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We study a nonlocal variational problem arising in diblock copolymers models, whose energy is
given by the Cahn–Hilliard functional plus a long-range interaction term. We prove that minimizers
develop uniform energy and density distributions, thus justifying partially the highly regular
microphase separation observed in diblock copolymers’ melts. We also give a new proof of the
scaling law for the minimum energy. This work extends the techniques introduced in [1] where
analogous results are proved for the sharp interface limit of the functional considered.

1. Introduction

We study the following nonlocal perturbation of the Cahn–Hilliard energy, introduced by Ohta and
Kawasaki in [28] in order to model diblock copolymers’ melts:

Fε,σ (u) :=
∫
Ω

(
ε2
|∇u(x)|2 +W(u(x))+ σ |(−∆)−1/2(u(x)−m)|2

)
dx. (1.1)

A diblock copolymer molecule is a linear chain consisting of two subchains (made of two
different monomers, say A and B) joined covalently to each other. The phenomenon Ohta and
Kawasaki were interested in is the formation of highly regular patterns in diblock copolymers’ melts.
In solution, indeed, the two monomers repel each other; but these forces, even causing a segregation
between the two subchains, cannot detach them, because of the chemical bond. The result of this
competition is a microphase separation, that is, the appearance on a mesoscopic scale of highly
regular structures of rich A and B domains (for example lamellars, bcc centered spheres, circular
tubes or bycontinuous gyroids, see for example [4] and [19]) which make diblock copolymers of
great interest in material science.

In the Ohta–Kawasaki functional Fε,σ , u is the density parameter describing the system: it is the
difference between the averaged densities of monomers A and B, so it takes values in [−1, 1] and
u = ±1 when, roughly speaking, there is concentration of a single monomer. The total average of
u is m and W is a continuous positive double-well potential, which is zero only in the pure states
±1. The parameters ε and σ are related to the physical properties of the melt (see [11] for details):
ε is proportional to the thickness of the transition regions between the two monomers, while σ is
inversely proportional to the square of the number of monomers per molecule.

As explained in [11] and [26], the most appropriate regime to model the microphase separation
is given by

0 < ε � σ � 1. (1.2)

From the mathematical point of view, this regime gives rise to significantly new phenomena with
respect to the Cahn–Hilliard functional.
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In this work we analyze the minima of the Ohta–Kawasaki functional Fε,σ under the regime
(1.2), giving a partial mathematical rigorous explanation to the regular pattern formation in diblock
copolymers’ melt. We prove that “statistical” quantities, such as energy and density, are uniformly
distributed on a scale determined by the parameters of the functional. More precisely, we show that,
in subdomains of size of order (ε/σ )1/3, minimizers have energy approximately constant and u has
average approximately m (which is the average on the entire domain). Moreover, we prove that the
minimum energy scales as ε2/3σ 1/3, improving Choksi’s result in [8], where this scaling is proved
under more restrictive hypotheses. We notice that both these scales, the one of the minimum energy
and that of the characteristic size of the patterns, agree with experiments and numerical simulations.

These results are the diffusive interface counterpart of those proved in [1] by Alberti, Choksi and
Otto for the sharp interface limit of the Ohta–Kawasaki functional (in the sense of Γ -convergence),∫

Ω

(
|∇u(x)| + |(−∆)−1/2(u(x)−m)|2

)
dx, (1.3)

defined for functions u ∈ BV (Ω;±1).
The present work is, indeed, based on the approach and techniques developed in [1]. Its new

contribution is twofold: on one hand, it extends the result of uniform energy and density distribution
to the more physically significant case of diblock copolymers’ functional Fε,σ (which, incidentally,
was one of the main motivations for [1]). And, on the other hand, despite the technical difficulties
coming from the parameters ε and σ , in this paper we simplify the proof of the main estimate in [1],
providing a new energy bound for the nonlocal term in Lemma 4.1: this bound, although weaker
than the original one, has a much clearer and direct proof and it suffices to make the main argument
work.

Apart from the underlying physical model, the Ohta–Kawasaki functional has its own
mathematical interest because it gives one of the simplest examples of energy-driven pattern
formation arising from the competition between short-range and long-range interactions. This kind
of phenomena has been observed in many variational problems, as, for example, the ones related to
the study of magnetic domains (cf. [20] and the references therein), and has got much attention in
the last years.

Nevertheless, it is worth stressing that, as explained in [1], the uniform distribution results
proved here are not strong enough to deduce that minimizers are periodic or nearly periodic, since
even highly nonperiodic structures could have the same property.

In the last years there has been an intensive study of the Ohta–Kawasaki functional. A forerunner
of this interest was the work by S. Müller [24], who proved that minimizers of the one-dimensional
functional

Hε(v) :=
∫ 1

0
[ε2v̈(x)2 +W(v̇(x))+ v(x)2] dx (1.4)

are periodic. Müller introduced this functional in the context of coherent solid-solid phase
transitions, but it is easily recognized, setting u = v̇, that Hε reduces to the Ohta–Kawasaki
functional in the case m = 0 and σ = 1.

After that work, there have been other proofs of this one-dimensional result under general
hypotheses (in particular removing the symmetry intrinsic in the assumption m = 0): we refer,
for example, to the recent works of X. Ren and J. Wei [29], [31], X. Chen and Y. Oshita [6], and Yip
[43], who proved that minimizers of the 1-d Ohta–Kawasaki functional are periodic with a period
of order (ε/σ )1/3 and have minimum energy scaling as ε2/3σ 1/3.
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On the other hand, not much has been proved in higher dimensions without making a priori
assumptions on minimizers’ structure, as done, for example, in the works of Ren and Wei [33]–
[37]. Apart from the study of the sharp interface limit made by Alberti, Choksi and Otto [1], to
our knowledge, the only result obtained under mild hypotheses is the scaling law for minimizers
provided by Choksi [8]. Nevertheless, there exists a wide experimental literature (see, for example,
[4], [42]) and numerical simulations (see, for example, [3], [41]) suggesting that in higher
dimensions minimizers are also nearly periodic. This conjecture, however, seems to be much more
challenging than in 1-d. The reason is that, in the latter case, the functional is in fact local (as is
clear from (1.4)) and, on the other hand, it allows the use of ODE techniques which are no more
available in higher dimensions.

The paper is organized as follows. In Section 2 we fix the notations and present the results. We
give three different formulations of the uniform energy distribution, this allowing us to simplify
its proof, given in Section 3. The main argument in it is an accurate estimate of the nonlocal part
of the energy, whose proof is postponed to Section 4. Finally, in Section 5, via Γ -convergence, we
establish a connection between the Ohta–Kawasaki functional and its sharp interface limit and prove
the scaling law of the minimum energy.

This work is part of the author’s master thesis [40].

2. Notations and results

In this section we fix the notations and state the results we are going to prove. First of all, we specify
all the terms in the Ohta–Kawasaki functional Fε,σ .

For simplicity, in order to minimize the influence of the domain geometry, we let Ω be the unit
cube,

Ω := Q1 := (−1/2, 1/2)n ⊂ Rn,

on which we fix periodic boundary conditions. In other words, we consider Ω := T1, the n-
dimensional torus obtained by identifying opposite faces of the unit cube.

We search the minimum of Fε,σ in the class of Sobolev functions with periodic traces and
average m,

u ∈ W 1,2(T1; [−1, 1]) and
∫
Q1

u = m ∈ (−1, 1). (2.1)

As explained in the Introduction, in the model u represents the difference between the averaged
densities of the two different monomers, hence it has values in [−1, 1].

Moreover, ∆ denotes the Laplace operator with periodic boundary conditions and W is a
continuous positive function with zeros only at ±1.

We fix the notation Ql(x) for the cube centered at x with side length l,

Ql(x) := (−l/2, l/2)n + x,

and Tl for the n-dimensional torus obtained by identifying opposite faces of Ql . Moreover, every
time we consider the Poisson equation in a torus, written as

∆u = f in Tl,

we mean it is satisfied with periodic boundary conditions.
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REMARK 2.1 With minor technical modifications, all the results of the paper can be proved for
homogeneous Neumann boundary conditions. We choose periodic boundary condition just for the
sake of simplicity: indeed, in the regime of small ε and σ and sufficiently far from the boundary, the
results do not seem to be influenced by either the shape of the domain or the boundary conditions.
The advantage of the periodic setting is to avoid all the complications coming from the geometry of
the domain.

In order to prove uniform energy distribution, our energy being nonlocal, we have to specify
what we mean by “energy in a subdomain”. We start by writing the nonlocal term in the following
way: ∫

T1

|(−∆)−1/2(u−m)|2 =

∫
T1

((−∆)−1(u−m))(u−m) = ‖u−m‖2
H−1(T1)

=

∫
T1

|∇v|2, (2.2)

where v solves

−∆v = u−m in T1. (2.3)

Then, for any subdomain D ⊆ T1, we set

Fε,σ (u,D) :=
∫
D

(ε2
|∇u|2 +W(u)+ σ |∇v|2). (2.4)

The main result asserts that, in subcubes of T1 of size (ε/σ )1/3, the energy of a minimizer is
approximately equal (up to a constant factor depending on ε and σ but independent of the subcube)
to ε2/3σ 1/3 times the volume of the subdomain.

THEOREM 1 There exist positive constants %0, γε,σ and C such that, for every ε/σ 6 %0, %−1/3
0 6

l 6 (σ/ε)1/3 and x ∈ T1, each minimizer uε,σ of Fε,σ in T1 satisfies∣∣∣∣Fε,σ (uε,σ ,Q(ε/σ )1/3l(x))

ε2/3σ 1/3((ε/σ )1/3l)n
− γε,σ

∣∣∣∣ 6 C

(
1
l
+ ε2/3σ 1/3

)
. (2.5)

A byproduct of Theorem 1 is the proof of the uniform density distribution, which asserts that
the average of u over subcubes of order (ε/σ )1/3 is approximately m.

PROPOSITION 2.1 There exist positive constants %0 and C such that, for every ε/σ 6 %0, %−1/3
0 6

l 6 (σ/ε)1/3 and x ∈ T1, each minimizer uε,σ of Fε,σ satisfies∣∣∣∣−∫
Q
(ε/σ )1/3l(x)

uε,σ −m

∣∣∣∣ 6
C

l
. (2.6)

Notice that Theorem 1 alone does not imply that the energy in subdomains scales as ε2/3σ 1/3:
to deduce this, we have to prove a uniform bound for the γε,σ ’s. Actually, we prove more, showing
that these constants have a limit as ε/σ → 0.

PROPOSITION 2.2 There exists a constant γ > 0 such that

lim
ε/σ→0

γε,σ = γ. (2.7)
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2.1 Rescaled variables

The starting point of our analysis is the following rescaling of factor % = (ε/σ )1/3:

w(y) = u (%y) for y ∈ T%−1 .

Writing for brevity ε = ε2/3σ 1/3, in these new variables, the functional assumes the form

Fε,σ (u,Ω) =
ε

|Ω%−1 |

∫
Ω
%−1

(ε|∇w|2 + ε−1W(w)+ |∇ζ |2), (2.8)

where ζ solves
−∆ζ = w −m in T%−1 . (2.9)

Defining

Mε(u,D) :=
∫
D

(
ε|∇w|2 + ε−1W(w)

)
and Eε(w,D) := Mε(u,D)+

∫
D

|∇ζ |2, (2.10)

with ζ as above, we recognize that

Fε,σ (u,Ω) =
ε

|Ω%−1 |
Eε(w,Ω%−1). (2.11)

Note that Mε is the standard scalar Ginzburg–Landau functional. The scaling (2.11) highlights the
connection between the Ohta–Kawasaki functional and its sharp interface limit and gives some
intuitions about the scaling factors ε for the energy and % for the periodicity.

Up to a constant factor (meaningless for what concerns the minimum problem), Eε(·,T%−1) and
Fε,σ (·,T1) are equivalent for

% = (ε/σ )1/3 and ε = ε2/3σ 1/3. (2.12)

Therefore, we can consider the rescaled functional Eε and minimize it on arbitrary tori TL, i.e.
among all functions w ∈ AL where

AL :=
{
w ∈ W 1,2(TL; [−1, 1]) : −

∫
TL
w = m

}
. (2.13)

Theorem 1 and Proposition 2.1 are, indeed, implied by the following theorem, taking L = %−1,
γε,σ = γε , with % and ε as in (2.12) (details are left to the reader).

THEOREM 2 There exist positive constants L0, ε0, γε and C such that, for every L0 6 L and every
0 < ε 6 ε0, the following holds: if wε is a minimizer of Eε in TL and L0 6 l 6 L, then, for every
x ∈ TL, ∣∣∣∣Eε(wε,Ql(x))

ln
− γε

∣∣∣∣ 6 C

(
1
l
+ ε

)
, (2.14)

and ∣∣∣∣−∫
Ql(x)

wε −m

∣∣∣∣ 6
C

l
. (2.15)
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2.2 The independent vector field b

An equivalent formulation of Theorem 2, which will turn out to be very useful, is given by the
following simple observation. If ζ is the solution of

∆ζ = w −m in TL, (2.16)

then ∫
TL
|∇ζ |2 = min

{∫
TL
|b|2 : b ∈ L2(TL;Rn), div b = w −m in TL

}
, (2.17)

where div b is taken in the distributional sense. Moreover, the minimum is attained only in the case
b = ∇ζ (we leave the proof of these simple claims to the reader). This allows us to consider the
functionals

Gε(w, b,TL) :=
∫

TL
(ε|∇w|2 + ε−1W(w)+ |b|2), (2.18)

defined in

BL := {(w, b) : w ∈ W 1,2(TL; [−1, 1]), b ∈ L2(TL;Rn), div b = w −m in TL}. (2.19)

We notice that the equation which defines the admissible pairs (w, b) in (2.19) imposes directly the
constraint on the average of w, −

∫
TL w = m. Hence, using (2.17), we deduce that

min
w∈AL

Eε(w,TL) = min
(w,b)∈BL

Gε(w, b,TL),

with the minimum reached by the same functions w and the vector field b given by b = ∇ζ , ζ as in
(2.16). Therefore, in terms of this new functional Gε , Theorem 2 reads as follows.

THEOREM 3 There exist positive constants L0, ε0, γε and C such that, for every L0 6 L and every
0 < ε 6 ε0, the following holds: if (wε, bε) is a minimizer of Gε in TL and L0 6 l 6 L, then, for
every x ∈ TL,

|Gε(wε, bε,Ql(x))/ l
n
− γε | 6 C

(
1
l
+ ε

)
, (2.20)

and ∣∣∣∣−∫
Ql(x)

wε −m

∣∣∣∣ 6
C

l
. (2.21)

The advantages of looking at minimizing pairs (wε, bε) of Gε , instead of minimizing functions
wε for Eε , is that Gε is now local, the nonlocal relation having been transferred to the definition of
the admissible pairs BL. This allows us to construct simple competitors for Gε , defining w and b
locally, while for Eε that would be impossible, since the nonlocal term ζ depends globally on w.
This procedure is described in the following remark, which will be often used in what follows.

REMARK 2.2 Let Ω1, Ω2 be Lipschitz domains and Ω = Ω1 ∪ Ω2. Take w ∈ W 1,2(Ω) and
bi ∈ W

1,2(Ωi;Rn) be admissible pairs in Ω1 and Ω2, that is, div bi = w − m in Ωi . Then (w, b)
solves div b = u−m in Ω if and only if the normal traces of bi coincide on ∂Ω1 ∩ ∂Ω2, i.e.

b1 · ν = b2 · ν in ∂Ω1 ∩ ∂Ω2,

where ν is the outer normal to ∂Ω1 (ν will always stand for the outer normal to a domain). The
proof of this assertion is immediate and is left to the reader. We point out that we will use this
remark always in the following two cases: either Ω1 and Ω2 are two cubes with a common face, or
Ω1 = Ql1 and Ω2 = Ql2 \Ql1 , with l1 < l2 (see Figure 1).
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Ω2∂Ω1 ∩ ∂Ω2

Ω1
Ω1 ∂Ω1 ∩ ∂Ω2

Ω2

FIG. 1. For (w, b) being admissible, the normal traces of bi have to coincide on ∂Ω1 ∩ ∂Ω2.

2.3 Outline of the proof

The scheme of the proof of Theorem 3 follows closely the approach of Alberti, Choksi and Otto [1].
However, in order to make the article more readable and to highlight the differences with [1], we
give a sketch of the proof.

Sketch of the proof of Theorem 3. The proof is presented in Sections 3 and 4. In the first of these
two sections, we develop the main ingredients for the proof, namely two comparison arguments
given in Subsection 3.3, in Propositions 3.6 and 3.7. In the first of the two propositions, we compare
the energy on a subdomain of a minimal pair (w, b) with the minimum of the energy in the same
domain, showing that they are nearly equal; then we study the dependence of this minimum energy
on the size of the domain via a comparison between the minimum of Gε in the torus and the
minimum of Gε with free boundary conditions. In this way we show that the minimum energy is
almost constant for large domains, which, together with the first comparison, tells us that, given
a minimal pair (w, b), its energy on a subdomain is almost constant as well, thus proving the
theorem.

The main ingredient in the comparisons is the construction of an interpolation between two
different boundary data. Subsection 3.2 is devoted to the description of this interpolation, which is
explicitly given in Corollary 3.5.

The construction we describe needs an L∞-estimate of the independent vector field b provided
in Subsection 3.1. This estimate follows from a first bound on the energy in subdomains stated in
Lemma 3.1: indeed, once one has an L2-estimate of b of the kind

∫
B1(x)
|b|2 6 C for every point x,

the admissibility condition div b = w − m gives the uniform bound via standard elliptic regularity
theory. In passing, this estimate leads immediately to the proof of the uniform density distribution.

Therefore, Section 3 gives the proof of Theorem 3 under the assumption of Lemma 3.1. The
proof of this lemma is given in Section 4. This is the point where our approach differs more from the
one of Alberti, Choksi and Otto. Indeed, the proof of this lemma (and of Lemma 3.3, which is a slight
improvement) is given by an estimate of the nonlocal part of the energy in terms of the boundary
data. The bound we provide is not the optimal bound proved in [1] but an interpolation between
this optimal bound and a standard L2-bound. Even if not optimal, our estimate allows us to write
a differential inequality which in turn leads to Lemma 3.1 (and Lemma 3.3). The advantage of this
weaker estimate is in our opinion the proof: despite the technicalities coming from the presence of
the parameter ε, its proof is elementary, with no need of the relaxed problem and its dual formulation
studied in [1].

Finally, Section 5 is devoted to proving the scaling law for the minimum energy.

REMARK 2.3 Before passing to the proof of the theorem, a comment on the notation used for
the constants is in order. Throughout this paper, any constant C will depend only on the volume
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fraction m, the dimension n of the space and on the shape of the potential W . However, we use
different notations in different contexts:

(a) the constants appearing in the statements of lemmas and propositions are indexed by the number
of the statement (e.g., C3.1 for Lemma 3.1): we think this will help the reader find the statement
being invoked;

(b) however, this notation is only used at the first appearrance of a lemma or proposition in a proof;
later in each proof we denote all the constants simply by C;

(c) finally, we have three special constants C0 in (3.16), C1 in (4.4) and C2 in (4.18), which we
need to keep track of.

3. Uniform density and energy distribution

In this section, we prove Theorem 3, which, in turn, gives the proof of Theorem 1 and Proposition
2.1. For clarity, we isolate the different lemmas and propositions we need for the proof in the
following subsections.

3.1 L∞-estimate of b: uniform density distribution

Here we prove a uniform bound for b not depending on the domain QL and, as a straightforward
consequence, the uniform density distribution for minimizers. Using the Lp-estimates for the
Laplace equation (see, for example, Theorem 9.15 in [18]: the obvious modification in the case
of a torus is left to the reader), we see that a vector field b = ∇ζ satisfying

div b = ∆ζ = w −m ∈ [−1−m, 1−m] in TL (3.1)

belongs to W 1,p(TL;Rn) for every 1 6 p < ∞. Hence, recalling the Sobolev embeddings, b
belongs to L∞(TL), with a bound depending on the size of the domain, that is, on L. The key result
is that, for minimizing pairs (w, b) of Gε in TL, this L∞-bound is independent of L. This estimate
captures the cancellation phenomena at the base of the uniform density distribution.

We need the following lemma, which gives a preliminary estimate of the energy of minimizers
on subdomains.

LEMMA 3.1 (First bound of the energy) There exist positive constants L0 > 2 and C3.1 such that,
for L > L0 and 0 < ε 6 1/(4n), each minimizer (w, b) of Gε in TL satisfies the following
estimate: for every L0 6 l 6 L,

Gε(w, b,Ql)/ l
n+1 6 C3.1. (3.2)

Lemma 3.1 is based on an estimate of the nonlocal part of the energy provided in Lemma 4.1.
We postpone its proof to the next section. Here we notice that (3.2) is clearly not optimal: Theorem 3
will imply, indeed, that the energy in subdomains scales as the volume of the domain, that is, ln. The
reason why we give first this weaker estimate is merely technical: as will be clear from the proof, this
allows us to take ε smaller than a fixed constant, ε 6 1/(4n), instead of a constant depending on the
domain QL. A kind of bootstrapping argument, passing through the uniform density distribution,
allows us to recover the optimal estimate stated in Lemma 3.3 below.
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PROPOSITION 3.2 Let L0 be the constant in Lemma 3.1. Then there exists a constant C3.2 > 0
with the following property. For every L > L0 and 0 < ε 6 1/(4n), each minimizer (w, b) of Gε
in TL satisfies the following uniform estimate:

‖b‖L∞(TL) 6 C3.2. (3.3)

Proof. As already noticed, since b = ∇ζ with ζ solving (3.1), we have ζ ∈ W 2,p(TL) for all
1 6 p < ∞, and therefore b = ∇ζ ∈ L∞(TL;Rn). Moreover, Lemma 3.1 implies that, for every
x ∈ TL, ∫

B1(x)
|b|2 6 C3.1L

n+1
0 . (3.4)

We claim that (3.4) and the equation (3.1) give the uniform bound (3.3).
We fix p > n and we start by proving that, for every x ∈ TL,

sup
y∈B1/2(x)

|b(y)| 6 C

[(∫
B1(x)
|b|p

)1/p

+ 1
]
. (3.5)

Let η be a cut-off function such that η ≡ 1 in B1/2(x) and η ≡ 0 in B1(x)
c, and set

z := (ζ − ζ )η with ζ = −

∫
B1(x)

ζ.

Then
∆z = (ζ − ζ )∆η + 2∇ζ · ∇η +∆ζη. (3.6)

Noticing that η is fixed, we have∫
B1(x)
|∆z|p 6 C

(∫
B1(x)
|ζ − ζ |p +

∫
B1(x)
|∇ζ |p +

∫
B1(x)
|∆ζ |p

)
(3.1)
6 C

(∫
B1(x)
|ζ − ζ |p +

∫
B1(x)
|∇ζ |p + 1

)
Poincaré

6 C

(∫
B1(x)
|∇ζ |p + 1

)
. (3.7)

Now, (3.6) implies that ∆z ∈ Lp(TL), and moreover z = 0 on ∂B1(x). Hence, we can use the
Lp-regularity for the Laplace equation, the Sobolev embedding and (3.7) to conclude that

‖∇z‖L∞(B1(x)) 6 C‖D2z‖Lp(B1(x)) 6 C‖∆z‖Lp(B1(x)) 6 C

(∫
B1(x)
|∇ζ |p + 1

)1/p

.

From (3.8) one can deduce (3.5) noticing that ∇ζ = ∇z in B1/2(x).
Finally, with the use of (3.5) and the Young inequality, we conclude that

‖b‖L∞(TL) = sup
x∈TL
|∇ζ(x)|

(3.5)
6 C

[
sup
x∈TL

(∫
B1(x)
|∇ζ |p

)1/p

+ 1
]

6 C

[
sup
x∈TL

(∫
B1(x)
|∇ζ |2

)1/p

· sup
x∈TL
|∇ζ |(p−2)/p

+ 1
]

Young
6

p − 2
p
‖b‖L∞(TL) + C

2
p

sup
x∈TL

(∫
B1(x)
|∇ζ |2

)1/2

+ C, (3.8)
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where we used the a priori information b = ∇ζ ∈ L∞(TL;Rn). In turn, (3.8) and (3.4) imply
(3.3) for a suitable constant C3.2 depending on C3.1, L0 and n (since p is a fixed number greater
than n). 2

An immediate consequence of this L∞-estimate is the proof of the uniform density distribution
(2.21) in Theorem 3.

Proof of (2.21) of Theorem 3. The proof reduces to the following computation: given a minimizer
(wε, bε) of Gε in TL, ε 6 1/(4n) and L > L0, using Proposition 3.2, we infer∣∣∣∣−∫

Ql(x)

(wε −m)

∣∣∣∣ = ∣∣∣∣−∫
Ql(x)

div bε

∣∣∣∣ 6
1
ln

∫
∂Ql(x)

|bε · ν|
(3.3)
6

2nC3.2l
n−1

ln
=
C

l
. 2

As pointed out before, the uniform density distribution leads to the right estimate for the energy
in subdomains. We state this estimate in the following lemma and, as for the previous one, we
postpone the proof to Section 4; the two estimates, indeed, are proved by the same arguments, with
minor technical changes.

LEMMA 3.3 (Second bound of the energy) There exist positive constants L0 > 2 and C3.3 such
that, for L > L0 and 0 < ε 6 1/(4n), each minimizer (w, b) of Gε in TL satisfies the following
estimate: for every L0 6 l 6 L,

Gε(w, b,Ql)/ l
n 6 C3.3. (3.9)

3.2 Construction procedures

In this subsection, we describe how to construct admissible pairs with given boundary data and
controlled energy. These construction procedures will be used several times to exhibit competitors
in the proof of the uniform energy distribution.

The main result is the following.

LEMMA 3.4 (Basic construction) Let d > 1, u ∈ W 1,2(Qd; [−1, 1]), s ∈ L2(Qd) and g ∈
L2(∂Qd) with

1
dn

∣∣∣∣∫
Qd

s +

∫
∂Qd

g

∣∣∣∣ 6 1− α ∈ (0, 1). (3.10)

Then, for every 0 < ε 6 αd/(4n) there exist w ∈ W 1,2(Qd; [−1, 1]) and b ∈ L2(Qd;Rn) such
that

(i) w|∂Qd = u|∂Qd ,
(ii) b · ν = g on ∂Qd ,

(iii) div b = w − s in Qd ,
(iv) Gε(w, b,Qd) 6 Mε(u,Qd)+ C3.4(d

n−1
+ d2 ∫

Qd
(w − s)2 + d

∫
∂Qd

g2),

where C3.4 is a constant depending only on n.

Proof. We start by noticing that, in order to find a vector field satisfying (ii) and (iii), it is necessary
to modify u to a function w such that∫

Qd

(w − s) =

∫
Qd

div b =
∫
∂Qd

g. (3.11)
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FIG. 2. The function φl,ε in 1-d.

This has to be done with the trace condition (i) satisfied and controlling the Cahn–Hilliard energy
of w, Mε(w,Qd). To this end, we consider the functions φl,ε = min{ψl,ε, 1} (see Figure 2), where
l ∈ [0, d − ε], ‖x‖ = maxi |xi | is the uniform norm in Rn and ψl,ε is given by

ψl,ε(x) :=

{
−1 for x ∈ Qd \Q2l,

2(l − ‖x‖)/ε − 1 for x ∈ Q2l .

We define the function w by

w(x) =

{
max{u(x), φl,ε(x)} if

∫
Qd
u 6

∫
Qd
s +

∫
∂Qd

g,

min{u(x),−φl,ε(x)} if
∫
Qd
u >

∫
Qd
s +

∫
∂Qd

g,
(3.12)

where, in both cases, l ∈ [0, d − ε] is chosen in such a way that (3.11) holds, that is,∫
Qd

w =

∫
Qd

s +

∫
∂Qd

g. (3.13)

We notice that such a choice always exists: indeed, recalling the constraint ε 6 αd/(4n), we have∫
Qd

φd−ε,ε > 2(d − 2ε)n − dn > (1− α)dn
(3.10)
>

∣∣∣∣∫
Qd

s +

∫
∂Qd

g

∣∣∣∣.
Moreover, by construction, w|∂Qd = u|∂Qd and it is straightforward to verify that

Mε(w,Qd) 6 Mε(u,Qd)+Mε(φl,ε,Qd) 6 Mε(u,Qd)+ Cd
n−1. (3.14)

Now, we define simply b = ∇v, with v solving{
∆v = w − s in Qd ,

∂v/∂ν = g on ∂Qd .

Note that by (3.13) such a v does exist. Moreover, we can use the following L2-estimate for the
Laplace equation with Neumann boundary conditions:∫

Qd

|b|2 =

∫
Qd

|∇v|2 6 C(d2
‖w − s‖2

L2(Qd )
+ d‖g‖2

L2(∂Qd )
). (3.15)

This estimate (for which we have not found a precise reference) follows from an integration by
parts, and the Poincaré and trace inequalities: taking d = 1 and v with

∫
Q1
v = 0, we have
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Q1

|∇v|2 = −

∫
Q1

∆vv +

∫
∂Q1

∂v

∂ν
v

Hölder ineq.
6 C(‖w − s‖L2(Q1)

‖v‖L2(Q1)
+ ‖g‖L2(∂Q1)

‖v‖L2(∂Q1)
)

Poincaré and trace ineq.
6 C(‖w − s‖L2(Q1)

‖∇v‖L2(Q1)
+ ‖g‖L2(∂Q1)

‖∇v‖L2(∂Q1)
),

which gives (3.15) for d = 1. The dependence of the constants on d comes from a simple scaling
argument.

In this way we have concluded the proof: indeed, (w, b) satisfies (i)–(iii) and, recalling (3.14)
and (3.15), (iv). 2

A corollary of Lemma 3.4 is the following interpolation construction which allows us to construct
an admissible pair (w, b) in a frame Ql+2d \Ql , interpolating between two boundary data. Before
stating and proving it, we give the following definition.

DEFINITION 3.1 A function u belongs to W 1,2(∂Ql) if

(a) u ∈ W 1,2(T±l,i) for every face T±l,i ,

T±l,i := {x ∈ Ql | xi = ±l/2};

(b) the traces of u|T±l,j and u|T±l,i coincide on the common edge (if it exists), i.e. on T±l,j ∩ T±l,i .

REMARK 3.1 This is a special case of the definition of Sobolev functions on a Lipschitz manifold
(see, for example, Reshetnyak [38]). We need only notice that if u ∈ W 1,2(QL), then u|∂Ql ∈
W 1,2(∂Ql) for almost every 0 < l 6 L.

COROLLARY 3.5 (Frame interpolation) Let d0 > 1 and C0 be constants such that∣∣∣∣m+ 2nC0

d0

∣∣∣∣ 6 1− α ∈ (0, 1). (3.16)

Consider the following pairs of boundary data, (u1, g1) and (u2, g2):

(a) u1 ∈ W
1,2(∂Ql), g1 ∈ L

∞(∂Ql), with ‖g1‖L∞ 6 C0 and l > 0;
(b) u2 ∈ W

1,2(∂Ql+2d), g2 ∈ L
∞(∂Ql+2d), with ‖g2‖L∞ 6 C0 and d given by

d = l/k, k ∈ N, such that d0 6 d 6 2d0. (3.17)

Then, for every 0 < ε 6 αd0/(4n), there exists a pair (w, b) such that

(i) w ∈ W 1,2 (Ql+2d \Ql), b ∈ L2 (Ql+2d \Ql;Rn) and

div b = u−m in Ql+2d \Ql;

(ii) w|∂Ql = u1 and w|∂Ql+2d = u2;
(iii) b · ν = g1 on ∂Ql and b · ν = g2 on ∂Ql+2d ;
(iv) Gε(w, b,Ql+2d \Ql) 6 C3.5(l

n−1
+ ε2 ∫

∂Ql
|∇u1|

2
+ ε2 ∫

∂Ql+2d
|∇u2|

2),

where C3.5 depends on C0, d0 and n.
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FIG. 3. The function v in 1-d.
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FIG. 4. Decomposition ofQl+2d \Ql into subcubesQi .

Proof. Consider the function v ∈ W 1,2 (Ql+2d \Ql) interpolating between u1 and u2 given by (see
Figure 3)

v :=


l − ‖x‖

ε
+
ε + l − ‖x‖

ε
u1

(
lx

‖x‖

)
in Ql+ε \Ql,

−1 in Ql+2d−ε \Ql+ε,

‖x‖ − l − 2d
ε

+
‖x‖ − l − 2d + ε

ε
u2

(
(l + 2d)x
‖x‖

)
in Ql+2d \Ql+2d−ε .

(3.18)

It is easy to see that

v|∂Ql = u1, v|∂Ql+2d = u2 and v ≡ −1 in Ql+2d−ε \Ql+ε; (3.19)

moreover, a simple computation shows that its Cahn–Hilliard energy can be estimated in the
following way:

Mε(v,Ql+2d \Ql) =

∫
Ql+2d\Ql

{
ε|∇v|2 +

W(v)

ε

}
6 C

(
ln−1
+ ε2

∫
∂Ql

|∇u1|
2
+ ε2

∫
∂Ql+2d

|∇u2|
2
)
. (3.20)

Now, we divide Ql+2d \Ql into (k + 2)n − kn cubes with side d, Qi (see Figure 4). For each such
cube Qi , we set

ui ≡ v|Qi and gi =


g1 in ∂Qi ∩ ∂Ql,

g2 in ∂Qi ∩ ∂Ql+2d ,

0 elsewhere.

From (3.16), for each cube Qi , we have∣∣∣∣m+ 1
dn

∫
∂Qi

gi

∣∣∣∣ 6 1− α ∈ (0, 1).

So, we find pairs (wi, bi) satisfying conclusions (i)–(iv) of Lemma 3.4 with s ≡ m. Therefore,
we can consider the pair (w, b) obtained patching together these maps, i.e. the function w which
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coincides with wi in Qi and the field b equal to bi in Qi . It is easy to verify that the pair (w, b)
satisfies (i)–(iii) (we use Remark 2.2 to (i)). Moreover, from Lemma 3.4 and from the estimate
(3.20), we infer (iv):

Gε(w, b,Ql+2d \Ql) 6
(k+2)n−kn∑

i

Gε(wi, bi) 6 C[(k + 2)n − kn]+ Mε(v,Ql+2d \Ql)

(3.20),(3.17)
6 C3.5

(
ln−1
+ ε2

∫
∂Ql

|∇u1|
2
+ ε2

∫
∂Ql+2d

|∇u2|
2
)
,

with C3.5 = C3.5(C0, d0, n). 2

3.3 Proof of the main result: uniform energy distribution

Here we prove the uniform energy distribution. The proof is based on the study of the renormalized
minimum energy of Gε in Tl ,

γε(l) = min
(w,b)∈Bl

Gε(w, b,Tl)/ ln, (3.21)

compared to the energy on subdomains.
Before proceeding with this comparison, we note that, by Lemma 3.3, γε(l) 6 C3.3 for all ε > 0

and l > 0. Moreover, the map l 7→ γε(l) is continuous and, for every δ > 0, there exists a constant
Cδ such that

|γε(l + δ)− γε(l)| 6 Cδ/l. (3.22)

Indeed, for (w, b) ∈ Bl , the pair (wλ, bλ) with wλ(x) = w(λx) and bλ(x) = λ−1b(λx) satisfies

Gε(w
λ, bλ,Ql) 6 max{1/λn−2, 1/λn+2

}Gε(w, b,Qλl).

Hence, it is immediate to infer that γε(l) 6 max{λ2, 1/λ2
}γε(λl), from which the claims follow.

Now, we state the first comparison argument, which asserts, roughly speaking, that the energy
in subcubes Ql is comparable with the minimum in slightly different cubes, γε(l ± 2d), where d is
a controlled quantity. We fix for the rest of the section a constant d0 > 1 such that∣∣∣∣m+ 2nC3.2

d0

∣∣∣∣ 6 1−
1− |m|

2
=

1+ |m|
2

. (3.23)

PROPOSITION 3.6 Let L0 be as in Proposition 3.2. There exists a constant C3.6 such that, for all
L0 6 l 6 L− 4d0, and 0 < ε 6 ε0 = (1− |m|)d0/(8n), and for every minimizer (w, b) ∈ BL for
Gε , for some d0 6 d 6 2d0 we have

γε(l + d)− C3.6(1/l + ε) 6 Gε(w, b,Ql)/ l
n 6 γε(l − d)+ C3.6(1/l + ε). (3.24)

Proof. The two inequalities being analogous, we prove only the second. The strategy is to
interpolate between a suitable trace of the minimal pair (w, b) and the trace of a periodic minimal
pair in a slightly smaller cube. This, indeed, allows us to construct a competitor for (w, b) which
gives the desired estimate.
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To choose the right trace for (w, b), we recall that, from Lemma 3.3, the energy is comparable
with the volume of the domain. Hence, using Fubini, we infer the existence of l1 ∈ [l, l + 1] such
that

ε

∫
∂Ql1

|∇w|2 6 C3.3l
n 6 Cln. (3.25)

Consider, then, a minimal pair (s, z) in Bl1−2d , i.e. a pair realizing γε(l1 − 2d), where d is
determined by l1 in the following way:

d = l1/k, k ∈ N, such that d0 6 d 6 2d0. (3.26)

Again from Lemma 3.3, we may assume, without loss of generality (possibly we have to translate
our minimal pair), that

ε

∫
∂Ql1−2d

|∇s|2 6 C3.3(l1 − 2d)n−1 6 Cln−1.

Moreover, since (w, b) and (s, z) are minimizers, b and z are both gradients of W 2,p functions (so,
in particular, they do possess a normal trace) and, by Proposition 3.2, they are uniformly bounded
by C3.2.

Hence, from (3.23), we can apply Corollary 3.5 with

u1 = s, g1 = z · ν on ∂Ql1−2d and u2 = w, g2 = b · ν on ∂Ql1 ,

obtaining a pair (w̄, b̄) inQl1 \Ql1−2d satisfying conclusions (i)–(iv) of Corollary 3.5. This implies
(see Remark 2.2) that the pair which is equal to (s, z) in Ql1−2d and to (w̄, b̄) in Ql1 \ Ql1−2d is
admissible. Therefore, we deduce the desired inequality,

Gε(w, b,Ql) 6 Gε(w, b,Ql1) 6 Gε(s, z,Ql1−2d)+Gε(w̄, b̄,Ql1 \Ql1−2d)

Cor. 3.5
6 (l1 − 2d)nγε(l1 − 2d)+ Cln−1

+ ε2
∫
∂Ql1−2d

|∇sε |
2
+ ε2

∫
∂Ql1

|∇w|2

6 lnγε(l − d)+ C3.6l
n−1
+ C3.6εl

n, (3.27)

where we use l1 − 2d 6 l − d and (3.22). 2

The next proposition deals with the asymptotic behavior of the quantities γε(l). To this end, set

Cl := {(w, b) | w ∈ W 1,2(Ql; [−1, 1]), b ∈ L2(Ql;Rn), div b = u−m, ‖b‖L∞ 6 C3.2},

where the equation div b = u − m is understood in the distributional sense with free boundary
conditions; and denote by αε(l) the normalized minimum in this class,

αε(l) := min
(u,b)∈Cl

Gε(u, b,Ql)/ l
n. (3.28)

Then the following proposition holds.
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PROPOSITION 3.7 Let L0 and ε0 be as in Proposition 3.6. Then, for every L0 6 l and 0 6 ε 6 ε0,
the following conclusions hold:

(i) αε(l) 6 αε(kl) and γε(kl) 6 γε(l), for every k ∈ N;
(ii)

αε(l) 6 γε(l) 6 αε(l)+ C(1/l + ε), (3.29)

(iii) there exist constants γε > 0 such that

|γε(l)− γε | 6 C3.7(1/l + ε). (3.30)

Proof. Conclusion (i) follows from simple comparisons. Let (w, b) be a minimal pair for αε(kl);
then its restrictions to subcubes of side l, say Qi for i = 1, . . . , kn, belong to Cl . Therefore,

(kl)nαε(kl) =

kn∑
i=1

Gε(w, b,Qi) > knlnαε(l).

Similarly, let (w, b) be a minimal pair for γε(l) and extend it periodically on Qkl . In this way we
obtain a pair in Bkl , which we denote

(
w̄, b̄

)
, so that

(kl)nγε(kl) 6 Gε(w̄, b̄,Qkl) =

kn∑
i=1

Gε(w, b,Qi) = (kl)
nγε(l).

For (ii), taking into account Proposition 3.2, we note that the minimal pairs forGε in Bl belong
to Cl . Therefore, one infers immediately that αε(l) 6 γε(l). The right inequality of (3.29) follows,
instead, from the same arguments used in the proof of Proposition 3.6. Let (w, b) be a minimal pair
for αε(l); since αε(l) 6 Cln, there exists l1 ∈ [l − 1, l] such that

ε

∫
∂Ql1

|∇w|2 6 C3.3l
n. (3.31)

Moreover, let d ∈ [d0, 2d0] be such that l1 = kd and k ∈ N. An interpolation between the boundary
values of (w, b) on ∂Ql1 and periodic values on ∂Ql1+2d (e.g. homogeneous data) leads to (see the
proof of Proposition 3.6 for details)

γε(l)
(3.22)
6 γε(l1 + 2d)+ C/l 6 αε(l1)+ C(1/l + ε) 6 αε(l)+ C(1/l + ε).

Finally, for (iii), we fix γε := lim supl→+∞ αε(l). Then, for every l and ε, we have

αε(l) 6 γε 6 γε(l). (3.32)

Indeed, from (i) we infer that

αε(l) 6 lim sup
k→+∞

αε(kl) 6 lim sup
l→+∞

αε(l) = γε 6 lim inf
l→+∞

γε(l) 6 lim inf
k→+∞

γε(kl) 6 γε(l).

Hence, from (3.29) and (3.32), we deduce (3.30):

0 6 γε(l)− γε 6 γε(l)− αε(l) 6 C3.7(1/l + ε).
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It remains to prove that γε > 0. For the monotonicity of αε(kl), it is enough to verify that αε(l) > 0
for some l. This follows easily: indeed, otherwise∫

Ql

W(u) = 0,

that is, u ≡ ±1, contrary to the assumption m ∈ (−1, 1). 2

Using Propositions 3.6 and 3.7, we can conclude the proof of Theorem 3.

Proof of (2.20) of Theorem 3. We take L0 and ε0 as in Proposition 3.6, and let γε be the constants
in Proposition 3.7. Then, for any L0 + 1 6 l 6 L − 4d0 and ε 6 ε0, applying the right hand
inequality of (3.24) and (3.30), we find

Gε(wε, bε,Ql)/ l
n
− γε

(3.24)
6 γε(l − d)− γε + C3.6(1/l + ε)

(3.30)
6 C(1/l + ε). (3.33)

In the same way, using the left inequality of (3.24), we get

Gε(wε, bε,Ql)/ l
n
− γε > −C(1/l + ε). (3.34)

Clearly, (3.33) and (3.34) complete the proof for l 6 L − 4d0. When l > L − 4d0, notice simply
that

Gε(wε, bε,QL−4d0)/(L− 4d0)
n
− C/l 6 Gε(wε, bε,Ql)/ l

n 6 γε(L)+ C/l,

and the conclusion follows. 2

4. Proof of the basic estimate

This section is devoted to the proof of Lemmas 3.1 and 3.3. The proof of the latter is much similar to
that of the former: it is obtained by the same arguments with the help of Proposition 3.2 established
in the previous section. Both are based on an estimate of the nonlocal part of the energy, given in
Lemma 4.1, which is the point where our arguments differ most from those in [1]; this estimate,
although weaker than the one in [1], is sufficient and, in our opinion, clearer and cleaner.

LEMMA 4.1 (Nonlocal energy estimate) For every δ > 0, there exists a constant C4.1(δ) with the
following property. Let g ∈ L2(∂QL), L > 0, satisfy∣∣∣∣ 1

Ln

∫
∂QL

g +m

∣∣∣∣ 6 1− α with α ∈ (0, 1). (4.1)

Then there exists a vector field b ∈ L2(QL;Rn) such that:

(i) b · ν = g on ∂QL,
(ii) div b ∈ L∞(QL) with |div b +m| 6 1− α,

(iii) ∫
QL

|b|2 6 δL

∫
∂QL

g2
+ C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
. (4.2)
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Proof. We start with a simple observation: for every d > 0 and h ∈ L2(∂Qd), the vector field
b = ∇v, with v solving 

∆v =
1
dn

∫
∂Qd

h in Qd ,

∂v

∂ν
= h on ∂Qd ,

(4.3)

satisfies the following estimate (see, for example, [17]):∫
Qd

|b|2 =

∫
Qd

|∇v|2 6 C

(
d2

dn

(∫
∂Qd

h

)2

+ d

∫
∂Qd

h2
)

6 C1d

∫
∂Qd

h2 (4.4)

(here we have also used Jensen’s inequality).
In order to improve (4.4) to (4.2), we show that, for every δ > 0, there exists ε(δ) > 0 with

the following property: if
∫
∂QL

g2 6 ε(δ)Ln+1, then there exists a vector field b ∈ L2(QL;Rn)
satisfying (i), (ii) and ∫

QL

|b|2 6 δL

∫
∂QL

g2. (4.5)

To this end, let k ∈ N be the smallest integer such that d0 = k
−1 6 δ/C1, where C1 is the constant

in (4.4), and set

ε(δ) =
(1− α −m)2d2n

0
2n

. (4.6)

Consider now the frame QL \ QL−2d decomposed into the union of kn − (k − 2)n cubes of side
d = Ld0 as in Figure 4 (with l replaced by L − 2d), QL \ QL−2d =

⋃
i Qi . For every cube Qi ,

consider the function gi ∈ L2(∂Qi) given by

gi =

{
g on ∂Qi ∩ ∂QL,

0 elsewhere.
(4.7)

An easy computation gives

1
dn

∣∣∣∣∫
∂Qi

gi

∣∣∣∣ 6
1
dn

∫
∂QL

|g| 6

√
2nLn−1

dn

(∫
∂QL

g2
)1/2

6

√
2nε(δ)L2n

d2n
(4.6)
= 1− α −m. (4.8)

Hence, for every Qi , using (4.4), there exists a vector field bi ∈ L2(Qi;Rn) such that

bi · ν = gi on ∂Qi, |div bi +m| =
∣∣∣∣m+ 1

dn

∫
∂Qi

gi

∣∣∣∣ (4.8)
6 1− α (4.9)

and ∫
Qi

|bi |
2

(4.4)
6 Cd

∫
∂Qi

g2
i . (4.10)

Therefore, recalling Remark 2.2 and using (4.9), (4.10), we infer that the vector field b given by bi
in Qi and 0 elsewhere satisfies (i), (ii) and (4.5):∫

QL

|b|2 =

kn−(k−2)n∑
i=1

∫
Qi

|bi |
2 6

kn−(k−2)n∑
i=1

Cd

∫
∂Qi

g2
i 6 δL

∫
∂QL

g2.
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Hence, setting C4.1(δ) := C1/ε(δ)
1/(n+1), we can conclude the proof. Indeed, given g ∈ L2(∂QL)

and δ > 0, two cases can occur:

(a) either
∫
∂QL

g2 > ε(δ)Ln+1, in which case, using (4.4), we deduce the existence of a vector field
b ∈ L2(QL;Rn) satisfying (i), (ii) and the estimate∫

QL

|b|2 6 C1L

∫
∂QL

g2 6 C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
; (4.11)

(b) or
∫
∂QL

g2 6 ε(δ)Ln+1, in which case there exists a vector field b satisfying (i), (ii) and (4.5).

In both cases, therefore, there exists b satisfying (i)–(iii). 2

Next, we describe a second procedure to construct competitor pairs (w, b) given boundary data
w|∂QL = u|∂QL and b · ν = g. Compared with Lemma 3.4, this new construction gives a better
estimate in L, the side of the domain. It is obtained by applying Lemma 3.4 to a suitable subdivision
of QL.

LEMMA 4.2 (Competitors’ construction) Let L > 2, g ∈ L2(∂QL) and u ∈ W 1,2(QL), with∣∣∣∣ 1
Ln

∫
∂QL

g +m

∣∣∣∣ 6 1− α ∈ (0, 1). (4.12)

Then, for every δ > 0 and for every ε 6 α
√
L/(4n), there exist w ∈ W 1,2(QL) and b ∈

L2(QL;Rn) such that:

(i)

{
div b = w −m in QL,

b · ν = g on ∂QL;

(ii) w|∂QL = u|∂QL;

(iii) Gε(w, b,QL) 6 2δL
∫
∂QL

g2
+ 2C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
+ C4.2L

n+1

+ 2ε2
∫
∂QL

|∇u|2. (4.13)

Moreover, if ε 6 α/(4n), (iii) can be improved to

(iii)′ Gε(w, b,QL) 6 2δL
∫
∂QL

g2
+ 2C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
+ C4.2L

n

+ 2ε2
∫
∂QL

|∇u|2. (4.14)

Proof. Consider a vector field b̄ as in Lemma 4.1, that is, such that

(a1) b̄ · ν = g on ∂QL, |div b̄ +m| 6 1− α,

(b1)

∫
QL

|b̄|2 6 δL

∫
∂QL

g2
+ C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
.
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Consider the function w̄ ∈ W 1,2(QL) given by

w̄ :=


‖x‖ − L/2

ε
+
ε − L/2+ ‖x‖

ε
u

(
Lx

2‖x‖

)
in QL \QL−2ε,

−1 in QL−2ε,

(4.15)

where, we recall, ‖x‖ := maxi |xi |. It is immediate to verify that w̄|∂QL = u|∂QL and

Mε (w̄) 6 CLn−1
+ ε2

∫
∂QL

|∇u|2. (4.16)

Now, it is evident that the pair
(
w̄, b̄

)
satisfies (ii) and (iii) of the lemma; we want to modify it to

a pair (w, b) satisfying (i) as well. To this end, divide QL into subcubes of size
√
L: namely, take

k ∈ N such that k 6
√
L < k + 1 and consider cubes Qi of side d = L/k, so that

√
L 6 d <

L/(
√
L − 1) 6 4

√
L, for L > 2. We can, hence, apply Lemma 3.4 with w̄|Qi , s = div b̄ + m and

g = 0, obtaining pairs (wi, bi) in Qi such that

(a2) wi |∂Qi = w̄|∂Qi , b̄i · ν = 0 on ∂Qi, div bi = wi − div b̄ −m,

(b2) Gε(wi, bi,Qi) 6 Mε(w̄,Qi)+ C3.4(d
n−1
+ d2
‖wi − div b̄ −m‖L2(Qi )

)

6 Mε(w̄,Qi)+ CL
n/2+1.

We can now define the final pair (w, b) by

(w, b) = (wi, b̄ + bi) in Qi .

Since wi |∂Qi = w̄|∂Qi , it is immediate to verify that w belongs to W 1,2(QL) and (ii) holds;
moreover, applying Remark 2.2 repeatedly and (a2), one immediately infers that (i) holds.

For (iii), instead, we use (b1), (4.16) and (b2) to conclude that (recall k 6
√
L)

Gε(w, b,QL) =

kn∑
i=1

Mε(wi,Qi)+ 2
∫
Qi

(|b̄|2 + |bi |
2) = 2

kn∑
i=1

Gε(wi, bi,Qi)+ 2
∫
QL

|b̄|2

6 2Mε(w̄,QL)+ 2
∫
QL

|b̄|2 + CknLn/2+1

6 2δL
∫
∂QL

g2
+ 2C4.1(δ)

(∫
∂QL

g2
) n+2
n+1
+ C4.2L

n+1
+ 2ε2

∫
∂QL

|∇u|2.

In the case ε 6 α/(4n), we can consider a subdivision Qi into cubes of side 1 and apply Lemma
3.4 to this subdivision. It is not difficult to see that (iii)′ follows. 2

REMARK 4.1 We stress here the role of the bound ε 6 α
√
L/(4n) in the proof of the weaker

estimate (4.13). The reason for such a bound is a technicality we will meet in the proof of Lemma
3.1, the same which does not allow us to recover immediately the optimal estimate given in
Lemma 3.3.

Using the previous two lemmas, we give the proof of Lemma 3.1 (restated here for the reader’s
convenience).
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LEMMA 3.1 There exist positive constantsL0 andC3.1 such that, forL > L0 and 0 < ε 6 1/(4n),
each minimizer (w, b) of Gε in TL satisfies the following estimate: for every L0 6 l 6 L,

Gε(w, b,Ql)/ l
n+1 6 C3.1. (4.17)

Proof. Let (w, b) be a minimal pair for Gε in QL and f (l) := Gε(w, b,Ql). First we notice
that there exists a constant C2 such that f (L) 6 C2L

n 6 C2L
n+1. Consider, indeed, the one-

dimensional competitorw(x) = u(x1), where u is the piecewise linear periodic function in Figure 5.
Then

Eε(w,QL) = L
n−1Eε(u) = L

n−1
∫ L/2

−L/2
(ε|u′|2 + ε−1W(u′)+ |v′|2) 6 C2L

n, (4.18)

where v solves v′′ = u − m with periodic boundary condition (see Figure 6).1 Moreover, an easy

1
ε

1

−1

FIG. 5. The function u.

1

ε

slope −1−mslope 1−m

FIG. 6. The function v.

computation, using Fubini’s theorem, yields, for l ∈ (0, L),

f ′(l)+ = lim sup
h→0+

f (l + h)− f (l)

h
= lim sup

h→0+

∫
Ql+h\Ql

(ε|∇u|2 + |b|2)

>
∫
∂Ql

(ε|∇u|2 + (b · ν)2), (4.19)

where we have used b ∈ W 1,p(QL;Rn), for every 1 6 p < ∞, so it has a well defined normal
trace on ∂Ql .

Next, we observe that if ∣∣∣∣−∫
Ql

w

∣∣∣∣ = ∣∣∣∣m+ 1
ln

∫
∂Ql

b · ν

∣∣∣∣ < 1−
1
√
l
, (4.20)

1 Alternatively, one can consider the one-dimensional minimizer u, whose energy can be proved to be a multiple of the
length of the domain (as shown, for example, in [6] and [31]).
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then we can apply Lemma 4.2 in Ql , with α = 1/
√
l and g = b · ν. Hence, for all δ > 0 and

ε 6 1/(4n) = α
√
l/(4n), there exists a pair (w̄, b̄) satisfying (i)–(iii) of the lemma. This is where

we profit from the possibility to take ε 6 α
√
l/(4n) in Lemma 4.2. Therefore, since (w, b)|Ql is a

minimizer inQl among all pairs having the same boundary data (both for w and g = b ·ν), we infer
that, for every δ > 0,

f (l) = Gε(w, b,Ql) 6 Gε(w̄, b̄,Ql)

6 2δl
∫
∂Ql

g2
+ 2C4.1(δ)

(∫
∂Ql

g2
) n+2
n+1
+ C4.2l

n+1
+ 2ε2

∫
∂Ql

|∇u|2

(4.19)
6 2δlf ′(l)+ + 2C4.1(δ)(f

′(l)+)
n+2
n+1 + C4.2l

n+1
+ 2εf ′(l)+. (4.21)

On the other hand, if (4.20) is not satisfied, we claim that there exist constants C6.1 and R0 such that,
for every l > R0,

f (l) > C6.1l
n+2. (4.22)

To see this, suppose that w −m > c > 0 in Ql or w −m 6 −c < 0, for some fixed c; then, since
div b = w −m, the maximum principle would give immediately (4.22). In the general case, we do
not have w − m > c > 0 or w − m 6 −c < 0; but, since |−

∫
Ql
w| > 1 − 1/

√
l, this is true on a

large set (in a measure-theoretic sense), so we can still argue as above via the maximum principle.
We postpone the proof of this technical statement to Lemma 6.1 in the Appendix.

Now, we are ready to conclude the proof. We take C3.1 = 4 max{C4.2, C2} and set

D0 := max{C2/C6.1, R0} and R = max
{
l ∈ [D0, L] :

∣∣∣∣−∫
Ql

w

∣∣∣∣ > 1− 1/
√
l

}
,

where C2 and C6.1 are the constants in (4.18) and (4.22). Let λ > R be the smallest number such
that

f (l) 6 C3.1l
n+1 for every l ∈ [λ,L]. (4.23)

Note that if L0 > D0, then R 6 λ < L: indeed, if R = L, we would have

C2L
n+2

(4.22)
6 f (L) 6 C1L

n+1, i.e. L 6 C1/C2 6 D0 < L0;

and, on the other hand, since f (L) 6 C3.1L
n/4 6 C3.1L

n+1, by continuity, λ < L. Clearly, two
cases can occur: either R = λ or R < λ. In the former case,

C6.1R
n+2

(4.22)
6 f (R)

(4.23)
6 C3.1R

n+1,

so that R 6 C3.1/C6.1. In the latter, as by continuity,

f (λ) = C3.1λ
n+1 and f ′(λ)+ 6 (n+ 1)C3.1λ

n,

we can use (4.21) (valid for l > R) to deduce that

C3.1λ
n+1
= f (λ) 6 2δλf ′(λ)+ 2C4.1(δ)f

′(λ)
n+2
n+1 + C4.2λ

n+1
+ 2εf ′(λ)

6 2δ(n+ 1)C3.1λ
n+1
+ 2C4.1(δ)((n+ 1)C3.1λ

n)
n+2
n+1

+C4.2λ
n+1
+ 2ε(n+ 1)C3.1λ

n

6 C3.1(1/4+ (n+ 1)(2δ + ε))λn+1
+ Cδλ

n2
+2n
n+1 . (4.24)
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Choosing δ small enough to have (n + 1)(2δ + ε0) 6 1/2, for instance δ = 1/(16(n + 1)), we
conclude that λ 6 λ0, where λ0 = (4Cδ/C3.1)

n+1. Therefore, in conclusion, considering both
cases, for

L0 = L0(n) = 1+max{D0, λ0, C3.1/C2}

we can deduce that f (l) 6 C3.1l
n+1 for every l ∈ [L0, L]. 2

Finally, we indicate how to modify the previous arguments to prove Lemma 3.3. The basic point
is that, now, we can use the uniform density distribution, which was proved as a consequence of
Lemma 3.1.

Proof of Lemma 3.3. The proof is similar to the previous one: from the uniform density distribution
(2.21), proved using the L∞-estimate on b in Proposition 3.2, for l > d0, we always have∣∣∣∣−∫

Ql

w

∣∣∣∣ 6 |m| +
2nC3.2

d0
6 1−

1− |m|
2
=

1+ |m|
2

.

Hence, applying (iii)′ of Lemma 4.2 in place of (iii), we see that, for every l > d0,

f (l) 6 2δlf ′(l)+ + 2C4.1(δ)(f
′(l)+)

n+2
n+1 + C4.2l

n
+ 2εf ′(l)+. (4.25)

Reasoning as above, since the leading term is ln, we can deduce the existence of L0 such that
f (l) 6 C3.3l

n for l > L0, proving the lemma. 2

5. Scaling law and sharp interface limit

In this section we show the last result of the work, namely Proposition 2.2, which, in terms of the
parameter ε = ε2/3σ 1/3, reduces to proving the following proposition.

PROPOSITION 5.1 There exists a constant γ0 > 0 such that

lim
ε→0

γε = γ0. (5.1)

As pointed out in Section 2, this result allows us to recover the scaling law for the minimum
energy (proved in [8] under more restrictive hypotheses): indeed, Proposition 5.1 and Theorem 3
imply that, in a subdomain of size of order l > L0, the energy of minimizers of Gε is nearly
proportional to the volume of the domain, where the constant of proportionality γ0 is the same for
every ε small enough:

| min
(u,b)∈BL

Gε(u, b,Ql)/ l
n
− γ0| 6 C(1/l + ε)+ |γε − γ0| 6 C(1/l + ε)+ o(1).

Proposition 5.1 is a simple corollary of the Γ -convergence result of Modica and Mortola [23]. In
order to state it, we recall some notation from Section 2. We consider the functionals Eε of (2.10)
defined in

Xm =

{
w ∈ L1(TL; [−1, 1]) :

∫
TL
w = m ∈ (−1, 1)

}
⊂ L1(TL; [−1, 1])
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by

Eε(w,TL) =


∫

TL

(
ε|∇w|2 +

W(w)

ε
+ |∇ζ |2

)
if w ∈ W 1,2(TL; [−1, 1]) ∩Xm,

+∞ if w ∈ Xm \W 1,2(TL; [−1, 1]),
(5.2)

where ζ solves −∆ζ = w −m. We denote by E0 their sharp interface limit,

E0(w,TL) =


∫

TL
(cW |∇w| + |∇ζ |

2) if w ∈ BV (TL; [−1, 1]) ∩Xm,

+∞ if w ∈ Xm \ BV (TL; [−1, 1]),
(5.3)

with ζ as above and cW the usual constant depending on the potential W (see [22] for the exact
value). Then a simple consequence of the Modica–Mortola result is the following proposition (see
also [29]).

PROPOSITION 5.2 (Γ -limit of Eε) For every L > 0, we have Eε
Γ
→ E0 in Xm as ε → 0, i.e. the

following conclusions hold:

(a) (equicoercivity) every sequence (wε) ⊂ Xm such that Eε(wε) 6 C < +∞ is precompact in
L1(TL; [−1, 1]), i.e. each subsequence (wεn) has a converging sub-subsequence;

(b) (lim inf-inequality) for every wε, w ∈ Xm with wε
L1
→ w, we have

lim inf
ε→0

Eε(wε,TL) > E0(w);

(c) (lim sup-inequality) for every w ∈ Xm there exists a sequence (wε) ⊂ Xm such that wε
L1
→ w

and
lim
ε→0

Eε(wε,TL) = E0(w).

In particular, the minimum values of the energy for the Eε’s converge to the minimum value of E0,
γ0(L) = minw∈L1(TL;[−1,1]) E0(w,TL), i.e.

γε(L)→ γ0(L) as ε → 0. (5.4)

Proof. The proof is immediate once one notices thatEε is a continuous perturbation of the Modica–

Mortola functional Mε . Indeed, uε
L1
→ u implies ∇ζε

L2
→ ∇ζ :∫

TL
|∇ζε −∇ζ |

2 6 C

∫
TL
|uε − u|

2 6 2C
∫

TL
|uε − u| → 0. 2

Now, we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. We show that γε is a Cauchy sequence in ε: for every δ > 0, we find
θ > 0 such that

|γε′ − γε′′ | 6 δ ∀ε′, ε′′ 6 θ. (5.5)
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To show this, we choose l such that C3.7/l 6 δ/4. Hence, for ε′, ε′′ 6 ε0, we have

|γε′ − γε′′ | 6 |γε′ − γε′(l)| + |γε′(l)− γε′′(l)| + |γε′′(l)− γε′′ |

(3.30)
6 C3.7(2/l + ε′ + ε′′)+ |γε′(l)− γε′′(l)|
6 δ/2+ C3.7

(
ε′ + ε′′

)
+ |γε′(l)− γ0| + |γ0 − γε′′(l)|. (5.6)

Now, we take θ small enough to have 2C3.7θ 6 δ/4 and |γε(l) − γ0(l)| 6 δ/8 for every ε 6 θ

(notice that this can always be achieved by Proposition 5.2). It is easy to notice that this choice of θ
and (5.6) imply (5.5), thus finishing the proof. 2

6. Appendix

LEMMA 6.1 Assume w ∈ W 1,2(Ql; [−1, 1]) and b ∈ L2(Ql;Rn) satisfy div b = w − m with
m ∈ (0, 1). Assume that l > 2 and∣∣∣∣−∫

Ql

w

∣∣∣∣ = ∣∣∣∣m+ 1
ln

∫
∂Ql

b · ν

∣∣∣∣ > 1−
1
√
l
. (6.1)

Then there exist constants C6.1 and R0 such that, for every l > R0,

Gε(w, b,Ql) > C6.1l
n+2. (6.2)

Proof. We estimate the total energy with its nonlocal term, which, in turn, by a simple computation,
can be estimated as follows:

Gε(w, b,Ql) >
∫
Ql

|b|2 >
∫
Bl/2

|b|2 >
∫
Bl/2

|∇v|2, (6.3)

where v solves the following equation in the ball Bl/2:{
−∆v = w −m in Bl/2,
v = 0 on ∂Bl/2.

(6.4)

Without loss of generality, let
∫
w > 0 and set

A := {x ∈ Ql | w(x) 6 (1+m)/2 =: α}.

Clearly, we have

α|A| +
(
ln − |A|

)
>
∫
Ql

w > ln(1− C/
√
l),

from which we infer that |A| 6 Cln−1/2. We define

ϕ1 =

{
w −m in Ql \ A,

α −m in A,
and ϕ2 = w −m− ϕ1 = (w − α)χA,
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and note that
0 < α −m 6 ϕ1 6 1−m and ϕ2 6 0. (6.5)

Hence, v = v1 + v2, with {
−∆vi = ϕi in Bl/2,
vi = 0 on ∂Bl/2,

for i = 1, 2,

and, from (6.5), we infer that v2 6 0 6 v1, as these are, respectively, superharmonic and
subharmonic functions. So, the nonlocal term of the energy can be estimated in the following way:∫

Bl/2

|∇v|2 = −

∫
Bl/2

v∆v =

∫
Bl/2

(w −m)v1 +

∫
Bl/2

(w −m)v2

> (α −m)

∫
Bl/2\A

v1 − 2
∫
Bl/2∩A

v1 + 2
∫
Bl/2

v2.

Now, using the maximum principle, since α −m 6 ϕ1 6 1−m, we deduce that

α −m

2n
η(x) 6 v1(x) 6

1−m
2n

η(x),

where η(x) = l2/4− |x|2. Hence, from
∫
Bl/2∩A

η 6 Cl2|A| 6 Cln+3/2, we easily infer

(α −m)

∫
Bl/2\A

v1 > C

∫
Bl/2\A

η > Cln+2
− Cln+3/2, (6.6)

−2
∫
Bl/2∩A

v1 > −C
∫
Bl/2∩A

η > −Cln+3/2. (6.7)

On the other hand, for what concerns v2, using the L2-estimate for the Laplace equation, we directly
conclude that

−

∫
Bl/2

v2 6 ‖v2‖L2 |Bl/2|
1/2 6 Cl2‖ϕ2‖L2 l

n/2 6 C|A|1/2ln/2+2 6 Cln+7/4. (6.8)

Therefore, collecting (6.6)–(6.8), we deduce the claim, i.e. we find constants C6.1 and R0 such that,
for l > R0,

Eε(w, b,Ql) >
∫
Bl/2

|∇v|2 > (α −m)

∫
Bl/2\A

v1 − 2
∫
Bl/2∩A

v1 + 2
∫
Bl/2

v2

> C(ln+2
− ln+3/2

− ln+7/4) > C6.1l
l+2. 2
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24. MÜLLER, S. Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var.

Partial Differential Equations 1 (1993), 169–204. Zbl 0821.49015 MR 1261722
25. MURATOV, C. B. Theory of domain patterns in systems with long-range interactions of Coulomb type.

Phys. Rev. E (3) 66 (2002), 066108, 25 pp. MR 1953930

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:01865939&format=complete
http://www.ams.org/mathscinet-getitem?mr=1968440
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1114.49002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2192296
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1147.74024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2338353
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1023.82015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1852942
http://www.ams.org/mathscinet-getitem?mr=1488515
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1023.82011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1669433
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.82037&format=complete
http://www.ams.org/mathscinet-getitem?mr=2012976
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1120.82307&format=complete
http://www.ams.org/mathscinet-getitem?mr=2135136
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1109.35092&format=complete
http://www.ams.org/mathscinet-getitem?mr=2273234
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1132.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=2360604
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1032.74044&format=complete
http://www.ams.org/mathscinet-getitem?mr=1773416
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1065.74056&format=complete
http://www.ams.org/mathscinet-getitem?mr=1999106
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0902.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1625845
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1042.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.49030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2334197
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0803.49007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1272383
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0616.76004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0866718
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0356.49008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0445362
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.49015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1261722
http://www.ams.org/mathscinet-getitem?mr=1953930


474 E. N. SPADARO

26. NISHIURA, Y., & OHNISHI, I. Some mathematical aspects of the micro-phase separation in diblock
copolymers. Phys. D 84 (1995), 31–39. MR 1334695

27. OHNISHI, I., NISHIURA, Y., IMAI, M., & MATSUSHITA, Y. Analytical solutions describing the phase
separation driven by a free energy functional containing a long-range interaction term. Chaos 9 (1999),
329–341. Zbl 0970.35151 MR 1697656

28. OHTA, T., & KAWASAKI, K. Equilibrium morphology of diblock copolymer melts. Macromolecules 19
(1986), 2621–2632.

29. REN, X., & WEI, J. On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math.
Anal. 31 (2000), 909–924. Zbl 0973.49007 MR 1752422

30. REN, X., & WEI, J. Concentrically layered energy equilibria of the di-block copolymer problem. Eur. J.
Appl. Math. 13 (2002), 479–496. Zbl 1010.82041 MR 1939157

31. REN, X., & WEI, J. On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5
(2003), 193–238. Zbl 1031.49035 MR 1980472

32. REN, X., & WEI, J. On the spectra of three-dimensional lamellar solutions of the diblock copolymer
problem. SIAM J. Math. Anal. 35 (2003), 1–32. Zbl 1055.35041 MR 2001463

33. REN, X., & WEI, J. Wriggled lamellar solutions and their stability in the diblock copolymer problem.
SIAM J. Math. Anal. 37 (2005), 455–489. Zbl 1136.35372 MR 2176111

34. REN, X., & WEI, J. Droplet solutions in the diblock copolymer problem with skewed monomer compo-
sition. Calc. Var. Partial Differential Equations 25 (2006), 333–359. Zbl 1088.82033 MR 2201676

35. REN, X., & WEI, J. Existence and stability of spherically layered solutions of the diblock copolymer
equation. SIAM J. Appl. Math. 66 (2006), 1080–1099. Zbl 1103.34046 MR 2216732

36. REN, X., & WEI, J. Many droplet pattern in the cylindrical phase of diblock copolymer morphology.
Rev. Math. Phys. 19 (2007), 879–921. Zbl 1145.82007 MR 2349026

37. REN, X., & WEI, J. Spherical solutions to a nonlocal free boundary problem from diblock copolymer
morphology. SIAM J. Math. Anal. 39 (2008), 1497–1535. Zbl 1153.35091 MR 2377287

38. RESHETNYAK, Y. G. Sobolev-type classes of mappings with values in metric spaces. In: The Interaction
of Analysis and Geometry, Contemp. Math. 424, Amer. Math. Soc., Providence, RI (2007), 209–226.
Zbl 1153.46022 MR 2316339

39. ROS, A. Stable periodic constant mean curvature surfaces and mesoscopic phase separation. Interfaces
Free Bound. 9 (2007), 355–365. Zbl 1142.53013 MR 2341847

40. SPADARO, E. N. A variational model for periodic pattern formation. Master thesis, available at
http://etd.adm.unipi.it/theses/available/etd-09142006-181514/, 2006 (in Italian).

41. TERAMOTO, T., & NISHIURA, Y. Double gyroid morphology in a gradient system with non-local effects.
J. Phys. Soc. Japan 71 (2002), 1611–1614.

42. THOMAS, E. L., ANDERSON, D. M., HENKEE, C. S., & HOFFMAN, D. Periodic area-minimizing
surfaces in diblock copolymers. Nature 334 (1988), 598–601.

43. YIP, N. K. Structure of stable solutions of a one-dimensional variational problem. ESAIM Control Optim.
Calc. Var. 12 (2006), 721–751. Zbl 1117.49025 MR 2266815

http://www.ams.org/mathscinet-getitem?mr=1334695
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.35151&format=complete
http://www.ams.org/mathscinet-getitem?mr=1697656
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0973.49007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1752422
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1010.82041&format=complete
http://www.ams.org/mathscinet-getitem?mr=1939157
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1031.49035&format=complete
http://www.ams.org/mathscinet-getitem?mr=1980472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1055.35041&format=complete
http://www.ams.org/mathscinet-getitem?mr=2001463
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1136.35372&format=complete
http://www.ams.org/mathscinet-getitem?mr=2176111
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1088.82033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2201676
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103.34046&format=complete
http://www.ams.org/mathscinet-getitem?mr=2216732
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1145.82007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2349026
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1153.35091&format=complete
http://www.ams.org/mathscinet-getitem?mr=2377287
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1153.46022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2316339
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.53013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2341847
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1117.49025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2266815

	Introduction
	Notations and results
	Rescaled variables
	The independent vector field b
	Outline of the proof

	Uniform density and energy distribution
	L-estimate of b: uniform density distribution
	Construction procedures
	Proof of the main result: uniform energy distribution

	Proof of the basic estimate
	Scaling law and sharp interface limit
	Appendix

