
Interfaces and Free Boundaries 11 (2009), 421–446

Continuum limits of atomistic energies allowing smooth and sharp interfaces
in 1D elasticity

CARLOS MORA-CORRAL

Bizkaia Technology Park, building 500, E-48160 Derio (Vizcaya), Spain
E-mail: mora@bcamath.org

[Received 9 April 2008 and in revised form 3 December 2008]

We present two atomistic models for the energy of a one-dimensional elastic crystal. We assume that
the macroscopic displacement equals the microscopic one. The energy of the first model is given by
a two-body interaction potential, and we assume that the atoms follow a continuous and piecewise
smooth macroscopic (continuum) deformation. We calculate the first terms of the Taylor expansion
(with respect to the parameter representing the interatomic distance) of the atomistic energy, and
deduce that the coefficients of that Taylor expansion represent, respectively, an elastic energy, a
sharp-interface energy, and a smooth-interface energy. The second atomistic model is a variant of the
first one, and its Taylor expansion predicts, in addition, a new term that accounts for the repulsion
force between two sharp interfaces.

1. Introduction

The aim of this paper is to derive the continuum expression of the elastic energy and interfacial
energy of a one-dimensional elastic crystal from an atomistic model. The motivation of that analysis
came from our desire to justify the continuum model proposed in Ball & Mora-Corral [4], according
to which the same material can exhibit smooth and sharp interfaces. In the one-dimensional case,
that model is briefly described as follows. The elastic solid is represented by the interval (a, b) for
some a < b. An elastic deformation of the body (a, b) is represented by an increasing, absolutely
continuous map u : (a, b)→ R such that the function u restricted to (a, b)\S is in the Sobolev space
W 2,2, for some finite set S depending on u. In [4] we postulated that equilibrium configurations are
minimisers of the energy I defined by

I (u) :=
∫ b

a

[W(u′(x))+ ε2u′′(x)2] dx + κ Card Su′ , (1)

where Su′ is the set of discontinuity points of u′, and ε, κ > 0 are two small parameters.
In [4] we saw that, when W is assumed to have two wells, if 0 < κ � ε � 1 then the global

minimisers u of I (subject to appropriate Dirichlet boundary conditions) satisfy Card Su′ = 1, and,
in particular, they present sharp interfaces, whereas if 0 < ε � κ � 1, then the global minimisers
satisfy Su′ = ∅ and represent smooth interfaces. This suggests that in the expression (1), one should
replace κ with a multiple of ε, since only when κ is comparable to ε can both smooth and sharp
interfaces appear simultaneously.

In this paper, we try to derive the energy (1) (once κ has been substituted by a multiple of ε)
from an atomistic one. The main idea, which is based on the procedure of Blanc, Le Bris & Lions
[6], is the following. We assume that there is a continuum deformation u : [a, b] → R such that,
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for every small ε > 0, the atomistic (discrete) deformation is the restriction of u to [a, b] ∩ εZ, and
the atomistic energy of that discrete deformation is given by

Eε(u) :=
1

2 Card εZ ∩ [a, b]

∑
i 6=j∈Z∩ 1

ε
[a,b]

W

(
u(εj)− u(εi)

ε

)
, (2)

where W : R \ {0} → R is a two-body interaction potential with suitable decay at infinity (for
example, a Lennard–Jones potential). Next, we perform a Taylor expansion of Eε(u) with respect
to ε, with the hope of recovering the expression (1). To be precise, we compute the first terms of
that expansion:

Eε(u) = E0 + E1ε + E2ε
2
+ o(ε2), (3)

and, in this way, we partially succeed in justifying the model (1), in the sense that E0 accounts
for the elastic energy, E1 accounts for the sharp-interface energy (plus boundary terms), and E2
accounts for the smooth-interface energy (plus boundary and jump terms).

The essential difference with the paper of Blanc, Le Bris & Lions [6] is the regularity assumption
on u. While in [6] it was assumed that u was smooth enough so that all the Taylor expansions made
sense, here we assume that u is continuous and piecewise smooth, so that u′ can have jumps. In this
way, we obtain, within E1, a term that accounts for the sharp interfaces. Sections 2–6 are devoted
precisely to the computation of (3) from (2).

In Sections 7 and 8 we change slightly the above atomistic model in order to get, in the
continuum limit, an additional term that accounts for the repulsion between sharp interfaces. The
motivation of that analysis was our desire to obtain the expression of a repulsion term between
interfaces from an atomistic energy. In the continuum context, it is not clear how to define an energy
that represents a repulsion term between interfaces, let alone in our setting where we have two
kinds of interfaces: smooth and sharp. In general terms, that repulsion energy would be given by a
non-local expression depending on the distance between interfaces, and be a decreasing function of
that distance which tends to infinity when the distance tends to zero. It is not clear, however, how to
express that in a formula, since a ‘smooth interface region’ is only defined in vague terms as a region
where the absolute value of the second derivative is very high. Among the three possible kinds of
interaction between two interfaces (smooth-smooth, smooth-sharp and sharp-sharp), only the sharp-
sharp interface interaction energy is easy to model, namely, as a function depending on the distance
between the two interfaces, as described above. Here we are using the fact that, in dimension 1, a
sharp interface is represented by a single point; in higher dimensions, in contrast, the sharp-sharp
interface interaction energy is not so easy to define.

In Section 7 we try to derive this repulsion term between sharp interfaces, and, again, we succeed
only partially. The derivation follows a similar procedure to the one described above, but with an
important difference that we describe now. Let ε > 0 be the interatomic distance. Then we assume
that the two sharp interfaces are located at t0 ∈ (a, b) and t0 + mε ∈ (a, b), where m > 2 is a
natural number. So we are assuming that the interfaces are at a distance which is a fixed multiple of
the interatomic distance. This assumption was motivated by the experiments of Baele, van Tendeloo
& Amelinckx [2], who observed a quasiperiodic microtwinning in the alloy Ni-Mn resulting from
a Martensitic transformation, and whose images suggest that two consecutive sharp interfaces are
separated by a distance which is 6, or 10 or 11 times the interatomic distance.

The procedure is as follows. As above, we assume that there is a continuous deformation u :
[a, b]→ R which is smooth in [a, t0] and [t0, b], for some t0 ∈ (a, b), and such that the atomistic
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deformation uε follows u in [a, t0]∪[t0+εm, b] (much as in the analysis of Section 4), but follows a
discrete deformation y : {t0+ε, . . . , t0+(m−1)ε} → R in (t0, t0+mε). The discrete deformation y
will be given by an optimal profile problem. To be precise, we consider the energy (2) of this uε and
calculate its Taylor expansion (3). We interpret the difference between this energy and the energy
of the first model as a repulsion term between interfaces. Naturally, the coefficients E0, E1, E2 will
depend not only on u but also on y. We will see that the coefficient E0 does not depend on y. The
coefficient E1 does depend on y, and we choose y to minimise E1. It turns out that, in many cases,
the optimal y is the straight line. This might explain why, in the region between two sharp interfaces,
the atoms are aligned in a straight line. A further minimisation process shows that the optimal m
is 6, which qualitatively coincides with the experiments of Baele, van Tendeloo & Amelinckx [2]
explained above.

In this paragraph we compare our approaches to similar ones found in the literature. As
mentioned above, the analysis of Section 4 follows closely that of Blanc, Le Bris & Lions [6], with
the important difference that our continuum deformation u is continuous and piecewise smooth
(instead of being smooth). The closest to the analysis of Section 7 is the paper of Blanc & Le
Bris [5]. They assume that the sharp interfaces are at a distance γ which is larger than the atomistic
scale but smaller than macroscopic, so 0 < ε � γ � 1; this is different from our approach, as our
γ would be mε. Their atomistic energy equals the analogue of (2) plus a term accounting for the
energy between the two sharp interfaces. That energy is given again by an optimal profile problem,
but, in their case, the deformation between two sharp interfaces is a continuum one. Although their
approach is very natural, it does not predict a repulsion term between interfaces. It was precisely our
desire to model a repulsion term that was one of the motivations to present our model of Section 7.

Of course, there are a great number of atomic-to-continuum derivations for elastic and surface
energy. We have pointed out those whose approach is similar to that adopted here. For radically
different approaches, see, for example, Arndt & Griebel [1] (who use an upscaling method) and
Braides & Cicalese [7] (who use Γ -convergence), as well as the references therein.

There are several disadvantages of the atomic-to-continuum method used in this paper. Some of
them are already present in Blanc, Le Bris & Lions [6]: the macroscopic displacement is assumed
to be equal to the microscopic one, the atomic deformation is assumed to follow a given smooth
(or piecewise smooth, in our case) deformation, the lattice is assumed to be periodic even near
the boundary of the body, the Taylor expansion (3) is not uniform in u, there is no guarantee that
minimisers of the atomistic energy converge to minimisers of the continuum energy, and, finally, the
limit continuum problem is not well-posed (because it is not coercive). In addition, in our approach
we also have the disadvantage that, although we allow for more general deformations (piecewise
smooth as opposed to smooth), the discontinuity set of the deformation gradient is prescribed.
There are, nevertheless, some advantages of our approach. First, it detects the right scaling between
smooth and sharp interfaces: the term accounting for sharp interfaces appears in the coefficient ε of
the Taylor expansion (3), while the term accounting for smooth interfaces appears in the coefficient
ε2; this corroborates the scaling deduced in Ball & Mora-Corral [4] by Γ -convergence methods.
Second, it detects (or suggests) the ‘general form’ of a continuum energy functional accounting
for elastic energy, sharp-interface energy and smooth-interface energy, thus partially justifying
the model of [4]. Third, it is able to predict a repulsion term between sharp intrefaces and to
describe roughly the atomistic configuration between two consecutive sharp interfaces, in qualitative
agreement with the experiments of Baele, van Tendeloo & Amelinckx [2]. We do not consider the
restriction to the one-dimensional setting to be a disadvantage, because we believe that many of the
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calculations in this paper can be carried over to the higher-dimensional case, as done in Blanc, Le
Bris & Lions [6].

The outline of this paper is as follows. In Section 2 we introduce the general notation of the
paper, and state one of the main results of Blanc, Le Bris & Lions [6], the Taylor expansion (3) for
smooth deformations, which constitutes the starting point of this paper. In Section 3 we study the
map that transforms the atomistic potential into the elastic one. To be precise, a consequence of [6]
(which we recall in Section 2) is that the term E0 of (3) has the form

∫ b
a
W1(u

′) for a function
W1 depending on W . We show that blow-up rates at 0 and decay rates at ∞ of W imply the
corresponding properties of W1, and we give sufficient conditions for the map W 7→ W1 to be an
isomorphism. Section 4 is the core of the paper and contains the calculation of the Taylor expansion
(3) for a continuous and piecewise smooth deformation u having exactly one sharp interface. In
Section 5 we compare the conclusion of the result of [6] recalled in Section 2 with our result of
Section 4. In our analysis, there is a new term accounting for the sharp interfaces; we study the sign
of that term and give sufficient conditions for it to be positive; this positivity physically means that
we need energy to create a sharp interface. Section 6 shows that if the deformation has several sharp
interfaces that are separated at a macroscopic distance, then the analysis does not essentially differ
from the case of one interface (showed in Section 4), since the term accounting for the interaction
between sharp interfaces is of order o(ε2). Section 7 contains the other principal result of the paper:
we present the model for a deformation with two sharp interfaces that are separated at a distance
multiple of the atomic one, and calculate the corresponding Taylor expansion. Section 8 compares
the results of Sections 4 and 7. The new term that appears in Section 7 accounts for a repulsion force
between the two sharp interfaces; in some particular cases, we solve the optimal problem, and thus
describe the atomistic configuration between two consecutive sharp interfaces.

2. Smooth deformations: no sharp interfaces

In this section we introduce the general setting and notation of the paper, and state the result on the
Taylor expansion of the atomistic energy in the case of a smooth deformation.

It is known that in the atomic-to-continuum analysis, the Taylor expansion as ε goes to zero
depends on the particular sequence of ε going to zero (see, e.g., Blanc, Le Bris & Lions [6] or
Braides & Cicalese [7]). Usually, there is a natural choice of sequence of ε going to zero. In this
paper, we calculate all the possible limits according to the particular sequence of ε going to zero. In
the next two lemmas, we introduce the language and main properties in order to deal with particular
sequences of ε going to zero.

LEMMA 1 For every a, b, c ∈ R satisfying a < b, and ε > 0, let k1, k2, N ∈ Z be defined by the
condition

1
ε
a − c 6 k1 <

1
ε
a − c + 1,

1
ε
b − c − 1 < k2 6

1
ε
b − c, N = k2 − k1 + 1. (4)

Then N = Card εZ ∩ [a, b] and, as ε→ 0+,

1
N

1
ε
=

1
b − a

+O(ε), ε(c + k1)− a = O(ε), b − ε(c + k2) = O(ε).

Now let ε→ 0+ be a sequence such that there exist

a1, a2, b1, b2, c1, c2 ∈ R (5)
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satisfying

ε(c + k1)− a = a1ε + a2ε
2
+ o(ε2), b − ε(c + k2) = b1ε + b2ε

2
+ o(ε2),

1
N

1
ε
=

1
b − a

+ c1ε + c2ε
2
+ o(ε2).

(6)

Then

0 6 a1 6 1, if a1 = 1 then a2 6 0, if a1 = 0 then a2 > 0,
0 6 b1 6 1, if b1 = 1 then b2 6 0, if b1 = 0 then b2 > 0,

|c1| 6
1

(b − a)2
, if c1 =

1
(b − a)2

then c2 6
1

(b − a)3
,

if c1 =
−1

(b − a)2
then c2 >

1
(b − a)3

.

Proof. We have
b − a

ε
− 1 < N 6

b − a

ε
+ 1,

hence
−1

(b − a + ε)(b − a)
6

1
ε

(
1
N

1
ε
−

1
b − a

)
<

1
(b − a − ε)(b − a)

.

If c1 =
1

(b−a)2
then

1
ε2

(
1
N

1
ε
−

1
b − a

− c1ε

)
<

1
(b − a − ε)(b − a)2

,

whereas if c1 =
−1

(b−a)2
then

1
ε2

(
1
N

1
ε
−

1
b − a

− c1ε

)
>

1
(b − a + ε)(b − a)2

.

Similarly,
−a1

ε
6
ε(c + k1)− a − a1ε

ε2 <
1− a1

ε
,

and this implies the corresponding properties for a1, a2. The proof for b1 and b2 is analogous. 2

For the sake of simplicity, many of the theorems in this paper will be stated and proved when the
deformation is defined in [−1, 1], and the lattice is Z. For this choice, we can say more about the
parameters that appear in Lemma 1.

LEMMA 2 Let a = −1, b = 1 and c = 0. For each ε > 0 define k1, k2, N ∈ Z by (4). Then
k2 = −k1 and N = 2k2 + 1. Now let ε → 0+ be a sequence such that there exist parameters (5)
satisfying (6). Then

b1 = a1 ∈ [0, 1], b2 = a2, c1 =
a1

2
−

1
4
, c2 =

a2
1

2
−
a1

2
+
a2

2
+

1
8
,

if a1 = 1 then a2 6 0, if a1 = 0 then a2 > 0.
(7)

Moreover, for every set of parameters (5) such that (7) holds, there exists a sequence ε → 0+ such
that (6) holds.
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Proof. The equalities k2 = −k1 and N = 2k2 + 1 follow at once from the definition.
Now take (5) and a sequence ε→ 0+ such that (6) holds. The facts b1 = a1 and b2 = a2 follow

from the equality k2 = −k1. We have, successively,

εk2 = 1− a1ε − a2ε
2
+ o(ε2), Nε = 2+ (1− 2a1)ε − 2a2ε

2
+ o(ε2),

and using the general formula

(p0+p1ε+p2ε
2
+o(ε2))−1

=
1
p0
−
p1

p2
0
ε+

p2
1 − p0p2

p3
0

ε2
+o(ε2), p0 ∈ R\{0}, p1, p2 ∈ R,

(8)
we obtain the equalities for c1 and c2 in (7). The other relations of (7) follow from Lemma 1.

In order to prove the ‘moreover’ part, we construct, for every a1 ∈ [0, 1] and a2 ∈ R such that

if a1 = 1 then a2 6 0, if a1 = 0 then a2 > 0,

the sequence {εn}n∈N of positive numbers tending to zero defined by

εn :=


n

n2 + a1n+ a2
if (a1, a2) 6= (1, 0),

n2

n3 + n2 − 1
if (a1, a2) = (1, 0),

n ∈ N.

The corresponding sequence {kn1 }n∈N of k1’s satisfies kn1 = −n for n ∈ N large, and εnkn1 + 1 =
a1εn + a2εn + o(ε

2
n). 2

With all these preliminaries, we are in a position to present the model of the atomistic energy of a
deformation of an elastic crystal. The rest of the paper will be, of course, devoted to the analysis of
that model.

The one-dimensional elastic body is represented, in the reference configuration, by the closed
interval [a, b] for some real numbers a < b. Although it is customary to represent the reference
configuration through an open set, in our case, we believe that the calculations are slightly simpler;
in any case, it makes very little difference. The continuum deformation of the body is represented
by a continuous increasing map u : [a, b]→ R. The continuity models that no fracture is allowed,
and being increasing models the orientation-preserving character of the deformation and the non-
interpenetration of matter. We assume that the body possesses a crystalline structure; in particular,
we choose the lattice ` := c + Z for some c ∈ R, we take ε > 0 as the interatomic distance
(which in the end will go to zero) and assume that the atoms of the body are located at the points
of ε` ∩ [a, b]. Thus, the number of atoms of the body is Card ε` ∩ [a, b], which, in the notation of
Lemma 1, coincides with N . We assume that the atomistic deformation uε : ε` ∩ [a, b] → R is
the restriction to ε` ∩ [a, b] of the continuum deformation u. The atomistic energy of the discrete
deformation uε is given by a two-body interaction potential. This assumption is known to be very
simplistic, but we believe that a good understanding of this model is needed prior to the analysis
of more general and realistic ones. So let W : R \ {0} → R be the two-body interaction potential,
which is a continuous function with some decay properties at infinity; the precise assumption will
be stated in Theorem 3 below. We assume that the atomistic displacement equals the macroscopic
one, and hence we define the atomistic energy of the deformation uε by

Eε(uε) :=
1

2 Card ε` ∩ [a, b]

∑
i 6=j∈`∩ 1

ε
[a,b]

W

(
uε(εj)− uε(εi)

ε

)
. (9)
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Note that, in the notation (4), the energy can be equivalently written as

Eε(uε) =
1

2N

k2−k1∑
i,j=0
i 6=j

W

(
u(ε(c + k1 + j))− u(ε(c + k1 + i))

ε

)
.

The above paragraph has described, essentially, the particularisation to dimension 1 of the model
presented by Blanc, Le Bris & Lions [6]. The only modification is that, in our case, the body is
represented by a closed interval (not an open one) and we are working with an arbitrary sequence
of ε → 0+. Because of those (minor) modifications, the following result is not a particular case of
Blanc, Le Bris & Lions [6, Th. 3], but, since the proof follows exactly the same lines (and in fact,
it is simpler because of the 1D assumption), we omit it. In the sequel, by a C∞ diffeomorphism
u : [a, b] → R we mean a C∞ diffeomorphism u from the compact interval [a, b] onto its image
(which is a compact interval of R).

THEOREM 3 LetW : R\{0} → R be a C∞ function such thatW(x) = W(−x) for all x ∈ R\{0},
and suppose that there exist C,R > 0 and α > 3 such that

|W (i)(x)| 6 C|x|−α−i for all x ∈ R \ (−R,R) and i ∈ {0, 1, 2, . . .}. (10)

Let a, b, c ∈ R and ε > 0 with a < b. Define ` := c + Z. Let u : [a, b] → R be a C∞
diffeomorphism. Let uε be the restriction of u to ε` ∩ [a, b]. Take parameters (5) and a sequence
ε→ 0+ such that (6) holds. Define Eε by (9). Then

Eε(uε) = E
0
+ εE1

+ ε2E2
+ o(ε2), (11)

where

E0 :=
1

b − a

∫ b

a

∞∑
j=1

W(u′(x)j) dx, (12)

E1 := c1(b − a)E
0
−

1
2(b − a)

∞∑
j=1

[(j + 2a1 − 1)W(u′(a)j)+ (j + 2b1 − 1)W(u′(b)j)], (13)

E2 :=−
1

24(b − a)

∫ b

a

∞∑
j=1

W ′′(u′(x)j)u′′(x)2j4 dx + c2(b − a)E0

+

∞∑
j=1

(
c1

2
− a1c1 −

a2

b − a
−
c1

2
j

)
W(u′(a)j)

+

∞∑
j=1

(
c1

2
− b1c1 −

b2

b − a
−
c1

2
j

)
W(u′(b)j)

+
1

b − a

∞∑
j=1

[(
−

1
12
+
a1

2
−
a2

1
2

)
j +

(
1
4
−
a1

2

)
j2
−

1
6
j3
]
W ′(u′(a)j)u′′(a)

+
1

b − a

∞∑
j=1

[(
1

12
−
b1

2
+
b2

1
2

)
j +

(
−

1
4
+
b1

2

)
j2
+

1
6
j3
]
W ′(u′(b)j)u′′(b). (14)

Theorem 3 requires some regularity of u and W , and decay conditions on W and its derivatives.
As explained in the proof of Blanc, Le Bris & Lions [6, Th. 3], it is possible to prove (11) with
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a different set of hypotheses on u and W ; roughly speaking, less regularity of u requires stronger
decay conditions on W . In fact, a proof of a version of Theorem 3 with weaker assumptions on u
and W was given by Blanc & Le Bris [5, Th. 2.1]. However, in this paper we are not interested in
relaxing the regularity assumptions on u. Note also that, in Theorem 3, we have written explicitly
the boundary term in (14), which was not done in the higher-dimensional case of Blanc, Le Bris &
Lions [6].

3. The map that transforms the atomistic into the elastic potential

In nonlinear elasticity theory (see, e.g., Ball [3]), it is assumed that there exists a functionW1 : R→
R ∪ {∞}, called the (elastic) stored-energy function of the material, such that the elastic energy of
a deformation u : (a, b)→ R of the body represented by the interval (a, b) is

∫ b
a
W1(u

′(x)) dx (of
course, we have restricted the general theory to the one-dimensional case). Together with Theorem 3
this suggests the introduction of the operator that maps any function W : (0,∞) → R into the
function W1 defined by W1(t) :=

∑
∞

j=1W(jt) for each t > 0 for which the series converges. In
this section we give a sufficient condition for that operator transforming the atomistic potential W
into the (continuum) elastic one W1 to be an isomorphism.

Let p, q ∈ R. Define Ap,q as the set of f ∈ C((0,∞)) such that lim supt→0+ t
p
|f (t)| < ∞

and lim supt→∞ t
q
|f (t)| <∞. Clearly, Ap,q is a vector space. For each f ∈ Ap,q , define

‖f ‖p,q := max
{

sup
t∈(0,1)

tp|f (t)|, sup
t∈[1,∞)

tq |f (t)|
}
.

It is immediate that ‖ · ‖p,q is a norm in Ap,q that equips it with the structure of Banach space.
In this section (and also in Section 5), we let ζ : (1,∞) → R denote the restriction to (1,∞)

of Riemann’s zeta function, i.e., ζ(s) :=
∑
∞

j=1 j
−s for each s > 1. We denote the norm of a

linear operator between two Banach spaces simply as ‖ · ‖; the identity operator is denoted by I .
Motivated by the introduction of this section, for each k ∈ N we consider the operator Tk that maps
any function f : (0,∞) → R ∪ {∞} into the function Tkf defined by Tkf (t) :=

∑
∞

j=1 j
kf (j t)

for each t > 0 for which that series converges (to a number or to∞).

LEMMA 4 Let k ∈ N and p, q > k + 1. Then Tk : Ap,q → Ap,q is a bounded linear operator. If
p > q then ‖Tk − I‖ 6 ζ(q − k)− 1.

Proof. We define Sk := Tk − I . For each t > 1 and f ∈ Ap,q we have tq |Skf (t)| 6
(ζ(q − k) − 1)‖f ‖p,q . For each 0 < t < 1, let jt be the only integer satisfying jt t > 1
and (jt − 1)t < 1. Set At :=

∑jt−1
j=2 j

k−p
+ tp−q

∑
∞

j=jt
j k−q and A := supt∈(0,1)At . Then

tp |Skf (t)| 6 At‖f ‖p,q . If we prove that A < ∞, then we will have shown that Sk is a bounded
linear operator with ‖Sk‖ 6 max{ζ(q − k)− 1, A}.

Now we prove that A <∞. If p > q then A 6 ζ(q − k)− 1, whereas if p < q then

sup
t∈[1/2,1)

At 6 sup
t∈[1/2,1)

[jt−1∑
j=2

j k−p + 2q−p
∞∑
j=jt

j k−p
]

6 2q−p(ζ(p − k)− 1)

and

sup
t∈(0,1/2)

At 6 ζ(p − k)− 1+ sup
t∈(0,1/2)

tp−q
∫
∞

jt−1
sk−q ds 6 ζ(p − k)− 1+

2q−p

q − k − 1
.

Therefore, A <∞. 2
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Let k ∈ N. For each i ∈ {0, . . . , k} let pi, qi ∈ R, and define p := (p0, . . . , pk) and q :=
(q0, . . . , qk). Let Ap,q;k be the Banach space of functions f ∈ Ck((0,∞)) such that f (i) ∈ Api ,qi
for each i ∈ {0, . . . , k}, equipped with the norm ‖f ‖p,q;k :=

∑k
i=0 ‖f

(i)
‖pi ,qi .

PROPOSITION 5 Let k ∈ N. For each i ∈ {0, . . . , k}, consider pi, qi > i + 1. Define p :=
(p0, . . . , pk) and q := (q0, . . . , qk). Then T0 : Ap,q;k → Ap,q;k is a bounded linear operator. If
pi > qi > ζ−1(2)+ i for all i ∈ {0, . . . , k}, then T0 : Ap,q;k → Ap,q;k is an isomorphism.

Proof. Let f ∈ Ap,q;k . By Lemma 4,

‖T0f ‖p,q;k =

k∑
i=0

‖(T0f )
(i)
‖pi ,qi =

k∑
i=0

‖Tif
(i)
‖pi ,qi 6

k∑
i=0

‖Ti‖ ‖f
(i)
‖pi ,qi

6 max
06i6k

‖Ti‖ ‖f ‖p,q;k.

If pi > qi > ζ−1(2)+ i for all i ∈ {0, . . . , k}, then, by Lemma 4, ‖T0−I‖ 6 max06i6k ‖Ti−I‖ 6
max06i6k ζ(qi − i)− 1 < 1, and hence T0 is an isomorphism. 2

Note that ζ−1(2) ' 1.72865. As an example, motivated by the Lennard–Jones potential (see (22)
below), for each k ∈ N define LJk := A(12,...,12+k),(6,...,6+k);k . Then the Lennard–Jones potential
(22) belongs to LJk , and by Proposition 5, T0 : LJk → LJk is an isomorphism.

Finally, we recall that Ventevogel [8] constructed an example of a continuous function φ :
(0,∞) → R ∪ {∞} with exactly one relative minimum and such that T0φ has several relative
minima. In fact, his example can be easily adapted to construct, for each p, q > 1, a smooth
function W ∈ Ap,q such that W has exactly one relative minimum and T0W has several relative
minima.

4. Piecewise smooth deformations: sharp interfaces

This section is devoted to the proof of the following result, which is the analogue of Theorem 3 for
deformations that are continuous and piecewise smooth.

THEOREM 6 LetW : R\{0} → R be a C∞ function such thatW(x) = W(−x) for all x ∈ R\{0},
and suppose that there exist C,R > 0 and α > 3 such that (10) holds. Fix a = −1 and b = 1.
Define ` := Z. Let u : [−1, 1]→ R be continuous, increasing and such that u|[−1,0] and u|[0,1] are
C∞ diffeomorphisms. For each ε > 0, let uε be the restriction of u to ε` ∩ [a, b] Take parameters
(5) and a sequence ε→ 0+ such that (6) holds. Define Eε by (9). Then (11) holds, where

E0 :=
1
2

∫ 1

−1

∞∑
j=1

W(u′(x)j) dx,

E1 :=
(
a1 −

1
2

)
E0
−

1
4

∞∑
j=1

(j + 2a1 − 1)[W(u′(−1)j)+W(u′(1)j)]

−
1
4

∞∑
j=2

(j − 1)[W(u′(0−)j)+W(u′(0+)j)]+
1
2

∞∑
i,j=1

W(u′(0+)j + u′(0−)i),
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E2 := −
1
48

∫ 1

−1

∞∑
j=1

W ′′(u′(x)j)u′′(x)2j4 dx+
(

1
4
−a1+a2+a

2
1

)
E0

+
1
2

∞∑
j=1

[
−

1
4
+a1−a2−a

2
1+

(
1
4
−
a1

2

)
j

]
[W(u′(−1)j)+W(u′(1)j)]

+
1
4

∞∑
j=1

[(
1
6
−a1+a

2
1

)
j+

(
a1−

1
2

)
j2
+

1
3
j3
]

[W ′(u′(1)j)u′′(1)−W ′(u′(−1)j)u′′(−1)]

+

(
1
8
−
a1

4

) ∞∑
j=2

(j−1)[W(u′(0−)j)+W(u′(0+)j)]

+
1
4

∞∑
j=2

(
1
6
j−

1
2
j2
+

1
3
j3
)

[W ′(u′(0−)j)u′′(0−)−W ′(u′(0+)j)u′′(0+)]

+

(
a1

2
−

1
4

) ∞∑
i,j=1

W(u′(0+)j+u′(0−)i)

+
1
4

∞∑
i,j=1

[u′′(0+)j2
−u′′(0−)i2]W ′(u′(0+)j+u′(0−)i).

Proof. In (4), given a, b, c ∈ R and ε > 0 with a < b, we defined k1, k2 andN . In our case, we have
a = −1, b = 1 and c = 0, so define k1, k2, N accordingly. Define a− = −1, b− = 0 and c− = 0,
and construct k−1 , k−2 , N− accordingly; finally, define a+ = 0, b+ = 1 and c+ = 0, and construct
k+1 , k+2 , N+ accordingly. It is easy to see that k−1 = k1, k−2 = 0, k+1 = 0 and k+2 = k2, hence
N− = N − k2 and N+ = N + k1. By Lemma 2, k2 = −k1, N = 2k2 + 1, N− = N+ = (N + 1)/2
and (7) holds. Define

a−1 := a1, a−2 := a2, b−1 := 0, b−2 := 0, a+1 := 0, a+2 := 0, b+1 := b1,

b+2 := b2, c−1 := 2c1 − 1/2, c+1 := c−1 , c−2 := −2c1 + 2c2 + 1/4, c+2 := c−2 .
(15)

Then straightforward calculations using Lemma 2 and formula (8) show that

ε(c± + k±1 )− a
±
= a±1 ε + a

±

2 ε
2
+ o(ε2), b± − ε(c± + k±2 ) = b

±

1 ε + b
±

2 ε
2
+ o(ε2),

1
N±

1
ε
=

1
b± − a±

+ c±1 ε + c
±

2 ε
2
+ o(ε2).

Define

E±ε (uε) :=
1

2N±

k±2 −k
±

1∑
i,j=0
i 6=j

W

(
u(ε(k±1 + j))− u(ε(k

±

1 + i))

ε

)
.

By Theorem 3 and (15), E±ε (u) = (E
0)± + ε(E1)± + ε2(E2)± + o(ε2), where

(E0)− :=
∫ 0

−1

∞∑
j=1

W(u′(x)j) dx, (E0)+ :=
∫ 1

0

∞∑
j=1

W(u′(x)j) dx,
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(E1)− := (a1 − 1)(E0)− −
1
2

∞∑
j=1

(j + 2a1 − 1)W(u′(−1)j)−
1
2

∞∑
j=1

(j − 1)W(u′(0−)j),

(E1)+ := (a1 − 1)(E0)+ −
1
2

∞∑
j=1

(j − 1)W(u′(0+)j)−
1
2

∞∑
j=1

(j + 2a1 − 1)W(u′(1)j),

(E2)− := −
1
24

∫ 0

−1

∞∑
j=1

W ′′(u′(x)j)u′′(x)2j4 dx + (1− 2a1 + a2 + a
2
1)(E

0)−

+

∞∑
j=1

[
−

1
2
+

3a1

2
− a2 − a

2
1 +

(
1
2
−
a1

2

)
j

]
W(u′(−1)j)

+

∞∑
j=1

[
−

1
2
+
a1

2
+

(
1
2
−
a1

2

)
j

]
W(u′(0−)j)

+

∞∑
j=1

[(
−

1
12
+
a1

2
−
a2

1
2

)
j +

(
1
4
−
a1

2

)
j2
−

1
6
j3
]
W ′(u′(−1)j)u′′(−1)

+

∞∑
j=1

(
1
12
j −

1
4
j2
+

1
6
j3
)
W ′(u′(0−)j)u′′(0−),

(E2)+ := −
1
24

∫ 1

0

∞∑
j=1

W ′′(u′(x)j)u′′(x)2j4 dx + (1− 2a1 + a2 + a
2
1)(E

0)+

+

∞∑
j=1

[
−

1
2
+
a1

2
+

(
1
2
−
a1

2

)
j

]
W(u′(0+)j)

+

∞∑
j=1

[
−

1
2
+

3a1

2
− a2 − a

2
1 +

(
1
2
−
a1

2

)
j

]
W(u′(1)j)

+

∞∑
j=1

(
−

1
12
j +

1
4
j2
−

1
6
j3
)
W ′(u′(0+)j)u′′(0+)

+

∞∑
j=1

[(
1

12
−
a1

2
+
a2

1
2

)
j +

(
−

1
4
+
a1

2

)
j2
+

1
6
j3
]
W ′(u′(1)j)u′′(1).

We write

Eε(uε) =
1

2N

[ −k1∑
i,j=0
i 6=j

+

k2−k1∑
i,j=−k1+1

i 6=j

+2
−k1∑
i=0

k2−k1∑
j=−k1+1

]
W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
. (16)

Clearly,

1
2N

−k1∑
i,j=0
i 6=j

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
=
N + 1

2N
E−ε (u),
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and, by (6)–(8),
N + 1

2N
=

1
2
+

1
4
ε +

(
a1

4
−

1
8

)
ε2
+ o(ε2).

Therefore,

1
2N

−k1∑
i,j=0
i 6=j

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
=

1
2
(E0)− + ε

[
1
4
(E0)− +

1
2
(E1)−

]

+ ε2
[(
a1

4
−

1
8

)
(E0)− +

1
4
(E1)− +

1
2
(E2)−

]
+ o(ε2). (17)

Now we observe that

1
2N

k2−k1∑
i,j=−k1+1

i 6=j

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
=
N + 1

2N
E+ε (uε)−

1
N

k2∑
j=1

W

(
u(εj)− u(0)

ε

)

with

N + 1
2N

E+ε (uε) =
1
2
(E0)+ + ε

[
1
4
(E0)+ +

1
2
(E1)+

]
+ ε2

[(
a1

4
−

1
8

)
(E0)+ +

1
4
(E1)+ +

1
2
(E2)+

]
+ o(ε2).

By Taylor expansion, for each j ∈ {1, . . . , k2},

W

(
u(εj)− u(0)

ε

)
= W(u′(0+)j)+W ′(u′(0+)j)

(
u(εj)− u(0)

ε
− u′(0+)j

)
+O(ε2)j4−a2

= W(u′(0+)j)+ ε
1
2
W ′(u′(0+)j)u′′(0+)j2

+O(ε2)(j3−a1 + j4−a2).

Therefore,

1
N

k2∑
j=1

W

(
u(εj)− u(0)

ε

)
=

1
N

k2∑
j=1

W(u′(0+)j)+
1
N

k2∑
j=1

ε
1
2
W ′(u′(0+)j)u′′(0+)j2

+ o(ε2).

It is easy to see that

k2∑
j=1

W(u′(0+)j) =
∞∑
j=1

W(u′(0+)j)+ o(ε),
k2∑
j=1

W ′(u′(0+)j)j2
=

∞∑
j=1

W ′(u′(0+)j)j2
+ o(1).

Thus,

1
N

k2∑
j=1

W

(
u(εj)− u(0)

ε

)
= ε

1
2

∞∑
j=1

W(u′(0+)j)

+ ε2
[(
a1

2
−

1
4

) ∞∑
j=1

W(u′(0+)j)+
1
4

∞∑
j=1

W ′(u′(0+)j)u′′(0+)j2
]
+ o(ε2).
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In total,

1
2N

k2−k1∑
i,j=−k1+1

i 6=j

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)

=
1
2
(E0)+ + ε

[
1
4
(E0)+ +

1
2
(E1)+ −

1
2

∞∑
j=1

W(u′(0+)j)
]

+ ε2
[(
a1

4
−

1
8

)
(E0)+ +

1
4
(E1)+ +

1
2
(E2)+ +

(
−
a1

2
+

1
4

) ∞∑
j=1

W(u′(0+)j)

−
1
4

∞∑
j=1

W ′(u′(0+)j)u′′(0+)j2
]
+ o(ε2). (18)

Take 0 6 i 6 −k1 and −k1 + 1 6 j 6 k2 − k1. Then

u(ε(k1 + j))− u(ε(k1 + i))

ε
= u′(0+)(k1 + j)+ u

′(0−)(−k1 − i)

+
ε

2
[u′′(0+)(k1 + j)

2
− u′′(0−)(k1 + i)

2]+O(ε2)[(k1 + j)
3
+ (−k1 − i)

3].

Therefore,

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
= W(u′(0+)(k1 + j)+ u

′(0−)(−k1 − i))

+W ′(u′(0+)(k1 + j)+ u
′(0−)(−k1 − i))

ε

2
[u′′(0+)(k1 + j)

2
− u′′(0−)(k1 + i)

2]

+O(ε2)
(
(j − i)−a1 [(k1 + j)

3
+ (−k1 − i)

3]+ (j − i)−a2 [(k1 + j)
2
+ (−k1 − i)

2]2).
Now

ε2

N

−k1∑
i=0

k2−k1∑
j=−k1+1

(
(j − i)−a1 [(k1 + j)

3
+ (−k1 − i)

3]+ (j − i)−a2 [(k1 + j)
2
+ (−k1 − i)

2]2)
=

1
N
ε2
−k1∑
i=0

k2∑
j=1

[(j + i)−a1(j3
+ i3)+ (j + i)−a2(j2

+ i2)2]

6 C1ε
3
−k1∑
i=0

k2∑
j=1

[(j + i)3−a1 + (j + i)4−a2 ] 6 C2ε
3
[
1+

−k1∑
i=1

(i4−a1 + i5−a2)
]
= o(ε2),

for some constants C1, C2 > 0 depending on W,u, but not on i, j, ε. It is easy to see that

−k1∑
i=0

k2−k1∑
j=−k1+1

W(u′(0+)(k1 + j)+ u
′(0−)(−k1 − i)) =

∞∑
i=0

∞∑
j=1

W(u′(0+)j + u′(0−)i)+ o(ε).
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Therefore,

1
N

−k1∑
i=0

k2−k1∑
j=−k1+1

W(u′(0+)(k1 + j)+ u
′(0−)(−k1 − i))

=

[
1
2
ε +

(
a1

2
−

1
4

)
ε2
] ∞∑
i=0

∞∑
j=1

W(u′(0+)j + u′(0−)i)+ o(ε2).

Similarly, it is also easy to see that

ε

2N

−k1∑
i=0

k2−k1∑
j=−k1+1

W ′(u′(0+)(k1 + j)+ u
′(0−)(−k1 − i))[u′′(0+)(k1 + j)

2
− u′′(0−)(k1 + i)

2]

= ε2 1
4

∞∑
i=0

∞∑
j=1

W ′(u′(0+)j + u′(0−)i)[u′′(0+)j2
− u′′(0−)i2]+ o(ε2).

In total,

1
N

−k1∑
i=0

k2−k1∑
j=−k1+1

W

(
u(ε(k1 + j))− u(ε(k1 + i))

ε

)
= ε

1
2

∞∑
i=0

∞∑
j=1

W(u′(0+)j + u′(0−)i)

+ ε2
[(
a1

2
−

1
4

) ∞∑
i=0

∞∑
j=1

W(u′(0+)j + u′(0−)i)

+
1
4

∞∑
i=0

∞∑
j=1

W ′(u′(0+)j + u′(0−)i)[u′′(0+)j2
− u′′(0−)i2]

]
+ o(ε2). (19)

Equalities (16)–(19) conclude the proof. 2

5. Sign of the jump term

In this section we compare the conclusions of Theorems 3 and 6. The main difference in the
assumptions is that in Theorem 3 only smooth deformations are allowed, while in Theorem 6
we allow deformations that are continuous and piecewise smooth. In the corresponding Taylor
expansion (11), under the assumptions of Theorem 6 this is reflected in the appearance of a jump-
derivative term in the coefficient of order ε and higher. As explained in Section 1, this term models
the sharp-interface energy. For physical reasons, we believe that this term should be positive, so that
we need energy to create a (sharp) interface. In this section, we analyse the sign of that term and
show that, in many examples, it is indeed positive.

Let W : R \ {0} → R and u : [−1, 1]→ R satisfy the assumptions of Theorem 6. Let E0, E1,
E2 be the coefficients defined in Theorem 6. Let Ẽ0, Ẽ1, Ẽ2 be, respectively, the coefficients (12),
(13), (14), once the substitutions

a = −1, b = 1, b1 = a1, b2 = a2, c1 =
a1

2
−

1
4
, c2 =

a2
1

2
−
a1

2
+
a2

2
+

1
8

have been made. Of course, those substitutions are motivated by Lemma 2. For each i ∈ {0, 1, 2},
set J i := Ei − Ẽi . Then J 0

= 0,
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J 1
= −

1
4

∞∑
j=2

(j − 1)W(u′(0−)j)−
1
4

∞∑
j=2

(j − 1)W(u′(0+)j)+
1
2

∞∑
i,j=1

W(u′(0+)j + u′(0−)i),

J 2
=

1
2

∞∑
j=2

(
1
4
−
a1

2

)
(j − 1)[W(u′(0−)j)+W(u′(0+)j)]

+
1
2

∞∑
j=2

(
1

12
j −

1
4
j2
+

1
6
j3
)

[W ′(u′(0−)j)u′′(0−)−W ′(u′(0+)j)u′′(0+)]

+

(
a1

2
−

1
4

) ∞∑
i,j=1

W(u′(0+)j + u′(0−)i)

+
1
4

∞∑
i,j=1

[u′′(0+)j2
− u′′(0−)i2]W ′(u′(0+)j + u′(0−)i).

The equality J 0
= 0 expresses the fact that jumps in the derivative do not affect the elastic energy,

which corroborates the model (1), and is a known result in the Γ -convergence approach to the
problem (see, e.g., Braides & Cicalese [7]). Thus, J 1 seems to represent (an approximation of a
scaling of) the sharp-interface energy.

In order to ascertain the sign of J 1 we define J : (0,∞)2 → R as

J (a, b) := −
1
4

∞∑
j=2

(j − 1)W(aj)−
1
4

∞∑
j=2

(j − 1)W(bj)+
1
2

∞∑
i,j=1

W(bj + ai), a, b > 0. (20)

We believe that nothing can be said in general about the sign of J , so we restrict ourselves to the
analysis of the case when the jump of the derivative is small, i.e., when a ' b.

PROPOSITION 7 Let W ∈ C2((0,∞)) and suppose that there are C,R > 0 and α > 2 such that

|W (i)(t)| 6 Ct−α−i, t > R, i ∈ {0, 1, 2}.

Define J : (0,∞)2 → R by (20), and A : (0,∞)→ R by

A(a) :=
1
12

∞∑
j=2

(j − j3)W ′′(aj), a > 0. (21)

Then there exists a neighbourhood U of {(a, a) ∈ (0,∞)2 : A(a) > 0} such that J (a, b) > 0 for
all (a, b) ∈ U .

Proof. Some easy but tedious calculations show that, for all a > 0,

J (a, a) = 0, DJ (a, a) = (0, 0), D2J (a, a) =

(
A(a) −A(a)

−A(a) A(a)

)
.

Elementary calculus then shows that the function G : (0,∞)2 → R defined by

G(a, b) :=
{

2J (a, b)/(a − b)2 if a, b > 0 and a 6= b,
A(a) if a > 0,

is continuous. Hence there exists a neighbourhood U of {(a, a) ∈ (0,∞)2 : A(a) > 0} such that
G(a, b) > 0 and J (a, b) > 0 for all (a, b) ∈ U . 2
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We finish this section with an example of an interesting potential for which the function (21) can be
computed. For σ > 0, let Wσ : (0,∞)→ R be the Lennard–Jones potential defined by

Wσ (t) :=
(
σ

t

)12

−

(
σ

t

)6

, t > 0. (22)

Some calculations show that if

a

σ
>

(
26[ζ(11)− ζ(13)]

7[ζ(5)− ζ(7)]

)1/6

' 0.603431

thenAσ (a) > 0, whereAσ is defined by (21), but withW replaced byWσ . Recall that the minimum
of the Lennard–Jones potential is at 21/6σ ' 1.12246σ , and thus in particular Aσ is positive at that
value.

6. Several sharp interfaces, well separated from each other

When the deformation u presents several sharp interfaces (i.e., u′ is discontinuous at finitely many
points), and the interfaces are well separated from each other (i.e., the points of discontinuity of u′

do not depend on ε), then we have an exact analogue of Theorem 6, and in particular, in the Taylor
expansion of the energy, there is no term accounting for the interaction between sharp interfaces.

PROPOSITION 8 Let W : R \ {0} → R be a C∞ function such that W(x) = W(−x) for all
x ∈ R \ {0}, and suppose that there exist C,R > 0 and α > 3 such that (10) holds. Let n ∈ N and
t0 < · · · < tn+1. Define a := t0 and b := tn+1. Let c ∈ R and define ` := c+Z. Let u : [a, b]→ R
be continuous, increasing and such that u|[tp,tp+1] is a C∞ diffeomorphism for each p ∈ {0, . . . , n}.
Take parameters (5) and a sequence ε→ 0+ such that (6) holds and, for each p ∈ {0, . . . , n},

ε(c + k
p

1 )− tp = a
p

1 ε + a
p

2 ε
2
+ o(ε2), tp+1 − ε(c + k

p

2 ) = b
p

1 ε + b
p

2 ε
2
+ o(ε2),

1
Np

1
ε
=

1
tp+1 − tp

+ c
p

1 ε + c
p

2 ε
2
+ o(ε2),

for some ap1 , a
p

2 , b
p

1 , b
p

2 , c
p

1 , c
p

2 ∈ R, and where kp1 , k
p

2 , N
p are defined according to (4), by

replacing a with tp and b with tp+1. Let uε be the restriction of u to ε` ∩ [a, b], and define Eε
by (9). Then (11) is valid, where E0 is defined by (12), and

E1 :=
n∑

p=0

dp

∫ tp+1

tp

∞∑
j=1

W(u′(x)j) dx + F1(u
′(a), u′(t−1 ), u

′(t+1 ), . . . , u
′(t−n ), u

′(t+n ), u
′(b)),

E2 := −
1

24(b − a)

∫ b

a

∞∑
j=1

W ′′(u′(x)j)u′′(x)2j4 dx +
n∑

p=0

ep

∫ tp+1

tp

∞∑
j=1

W(u′(x)j) dx

+ F2(u
′(a), u′(t−1 ), u

′(t+1 ), . . . , u
′(b), u′′(a), u′′(t−1 ), u

′′(t+1 ), . . . , u
′′(b)),

for some dp ∈ R depending on c1, cp1 , tp+1− tp, b−a (for p ∈ {0, . . . , n}), some ep ∈ R depending
on c1, cp1 , c2, cp2 , tp+1 − tp, b − a (for p ∈ {0, . . . , n}), and some F1 ∈ C∞((0,∞)2n+2) and F2 ∈

C∞((0,∞)2n+2
× R2n+2) depending on W , ap1 , ap2 , bp1 , bp2 , cp1 , cp2 , tp+1 − tp (for p ∈ {0, . . . , n}).

Proof. The proof is very similar to that of Theorem 6 and will only be sketched.
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For each p ∈ {0, . . . , n} and ε > 0 define

Epε (u) :=
1

2Np

∑
i 6=j∈`∩ 1

ε
[tp,tp+1]

W

(
u(εj)− u(εi)

ε

)
.

From Theorem 3 we know that Epε (u) = (E0)p+ ε(E1)p+ ε2(E2)p+ o(ε2), where (E0)p, (E1)p,
(E2)p are given by (12), (13), (14), respectively, but replacing a, b, a1, a2, b1, b2, c1, c2 with tp,
tp+1, ap1 , ap2 , bp1 , bp2 , cp1 , cp2 , respectively. We write

∑
i 6=j∈`∩ 1

ε
[a,b]

=

n∑
p=0

∑
i 6=j∈`∩ 1

ε
[tp,tp+1]

+ 2
n−1∑
p=0

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩ 1

ε
[tp+1,tp+2]\{i}

+ 2
n−2∑
p=0

n∑
q=p+2

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩ 1

ε
[tq ,tq+1]

−

n∑
p=0

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩{t1,...,tn}\{i}

−

∑
i∈`∩{t1,...,tn}

∑
j∈`∩ 1

ε
[a,b]\{i}

.

Now

1
2N

n∑
p=0

∑
i 6=j∈`∩ 1

ε
[tp,tp+1]

W

(
u(εj)− u(εi)

ε

)
=

1
N

n∑
p=0

NpEpε (u)

=

n∑
p=0

tp+1 − tp

b − a
(E0)p + ε

n∑
p=0

(
tp+1 − tp

b − a
(E1)p + αp(E

0)p
)

+ ε2
n∑

p=0

(
tp+1 − tp

b − a
(E2)p + αp(E

1)p + βp(E
0)p
)
,

where, for each p ∈ {0, . . . , n}, the number αp ∈ R depends on c1, cp1 , tp+1− tp, b−a, and βp ∈ R
depends on c1, cp1 , c2, cp2 , tp+1 − tp, b − a.

Arguing as in the proof of Theorem 6, it is easy to see that

1
2N

[
2
n−1∑
p=0

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩ 1

ε
[tp+1,tp+2]\{i}

−

n∑
p=0

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩{t1,...,tn}\{i}

−

∑
i∈`∩{t1,...,tn}

∑
j∈`∩ 1

ε
[a,b]\{i}

]
W

(
u(εj)− u(εi)

ε

)
= B1(u

′(t−1 ), u
′(t+1 ), . . . , u

′(t−n ), u
′(t+n ))ε

+ B2(u
′(t−1 ), u

′(t+1 ), . . . , u
′(t+n ), u

′′(t−1 ), u
′′(t+1 ), . . . , u

′′(t+n ))ε
2
+ o(ε2),

for some B1 ∈ C∞((0,∞)2n) and B2 ∈ C∞((0,∞)2n × R2n) depending on W , ap1 , ap2 , bp1 , bp2 , cp1 ,
c
p

2 for each p ∈ {0, . . . , n}, and tp+1 − tp for each p ∈ {1, . . . , n}.
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Finally,

1
N

n−2∑
p=0

n∑
q=p+2

∑
i∈`∩ 1

ε
[tp,tp+1]

∑
j∈`∩ 1

ε
[tq ,tq+1]

W

(
u(εj)− u(εi)

ε

)
= O(εα−1), (23)

and, of course, εα−1
= o(ε2). 2

The reason why in Proposition 8 only local terms appear in the expansion of the energy but not
an interaction term between interfaces is that the sharp interfaces are separated at a macroscopic
distance. We will see in the next section that if the sharp interfaces are separated at a microscopic
distance then a new term will appear in the Taylor expansion accounting for that interaction energy.

7. Sharp interfaces separated at an atomic scale: repulsion term

From Proposition 8, and especially from (23), we conclude that, in the model studied in Section 6
(which is virtually the same as that of Section 4), sharp interfaces do not interact with each other.
This is due to the decay conditions on W and to the fact that the sharp interfaces are separated from
each other at a macroscopic distance. In this section, we will see that if the sharp interfaces are
separated at a distance comparable to the atomic one, then a small variation in the model predicts
an interaction energy between two consecutive sharp interfaces.

In this paragraph, we briefly explain the atomistic model of this section and how it differs from
the model of Section 6. The assumptions on the potential W and on the atomistic energy (9) are the
same. As for the continuum deformation, we assume that u has two sharp interfaces, separated at a
distance which is a multiple of the interatomic distance ε. The main difference is that the atomistic
deformation uε does not follow u in the region between the two sharp interfaces.

Now we explain the model in more detail. We assume that the macroscopic deformation u
presents exactly two sharp interfaces, which are at a distance of a fixed multiple of the atomistic
scale; to be precise, at a distance mε for some integer m > 2. It is not clear how to define the
deformation in the region enclosed by the two interfaces, nor the energy associated to it. Here we
assume that, to the left of the leftmost sharp interface and to the right of the rightmost sharp interface,
the atomistic deformation uε follows the continuum deformation u, which is everywhere continuous
and of class C∞ outside 0, whereas in the region between the two sharp interfaces, the atomistic
deformation follows a scaling of a given deformation y, which in the end will solve an optimal
profile problem. Thus, we assume that there exist an increasing homeomorphism u : [−1, 1]→ R
such that u|[−1,0] and u|[0,1] are C∞ diffeomorphisms, and an increasing function y : [0, 1] → R
such that the atomistic deformation uε : [−1, 1] ∩ εZ→ R is defined by

uε|([−1,0]∪[mε,1])∩εZ = u|([−1,0]∪[mε,1])∩εZ,

uε(x) =
u(mε)− u(0)
y(1)− y(0)

y

(
x

mε

)
+
u(0)y(1)− u(mε)y(0)

y(1)− y(0)
, x ∈ (0, mε) ∩ εZ.

Take such a y. Then, for all a > 0 and b ∈ R, the function ay + b gives rise to the same uε.
Therefore, we can assume, without loss of generality, that y(0) = 0 and y(1) = 1. Moreover, y
need not be defined in the whole [0, 1] but only on {0, 1/m, . . . , 1}. Thus,

uε(jε) = [u(mε)− u(0)]y(j/m)+ u(0), 1 6 j 6 m− 1.



CONTINUUM LIMITS OF ATOMISTIC ENERGIES 439

The atomistic energy associated with the deformation uε is still (9). Since the model differs from
that of Section 4 only in what happens in (0, εm), it makes sense to compute the difference of the
energies between the two models. This is done in the next result.

THEOREM 9 LetW : R\{0} → R be a C∞ function such thatW(x) = W(−x) for all x ∈ R\{0},
and suppose that there exist C,R > 0 and α > 3 such that (10) holds. Let u : [−1, 1] → R be
continuous, increasing and such that u|[−1,0] and u|[0,1] are C∞ diffeomorphisms. Let m > 2 be a
natural number. Let y : {1/m, . . . , (m− 1)/m} → (0, 1) be a strictly increasing function. For each
ε > 0, define uε : [−1, 1] ∩ εZ→ R by

uε|([−1,0]∪[mε,1])∩εZ = u|([−1,0]∪[mε,1])∩εZ,

uε(jε) = [u(mε)− u(0)]y(j/m)+ u(0), 1 6 j 6 m− 1,

and let

Eε(uε) :=
1

2 Card εZ ∩ [−1, 1]

∑
i 6=j∈Z∩ 1

ε
[−1,1]

W

(
uε(εj)− uε(εi)

ε

)
,

Eε(u) :=
1

2 Card εZ ∩ [−1, 1]

∑
i 6=j∈Z∩ 1

ε
[−1,1]

W

(
u(εj)− u(εi)

ε

)
.

Take parameters (5) and a sequence ε → 0+ such that (6) holds. Then Eε(uε) − Eε(u) = εK1 +

ε2K2 + o(ε
2), where

K1 :=
1
2

∞∑
i=0

m−1∑
j=1

[
W

(
u′(0+)my

(
j

m

)
+ u′(0−)i

)
−W(u′(0+)j + u′(0−)i)

]

+
1
2

m−2∑
i=1

m−1∑
j=i+1

W

(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])

+
1
2

m−1∑
i=1

∞∑
j=m

W

(
u′(0+)

[
j −my

(
i

m

)])
−

1
2
(m− 1)

∞∑
j=1

W(u′(0+)j), (24)

K2 :=
1
4

∞∑
i=0

m−1∑
j=1

[
W ′
(
u′(0+)my

(
j

m

)
+ u′(0−)i

)[
u′′(0+)m2y

(
j

m

)
− u′′(0−)i2

]

−W ′(u′(0+)j + u′(0−)i)[u′′(0+)j2
− u′′(0−)i2]

]
+

1
4
u′′(0+)

m−2∑
i=1

m−1∑
j=i+1

W ′
(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])
m2
[
y

(
j

m

)
− y

(
i

m

)]

+
1
4
u′′(0+)

m−1∑
i=1

∞∑
j=m

W ′
(
u′(0+)

[
j −my

(
i

m

)])[
j2
−m2y

(
i

m

)]

−
1
4
u′′(0+)(m− 1)

∞∑
j=1

W ′(u′(0+)j)j (m+ j)+
(
a1 −

1
2

)
K1.
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Proof. As in Lemma 2, for each ε > 0 let k2 be the maximum integer less than or equal to 1/ε, and
define N := Card εZ ∩ [−1, 1]. Then N = 2k2 + 1 and

Eε(uε)− Eε(u)

=
1
N

[ 0∑
i=−k2

m−1∑
j=1

+

m−2∑
i=1

m−1∑
j=i+1

+

m−1∑
i=1

k2∑
j=m

][
W

(
uε(εj)− uε(εi)

ε

)
−W

(
u(εj)− u(εi)

ε

)]
. (25)

Take −k2 6 i 6 0 and 1 6 j 6 m− 1. Then

uε(εj)− uε(εi)

ε
=
u(εm)− u(0)

ε
y

(
j

m

)
+
u(0)− u(εi)

ε

= u′(0+)my
(
j

m

)
− u′(0−)i +

ε

2

[
u′′(0+)m2y

(
j

m

)
− u′′(0−)i2

]
+O(ε2)(−i)3

and
u(εj)− u(εi)

ε
= u′(0+)j − u′(0−)i +

ε

2
[u′′(0+)j2

− u′′(0−)i2]+O(ε2)(−i)3.

Therefore,

W

(
uε(εj)− uε(εi)

ε

)
= W

(
u′(0+)my

(
j

m

)
− u′(0−)i

)
+
ε

2
W ′
(
u′(0+)my

(
j

m

)
− u′(0−)i

)[
u′′(0+)m2y

(
j

m

)
− u′′(0−)i2

]
+O(ε2)((−i)3−a1 + (−i)4−a2)+O(ε4)(−i)6−a2

and

W

(
u(εj)− u(εi)

ε

)
= W(u′(0+)j − u′(0−)i)+

ε

2
W ′(u′(0+)j − u′(0−)i)[u′′(0+)j2

− u′′(0−)i2]

+O(ε2)((−i)3−a1 + (−i)4−a2)+O(ε4)(−i)6−a2 .

Hence, using (6) and Lemma 2, we obtain

1
N

0∑
i=−k2

m−1∑
j=1

[
W

(
uε(εj)− uε(εi)

ε

)
−W

(
u(εj)− u(εi)

ε

)]

=
ε

2

∞∑
i=0

m−1∑
j=1

[
W

(
u′(0+)my

(
j

m

)
+ u′(0−)i

)
−W(u′(0+)j + u′(0−)i)

]

+

(
a1

2
−

1
4

)
ε2
∞∑
i=0

m−1∑
j=1

[
W

(
u′(0+)my

(
j

m

)
+ u′(0−)i

)
−W(u′(0+)j + u′(0−)i)

]

+
ε2

4

∞∑
i=0

m−1∑
j=1

[
W ′
(
u′(0+)my

(
j

m

)
+ u′(0−)i

)[
u′′(0+)m2y

(
j

m

)
− u′′(0−)i2

]

−W ′(u′(0+)j + u′(0−)i)[u′′(0+)j2
− u′′(0−)i2]

]
+ o(ε2). (26)



CONTINUUM LIMITS OF ATOMISTIC ENERGIES 441

Now take 1 6 i 6 m− 2 and i + 1 6 j 6 m− 1. Then

uε(εj)− uε(εi)

ε
=
u(mε)− u(0)

ε

[
y

(
j

m

)
− y

(
i

m

)]
= u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)]
+
ε

2
u′′(0+)m2

[
y

(
j

m

)
− y

(
i

m

)]
+O(ε2)

and
u(εj)− u(εi)

ε
= u′(0+)(j − i)+

ε

2
u′′(0+)(j2

− i2)+O(ε2).

Therefore,

W

(
uε(εj)− uε(εi)

ε

)
= W

(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])
+
ε

2
W ′
(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])
u′′(0+)m2

[
y

(
j

m

)
− y

(
i

m

)]
+O(ε2)

and

W

(
u(εj)− u(εi)

ε

)
= W(u′(0+)(j − i))+

ε

2
W ′(u′(0+)(j − i))u′′(0+)(j2

− i2)+O(ε2).

Hence

1
N

m−2∑
i=1

m−1∑
j=i+1

[
W

(
uε(εj)− uε(εi)

ε

)
−W

(
u(εj)− u(εi)

ε

)]

=
ε

2

m−2∑
i=1

m−1∑
j=i+1

[
W

(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])
−W(u′(0+)(j − i))

]

+

(
a1

2
−

1
4

)
ε2

m−2∑
i=1

m−1∑
j=i+1

[
W

(
u′(0+)m[y

(
j

m

)
− y

(
i

m

)
]
)
−W(u′(0+)(j − i))

]

+
ε2

4
u′′(0+)

m−2∑
i=1

m−1∑
j=i+1

[
W ′
(
u′(0+)m

[
y

(
j

m

)
− y

(
i

m

)])
m2
[
y

(
j

m

)
− y

(
i

m

)]

−W ′(u′(0+)(j − i))(j2
− i2)

]
+ o(ε2). (27)

Finally, take 1 6 i 6 m− 1 and m 6 j 6 k2. Then

uε(εj)− uε(εi)

ε
= −

u(εm)− u(0)
ε

y

(
i

m

)
+
u(εj)− u(0)

ε

= u′(0+)
[
j −my

(
i

m

)]
+
ε

2
u′′(0+)

[
j2
−m2y

(
i

m

)]
+O(ε2)j3

and
u(εj)− u(εi)

ε
= u′(0+)(j − i)+

ε

2
u′′(0+)(j2

− i2)+O(ε2)j3.
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Hence

W

(
uε(εj)− uε(εi)

ε

)
= W

(
u′(0+)

[
j −my

(
i

m

)])
+
ε

2
W ′
(
u′(0+)

[
j −my

(
i

m

)])
u′′(0+)

[
j2
−m2y

(
i

m

)]
+O(ε2)(j3−a1 + j4−a2)+O(ε4)j6−a2

and

W

(
u(εj)− u(εi)

ε

)
= W(u′(0+)(j − i))+

ε

2
W ′(u′(0+)(j − i))u′′(0+)(j2

− i2)

+O(ε2)(j3−a1 + j4−a2)+O(ε4)j6−a2 .

Therefore,

1
N

m−1∑
i=1

k2∑
j=m

[
W

(
uε(εj)− uε(εi)

ε

)
−W

(
u(εj)− u(εi)

ε

)]

=
ε

2

m−1∑
i=1

∞∑
j=m

[
W

(
u′(0+)

[
j −my

(
i

m

)])
−W(u′(0+)(j − i))

]

+

(
a1

2
−

1
4

)
ε2

m−1∑
i=1

∞∑
j=m

[
W

(
u′(0+)

[
j −my

(
i

m

)])
−W(u′(0+)(j − i))

]

+
ε2

4
u′′(0+)

m−1∑
i=1

∞∑
j=m

[
W ′
(
u′(0+)

[
j −my

(
i

m

)])[
j2
−m2y

(
i

m

)]

−W ′(u′(0+)(j − i))(j2
− i2)

]
+ o(ε2). (28)

Equations (25)–(28) conclude the proof. 2

8. The optimal profile problem

This section analyses the terms K1 and K2 of Theorem 9. As explained in Section 7, it is not clear
how to define the atomistic deformation in the region between two sharp interfaces. In Theorem 9,
we assumed that, in that region, the atomistic deformation uε followed a scaling of a given discrete
deformation y : {1/m, . . . , (m − 1)/m} → (0, 1), but the actual values of y were left unspecified.
We believe that y should be such that the difference of energy Eε(uε) − Eε(u) is minimum. As
this is a difficult problem, we approximate Eε(uε) − Eε(u) by its Taylor expansion, and, thanks
to Theorem 9, we choose y to be a minimiser of K1. For every m, this is a finite-dimensional
minimisation problem, and it will turn out that, in many cases, the optimal choice of y is the identity
map, which gives 0 as the optimal value for K1.

As explained in Section 1, the repulsion term between two sharp interfaces should be decreasing
with respect to the distance between them, and tend to infinity as the interface goes to zero. Since
we have here a discrete variable m that runs over {2, 3, . . .}, the latter property makes no sense, but
we still can expect that the repulsion term is decreasing with respect to m, at least for small values
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of m. In the context of Theorem 9, the repulsion term is defined as Eε(uε) − Eε(u), but again we
approximate it by its Taylor expansion εK1 + ε

2K2. As explained in the previous paragraph, the
term K1 provides us with information about the optimal shape of y (which in many cases turns out
to be the identity), but does not give much information about the repulsion energy (because in many
cases it is zero) or about m (because in many cases the optimal value of K1 is 0, regardless of m).
Thus, we will study the term K2 and it will turn out that, in a particular but important case, the
optimal m is 6.

The rest of this section is devoted to making those ideas precise and giving some examples in
which the terms K1 and K2 can be calculated.

Given a function W : (0,∞)→ R and a natural number m > 2, we define

Um := {(x1, . . . , xm−1) ∈ Rm−1 : 0 < x1 < · · · < xm−1 < 1} (29)

and Fm : (0,∞)2 × Um→ R by

Fm(a, b; x1, . . . , xm−1) :=
∞∑
i=0

m−1∑
j=1

[W(bmxj + ai)−W(bj + ai)]

+

m−2∑
i=1

m−1∑
j=i+1

W(bm(xj − xi))+

m−1∑
i=1

∞∑
j=m

W(b[j −mxi])− (m− 1)
∞∑
j=1

W(bj), (30)

for each a, b > 0 and (x1, . . . , xm−1) ∈ Um, provided that all the series of (30) converge. Of course,
the reason of this definition is that, according to Theorem 9 and specifically (24), and following the
notation there,

K1 =
1
2
Fm

(
u′(0−), u′(0+); y

(
1
m

)
, . . . , y

(
m− 1
m

))
.

In the next lemma we study the minimisers of Fm. As we will see, the point qm ∈ Rm−1 defined by

qm :=
(

1
m
, . . . ,

m− 1
m

)
(31)

will play an important role.

LEMMA 10 Suppose that W ∈ C2((0,∞)) satisfies

lim
t→0+

W(t) = ∞, lim sup
t→∞

tα max{|W(t)|, |W ′(t)|, |W ′′(t)|} <∞,

for some α > 1. Let m > 2 be a natural number. Define Um and qm as in (29), (31) respectively
and Fm : (0,∞)2 × Um → R as in (30). Let a, b > 0. Then there exists a minimiser of Fm(a, b; ·)
in Um. Moreover, Fm(a, b; qm) = 0 and DFm(a, a; qm) = 0. Finally,

∂klFm(a, a; qm) =


2a2m2

∞∑
j=1

W ′′(aj) if k, l ∈ {1, . . . , m− 1} with k = l,

−a2m2W ′′(a|k − l|) if k, l ∈ {1, . . . , m− 1} with k 6= l.

Proof. The assumptions imply that Fm is of class C2, and for each a, b > 0 we have Fm(a, b; x)
→ ∞ as x → ∂Um with x ∈ Um. This implies the existence of minimisers of Fm(a, b; ·) in Um.
The rest of the lemma follows from a direct calculation. 2
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The next step would be to compute the minimisers of Fm(a, b; ·) and to ascertain whether or not the
point qm is a (local or global) minimiser of Fm(a, a; ·). The answer to these questions depends on
W , a and b; all we can say is that qm is not, in general, a critical point of Fm(a, b; ·) for a, b > 0
with a 6= b. Since we do not think that there is a general answer to these questions, from now on
we will concentrate on a specific example.

Let σ > 0 and let Wσ : (0,∞)→ R be the Lennard–Jones potential defined in (22). From now
on, for each natural m > 2, let the function Fm defined in (30) refer to the potential Wσ . Then a
direct computation shows that, for all a > 0,

∞∑
j=1

W ′′σ (aj) =
σ 6a−14π8

467775
(8σπ6

− 2079a6),

detD2F3

(
a, a;

1
3
,

2
3

)
= 4σ 12a−28

[
π16

4677752 (8σ
6π6
− 2079a6)2 − 9(26σ 6

− 7a6)2
]
.

Based on those formulas and on Sylvester’s Criterion, we find that

D2F2

(
a, a;

1
2

)
> 0 if and only if

a

σ
<

(
8

2079

)1/6

π,

D2F3

(
a, a;

1
3
,

2
3

)
> 0 if and only if

a

σ
<

( 8π14

467775 − 78
π8

225 − 21

)1/6

.

Here, if A is a symmetric matrix, by writing A > 0 we mean that A is positive definite. Thus,
we have a necessary and a sufficient condition for qm to be a local minimiser of Fm(a, a; ·), for
each m ∈ {2, 3}. In fact, numerical experiments with the software Mathematica [9] suggest that
D2Fm(a, a; qm) > 0 if and only if detD2Fm(a, a; qm) > 0, if and only if a < amσ , where the
numerical value of am is shown in Table 1.

m am
2 1.24362
3 1.24280
4 1.24226
5 1.24192
6 1.24169
7 1.24153
8 1.24142
9 1.24133
10 1.24127
11 1.24122
13 1.24115
15 1.24111
17 1.24107
19 1.24105

5 10 15
1.2410

1.2415

1.2420

1.2425

1.2430

1.2435

TABLE 1. Numerical values of am.

Recall that there are two natural values of a, namely, the minimiser of Wσ , which is 21/6σ '

1.12246σ , and the minimiser of the elastic energy (see Theorem 3), i.e., of t 7→
∑
∞

j=1Wσ (j t),

which is
( 1382

675675

)1/6
πσ ' 1.1193σ . Numerical experiments with Mathematica [9] suggest that qm

is in fact a global minimiser of Fm(ãσ, ãσ ; ·), where ã :=
( 1382

675675

)1/6
π , for m ∈ {2, 3, 4, 5}.
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We sum up the findings up to now. In the model described in Section 7, the interaction energy
term between the two sharp interfaces located at 0 and mε is, by definition, Eε(uε)−Eε(u), which
depends on u, y, ε, m (and, of course, W , but this is fixed beforehand). Theorem 9 enables us to
approximate Eε(uε) − Eε(u) by εK1, so an approximation of a scaling of the interaction term is
given by K1, which depends on u′(0−), u′(0+), y, m. Now we minimise over y, and hence the
interaction term depends on u′(0−), u′(0+), m. According to the analysis above, we believe that
in many interesting cases, qm is a minimiser of Fm(a, a; ·). Assume that this is the case. Then, by
Lemma 10, the first order termK1 of the expansion of Theorem 9 is zero, regardless ofm; hence, in
order to have more information we study the second order termK2. As before, very little can be said
about that term unless we assume a specific form for the potential W . Motivated by the previous
analysis, we define the function G : (0,∞)2 × {2, 3, . . .} → R by

G(a, σ,m) :=
m−2∑
j=1

(−j3
+ 2j2

− j)W ′σ (aj)− (m− 1)
∞∑

j=m−1

(j − 1)(2j −m)W ′σ (aj),

for each a, σ > 0 and m ∈ {2, 3, . . .}. It is easily checked that the expression K2 of Theorem 9,
with the quantities u′(0−), u′(0+), u′′(0−), u′′(0+) replaced with a, a, p, p, respectively, and
the functions W , y replaced with Wσ , id, becomes precisely pG(a, σ,m)/4. For each σ > 0,
we choose aσ :=

( 1382
675675

)1/6
πσ , and we compute the values of G(aσ , σ,m). It turns out

that the quantity σG(aσ , σ,m) does not depend on σ , and its numerical values for several m
are displayed in Table 2, together with a graph of those values. Again, the numerical values,

m σG(aσ , σ,m)

2 −0.0570514
3 −0.0657517
4 −0.0470596
5 −0.0453827
6 −0.0452401
7 −0.0452798
8 −0.0453306
9 −0.0453703
10 −0.0453990
11 −0.0454194
12 −0.0454342
13 −0.0454451
14 −0.0454533
15 −0.0454594
20 −0.0454752
25 −0.0454809
30 −0.0454834
40 −0.0454854
50 −0.0454861

4 6 8 10

-0.060

-0.055

-0.050

-0.045

5 10 15 20 25 30 35 40
-0.04550

-0.04545

-0.04540

-0.04535

-0.04530

-0.04525

TABLE 2. Numerical values of σG(aσ , σ,m).
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as well as some symbolic calculations involving the Riemann zeta function, were obtained using
Mathematica [9].

Our interpretation is the following. For the Lennard–Jones potential, when u′(0−) ' u′(0+) '
a/σ ' 1.1193, the optimal discrete configuration between two sharp interfaces separated at a
distance mε is close to qm. If, in addition u′′(0−) ' u′′(0+) > 0 then the optimal m is 6, whereas if
u′′(0−) ' u′′(0+) < 0 then the models predicts that no interfaces at all (i.e.,m = 0) is energetically
better. So this model predicts that the optimal length of the space between interfaces is 6 times the
atomistic distance, which coincides with the experiments of Baele, van Tendeloo & Amelinckx [2].
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