ ds.

We compute∫ x3

−L

∫
Q′1(0)

η2(x′)ξ(x′, s)∆u(x′, s) dx′ ds

=

∫
Q′1(0)

η2(x′)ξ(x′, x3)
∂u

∂x3
(x′, x3) dx′

−

∫ x3

−L

∫
Q′1(0)

η2(x′)∇ξ(x′, s) ·∇u(x′, s) dx′ ds

− 2
∫ x3

−L

∫
Q′1(0)

η(x′)ξ(x′, s)∇′η(x′) ·∇′u(x′, s) dx′ ds.

Hence there is a constant C1 = C1(η) such that for all θ1, θ2 > 0,

ζ(x3) 6 C1θ1ζ(x3)+
C1

θ1

∫
Q′1(0)

|∇u(x′, x3)|
2 dx′ + C1θ2

∫
ΩL

|∇m3|
2 dx

+C1θ1

∫ L

−L

ζ(s) ds + C1

(
1
θ1
+

1
θ2

)∫
ΩL

|∇u|2 dx+
C1

θ1

∫
ΩL

|∇′m|2 dx.

Integrating over (−L,L), we see that∫ L

−L

ζ(x3) dx3 6 C2θ1

∫ L

−L

ζ(x3) dx3 + C2θ2

∫
ΩL

|∇m3|
2 dx

+ C2

(
1
θ1
+

1
θ2

)∫
ΩL

|∇u|2 dx+
C2

θ1

∫
ΩL

|∇′m|2 dx
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for a constant C2 that depends on η and L0. If we choose θ1 small enough, then it follows that there
exists a constant C3 = C3(η, L0) with∫ L

−L

ζ(x3) dx3 6 C3θ2

∫
ΩL

|∇m3|
2 dx+

C3

θ2

∫
ΩL

|∇u|2 dx+ C3

∫
ΩL

|∇′m|2 dx

for any θ2 ∈ (0, 1].
With the help of the Poincaré inequality, we see that there exists a constant C4, dependent only

on η, such that ∫
Q′1(0)

ξ2(x′, x3) dx′ 6 4ζ(x3)+ C4

∫
Q′1(0)

|∇′m3(x
′, x3)|

2 dx′

for almost every x3 ∈ (−L,L). Therefore we find∫
ΩL

Gτ (m) dx 6 4C3θ2

∫
ΩL

|∇m3|
2 dx+

4C3

θ2

∫
ΩL

|∇u|2 dx+ (4C3 + C4)

∫
ΩL

|∇′m|2 dx.

The desired inequality follows immediately. 2

REMARK It is clear that the inequality of this lemma can be proved with the same arguments if
the condition |m3 −H3| 6 τ holds on Q′1(0)× {L} instead of Q′1(0)× {−L}.

LEMMA 3.3 There exist two constants c and L0 > 2, dependent only on τ , with the following
property. Let L > L0 and suppose that m ∈ H 1(ΩL, S

2) and u ∈ H 2(ΩL) with ∆u = divm in
ΩL. Then for any θ ∈ (0, 1],∫

ΩL

(|∇m|2 +Φ(m)+ |∇u|2) dx >
∫
Q′1(0)

δ(1−cθ2)(Φ+θGτ )
(m(x′,−L),m(x′, L)) dx′.

Proof. First note that we may assume without loss of generality that m minimizes JL( · ;m, u)
in AL(m). If it does not, we simply replace m by a minimizer and u by the solution of the
corresponding boundary value problem. The left-hand side of the inequality in the lemma does not
become larger thereby, and the right-hand side does not change at all. Moreover, we may assume
that ∫

ΩL

(|∇m|2 +Φ(m)+ |∇u|2) dx 6 4,

for the assertion is trivial otherwise.
Let s ∈ [2−L,L−2] and suppose thatΛ is the constant from Lemma 3.1. Then we have either∫

Q′1(0)×(s−2,s+2)
(|∇m|2 +Φ(m)+ |∇u|2) dx > Λ

orm ∈ C0(Q1(0, s), S2) and
osc

Q1(0,s)
m 6 τ/2.

If the latter is true and if there exists a point x0 ∈ Q1(0, s) with |m3(x0)−H3| > τ , it follows that∫
Q1(0,s)

Φ(m) dx > 2τ 2.
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Hence there exists a number K > 0, dependent only on τ , such that we always have either∫
Q′1(0)×(s−2,s+2)

(|∇m|2 +Φ(m)+ |∇u|2) dx > K

or
Gτ (m) = 0 in Q1(0, s).

We conclude that there exist certain numbers s1, . . . , sI ∈ [1−L,L− 1] such that Gτ (m) = 0
in ΩL\

⋃I
i=1Q1(0, si), and the number I is bounded by a constant I0 that depends only on τ . We

can then construct another set of numbers σ1, . . . , σJ with J 6 I0 and a number R ∈ [1, 4I0 ] such
that

• R − L 6 σj 6 L− R for j = 1, . . . , J ,
• |σi − σj | > 4R for i 6= j , and
• Gτ (m) = 0 in ΩL \ (Q′1(0)×

⋃J
j=1(σj − R, σj + R)).

If L > 2R, then we can apply Lemma 3.2 (or the remark following its proof) to the restriction ofm
to Q′1(0)× (σj − R, σj + R) for every j = 1, . . . , J . This gives a constant C1 = C1(τ ) > 1 such
that ∫

ΩL

Gτ (m) dx 6
∫
ΩL

(
θ |∇m3|

2
+ C1|∇′m|2 +

C1

θ
|∇u|2

)
dx

for any θ ∈ (0, 1]. For κ = 1/2C1 we then find∫
ΩL

(
(1− κθ2)

∣∣∣∣∂m∂x3

∣∣∣∣2 +Φ(m)+ κθGτ (m)) dx 6
∫
ΩL

(|∇m|2 +Φ(m)+ |∇u|2) dx.

We know that the function

φ(x′, x3) = δ(1−κθ2)(Φ+κθGτ )
(m(x′, x3),m(x

′,−L))

satisfies ∣∣∣∣ ∂φ∂x3

∣∣∣∣ 6 (1− κθ2)

∣∣∣∣∂m∂x3

∣∣∣∣2 +Φ(m)+ κθGτ (m).
Thus ∫

Q′1(0)
φ(x′, L) dx′ 6

∫
ΩL

(|∇m|2 +Φ(m)+ |∇u|2) dx.

The claim of the lemma now follows for c = κ−2. 2

Proof of Proposition 3.1. Define m̃(x) =m(εx) and ũ(x) = (1/ε)u(εx). Then for L = 1/ε, we
have∫

Q1(0)

(
ε|∇m|2 +

1
ε
(Φ(m)+ |∇u|2)

)
dx = ε2

∫
QL(0)

(|∇m̃|2 +Φ(m̃)+ |∇ũ|2) dx

and ∫
Q′1(0)

δ(1−cθ2)(Φ+θGτ )
(m(x′,−1),m(x′, 1)) dx′

= ε2
∫
Q′L(0)

δ(1−cθ2)(Φ+θGτ )
(m(x′,−L),m(x′, L)) dx′.
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We assume for simplicity that ε = 2−` for some ` ∈ N. Then we can decomposeQL(0) into cuboids
of the form Q′1(x

′

0)× (−L,L), and the desired inequality follows directly from Lemma 3.3. 2

4. Proofs of the main results

The results of the previous section are stated in a form that is useful when we study domain walls
parallel to R2

× {0}. In general, we have to replace the function Gτ with

Gντ (y) = (max{|(y − a+) · ν| − τ, 0})2

for a unit vector ν (perpendicular to the domain wall). If ν ∈ N , then a change of coordinates takes
us back to the previous situation, and we can use Proposition 3.1 to estimate the energy density. But
in order to obtain a statement as in Theorem 2.1, we need another lemma.

LEMMA 4.1 Let τ, c > 0 and ν ∈ S2. Either there exists a path γ ∈ Γ (a+,a−) such that
|(γ − a+) · ν| 6 τ in [0, 1] and

D(Φ) = 2
∫ 1

0

√
Φ(γ)|γ ′| dt, (6)

or there exists a number θ0 > 0 such that

D(Φ) < D((1− cθ2)(Φ + θGντ ))

for all θ ∈ (0, θ0].

REMARK Equation (6) implies that γ is a shortest geodesic for gΦ connecting a+ and a−. For
the function Φ used in this paper, this means that γ describes a circular arc in the plane spanned by
H and a+ − a−. If c(τ ) is the number from Proposition 3.1 belonging to τ , then it follows that the
function

W(ν) = sup
τ>0

sup
0<θ61

D((1− c(τ )θ2)(Φ + θGντ )), ν ∈ N, (7)

satisfies W(ν) > D(Φ) unless ν is perpendicular toH .

Proof. For θ ∈ (0, 1] define the function

Φθ = (1− cθ2)(Φ + θGντ )

on S2. We assume that there exists a sequence θk ↘ 0 such that

D(Φ) > D(Φθk ),

and we have to show that there exists a path γ ∈ Γ (a+,a−) with Gντ ◦ γ = 0 that satisfies (6).
For each k, choose γk ∈ Γ (a+,a−) with

2
∫ 1

0

√
Φθk (γk(t))|γ

′

k(t)| dt 6 D(Φθk )+
θk

k
,

and such that |γ ′k| is constant for each k, say |γ ′k(t)| ≡ bk . We may assume that bk → b > 0 as
k→∞ (after the choice of a subsequence if necessary). By the theorem of Arzelà–Ascoli, we may
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further assume that there exists a path γ ∈ Γ (a+,a−) such that γk → γ uniformly. Then clearly
γ satisfies (6).

Fix t ∈ [0, 1] such that γ(t) 6∈ {a+,a−}. Then γk(t) 6∈ {a+,a−} for any sufficiently large k.
Fix such a k for the moment and consider the function

f (θ) =
√
Φθ (γk(t)).

By the mean value theorem, there exists a number θ̃k ∈ (0, θk) such that

f (θk)− f (0)
θk

= f ′(θ̃k).

That is, √
Φθk (γk(t))−

√
Φ(γk(t))

θk
=
(1− 3cθ̃2

k )G
ν
τ (γk(t))− 2cθ̃kΦ(γk(t))

2
√
Φθ̃k

(γk(t))
.

It follows that

lim
k→∞

√
Φθk (γk(t))−

√
Φ(γk(t))

θk
=

Gντ (γ(t))

2
√
Φ(γ(t))

.

Define

ζ(t) =
Gντ (γ(t))

2
√
Φ(γ(t))

if γ(t) 6∈ {a+,a−} and ζ(t) = 0 else. Then Fatou’s lemma implies

b

∫ 1

0
ζ(t) dt 6 lim inf

k→∞

bk

θk

∫ 1

0

(√
Φθk (γk(t))−

√
Φ(γk(t))

)
dt

6 lim inf
k→∞

1
θk

(
D(Φθk )+

θk

k
−D(Φ)

)
6 0.

That is, we have Gντ (γ(t)) = 0 for every t ∈ [0, 1]. Therefore, the path γ has the required
properties. 2

Proof of Theorem 2.1. Suppose that mε ∈ H
1(Ω, S2) and uε ∈ H 2(Ω) satisfy the hypotheses of

Theorem 2.1, that is, ∆uε = divmε in Ω and

lim inf
ε↘0

∫
Ω

(
ε|∇mε |

2
+

1
ε
(Φ(mε)+ |∇uε |2)

)
dx <∞.

Define the functions
φε = δΦ(mε,a−)

on Ω . Moreover, consider the measures µε on Ω defined by the condition that∫
Ω

η dµε =
∫
Ω

η

(
ε|∇mε |

2
+

1
ε
(Φ(mε)+ |∇uε |2)

)
dx

for η ∈ C0
0(Ω). We have ∫

Ω

η|∇φε | dx 6
∫
Ω

η dµε
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if η > 0 and
lim inf
ε↘0

µε(Ω) <∞.

Thus there exist

• a sequence εk ↘ 0,
• a function φ ∈ BV(Ω) with φ(x) ∈ {0,D(Φ)} almost everywhere, and
• a Radon measure µ on Ω

such that φεk → φ in L1(Ω) as well as pointwise almost everywhere and µεk → µ weakly∗ in the
dual space of C0

0(Ω). Moreover, we have |Dφ| 6 µ. Define

Ω+ = {x ∈ Ω : φ(x) = D(Φ)} and Ω− = Ω\Ω+.

These are sets of finite perimeter. Setting

m(x) =

{
a+ if x ∈ Ω+,
a− if x ∈ Ω−,

we clearly havemεk (x)→m(x) almost everywhere. Moreover, any η ∈ C∞0 (Ω) satisfies∫
Ω

∇η ·m dx = lim
k→∞

∫
Ω

∇η ·mεk dx = lim
k→∞

∫
Ω

∇η ·∇uεk dx = 0.

That is, we have divm = 0, which means that νΩ+(x) ∈ N for H2-almost every x ∈ FΩ+.
For every x ∈ FΩ+, choose a cube Q̃(x) of side length 1 centred at 0 such that νΩ+(x) is

perpendicular to two of its faces and let Q̃r(x) = rQ̃(0)+ x. Define

Θ(x) = lim sup
r↘0

µ(Q̃r(x))

4r2 .

Fix a point x0 ∈ FΩ+ and let τ > 0 and θ ∈ (0, 1]. Let c(τ ) be the constant from Proposition 3.1
that belongs to τ . We want to show that

Θ(x0) > D((1− c(τ )θ2)(Φ + θG
νΩ+ (x0)
τ )). (8)

Then we have Θ(x0) > W(νΩ+(x0)) for the function W defined by (7). Standard arguments then
show that W satisfies inequality (2), which means that it has the properties stated in Theorem 2.1.
Thus the proof is complete once we have verified (8).

For this purpose we use a blow-up argument. For simplicity we assume that νΩ+(x0) = (0, 0, 1)
and Q̃r(x0) = Qr(x0). That is,

Θ(x0) = lim sup
r↘0

µ(Qr(x0))

4r2 .

We choose a sequence rk ↘ 0. Then we can replace {εk} by a subsequence such that for every k we
have

εk

rk
+

1

r3
k

∫
Qrk (x0)

|φεk − φ| dx 6
1
k
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and
1
r2
k

∫
Qrk (x0)

(
εk|∇mεk |

2
+

1
εk
(Φ(mεk )+ |∇uεk |2)

)
dx 6

µ(Qrk (x0))

r2
k

+
1
k
.

Set ε̃k = εk/rk and consider the rescaled maps

m̃k(x) =mεk (rkx+ x0)

and the functions

ũk =
1
rk
uεk (rkx+ x0).

Then we have

• ε̃k → 0 as k→∞,
• m̃k(x)→ a− almost everywhere on Q′1(0)× {−1},
• m̃k(x)→ a+ almost everywhere on Q′1(0)× {1},

and furthermore,

Θ(x0) >
1
4

lim sup
k→∞

∫
Q1(0)

(
ε̃k|∇m̃k|

2
+

1
ε̃k
(Φ(m̃k)+ |∇ũk|2)

)
dx.

Proposition 3.1 finally implies (8). 2

Proof of Proposition 2.1. Remember that we assume Ω = (−1, 1)3 and ν = (0, 0, 1). Moreover,
we have H2 = 0 and 0 < H3 6 β for a number β > 0 that remains to be determined.

Let γ ∈ Γ (a−,a+) be a shortest geodesic for the Riemannian metric gΦ+Fν connecting a−
and a+, parametrized in a way such that γ ′(t) 6= 0 for all t ∈ (0, 1). If β is sufficiently small,
then γ does not follow the circular arc in the plane R× {0} × R (because a semicircle in the plane
R2
× {H3} is shorter with respect to this metric). It is then clear that γ3(t) > H3 and γ2(t) 6= 0 for

all t ∈ (0, 1). In particular, γ2(t)(γ3(t)−H3) does not change its sign.
For ω ∈ (−π/2, π/2), let νω = (0, sinω, cosω) and Φω = Φ + Fνω . Consider the function

f (ω) = 2
∫ 1

0

√
Φω(γ(t))|γ

′(t)| dt.

We compute

f ′(0) = 2
∫ 1

0

γ2(t)(γ3(t)−H3)
√
Φω(γ(t))

|γ ′(t)| dt 6= 0.

Therefore
d

dω

∣∣∣∣
ω=0

f (ω)

cosω
6= 0,

and there exists an angle ω ∈ (−π/2, π/2) such that

f (ω)

cosω
< f (0) = D(Φ + Fν).

We fix ω with this property.
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We need to reparametrize γ suitably. To this end, let k ∈ N and consider the function

ζk(t) =

∫ t

0

|γ ′(s)|√
Φω(γ(s))+ k−2

ds.

Obviously ζk is an increasing function. Let Tk = 1
2ζk(1) and note that

Tk 6
k

2

∫ 1

0
|γ ′(s)| ds. (9)

Consider the inverse function ζ−1
k on [0, 2Tk]. The curve

ck(s) = γ(ζ
−1
k (s + Tk)), −Tk 6 s 6 Tk,

satisfies c(−Tk) = a− and c(Tk) = a+. Moreover,

|c′k(s)| =
√
Φω(ck(s))+ k−2.

Hence the numbers

αk =

∫ Tk

−Tk

(|c′k|
2
+Φω(ck)) ds (10)

satisfy

αk − f (ω) =

∫ Tk

−Tk

(
2Φω(ck)+

1
k2 − 2

√
Φω(ck)(Φω(ck)+ k−2)

)
ds 6

2Tk
k2 .

Because of (9), this implies
lim sup
k→∞

αk 6 f (ω).

We extend ck to R by ck(s) = a− for s < −Tk and ck(s) = a+ for s > Tk . Moreover, we define

vk(s) =

∫ s

0
νω · (ck(t)− a+) dt, s ∈ R.

Note that vk is constant in (−∞,−Tk] and in [Tk,∞).
Let Ωk = (−1, 1)× (−1/k, 1/k)× (−1, 1). For ε > 0 and x ∈ Ωk , define

m̃ε
k(x) = ck

(
x · νω

ε

)
and ũεk(x) = εvk

(
x · νω

ε

)
.

Then we have ∆ũεk = div m̃ε
k in Ωk . Moreover, we compute

|∇ũεk|
2
= (νω · (m̃

ε
k − a+))

2
= Fνω (m̃ε

k)

and therefore by (10) and the definition of Φω, we have

lim
ε↘0

∫
Ωk

(
ε|∇m̃ε

k|
2
+

1
ε
(Φ(m̃ε

k)+ |∇ũ
ε
k|

2)

)
dx =

4αk
k cosω

.
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Next we define a family of maps mε
k ∈ H

1(Ωk, S
2) and a family of functions ûεk ∈ H

2(Ωk)

as follows. For εTk − 1/k < x2 < 1/k − εTk we set mε
k(x) = m̃ε

k(x) and ûεk(x) = ũεk(x).
Otherwise, if x · νω < −εTk , thenmε

k(x) = a− and ûεk(x) = εvk(−Tk), and if x · νω > εTk , then
mε
k(x) = a+ and ûεk(x) = εvk(Tk). In the remaining part of Ωk , we define mε

k and ûεk in a way
such that

mε
k(x1,±k

−1, x3) ∈ R× {0} × R and
∂ûεk

∂x2
(x1,±k

−1, x3) = 0,

and furthermore,
lim sup
ε↘0

ε(‖∇mε
k‖L∞(Ωk) + ‖∆û

ε
k‖L∞(Ωk)) <∞. (11)

Let R : S2
→ S2 be the reflection at R × {0} × R, that is, R(y1, y2, y3) = (y1,−y2, y3). We

now extendmε
k to Ω by

mε
k(x1, x2 + 2`/k, x3) =

{
mε
k(x1, x2, x3) if ` is even,

R(mε
k(x1,−x2, x3)) if ` is odd.

Similarly, we extend ûεk to Ω by

ûεk(x1, x2 + 2`/k, x3) =

{
ûεk(x1, x2, x3) if ` is even,
ûεk(x1,−x2, x3) if ` is odd.

Then there exist certain sets U εk ⊂ Ω such that ∆ûεk = divmε
k outside of U εk and

lim sup
ε↘0

|U εk |

ε2 <∞.

Because of (11), it follows that
1
ε
‖∆ûεh − divmε

k‖
2
Lp(Ω)→ 0 as ε ↘ 0

for every p < 4/3. Let uεk ∈ H
2(Ω) be the solutions of the boundary value problems

∆uεk = divmε
k in Ω,

uεk = û
ε
k on ∂Ω.

Then we have
1
ε

∫
Ω

|∇uεk −∇ûεk|
2 dx 6

1
ε
‖∆ûεh − divmε

k‖
2
L6/5(Ω)

→ 0 as ε ↘ 0.

Therefore,

lim
ε↘0

∫
Ω

(
ε|∇mε

k|
2
+

1
ε
(Φ(mε

k)+ |∇u
ε
k|

2)

)
dx =

4αk
cosω

and
lim sup
k→∞

αk

cosω
6
f (ω)

cosω
< D(Φ + Fν).

Finally, by the construction ofmε
k , we have a sequence of mapsm0

k : Ω → {a−,a+} such that
mε
k →m0

k in L1(Ω,R3) as ε ↘ 0. Letm(x) = a− for x3 < 0 andm(x) = a+ for x3 > 0. Then
we also have m0

k → m in L1(Ω,R3). To conclude the proof, it now suffices to choose a suitable
diagonal sequence of {mε

k} and extract a subsequence if necessary. 2
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