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1. Introduction

In this article, we focus on polygonal motion given by moving boundary problems, which is
restricted to an equivalence class of polygons. We introduce a notion of polygonal curvature, which
is consistent with polygonal analogues of geometric variational formulae.

We propose a formulation of general area-preserving motion of polygonal curves by using a
system of ODEs. The moving polygon belongs to a prescribed class of polygons, which is similar to
the admissible class in the theory of crystalline motion by curvature. There are many articles about
the crystalline curvature flow and asymptotic behavior of solutions. To select just a few, we refer to
the pioneering work [2], [11], and to [1, 5, 6, 8, 9, 10, 14, 15, 16, 17]. In particular, if the initial curve
is a convex polygon in a crystalline admissible class, then our polygonal curvature flow is nothing
but the crystalline curvature flow. However, we consider more general polygonal moving boundary
problems in wider admissible classes of polygons. For example, we can consider polygons shown in
Figures 4 and 5 in our equivalence classes, but they are not admissible in the sense of the crystalline
curvature flow.
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Based on the formulation of general polygonal moving boundary problems, we propose an
implicit time discretization scheme with an effective iteration scheme for the nonlinear system at
each time step. It has second order accuracy and preserves the constant area speed property. In a
fixed admissible class of polygons, we prove a second order convergence theorem for our numerical
scheme.

On the other hand, it is expected that our polygonal analogue becomes a natural approximate
solution of a smooth moving boundary problem if the number of edges is large enough. It would
be an important and interesting application of our polygonal motion, which is not considered in
this paper. We only mention here that the crystalline algorithm and the corresponding convergence
theorems for the motion by curvature can be found in [5, 6, 7, 8, 11, 12, 13].

The organization of this paper is as follows. Fundamental notation and formulas for polygons
and polygonal motions are introduced in Section 2. In Section 3, a general initial value problem for
polygonal motion in an equivalence class is considered, and the constant area speed condition is
introduced. Several basic examples of polygonal motions such as the polygonal curvature flow and
the polygonal advected flow are also presented. In Section 4, an implicit scheme of Crank–Nicolson
type and an iteration scheme for the nonlinear system at each time step are proposed. The proposed
scheme inherits the constant area speed property and its second order convergence is proved in
Theorem 4.5. In Section 5, the accuracy of our numerical scheme is checked through various
numerical simulations in comparison with the first order explicit Euler scheme. These simulations
show that the second order scheme preserves the constant area speed property with high accuracy.

2. Polygons and polygonal motions

We give basic definitions and notation for the polygonal motion in an equivalence class of polygons,
In particular, polygonal curvature is introduced as a generalization of crystalline curvature. We also
provide fundamental formulae and properties in this section.

2.1 Polygons

We define a set of polygons in R2 by

P := {Γ ; Γ is a polygonal Jordan curve in R2
}.

In this paper, we assume that any two-dimensional vector x ∈ R2 is represented by a column vector,
and we denote its transposed row vector by xT. For Γ ∈ P , the bounded interior polygonal domain
surrounded by Γ is denoted byΩ . For simplicity, we assume that Ω is simply connected, but many
of the following arguments are valid in other geometrical situations.

Let Γ ∈ P be an N -polygon. The N vertices of Γ are denoted by wj ∈ R2 for j = 1, . . . , N
counterclockwise, where w0 = wN and wN+1 = w1. Hereafter we use the periodic numbering
convention F0 = FN and FN+1 = F1 for any quantities defined for N -polygons.

For j = 1, . . . , N , the j th edge between wj−1 and wj is defined by

Γj = {(1− θ)wj−1 + θwj ; 0 < θ < 1},

and its length is denoted by |Γj | := |wj −wj−1|. The characteristic function χj ∈ L∞(Γ ) for Γj is
defined as

χj (x) :=
{

1, x ∈ Γj
0, x ∈ Γ \ Γj

(j = 1, . . . , N).
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FIG. 1. Some quantities defined on Γj .

The outward unit normal on Γj is denoted by nj , and the outer angle at the vertexwj is denoted
by ϕj ∈ (−π, π)\ {0}. They satisfy cosϕj = nj+1 ·nj . We also define the height of Γj with respect
to the origin by hj := wj · nj = wj−1 · nj (see Figure 1).

Then the straight line including Γj is expressed by the equation nj · x = hj , and the vertices of
Γ ∈ P are given from {hj }j as

wj =

(
nT
j

nT
j+1

)−1 (
hj
hj+1

)
(j = 1, . . . , N). (2.1)

PROPOSITION 2.1 Under the above conditions, we have

|Γj | = aj−1hj−1 + bjhj + ajhj+1 (j = 1, . . . , N), (2.2)

where aj := cosecϕj and bj := − cotϕj−1 − cotϕj .

Proof. We define a unit tangent vector of Γj by tj := (wj−wj−1)/|Γj |. We remark thatnj+1 ·tj =
−nj · tj+1 = sinϕj and tj · tj+1 = cosϕj . Then, from (2.1) and the equality(

nT
j

nT
j+1

)
(−tj+1 tj ) =

(
−nj · tj+1 0

0 nj+1 · tj

)
=

1
aj

(
1 0
0 1

)
,

we have

wj = aj
(
−tj+1 tj

) ( hj
hj+1

)
= −tj+1ajhj + tjajhj+1.

Since

|Γj | = tj · (wj −wj−1) = tj · {(−tj+1ajhj + tjajhj+1)− (−tjaj−1hj−1 + tj−1aj−1hj )}

= ajhj+1 − {aj cosϕj + aj−1 cosϕj−1}hj + aj−1hj−1 = ajhj+1 + bjhj + aj−1hj−1,

we obtain the formula (2.2). 2

The total length of Γ is given by

|Γ | :=
N∑
j=1

|Γj | =

N∑
j=1

(aj + bj + aj−1)hj =

N∑
j=1

ηjhj , (2.3)
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where ηj := aj + bj + aj−1 = tan(ϕj/2) + tan(ϕj−1/2). The area of the interior domain Ω is
denoted by |Ω|, which is given by

|Ω| =
1
2

N∑
j=1

|Γj |hj . (2.4)

The above symbols are also written as nj = nj (Γ ), aj = aj (Γ ), hj = hj (Γ ) etc., whenever we
need to distinguish them from quantities for other polygons.

2.2 Equivalence classes of polygons

We define an equivalence relation for polygons Γ,Σ ∈ P . We say that Γ is equivalent to Σ
(Γ ∼ Σ) if their numbers of edges are the same (say N ) and nj (Γ ) = nj (Σ) for all j = 1, . . . , N
after choosing suitable counterclockwise numbering for Γ and Σ . The equivalence class of Γ ∈ P
is denoted by P[Γ ] := {Σ ∈ P; Σ ∼ Γ }.

We fix an N -polygon Γ ∗ ∈ P and set P∗ := P[Γ ∗]. We define the distance between Γ and Σ
in P∗ by

d(Γ,Σ) := max
j=1,...,N

|hj (Γ )− hj (Σ)|.

It is clear that (P∗, d) is a metric space, since it is isometrically embedded in RN equipped with the
maximum norm | · |∞ by the height function h defined by

h(Γ ) := (h1(Γ ), . . . , hN (Γ )) ∈ RN (Γ ∈ P∗).

We assume that vectors in RN are represented by row vectors. It is obvious that the image h(P∗) of
the height function is open in RN .

For Γ ∈ P∗ and ε > 0, an ε-ball in P∗ = P[Γ ] with center Γ is denoted by

B(Γ, ε) := {Σ ∈ P[Γ ]; d(Σ, Γ ) < ε}.

For an open set O ⊂ P∗ and Γ ∈ O, we define a number ρ(Γ,O) > 0 as

ρ(Γ,O) := inf{|a− h(Γ )|∞; a ∈ RN \ h(O)}.

We remark that ρ(·,O) is Lipschitz continuous with Lipschitz constant 1:

|ρ(Γ,O)− ρ(Σ,O)| 6 d(Γ,Σ) (Γ,Σ ∈ O).

For a compact set K ⊂ O, we also define

ρ(K,O) := min
Γ ∈K

ρ(Γ,O).

Let aj = aj (Γ ∗) and bj = bj (Γ ∗). Then from (2.2), we obtain∣∣|Γj | − |Σj |∣∣ = |aj−1(hj−1(Γ )− hj−1(Σ))+ bj (hj (Γ )− hj (Σ))+ aj (hj+1(Γ )− hj+1(Σ))|

6 C∗d(Γ,Σ) (j = 1, . . . , N),
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where we define
C∗ := max

l=1,...,N
{|al−1| + |bl | + |al |}. (2.5)

For any Γ 0, Γ 1
∈ P∗ and for θ ∈ [0, 1], we define

hθ := (1− θ)h(Γ 0)+ θh(Γ 1) ∈ RN .

If there exists Γ θ ∈ P∗ with h(Γ θ ) = hθ , then Γ θ is called the θ -interpolation of Γ 0 and Γ 1, and
denoted by (1− θ)Γ 0

+ θΓ 1 := Γ θ ∈ P∗.

2.3 Polygonal motions

We consider a moving polygon Γ (t) ∈ P , where the parameter t (time) belongs to an interval
I ⊂ R. For k ∈ N ∪ {0}, we say that a moving polygon Γ (t) is of class Ck on I if the number of
edges of Γ (t) does not change in time and wj ∈ Ck(I; R2) for all j = 1, . . . , N .

If k > 1, we can define the normal velocity at x ∈ Γj (t), the j th edge of Γ (t). Let nj (t) :=
nj (Γ (t)). We suppose x∗ ∈ Γj (t∗) and x∗ = (1− θ)wj−1(t

∗)+ θwj (t
∗) for some θ ∈ (0, 1), and

define x(θ, t) := (1− θ)wj−1(t)+ θwj (t) ∈ Γj (t). Then the outward normal velocity of Γj (t∗) at
x∗ is defined by

Vj (x
∗, t∗) := ẋ(θ, t∗) · nj (t∗) = (1− θ)ẇj−1(t

∗) · nj (t
∗)+ θẇj (t

∗) · nj (t
∗).

Hereafter, the (partial) derivative of F with respect to t is denoted by Ḟ. We remark that Vj (·, t) is
linear function along each Γj (t). We define the normal velocity of Γ (t) by

V (·, t) :=
N∑
j=1

Vj (·, t)χj (·, t) ∈ L
∞(Γ (t)),

where χj (·, t) ∈ L∞(Γ (t)) is the characteristic function of Γj (t).
If a moving polygon Γ (t) belongs to a fixed equivalence class P∗ for all t ∈ I, it is called a

polygonal motion in P∗ in this paper. Let h(t) = (h1(t), . . . , hN (t)) ∈ RN be the height function
for Γ (t). We remark that a polygonal motion Γ (t) in P∗ (t ∈ I) is of class Ck if and only if
h ∈ Ck(I; RN ), from (2.1). If Γ (t) is a C1 polygonal motion in P∗, its normal velocity Vj of Γj (t)
is constant on each Γj (t) and it is given by Vj (t) = ḣj (t). We denote by Ω(t) the interior domain
surrounded by Γ (t).

PROPOSITION 2.2 Let Γ (t) be a C1 polygonal motion in P∗. Then

d
dt
|Ω(t)| =

∫
Γ (t)

V (x, t) ds =
N∑
j=1

|Γj (t)|Vj (t). (2.6)

Proof. From (2.2) and (2.4), we obtain

d
dt
|Ω(t)| =

d
dt

(
1
2

N∑
j=1

|Γj (t)|hj (t)

)
=

1
2

N∑
j=1

({aj−1Vj−1 + bjVj + ajVj+1}hj + |Γj |Vj )

=
1
2

N∑
j=1

Vj {ajhj+1 + bjhj + aj−1hj−1} +
1
2

N∑
j=1

|Γj |Vj =

N∑
j=1

|Γj |Vj . 2
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For Γ ∈ P∗, the polygonal curvature κj of Γj is defined by

κj :=
ηj

|Γj |
, ηj := tan

ϕj

2
+ tan

ϕj−1

2
.

We also define the polygonal curvature of Γ by

κ :=
N∑
j=1

κjχj ∈ L
∞(Γ ).

The reason why this is called “curvature” is shown by the following proposition.

PROPOSITION 2.3 Let Γ (t) (t ∈ I) be a C1 polygonal motion in P∗. Then

d
dt
|Γ (t)| =

N∑
j=1

|Γj (t)|κj (t)Vj (t) =

∫
Γ (t)

κ(x, t)V (x, t) ds.

Proof. We obtain

d
dt
|Γ (t)| =

d
dt

N∑
j=1

ηjhj (t) =

N∑
j=1

ηjVj (t) =

N∑
j=1

|Γj (t)|κj (t)Vj (t),

from the formula (2.3). 2

When the initial curve is a convex polygon, or a non-convex but admissible polygon, the polygonal
curvature coincides with the crystalline curvature in the crystalline motion theory ([2, 11]). We,
however, consider wider polygon classes and more general moving boundary problems. For
example, we can construct a non-convex polygon whose edges all have a constant positive polygonal
curvature κ1 = · · · = κN > 0 (see Section 5.2.4). Such polygons are excluded in the standard
crystalline theory.

3. Initial value problem of polygonal motion

We consider initial value problems of polygonal motions in an equivalence class. A general
polygonal motion problem is formulated as a system of ODEs with respect to the height function.
The notion of constant area speed (CAS, for short) is introduced and a necessary and sufficient
condition for it is given. Several concrete examples of polygonal motion problems with the CAS
property are also presented.

3.1 General polygonal motion problem

We fix an equivalence class P∗ of N -polygons as in Section 2.3. For an open set O ⊂ P∗ and
T∗ ∈ (0,∞], let F = (F1, . . . , FN ) be a given continuous function fromO× [0, T∗) to RN with the
local Lipschitz property: For every compact set K ⊂ O and T ∈ (0, T∗), there exists L(K, T ) > 0
such that

|F (Γ, t)− F (Σ, t)|∞ 6 L(K, T )d(Γ,Σ) (Γ,Σ ∈ K, t ∈ [0, T ]). (3.1)
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Under the condition (3.1), for a compact set K ⊂ O and T ∈ (0, T∗), we also define

M(K, T ) := max{|F (Γ, t)|∞; Γ ∈ K, t ∈ [0, T ]} > 0.

We consider the following initial value problem of polygonal motion.

PROBLEM 3.1 For a given N -polygon Γ ∗ ∈ O, find a C1 polygonal motion Γ (t) ∈ O (0 6 t 6
T < T∗) such that {

Vj (t) = Fj (Γ (t), t) (t ∈ [0, T ], j = 1, . . . , N),
Γ (0) = Γ ∗.

Under the Lipschitz condition (3.1), it is clear that there exists a local solution Γ (t) in a short
time interval [0, T ], since Problem 3.1 can be expressed as an initial value problem for ordinary
differential equations for h(t).

We consider the following assumption on Fj :

N∑
j=1

|Γj |Fj (Γ, t) = µCAS (Γ ∈ O, t ∈ [0, T∗)), (3.2)

where µCAS is a fixed real number. Under the assumption (3.2), from the formula (2.6), any solution
Γ (t) to Problem 3.1 has the following property of constant area speed (CAS):

d
dt
|Ω(t)| = µCAS.

3.2 Examples of polygonal motion problems

In this section, we give some examples of polygonal motions. For several moving boundary
problems for smooth curves, we can construct their polygonal analogues which naturally satisfy
the basic properties such as CAS and curve shortening (CS, for short).

PROBLEM 3.2 (polygonal curvature flow) For a given N -polygon Γ ∗ ∈ P∗, find a C1 family of
N -polygons

⋃
06t6T Γ (t) ⊂ P∗ (T < T∗) satisfying{

Vj (t) = −κj (t) (t ∈ [0, T ], j = 1, . . . , N),
Γ (0) = Γ ∗.

This is a polygonal analogue of the curvature flow (curve shortening problem, see [4] and
references therein). In the theory of crystalline motion, Problem 3.2 is considered in a crystalline
admissible class and is called the crystalline curvature motion.

Similar to the curvature flow for smooth curves, the solution of Problem 3.2 has the CS property:

d
dt
|Γ (t)| =

N∑
j=1

|Γj (t)|κj (t)Vj (t) = −

N∑
j=1

|Γj (t)|κj (t)
2 6 0,

and the CAS property with µCAS = −2
∑N
j=1 tan(ϕj/2):

d
dt
|Ω(t)| = −

N∑
j=1

|Γj (t)|κj (t) = −

N∑
j=1

ηj = −2
N∑
j=1

tan
ϕj

2
= const.

A numerical example will be shown in Figure 2 (left).
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PROBLEM 3.3 (area-preserving polygonal curvature flow) For a given N -polygon Γ ∗ ∈ P∗,
find a C1 family of N -polygons

⋃
06t6T Γ (t) ⊂ P∗ (T < T∗) satisfying{

Vj (t) = 〈κ(·, t)〉 − κj (t) (t ∈ [0, T ], j = 1, . . . , N),
Γ (0) = Γ ∗.

Here 〈κ(·, t)〉 is the mean value of κ on Γ (t):

〈κ(·, t)〉 =
1
|Γ (t)|

∫
Γ (t)

κ(x, t) ds =
∑N
i=1 ηi

|Γ (t)|
=

2
∑N
i=1 tan(ϕi/2)
|Γ (t)|

.

This is a polygonal analogue of the area-preserving curvature flow (see e.g. [3]). Similar to the
area-preserving curvature flow for smooth curves, the solution of Problem 3.3 has the CS property:

d
dt
|Γ (t)| =

N∑
j=1

|Γj (t)|κj (t)Vj (t) = −

N∑
j=1

|Γj (t)|(κj (t)− 〈κ(·, t)〉)
2 6 0,

and the CAS property with µCAS = 0:

d
dt
|Ω(t)| = 〈κ(·, t)〉|Γ (t)| −

∫
Γ (t)

κ(x, t) ds = 0.

Some numerical examples will be shown in Figure 4.
In what follows, the mean value of F on the edge Γj is denoted by

〈F〉j :=
1
|Γj |

∫
Γj

F(x) ds.

Let G be a bounded Lipschitz domain in R2. We define

OG := {Γ ∈ P∗; Ω(Γ ) ⊃ G}.

PROBLEM 3.4 (polygonal advected flow with constant area speed) Let u ∈ C1(R2
\ G; R2) with

divu = 0 in R2
\ G. For a given N -polygon Γ ∗ ∈ OG, find a C1 family of N -polygons⋃

06t6T Γ (t) ⊂ OG (T < T∗) satisfying{
Vj (t) = 〈u〉j · nj (t ∈ [0, T ], j = 1, . . . , N),
Γ (0) = Γ ∗.

The solution has the CAS property with µCAS =
∫
∂G
n · u ds:

d
dt
|Ω(t)| =

N∑
j=1

|Γj (t)| 〈u〉j · nj =
N∑
j=1

∫
Γj (t)

u · nj ds

=

∫
∂G

u · n ds −
∫
Ω(t)\G

divu dx =
∫
∂G

u · n ds,

where n is the unit normal vector on ∂G pointing to the interior of G. A numerical example will be
shown in Figure 6.
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4. Numerical schemes

We propose an implicit time discretization of Crank–Nicolson type to solve the general initial value
problem of polygonal motions (Problem 3.1) and show that it preserves the CAS property and has
a second order accuracy. We also propose an effective iteration scheme to solve a nonlinear system
which appears at each time step. For comparison, we also consider an explicit Euler scheme. We
additionally give comments on the curve shortening and constant length speed properties and their
numerical preservation.

4.1 Notation

In Section 4, we consider time discretization of Problem 3.1 with the following notation. The
discrete time steps are denoted by 0 = t0 < t1 < · · · < tm̄ 6 T . The step size, which may be
nonuniform, and the maximum size are defined by

τm := tm+1 − tm (m = 0, 1, . . . , m̄− 1), τ := max
06m<m̄

τm.

An approximate solution of Γ (tm) is denoted by Γ m ∈ P∗. Quantities pertaining to the polygon
Γ m are denoted by hm = (hm1 , . . . , h

m
N ) := (h1(Γ

m), . . . , hN (Γ
m), κmj := κj (Γ m), etc. We define

em := h(tm)− hm ∈ RN . Then we have d(Γ (tm), Γ m) = |em|∞.
The discrete normal velocity V m

= (V m1 , . . . , V
m
N ), which is an approximation of V (tm) =

ḣ(tm), is defined by

V m :=
hm+1

− hm

τm
(m = 0, 1, . . . , m̄− 1). (4.1)

Corresponding to the formula (2.6), we have

|Ωm+1
| − |Ωm

|

τm
=

N∑
j=1

|Γ mj | + |Γ
m+1
j |

2
V mj . (4.2)

This has the form of the sum of the areas of N trapezoids and is derived from (2.4) as follows:

|Ωm+1
| − |Ωm

| =
1
2

N∑
j=1

(|Γ m+1
j |hm+1

j − |Γ mj |h
m
j )

=
1
2

N∑
j=1

{(|Γ m+1
j | + |Γ mj |)(h

m+1
j − hmj )+ |Γ

m+1
j |hmj − |Γ

m
j |h

m+1
j }

=
τm

2

N∑
j=1

(|Γ m+1
j | + |Γ mj |)V

m
j +

1
2

N∑
j=1

(|Γ m+1
j |hmj − |Γ

m
j |h

m+1
j ),

where the last sum is equal to zero due to the equality (2.2).
In the following sections, we suppose that there exists a unique solution Γ (t) for 0 6 t 6 T <

T∗ to Problem 3.1 under the condition (3.1), and that discrete time steps 0 = t0 < t1 < · · · < tm̄ 6 T

are given a priori with uniform time step, so tm = mτ . We adopt the uniform time increment in the
numerical examples in Section 5. It is, however, possible to apply any a posteriori adaptive time step
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control scheme. Similar to the finite time extinction of the curvature flow of smooth curves, even in
polygonal motions, the solution polygon often has singularities in finite time. For instance, |Γj (t)|
tends to zero, in other words, |κj (t)| tends to infinity. A posteriori adaptive time step control will be
required near the blow-up time for accurate computation.

4.2 Second order implicit scheme

We consider the following implicit scheme for Problem 3.1.

PROBLEM 4.1 For a given N -polygon Γ∗ ∈ O and given time steps 0 = t0 < t1 < · · · < tm̄ 6 T ,
find polygons Γ m ∈ O (m = 1, . . . , m̄) such that{

V mj = Fj (Γ
m+1/2, tm+1/2) (m = 0, 1, . . . , m̄− 1, j = 1, . . . , N),

Γ 0
= Γ∗,

where Γ m+1/2 and tm+1/2 are the 1/2-interpolations:

Γ m+1/2 :=
Γ m + Γ m+1

2
∈ P∗, tm+1/2 :=

tm + tm+1

2
= tm +

τm

2
.

This is a generalized version of the scheme presented in [13] for the area-preserving crystalline
curvature flow.

PROPOSITION 4.2 Suppose the CAS property (3.2) holds. Let Γ m ∈ O (m = 1, . . . , m̄) be a
solution of Problem 4.1. Then

|Ωm+1
| = |Ωm

| + µCASτm (m = 0, 1, . . . , m̄− 1).

In other words, |Ωm
| = |Ω(tm)| if the exact solution Ω(t) of Problem 3.1 exists.

Proof. Since |Γ m+1/2
j | = (|Γ mj | + |Γ

m+1
j |)/2, we have

|Ωm+1
| − |Ωm

|

τm
=

N∑
j=1

|Γ
m+1/2
j |Fj (Γ

m+1/2, tm+1/2) = µCAS,

from formula (4.2). 2

We remark that the numerical scheme of Problem 4.1 inherits the CAS property but does not depend
on the area speed µCAS.

Since Problem 4.1 is an implicit scheme, it is not clear whether Γ m+1
∈ O can be determined

uniquely from the previous polygon Γ m ∈ O, the time tm, and the time step size τm. Another
question is how to solve the equations

hm+1
= hm + τmF

(
Γ m + Γ m+1

2
, tm+1/2

)
(4.3)

to obtain (an approximation of) Γ m+1 numerically. Answers to these questions will be given in
Theorems 4.4 and 4.5.
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We fix Γ̂ ∈ O and t̂ ∈ [0, T ), which correspond to Γ m and tm+1/2, respectively. Let K be a
compact convex set in P∗ with Γ̂ ∈ K ⊂ O. For Σ ∈ K and τ̂ ∈ (0, ρ(Γ̂ ,O)M(K, T )−1), we can
define Σ̃ ∈ O by

h(Σ̃) = h(Γ̂ )+ τ̂F

(
Γ̂ +Σ

2
, t̂

)
.

We define Λ(Σ) := Λ(Σ; Γ̂ , t̂ , τ̂ ) =: Σ̃ . Then Λ becomes a mapping from K to O. We have the
following lemma.

LEMMA 4.3 Let ε ∈ (0, ρ(Γ̂ ,O)) and λ ∈ (0, 1) be fixed, and let K̂ := B(Γ̂ , ε). Suppose that

0 < τ̂ 6 min
{
T − t̂ ,

ε

M(K̂, T )
,

2λ

L(K̂, T )

}
.

Then Λ maps K̂ into K̂ and satisfies

d(Λ(Σ1),Λ(Σ2)) 6 λd(Σ1,Σ2) (Σ1,Σ2
∈ K̂). (4.4)

Hence Λ is a contraction mapping on K̂ and there exists a unique fixed point of Λ in K̂.

Proof. Let Σ ∈ K̂. Since K̂ is convex, it follows that (Γ̂ +Σ)/2 ∈ K̂. We also have

|h(Σ̃)− h(Γ̂ )|∞ =

∣∣∣∣τ̂F( Γ̂ +Σ2
, t̂

)∣∣∣∣
∞

6 τ̂M(K̂, T ) 6 ε.

This estimate shows thatΛ is a mapping from K̂ into itself. The estimate (4.4) is proved as follows:

d(Λ(Σ1),Λ(Σ2)) = |h(Λ(Σ1))− h(Λ(Σ2))|∞ = τ̂

∣∣∣∣F( Γ̂ +Σ1

2
, t̂

)
− F

(
Γ̂ +Σ2

2
, t̂

)∣∣∣∣
∞

6 τ̂L(K̂, T )d
(
Γ̂ +Σ1

2
,
Γ̂ +Σ2

2

)
= τ̂L(K̂, T )

∣∣∣∣h(Γ̂ )+ h(Σ1)

2
−
h(Γ̂ )+ h(Σ2)

2

∣∣∣∣
∞

=
τ̂

2
L(K̂, T )d(Σ1,Σ2) 6 λd(Σ1,Σ2). 2

The following theorem gives us an efficient numerical scheme to obtain Γ m+1. The proof is clear
from Lemma 4.3.

THEOREM 4.4 Let K be a compact set in O and let ε ∈ (0, ρ(K,O)). Define

Kε :=
⋃
Σ∈K

B(Σ, ε).

For fixed m (< m̄) in Problem 4.1, assume that Γ m ∈ K and

τm 6 min
{

ε

M(Kε, T )
,

2λ
L(Kε, T )

}
,

where λ ∈ (0, 1). Then there exists a unique Γ m+1
∈ B(Γ m, ε) satisfying (4.3).
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Furthermore, Γ m+1 is a fixed point of the contraction Λm := Λ(· ;Γ m, tm, τm) in B(Γ m, ε),
and is given by the limit of Λνm(Γ

m) as ν →∞ with the following estimate:

d(Γ m+1,Λνm(Γ
m)) 6 λνd(Γ m+1, Γ m) (ν ∈ N).

From this theorem,Λνm(Γ
m) for ν sufficiently large gives a satisfactory approximation of Γ m+1.

An iteration algorithm based on this idea will be given in Section 5.1. The following theorem shows
the second order convergence of the implicit numerical scheme of Problem 4.1.

THEOREM 4.5 Suppose that {Γ (t)}06t6T is a Ck+1 solution of Problem 3.1 for k = 0, 1, or 2.
There exist δ∗ > 0, τ ∗ > 0, C > 0 and a non-decreasing function ω(a) > 0 with

ω(a) =

{
o(ak) if k = 0 or 1,
O(a2) if k = 2,

as a ↓ 0, (4.5)

such that if d(Γ ∗, Γ 0) 6 δ∗ and τ 6 τ ∗, then Γ m ∈ O (m = 1, . . . , m̄) are inductively determined
by the implicit scheme of Problem 4.1, and

max
06m6m̄

d(Γ (tm), Γ
m) 6 ω(τ)+ Cd(Γ (0), Γ 0).

Proof. We put ρ̂ := ρ({Γ (t); 0 6 t 6 T },O), and fix δ ∈ (0, ρ̂) and ε ∈ (0, ρ̂ − δ). We define

K :=
⋃

06t6T

B(Γ (t), δ), Kε :=
⋃
Σ∈K

B(Σ, ε),

L := L(Kε, T ), R(a) := eL/2(1− aL/2)−1/a (0 < a < 2/L),
pm := |em|∞ + ω(τ)/L (m = 0, 1, . . . , m̄),

where a non-decreasing function ω(a) (0 < a < T ) which satisfies (4.5) will be defined later in
(4.9). Since R(·) is an increasing function, there exist δ∗ > 0 and τ ∗ > 0 such that

R(τ ∗)T (δ∗ + ω(τ ∗)/L) 6 δ, τ ∗ < min(ε/M(Kε, T ), 2/L).

For m = 0, 1, . . . , m̄− 1, we will prove the following inductive conditions:

Γ m ∈ K, pm 6 R(τ)tmp0 ⇒ ∃Γ
m+1
∈ K, pm+1 6 R(τ)tm+1p0. (4.6)

The conditions Γ 0
∈ K and p0 6 R(τ)0p0 for the case m = 0 are obviously satisfied.

Assume that Γ m ∈ K and pm 6 R(τ)tmp0 for a fixed m. Then, from Theorem 4.4, there exists
a unique Γ m+1 in B(Γ m, ε) ⊂ Kε, and we have

em+1
− em = h(tm+1)− h(tm)− τmV

m
= τm{ξ

m
+ (V (tm+1/2)− V

m)}, (4.7)

where

ξm :=
h(tm+1)− h(tm)

τm
− ḣ(tm+1/2).
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The last term of (4.7) is estimated as follows. Since Γ (tm+1/2) ∈ K ⊂ Kε and Γ m+1/2
∈

B(Γ m, ε) ⊂ Kε, we have

|V (tm+1/2)− V
m
|∞ = |F (Γ (tm+1/2), tm+1/2)− F (Γ

m+1/2, tm+1/2)|∞

6 Ld(Γ (tm+1/2), Γ
m+1/2) = L

∣∣∣∣h(tm+1/2)−
hm + hm+1

2

∣∣∣∣
∞

= L

∣∣∣∣12 (em + em+1)− ζm
∣∣∣∣
∞

, (4.8)

where

ζm :=
h(tm)+ h(tm+1)

2
− h(tm+1/2).

Combining (4.7) and (4.8), we obtain

|em+1
|∞ 6 |em|∞ + τm |ξ

m
|∞ + τmL

∣∣∣∣12 (em + em+1)− ζm
∣∣∣∣
∞

6 |em|∞ +
τmL

2
(|em+1

|∞ + |e
m
|∞)+ τm(|ξ

m
|∞ + L|ζ

m
|∞).

By the Taylor expansion, we can obtain a non-decreasing function ω(a) (0 < a < T ) which satisfies
the condition (4.5) and the inequality

|ξm|∞ + L|ζ
m
|∞ 6 ω(τ). (4.9)

Hence,
(1− τmL/2)|em+1

|∞ 6 (1+ τmL/2)|em|∞ + τmω(τ),

and this inequality is equivalent to

(1− τmL/2)pm+1 6 (1+ τmL/2)pm.

From the inequalities

(1− τmL/2) > (1− τL/2)τm/τ and (1+ τmL/2) 6 eτmL/2,

we obtain

pm+1 6 (1− τmL/2)−1(1+ τmL/2)pm 6 R(τ)τm(R(τ)tmp0) = R(τ)
tm+1p0.

The condition Γ m+1
∈ K follows from this estimate as

|em+1
|∞ 6 pm+1 6 R(τ ∗)tm+1 p0 6 R(τ ∗)T (δ∗ + ω(τ ∗)/L) 6 δ.

Hence, we have proved (4.6), which leads us to the estimate

|em|∞ 6 R(τ ∗)T (|e0
|∞ + ω(τ)/L)− ω(τ)/L 6 R(τ ∗)T |e0

|∞ +
R(τ ∗)T − 1

L
ω(τ).

The assertion of the theorem is obtained by putting C := R(τ ∗)T and denoting the last term
L−1(R(τ ∗)T − 1)ω(τ) again by ω(τ). 2



528 M. BENEŠ ET AL.

4.3 Euler scheme

For Problem 3.1, one of the simplest numerical schemes is the following explicit Euler scheme:

PROBLEM 4.6 For a given N -polygon Γ∗ ∈ O and time steps 0 = t0 < t1 < · · · < tm̄ 6 T , find
polygons Γ m ∈ O (m = 1, . . . , m̄) such that{

V mj = Fj (Γ
m, tm) (m = 0, 1, . . . , m̄− 1, j = 1, . . . , N),

Γ 0
= Γ∗.

The explicit Euler scheme is simple but it has only first order accuracy. In particular, for polygonal
motions with the CAS property, we are required to use a more accurate scheme such as Problem 4.1
in order to keep its CAS property numerically. Similarly to the case of the implicit scheme
(Theorem 4.5), the convergence theorem for the Euler scheme is stated as follows.

THEOREM 4.7 Suppose the condition (3.1) holds and {Γ (t)}06t6T is a Ck+1 solution of
Problem 3.1 for k = 0 or 1. There exist δ∗ > 0, τ ∗ > 0, C > 0 and a non-decreasing function
ω(a) > 0 with

ω(a) =

{
o(1) if k = 0,
O(a) if k = 1, as a ↓ 0, (4.10)

such that if d(Γ ∗, Γ 0) 6 δ∗ and τ 6 τ ∗, then Γ m ∈ O (m = 1, . . . , m̄) is determined by the Euler
scheme of Problem 4.6 and satisfies the estimate

max
06m6m̄

d(Γ (tm), Γ
m) 6 ω(τ)+ Cd(Γ (0), Γ 0).

Proof. We define

ξm :=
h(tm+1)− h(tm)

τm
− ḣ(tm) (m = 0, 1, . . . , m̄− 1).

Then, by the Taylor expansion, we are able to find a non-decreasing function ω(a) (0 < a < T )
which satisfies the condition (4.10) and the inequality

|ξm|∞ 6 ω(τ). (4.11)

We put ρ̂ := ρ({Γ (t); 0 6 t 6 T },O), and fix δ ∈ (0, ρ̂) and ε ∈ (0, ρ̂ − δ). We define

K :=
⋃

06t6T

B(Γ (t), δ), Kε :=
⋃
Σ∈K

B(Σ, ε),

L := L(K, T ), pm := |em|∞ + ω(τ)/L (m = 0, 1, . . . , m̄).

There exist δ∗ > 0 and τ ∗ > 0 such that

eT L(δ∗ + ω(τ ∗)/L) 6 δ, τ ∗ 6 ε/M(K, T ).

For m = 0, 1, . . . , m̄− 1, we will prove the following inductive conditions:

Γ m ∈ K, pm 6 etmLp0 ⇒ ∃Γ
m+1
∈ K, pm+1 6 etm+1Lp0. (4.12)

The condition for m = 0 is obviously satisfied.
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Assume that Γ m ∈ K and pm 6 etmLp0 for a fixed m. Then, from the condition τ ∗ 6
ε/M(K, T ), Γ m+1 belongs to B(Γ m, ε) ⊂ Kε, and we have

em+1
− em = h(tm+1)− h(tm)− τmV

m
= τm{ξ

m
+ (V (tm)− V

m)}. (4.13)

Since Γ (tm) and Γ m both belong to K, we have

|V (tm)− V
m
|∞ = |F (Γ (tm), tm)− F (Γ

m, tm)|∞ 6 Ld(Γ (tm), Γ
m) = L|em|∞. (4.14)

Combining (4.11), (4.13) and (4.14), we obtain

|em+1
|∞ 6 (1+ τmL)|em|∞ + τmω(τ),

and
pm+1 6 (1+ τmL)pm 6 eτmL(etmL p0) = e

tm+1L p0.

Since
|em+1

|∞ 6 pm+1 6 etm+1L p0 6 eT L(δ∗ + ω(τ ∗)/L) 6 δ,

the condition Γ m+1
∈ K follows. Hence, we have proved (4.12), which leads us to the estimate

|em|∞ 6 eLT (|e0
|∞ + ω(τ)/L)− ω(τ)/L 6 eLT |e0

|∞ +
eLT − 1
L

ω(τ).

The desired assertion is obtained by putting C := eLT and denoting the last term L−1(eLT −1)ω(τ)
again by ω(τ). 2

4.4 Curve shortening and constant length speed property

As can be seen in Section 3.2, many moving boundary problems have the CS property:

d
dt
|Γ (t)| 6 0.

From (2.3), a necessary and sufficient condition for the CS property is

N∑
j=1

ηjFj (Γ, t) 6 0 (Γ ∈ O, t ∈ [0, T∗)). (4.15)

Similarly to the CAS property (3.2), we can also consider the constant length speed (CLS, for short)
property:

d
dt
|Γ (t)| = µCLS.

A necessary and sufficient condition for the CLS property is

N∑
j=1

ηjFj (Γ, t) = µCLS (Γ ∈ O, t ∈ [0, T∗)). (4.16)

An example with the CLS property is the constant speed motion:

Fj (Γ, t) = 1 (j = 1, . . . , N), µCLS = 2
N∑
j=1

tan
ϕj

2
.
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Another example is the length-preserving polygonal curvature flow:

Fj (Γ, t) =

∑N
i=1 |Γj | κj (Γ )

2

2
∑N
i=1 tan(ϕi/2)

− κj (Γ ) (j = 1, . . . , N), µCLS = 0. (4.17)

It is easy to check that both the second order implicit scheme (Problem 4.1) and the explicit
Euler scheme (Problem 4.3) inherit the CS and CLS properties. Namely, under the condition (4.15),
we have

|Γ m+1
| 6 |Γ m| (m = 0, 1, . . . , m̄− 1),

and, under the condition (4.16), we have

|Γ m+1
| = |Γ m| + µCLSτm (m = 0, 1, . . . , m̄− 1).

A numerical simulation for the length-preserving polygonal curvature flow is shown in Figure 8.

5. Numerical computation

We describe an algorithm of our second order implicit scheme and show some numerical results. In
this section, Γ m ∈ P∗ (m = 0, 1, . . . , m̄) denotes the numerical solution computed by the algorithm
described in Section 5.1. All computations are performed in double precision.

5.1 Algorithm

We describe a numerical procedure for Problem 4.1. We suppose that an initial N -polygon Γ 0
=⋃N

j=1 Γ
0
j is given in a prescribed equivalence class P∗, i.e., P∗ = P[Γ 0]. In other words, the set

{nj }
N
j=1 of normal vectors for P∗ and the set h0

= (h0
1, . . . , h

0
N ) ∈ RN of heights of Γ 0

j are given.
The outer angles {ϕj }Nj=1 and the quantities {aj }Nj=1, {bj }Nj=1 are computed from {nj }Nj=1. We fix
the maximum computation time T∗ and the uniform time step τ = T∗/m̄ with the maximum time
step m̄.

Then Γ m+1
∈ P∗ is determined successively from Γ m ∈ P∗ at the mth discrete time tm = mτ

for m = 0, 1, . . . , m̄ − 1 as follows. We suppose the set hm = (hm1 , . . . , h
m
N ) ∈ RN of heights of

Γ mj are given. We can calculate the j th vertex wm
j of Γ m by (2.1) (j = 1, . . . , N). Our algorithm

including the iteration scheme to obtain an approximation of Γ m+1 is as follows.

(1) Put h̄ := hm.
(2) Define Γ̂ ∈ P∗ with h(Γ̂ ) = h̄ and put ĥ := h̄.
(3) Compute h̄ := hm + F (Γ̂ , tm+1/2) τ/2.
(4) If |h̄− ĥ|∞ 6 ε/2, then go to step (6).
(5) Go to step (2).
(6) Put hm+1 := 2h̄− hm.

We note that Γ̂ and Γ̄ (with h(Γ̄ ) = h̄) in step (3) correspond to (Λνm(Γ
m) + Γ m)/2 and

(Λν+1
m (Γ m)+Γ m)/2, respectively. In the stopping condition (4), a small parameter ε > 0 is needed.

In the following numerical computations, we chose ε = 10−15.
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5.2 Numerical examples

In the following examples, several numerical computations of the evolution of N -sided polygons
will be shown. The numerical solutions were computed until the time T∗ with the uniform time
increment τ = T∗/m̄, where m̄ is the maximum time step. The figures are depicted at everyMth time
step. The problems except Example 7 have the CAS property with µCAS, and the numerical solution
keeps this property with the error∆ = max06m<m̄ |µCAS−µ

m
CAS|, where µmCAS = (|Ω

m+1
|− |Ωm

|)/τ

is the mth discrete area speed. The problem in Example 7 has the CLS property with µCLS, and
the numerical solution keeps this property with the error ∆ = max06m<m̄ |µCLS − µ

m
CLS|, where

µmCLS = (|Γ
m+1
| − |Γ m|)/τ is the mth discrete length speed. The following two tables indicate the

data N , T∗, τ , M and ∆ in each example.

TABLE 1
Numerical parameters and ∆ for Examples 1 and 2.

Ex.1: Figure 2 Ex.2: Figure 3
(a) (b) (c) (a) (b)

N 5 7 22 7
T∗ 0.2801 0.3136 0.335 1.55 1.55

τ 10−6 10−4 10−7

M 2801 3136 3350 775 775000

∆ 5.04× 10−10 7.62× 10−10 1.56× 10−9 2.87× 10−11 2.96× 107

TABLE 2
Numerical parameters and ∆ for Examples 4–7.

Ex.3: Figure 4 Ex.5: Figure 6 Ex.6: Figure 7 Ex.7: Figure 8
(a)(b)(c) (d)(e)(f) (a)(b)(c) (a)(b)(c) (d)(e)(f) (a)(b)(c)

N 9 12 12 32 18
T∗ 7.56 19.4 20 10 3.65 0.27

τ 10−5 10−4 10−4 10−4

M 37800 97000 10000 5000 1825 27

∆ 1.51× 10−9 1.07× 10−9 2.81× 10−7 4.26× 10−9 1.42× 10−10 5.11× 10−11

5.2.1 Example 1—polygonal curvature flow. Figure 2 indicates the evolution of polygons solving
Problem 3.2 for N = 5 in Figure 2(a), N = 7 in Figure 2(b), N = 22 in Figure 2(c), starting from
the initial polygon being the outermost N -sided polygon which is a combination of an upper half
of a regular 2(N − 2)-polygon and a triangle. Each solution polygon evolves from outside to inside
and has the CAS property with µCAS = −2

∑N
j=1 tan(ϕj/2). The numerical solutions keep the CAS

property very accurately as shown in Table 1.

5.2.2 Example 2—backward polygonal curvature flow. Problem 3.2 can be computed backward
in time. Figure 3(a) indicates the evolution of solution polygons to the backward polygonal curvature
flow Vj (t) = κj (t) (j = 1, . . . , 7). The initial polygon is the innermost 7-sided polygon and the
solution polygons evolve from inside to outside. The above process can be followed by our second
order scheme accurately.
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(a) (b) (c)

FIG. 2. Evolution by polygonal curvature flow: (a) N = 5, (b) N = 7, (c) N = 22.

We note that the backward curvature flow for smooth curves is ill-posed since it becomes a
backward parabolic problem. Note that even for a 7-sided backward polygonal motion, it is difficult
to obtain a numerical solution by means of the Euler scheme (Problem 4.6). Figure 3(b) indicates
an easy breakdown of the Euler scheme despite using a smaller value of τ than for the second order
scheme.

(a) (b)

FIG. 3. Simulations of the backward polygonal curvature flow by the second order scheme (a) and by the Euler method (b).

5.2.3 Example 3—area-preserving polygonal curvature flow. Figure 4(b) (resp. (e)) shows two
examples of polygonal motion according to Problem 3.3. The initial polygons are given in
Figure 4(a) (resp. (d)). Figure 4(c) (resp. (f)) shows the initial polygon (dotted curve) and the final
polygon. The solution has the CAS property with µCAS = 0.

Both in Figures 4(a–c) and in Figures 4(d–f), there exist stationary solutions as shown in
Figures 5 (b–c). The polygon starting from a symmetric initial shape approaches one of the
stationary solutions and stays there for a while. However, since the stationary solution has a saddle-
point instability, after a while, the polygon is drifted away from the stationary solution along the
unstable manifold and loses its symmetry.

5.2.4 Example 4—stationary solutions. A polygon with constant polygonal curvature (i.e.
κ1 = · · · = κN ) is a stationary solution of Problem 3.3. Obviously, regular polygons are stationary
solutions. Besides the regular polygons, we have infinitely many stationary solutions. For instance,
an n-fold star-shaped polygon is a stationary solution, as also is the 6-fold star (Figure 5(a)). An



MOTION OF POLYGONAL CURVES 533

(a) (b) (c)

(d) (e) (f)

FIG. 4. Evolutions by the area-preserving polygonal curvature flow.

n-fold non-sharp star shaped polygon is a stationary solution, as also are the 3-fold (resp. 4-fold)
non-sharp stars in Figure 5(b) (resp. (c)). For the n-fold non-sharp star polygon, there are two kinds
of outer angles ϕ0 < 0 and ϕ1 > 0 and two kinds of edge lengths d1 < d2 with the corresponding
polygonal curvatures κ1 = (tan(ϕ0/2)+ tan(ϕ1/2))/d1 and κ2 = 2 tan(ϕ1/2)/d2. We obtain a con-
stant polygonal curvature polygon if d1/d2 = (tan(ϕ0/2)+ tan(ϕ1/2))/(2 tan(ϕ1/2)). The polygon
in Figure 5(b) (resp. (c)) belongs to the same equivalence class of Figure 4(a–c) (resp. (d–f)).

(a) (b) (c)

FIG. 5. Stationary solutions of Problem 3.3.

5.2.5 Example 5—polygonal advected flow with constant area speed. Figure 6(b) shows an
example of polygonal motion according to Problem 3.4 with u(x) = x/(2π |x|2) which is a



534 M. BENEŠ ET AL.

(a) (b) (c)

FIG. 6. Evolution by advected polygonal flow with constant area speed.

(a) (b) (c)

(d) (e) (f)

FIG. 7. Evolution by advected area-preserving polygonal curvature flow.
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divergence-free vector field defined on R2
\ {0}. The initial polygons are given in Figure 6(a),

centered at the origin of coordinates.
Figure 6(c) shows the initial polygon (dotted curve) and the final polygon. The problem has

the CAS property with µCAS = 1. The numerical solution keeps the CAS property as accurately as
shown in Table 2.

5.2.6 Example 6—area-preserving polygonal advected-curvature flow. Figures 7(b)(e) show
two examples of polygonal motion combining Problems 3.3 and 3.4, i.e.,

Vj = 〈κ(·, t)〉 − κj (t)+ 〈u〉j · nj (j = 1, . . . , N).

The divergence-free vector field is given by u(x) = x1x2(−x1, x2) ((a)(b)(c)) and u(x) =
(−x1, x2) ((d)(e)(f)), respectively. The common initial polygon is given in Figure 7(a)(d), where the
center is the origin of coordinates, and vertices are on the ellipse with ratio 3:1. Figure 7(c)(f) shows
the initial polygon (dotted curve) and the final polygon. Both problems have the CAS property with
µCAS = 0 (area-preserving). The numerical solution preserves the areas as accurately as shown in
Table 2.

5.2.7 Example 7—length-preserving polygonal curvature flow. Figure 8(b) shows the evolution
of polygons according to the length-preserving polygonal curvature flow (4.17) given in Section 4.4.
The initial polygon is the 18-sided polygon in Figure 8(a). Figure 8(c) indicates the initial polygon
(dotted curve) and the final polygon. At the time close to T∗, the length of an edge (indicated by
the arrow) tends to zero, and the computation stops. The length-preserving property (µCLS = 0) is
numerically realized with high accuracy as shown in Table 2.

(a) (b) (c)

FIG. 8. Evolution by the length-preserving polygonal curvature flow.
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