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We study a model of optimal transportation networks that includes the cost of constructing stations.
The model is expressed in terms of the Federer–Fleming language of currents.

1. Introduction

Various authors consider the Monge–Kantorovich problem of irrigating a signed measure; see, e.g.,
Ambrosio [1] for an overview. Given µ , µ+−µ− with µ+(Rm) = µ−(Rm) <∞ to be irrigated,
one way to formulate the problem is to find a transport plan π that attains

min
{∫

c(x, y) dπ(x, y)
∣∣∣∣ π1 = µ

−, π2 = µ
+

}
. (1.1)

Here c is a given lower semicontinuous cost function, and πi are the marginals of π . In the typical
case c(x, y) = ‖x − y‖p, p > 1, and the pth root of the minimum in (1.1) is then called the
p-Wasserstein distance Wp(µ

+, µ−) between µ+ and µ−.
Brancolini and Buttazzo [6], Buttazzo and Stepanov [8], and Buttazzo et al. [7], among other

works, consider a variant of the problem with two different media. The object is then to find a one-
dimensional network or track Σ that attains (1.1) when the cost c of travelling between x and y is
defined in such a way that it is cheaper to travel on Σ than outside it.

Another variant of the problem is considered by Bernot et al. [5], and Xia [17, 18, 19], among
others. Although employing a single medium, this version also attempts to include the cost of
building the transportation network by considering a target functional that attempts to group together
the paths taken by mass travelling from µ+ to µ−, forming a rectifiable network. In the language of
Federer–Fleming currents, this can be formulated as finding a current T of optimal weighted area
Mα(T ) (α ∈ [0, 1)) such that ∂T = µ.

Paolini and Stepanov [14] also study a variant of the two-media problem in the language of
currents: that of minimising the functional

(W,R) 7→ AMα(W)+ BMβ(R)+H(Mδ(R)) with ∂(W + R) = µ. (1.2)

The first term of the functional describes the cost of the portion of paths that are to be travelled
by “own means”, the second term describes the cost of travelling the network modelled by the real
rectifiable current R, and the last term describes the cost of constructing this network.

In application to construction of (small scale) urban transportation networks, none of these
models is yet entirely realistic. One apparent flaw, which we intend to remedy in this paper, is that
they do not take into account the cost of constructing stations or stops, which are nicely modelled
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by ∂R in the language of currents. Indeed, ∂R may have infinite mass, or even be unrectifiable, the
corresponding measure being absolutely continuous with respect to the Lebesgue measure. Traffic
may enter the network from anywhere. The next examples demonstrate these problems.

EXAMPLE 1.1 Let x1 = 0 < x2 < · · · < x∞ = 1, xi ↗ 1. Set µ− , δx1 + (2/3)
∑
∞

i=1 2−iδx2i+1 ,
and µ+ ,

∑
∞

i=1 2−iδx2i + (2/3)δx∞ . Then µ+(R) = µ−(R) = 1 + 2/3 < ∞, and the optimal
current connecting µ+ with µ− is T =

∑
∞

i=1[φiJx2i−1, x2iK + (φi − 2−i)Jx2i, x2i+1K], where
φi , 1 − (1/3)

∑i−1
j=1 2−j . This is because some mass must be transported from x1 to x∞, and T

must be supported in the convex hull of the support of µ. In the model (1.2), T splits into W and R
by a parameter-dependent threshold on the density of T [14, Theorem 10.4], which alternates here
above and below 2/3 = limi→∞ φi , with φi − 2−i < 2/3 < φi . Therefore, a suitable choice of
parameters ensures R =

∑
∞

i=1 φiJx2i−1, x2iK. But then M(∂R) = 2
∑
∞

i=1 φi = ∞.

EXAMPLE 1.2 Let µ , id(H1x[−1, 1]×{0}) in R2. Then the corresponding optimal current must
be T , J(−1, 0), (1, 0)Kxθ , where θ(t) =

∫ t
−1−s ds = (1− t2)/2. As above, R = T x{θ > α} for

some α > 0. If α < 1/2, then for τ ,
√

1− 2α, ∂R(ω) =
∫ τ
−τ
ω′(t)θ(t) dt = α[ω(τ)−ω(−τ)]+∫ τ

−τ
ω(s)s ds, which is unrectifiable, not being a countable sum of Dirac masses.

Our task in this paper is thus to add a cost for ∂R, and to study the properties that follow for R.
The rest of this paper is laid out as follows. First in Section 2, we present some background

information on currents and transportation problems. Then, in Section 3, we study notions of
connectedness of currents. This section forms the main part of the paper, and allows us to work
in a rather abstract and even discrete manner in the following Section 4. There we introduce our
cost functional in a general form and study the properties of optimal R that follow under some
abstract assumptions. In the final Section 5 we provide a more detailed analysis of the problem
when the cost functional has a specific form employing weighted areas Mα . In Appendix A we also
consider connectedness in a special case related to functions of bounded variation, and previous
notions of indecomposability for sets of finite perimeter.

2. Preliminaries

2.1 Basics on currents

Following Federer [11] or Morgan [13], a k-dimensional current T ∈ Dk(Rm) is defined as a linear
functional on k-dimensional differential forms in Rm. When k > 1, the boundary is the k − 1-
dimensional current defined by ∂T (ω) , T (dω). The support is the smallest closed set supp T
such that T (ω) = 0 whenever suppω ∩ supp T = 0. The mass is defined as M(T ) , sup{T (ω) |
‖ω‖∞ 6 1}. T is representable by integration if T (ω) = τT ∧ µT ,

∫
〈ω, τT 〉 dµT for some

measure µT and a unit vector field τT . Such a representation exists when M(T ) <∞.
When θ is a C∞ function, we define (T xθ)(ω) = T (θ ∧ ω). When T is representable by

integration, this may be extended to other Borel functions. In particular, for the indicator function χA
of a Borel set A, we set (T xA)(ω) = T (χA ∧ ω) =

∫
A
〈ω, τT 〉 dµT .

T is a normal current if the support is compact and M(T )+M(∂T ) <∞. If we define the flat
norm F(T ) , inf{M(T − ∂Q) +M(Q) | Q ∈ Dk+1(Rm)}, then the flat chains are the closure of
the space of normal currents in this norm.

T is said to be real rectifiable if µT = θHkxΣ for a Borel map θ , a rectifiable set Σ , i.e.,
a countable union of images of Lipschitz maps, and τT a tangent vector field of Σ . When τT is
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implicit, we denote T = JΣKxθ . IfΣ is a finite union of k-dimensional simplices, and θ is constant
on each simplex, then T is a polyhedral current.

If γ : [0, 1] → Rm is a Lipschitz curve, we define the one-dimensional current Jγ K by
Jγ K(ω) ,

∫ 1
0 〈γ
′(t), ω(γ (t))〉 dt . The result is independent of the parametrisation. We also let

Jx, yK , Jt 7→ x + t (y − x)K denote the current corresponding to the straight line segment from x

to y (∂Jx, yK = δy − δx).
When S is a 0-dimensional current with finite mass, hence a signed measure, we denote by S+

and S− the positive and negative parts of S (as a measure).

2.2 Subcurrents

Following Paolini and Stepanov [14], we say that S is a subcurrent of T , denoted S 6 T , if

M(T − S)+M(S) 6 M(T ). (2.1)

When T is representable by integration as T = τT ∧ µT , and S 6 T , there is according to [14,
Lemma 3.7] a Borel function σ : Rm→ [0, 1] such that S = T xσ = τT ∧ σµT .

The current C is a cycle if ∂C = 0. T is said to be acyclic if C 6 T being a cycle implies C = 0.
A circuit of T is a pair of distinct subcurrents C1, C2 6 T such that C1 − C2 is a cycle, i.e.,

∂(C1 − C2) = 0. T containing no circuit obviously implies acyclicity.

2.3 Transport measures

Let γ1, γ2 : [0, 1]→ Rm be Lipschitz curves. We equip them with the distance

dΓ̄ (γ1, γ2) = inf{ max
t∈[0,1]

‖γ̂1(t)− γ̂2(t)‖ | γ̂i is a parametrisation of γi},

where “γ̂ is a parametrisation of γ ” means that γ̂ is a Lipschitz curve satisfying γ̂ = γ ◦ ψ for
some continuous surjective non-decreasing map ψ : [0, 1]→ [0, 1]. We often identify curves with
the corresponding parametrisation equivalence class, and denote the space of the latter by Γ̄ . Then
dΓ̄ forms a metric on Γ̄ .

We now recall from [14, Theorem 6.3] that an acyclic 1-dimensional normal current T can be
represented by a transport measure, in the form

T (ω) = JηK(ω) ,
∫

Jγ K(ω) dη(γ ). (2.2)

Here η is a Borel measure over Γ̄ such that η0 = (∂T )−, η1 = (∂T )+, and ηi(D) , η{γ |

γ (i) ∈ D} = (pi)#η(D), pi(γ ) , γ (i) for Borel sets D. In fact, we may take the γ to be a.e. arcs,
i.e., non-self-crossing.

We then have µT (D) =
∫

M(Jγ KxD) dη(γ ) and T xD(ω) =
∫
Jγ KxD(ω) dη(γ ) for Borel

sets D. Also every restriction of the transport integral on a Borel set Γ of (equivalence classes of)
curves, forms a subcurrent ω 7→

∫
Γ

Jγ K(ω) dη(γ ) of R.
We recall that the transiting mass function is defined as αη(x) , η({γ | x ∈ img γ }), and that

θ = αη H1-a.e. whenever T = JηK = JΣKxθ is normal real rectifiable and acyclic [14, Lemmas 7.1
& 7.2].

We will occasionally be stopping curves upon entrance or leaving a closed set, along the theme
of the next lemma.
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LEMMA 2.1 Let D be a closed set, and suppose Γ̄ is equipped with a σ -finite measure. Then
there exists an almost everywhere defined Borel measurable extension to Γ̄ of the map v : γ 7→
γ x[0, inf{t > 0 | γ (t) ∈ D}], when for a 6 b and a Lipschitz curve γ , we define

γ x[a, b] : t ∈ [0, 1] 7→ γ (max{a,min{t, b}}).

Proof. We first consider the measurability of v on individual curves (instead of equivalence
classes), with metric d(γ1, γ2) , maxt∈[0,1] ‖γ1(t) − γ2(t)‖. We define the entrance time τ(γ ) =
inf{t > 0 | γ (t) ∈ D}, the helper function f (γ, t)(s) , γ (min{s, t}), and the stopped path
v(γ ) , f (γ, τ (γ )). The entrance time τ is upper-semicontinuous and hence measurable: If
maxt∈[0,1] ‖γk(t)−γ (t)‖ → 0, then (for a subsequence)D 3 γk(τ (γk))→ γ (limk τ(γk)). SinceD
is closed, γ (limk τ(γk)) ∈ D, so limk τ(γk) > τ(γ ). The transformation v is therefore measurable
as a function on individual Lipschitz curves. Since f is a Carathéodory function, being continuous
in each variable separately with the other fixed, and the space of Lipschitz curves is a subset of
the complete separable space of continuous functions, the transformation v is thus measurable as a
function on individual Lipschitz curves (see, e.g., [4, Lemma 8.2.3]).

Finally, we extend v to equivalence classes as g ◦ v ◦ h, where g : γ 7→ γ̄ maps γ to the
corresponding equivalence class γ̄ , and h is a selection of g−1. The function g is continuous, hence
measurable. We want h to be measurable as well. Towards that end, note that the graph of g is
measurable by the continuity of g. Also, the set of Lipschitz paths is a Borel measurable subset of
the complete separable space of continuous functions (every subset of curves with Lipschitz factor
bounded by a given constant being closed). Hence, by the Neumann–Aumann measurable selection
theorem (see, e.g., [12, 9]), there is a measurable function h such that h(γ̄ ) ∈ g−1(γ̄ ) a.e. Therefore
g ◦ v ◦ h is measurable. 2

3. Notions of connectedness of currents

3.1 Intersections and unions of currents

DEFINITION 3.1 Given two finite-mass currents S and T , we define the intersection S ∧ T as the
greatest current R (in the subcurrent order) such that R 6 S, T . Likewise, when S, T 6 S + T , the
union S ∨ T is defined to be the smallest current R such that S, T 6 R.

LEMMA 3.1 S∧T and S∨T are well-defined. Furthermore, S∨T = S+T −S∧T when defined.

Proof. Since the currents are assumed to have finite mass, S = τS ∧ µS and T = τT ∧ µT can be
represented by integration. Consequently, any current R such that R 6 S, T has R = τS ∧ σSµS =
τT ∧σTµT for some Borel maps σS, σT : Rm→ [0, 1]. This says thatR 6 R̂ , τS∧[(µS∧µT )xD],
where D , {x ∈ Rm | τS(x) = τT (x)}. We must then have S ∧ T = R̂, which means that it is
well-defined.

As for S ∨ T , suppose S, T 6 R 6 S + T . Then

S + T − R 6 S, T , (3.1)

as follows from applying the definition of subcurrents: Combining M(R) +M(R − (S + T )) 6
M(S+T ) and M(R−T )+M(T ) 6 M(R) gives M(R−T )+M(R−(S+T )) 6 M(S+T )−M(T ) 6
M(S), which is just S+T −R 6 S. The proof for T is analogous. The minimal current R for which
(3.1) can hold is given by S + T − R = S ∧ T . 2
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REMARK 3.1 If Si = τi ∧ σiµT , σi > 0, i = 1, 2, then S1 ∧ S2 = τT ∧ min{σ1, σ2}µT , and
S1 ∨ S2 = τT ∧max{σ1, σ2}µT .

If S3 has a similar expression, one easily observes that also (S1∨S2)∧S3 = (S1∧S3)∨(S2∧S3)

and (S1 ∧ S2) ∧ S3 = (S1 ∧ S3) ∧ (S2 ∧ S3). In particular, (S1 ∨ S2)xV = (S1xV ) ∨ (S2xV ) and
(S1 ∧ S2)xV = (S2xV ) ∧ (S2xV ) for a Borel set V .

LEMMA 3.2 Suppose S1, S2 6 T . Then T = S1 ∨ S2 + (T − S1) ∧ (T − S2).

Proof. If X 6 T , then S1, S2 6 X if and only if T − X 6 T − S1, T − S2 by the definition (2.1)
of a subcurrent. Thus, taking X = S1 ∨ S2, we find T − S1 ∨ S2 6 (T − S1)∧ (T − S2). Likewise,
taking X′ , T − (T − S1) ∧ (T − S2), we find S1 ∨ S2 6 T − (T − S1) ∧ (T − S2). We thus
have T − X 6 T − X′ and X 6 X′. As also X,X′ 6 T , we find M(X − X′) = 0 or X = X′ by
application of the definition (2.1). 2

LEMMA 3.3 Suppose S1, S2 and T are finite mass currents, and that S1 ∨ S2 is defined. Then
T ∧ (S1 + S2) 6 T ∧ S1 + T ∧ S2. If (T ∧ S1)∧ (T ∧ S2) = 0, then equality holds. In particular, if
S1 ∧ T = 0, then T ∧ (S1 + S2) = T ∧ S2.

Proof. Since S , S1 ∨ S2 is defined, we may express Si = Sxσi , where σi : Rm → [0, 1] are
Borel maps. We may further assume the similar expression T = SxσT , possibly after redefining T
as T ∧ (S1 + S2), the remainder not playing a role since T ∧ Si = T ∧ Si ∧ (S1 + S2). Therefore
T ∧ (S1 + S2) = Sxmin{σT , σ1 + σ2} 6 Sx(min{σT , σ1} +min{σT , σ2}) = T ∧ S1 + T ∧ S2.

Now, if T ∧ S1 = 0, clearly T ∧ (S1 + S2) 6 T ∧ S2 from the first part. For the other direction,
recall that S1∨S2 is defined when S1, S2 6 S1+S2. Therefore, ifX 6 S2, T , thenX 6 S1+S2, T .
In particular, with X , T ∧ S2, we find T ∧ S2 6 T ∧ (S1 + S2).

Finally, rewriting T ∧ (S1 + S2) = T ∧ (S1 ∨ S2 + S1 ∧ S2) and employing the assumption
0 = (T ∧ S1) ∧ (T ∧ S2) = T ∧ (S1 ∧ S2) in the result of the previous paragraph, we find
T ∧(S1+S2) = T ∧(S1∨S2) = (T ∧S1)∨(T ∧S2) = (T ∧S1)+(T ∧S2)−(T ∧S1)∧(T ∧S2) =

(T ∧ S1)+ (T ∧ S2). 2

3.2 Connectedness by splitting

DEFINITION 3.2 Suppose T is a current with finite mass, and V is a Borel set, assumed to be Rm
if left unspecified.

(i) The subcurrents A,B 6 T split T if A+ B = T and A ∧ B = 0.
(ii) The currents A,B primitive-decompose a normal current S in V if they split S, are normal, and

∂AxV, ∂BxV split ∂SxV .1

(iii) Two currents A,B are said to decompose T into a pair of disjoint components in V if A and
B split T xV , and every normal subcurrent S 6 T xV is primitive-decomposed in V by A ∧ S
and B ∧ S.

(iv) The current T is said to be connected in V if A,B decomposing T into a pair of disjoint
components in V implies A = T xV or B = T xV .

(v) A disjoint component S of T in V , which is connected in V , is called a connected component
(of T in V ).

1 The precedence in our notation is ∂AxV = (∂A)xV .
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REMARK 3.2 From the definitions, we observe:

(i) B = T xV − A. It is often more convenient to explicitly mention B, however.
(ii) If A,B split T , then since (A ∧ S) ∧ (B ∧ S) = S ∧ (A ∧ B) = 0, according to Lemma 3.3,

A∧ S,B ∧ S split S 6 T . Consequently, one immediately observes that if A,B decompose T
into disjoint components in V , then A ∧ S, B ∧ S decompose any S 6 T into disjoint
components in V .

(iii) If T is not connected, it consists of at least two disjoint components, given by theA,B violating
the definition.

(iv) If T has no non-trivial normal subcurrent, and has non-singleton support, then it is not
connected.

REMARK 3.3 The notion of T being connected is less strict than that of an indecomposable current
as defined by Federer [11] for integral currents. It amounts to the non-existence of a non-trivial
integral current A 6 T with ∂A 6 ∂T . The current of the next example is decomposable.

With regard to the notion of indecomposability of sets of finite perimeter considered in, e.g.,
Ambrosio et al. [3, 2] and references therein, closer equivalence can be shown, as in this case the
subcurrent splitting requirements become superfluous. We relegate this study to Appendix A.

EXAMPLE 3.1 Consider T , A + B , J−1, 0K + J1, 0K. Then the individual segments satisfy
all the conditions for disjointness, except ∂A ∧ ∂B = 0. Thus our notion of connectedness allows
“traversing T in reverse”; it is akin to connectedness of support sets.

EXAMPLE 3.2 Let T , J(−1,−1), (1, 1)K + J(1,−1), (−1, 1)K. Then itself T is primitive-
decomposed by A , J(−1,−1), 0K + J0, (−1, 1)K and B , T − A, but the subcurrent S ,
J(−1,−1), (1, 1)K is not primitive-decomposed by A∧S = J(−1,−1), 0K and B ∧S = J0, (1, 1)K.

We need to show that the definition of a disjoint component is sound. This is done by the
following lemmas.

LEMMA 3.4 Suppose A is a disjoint component of a finite mass current T in V , and C a disjoint
(resp. connected) component of A in U ⊂ V . Then C is a disjoint (resp. connected) component
of T in U .

Proof. Let B = T xV − A, D = AxU − C, and E = T xU − C = BxU + D. Clearly C and E
split T xU , since C 6 AxU 6 T xU . Also note that D 6 AxU , while B ∧D = 0.

Suppose then that S 6 T xU is normal. Then C ∧ S = C ∧ (A ∧ S) is also normal, since
A primitive-decomposes S in U ⊂ V , whence A ∧ S 6 AxU is normal and therefore primitive-
decomposed by C. Likewise E ∧ S = B ∧ S + D ∧ S is normal, after noting that (BxU) ∧ S =
B ∧ (SxU) = B ∧ S.

By the same primitive-decomposition properties, we also have ∂(C ∧ S)xU = ∂(C ∧

(A ∧ S))xU 6 ∂(A ∧ S)xU 6 ∂SxU . Likewise ∂(D ∧ S)xU 6 ∂(A ∧ S)xU 6 ∂SxU ,
and ∂((BxU) ∧ S)xU = ∂(B ∧ S)xU 6 ∂SxU . Therefore, we can also calculate ∂(B ∧ S) ∧
∂(D ∧ S)xU 6 ∂(B ∧ S) ∧ ∂(A ∧ S)xU = 0. Consequently, applying Lemma 3.3, also
∂(E ∧ S)xU = ∂(B ∧ S)xU + ∂(D ∧ S)xU 6 ∂SxU .

Finally, Lemma 3.3 also allows us to deduce ∂(C∧S)∧∂(E∧S)xU = ∂(C∧S)∧∂(B∧S)xU+
∂(C∧S)∧ ∂(D∧S)xU = 0. The last equality follows because C andD decompose A into disjoint
components in U , because ∂(C ∧ S)xU 6 ∂(A ∧ S)xU , as shown above, and, finally, because A
and B decompose T into disjoint components in V ⊃ U .
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Thus we have shown that C remains a disjoint component of T in U . Since the definition of
connectedness of C in U does not depend on T , it remains a connected component of T in U . 2

REMARK 3.4 In particular, taking V = U , we find that a disjoint component of a disjoint
component of T , is a disjoint component of T (all in V ).

LEMMA 3.5 Suppose Ai, Bi decompose the finite mass current T into disjoint components in the
Borel set Vi for i = 1, 2. ThenA1∧A2 is a (possibly zero) disjoint component of T in V , V1∩V2.
The same applies to (A1 ∨ A2)xV .

Proof. As noted in Remark 3.2, A1 ∧ A2 is a disjoint component of A2 in V1, hence also V ⊂ V1.
By Lemma 3.4, A1 ∧ A2 is then a disjoint component of T in V .

The claim on the union follows from the claim on the intersection. Applying Lemma 3.2 in the
second equality, we find

(A1 ∨ A2)xV = (A1xV ) ∨ (A2xV ) = T xV − (T xV − A1xV ) ∧ (T xV − A2xV )

= T xV − (T xV1 − A1) ∧ (T xV2 − A2)xV = T xV − B1 ∧ B2.

But B1 ∧ B2 is a disjoint component of T in V by the first part. 2

LEMMA 3.6 Suppose T1 and T2 are finite mass currents connected in V , and that T1∨T2 is defined.
If there are Si 6 TixV , i = 1, 2, such that either S1 ∧ S2 6= 0, or Si are normal and (∂S1 ∧ ∂S2)xV
6= 0, then T1 ∨ T2 is connected in V .

Proof. Let T , T1 ∨ T2. Suppose A,B 6 T xV decompose T into disjoint components in V . Then
(for every Si 6 Ti 6 T ) we findA∧Si = Ai∧Si , (A∧Ti)∧Si andB∧Si = Bi∧Si , (B∧Ti)∧Si .
Consequently Ai, Bi 6 TixV = Ti ∧ (T xV ) are disjoint components of Ti in V . But, since Ti is
connected in V , either Ai = TixV or Bi = TixV for both i = 1, 2. We may assume A1 = T1xV .

Suppose B2 = T2xV . Then A2 = A∧T2 = 0. We have T1xV = A1 = A∧T1 = A∧ (T −T2−

T1 ∧ T2), whence Lemma 3.3 allows us to deduce T1xV = A ∧ T = A. Analogously we obtain
T2xV = B.

But now S1 = S1 ∧ (T1xV ) = S1 ∧ A and S2 = S2 ∧ (T2xV ) = S2 ∧ B. Therefore S1 ∧ S2 =

(S1∧S2)∧(A∧B) = 0, providing a contradiction if S1∧S2 6= 0. Otherwise, S , S1+S2 = S1∨S2 6
T xV is normal, and S∧A = S1 and S∧B = S2. Therefore, since A and B primitive-decompose S,
(∂S1 ∧ ∂S2)xV = 0, contrary to assumption.

We may consequently assume that also A2 = T2xV , whence Bi = B ∧ Ti = 0 for i = 1, 2.
Therefore B = B ∧ T xV = B ∧ (T1 + T2 − T1 ∧ T2)xV = 0, by employing Lemma 3.3 again.
Consequently, we must have A = T xV , and accordingly T1 ∨ T2 is connected. 2

LEMMA 3.7 Suppose T has finite mass and U ⊂ V are Borel sets with µT (V \ U) = 0. If A is
a disjoint component of T in V , then A is a disjoint component of T in U . Consequently, if T is
connected in U , then it is connected in V .

Proof. T xU and 0 trivially decompose T into disjoint components in U . Therefore, by Lemma 3.5,
A ∧ (T xU) = AxU is a disjoint component of T in U = V ∩ U . Now, if µT (V \ U) = 0, then
AxU = AxV = A. Therefore A is a disjoint component of T in U . The claim on connectedness
follows from the definition and the first claim. (Note, however, that A being connected in V does
not imply the same in U .) 2
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LEMMA 3.8 Suppose U ⊂ V are Borel sets such that µT (V c) = 0. If A is a disjoint component
of T in U , and ∂(A ∧ S)xV c = 0 for all normal S 6 T xU , then A is a disjoint component of T in
U ∪ V c.

Proof. Clearly A and T xU − A split T x(U ∪ V c) = T xU , since µT (V c) = 0. Also, ∂(A ∧ S)x
(U ∪ V c) = ∂(A ∧ S)xU + ∂(A ∧ S)xV c = ∂(A ∧ S)xU , since U ∩ V c = U \ V = ∅. Thus the
boundary-splitting requirements continue to hold. 2

3.3 Connections and edges

In this subsection, we consider one-dimensional normal currents T with real rectifiable boundary.
Thus ∂T =

∑
∞

i=1 αiδxi , αi 6= 0. We call the points xi the boundary points of T , and use the notation
imgψ , {x | αδx 6 ψ, α 6= 0} for real rectifiable 0-dimensional currents ψ of finite mass, such
as ∂T . This can differ from the support, which is a closed set. We also abuse notation slightly and
set ψ(x) , α whenever ψx{x} = αδx .

DEFINITION 3.3 Suppose V is an open set, and T a normal current. We then make the following
definitions:

(i) A normal acyclic subcurrent E 6 T is an edge of T in V if suppE ⊂ V , and ∂E = α(δx − δy)
for some x, y ∈ Rm and α 6= 0.

(ii) A finite sequence of edges E1, . . . , En 6 T in V and directions τi ∈ {−1,+1} with ∂Ei =
τiα(δxi+1 − δxi ) forms a connection between x1 and xn+1 in V . The number α > 0 is called
the strength of the connection.

(iii) If ∂T is real rectifiable, T is edge-connected in V if there exists a connection in V between
every x, y ∈ img(∂T xV ).

REMARK 3.5 The existence of a connection between two points is an equivalence relation, thus in
particular transitive.

EXAMPLE 3.3 Consider again the polyhedral 1-dimensional chain T = J−1, 0K + J1, 0K in R.
There exists no single edge between −1 and 1, but E1 , J−1, 0K and E2 , J1, 0K connect these
points.

LEMMA 3.9 Suppose T is a normal current and V an open set. Then every edge E of T in V is
connected in V .

Proof. If A 6 T is normal, the compact support and finite M(∂A) imply µ∂A(Rm) = 0.
Furthermore, if A 6 E, then since suppA ⊂ suppE ⊂ V , we have A = AxV and ∂A = ∂AxV .
Therefore we may assume V = Rm.

Now, if A 6 E and E − A primitive-decompose E, then ∂A 6 ∂E = α(δy − δx). Thus
∂A = β(δy − δx) for some β ∈ [0, α]. But then from ∂A ∧ ∂(E − A) = 0 we have β = 0 or
β = 1. By the acyclicity of E, ∂A = 0 implies A = 0, while ∂A = ∂E implies A = E. Thus E is
connected. 2

LEMMA 3.10 Suppose E is an edge with no circuits. Then E = αJγ K for a Lipschitz path γ and
α > 0.

Proof. Since E is normal, we may express E = JηK for a transport measure η. We claim that η
must be concentrated on a single path γ . For, if there were disjoint measurable sets Γ and Γ ′ with
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ηxΓ, ηxΓ ′ 6= 0, then these restrictions would form a circuit in violation of that assumption. It
remains to show that such sets can be found if η is not concentrated on a single path. Let Ω be a
compact convex set such that suppE ⊂ Ω , and Γ` , {γ ∈ Γ̄ | H1(img γ ) 6 `, supp γ ⊂ Ω}. We
may assume η is concentrated on Γ` for some ` > 0, for otherwise Γ` and Γ c` are the sets we are
after. But Γ 1 , Γ` is compact [7]. Therefore, we can find a finite cover of open balls, {U(γi, 1) |
i = 1, . . . , n}. If there are two balls with indices i and j such that η(U(γi, 1) \ U(γj , 1)) > 0
and η(U(γj , 1) \ U(γi, 1)) > 0, we have found our sets Γ and Γ ′. Otherwise η is concentrated
on Γ 2 , B(γi, 1) ∩ Γ 1 for some i, and we continue by covering Γ 2 with balls of diameter 1/2.
By recursively repeating the process this way, eventually

⋂
∞

i=1 Γ
i
= {γ }, since {Γ i} is a nested

sequence of closed sets of diameters tending to zero. Thus η is concentrated on {γ }. 2

LEMMA 3.11 Suppose T contains no circuit. Then any connection E1, . . . , En in T can be
assumed to consist of Lipschitz paths Ei = αJγiK with Ei ∧ Ej = 0 for i 6= j .

Proof. By Lemma 3.10, Ei = αJγiK, while by definition ∂Ei = τiα(δxi+1 − δxi ). If γi(ti) = γj (tj )
for ti, tj ∈ (0, 1) (i 6 j ), we may remove the edges Ei+1, . . . , Ej−1 from the connection, and
replace Ei (resp. Ej ) by the segment before or after ti depending on the direction τi . 2

3.4 Equivalence

To show partial equivalence between the notion of connectedness in Definitions 3.2 and 3.3, we
require the following concept of a bundle, and some related results. As can be seen from the proof
of Lemma 3.12 below, the notion bears some resemblance to the trunk trees of Bernot et al. [5], but
we do not require the single-path property.

DEFINITION 3.4 An acyclic normal current S is called a bundle if there is a point x ∈ Rm such
that S can be primitive-decomposed in {x}c into A and B with ∂Ax{x}c = −(∂S)−x{x}c and
∂Bx{x}c = (∂S)+x{x}c.

A bundle S 6 T xV with ∂SxV 6 ∂T xV is called a V -subbundle.

LEMMA 3.12 Suppose S is a one-dimensional bundle. Then there exists a transport measure
JηK = S, and connections in S between all z ∈ Rm with αη(z) > 0.

Proof. Let x, A = JηAK, and B = JηBK be as in Definition 3.4. ForX = A,B, we letmX , ηX(Γ̄ )

(= ηX,0(Rm) = ηX,1(Rm)), and assume that mA +mB > 0, the case S = 0 being trivial.
For γA ∈ suppA and γB ∈ suppB, let

(γA · γB)(t) ,

{
γA(2t), t ∈ [0, 1/2],
γB(2t − 1), t ∈ (1/2, 1].

Clearly (·) is continuous, hence measurable. Also JγA · γBK = JγAK + JγBK. Thus, if we let η̃ ,
(·)#(ηA × ηB), then Jη̃K = mBJηAK + mAJηBK. Furthermore, η̃0 = mB(∂A)

−
= mB(∂S)

−x{x}c,
and η̃1 = mA(∂B)

+
= mA(∂S)

+x{x}c, since γA(1) = γB(0) = x a.e. Thus, with

η ,

{
η̃/mA + (1−mB/mA)ηA, mA > mB ,

η̃/mB + (1−mA/mB)ηB , mA < mB ,

we have JηK = JηAK+ JηBK = S, η1 = (∂S)
+, and η0 = (∂S)

−. Therefore η is a transport measure
for S.
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Now, as one can see by application of Fubini’s theorem,

αη̃(z) =

∫ ∫
χimg(γA·γB )(z) dη(γA) dη(γB) 6

∫ ∫
(χimg γA(z)+ χimg γB (z)) dη(γA) dη(γB)

6 mBαηA(z)+mAαηB (z).

Therefore αη(z) > 0 implies that either αηA(z) > 0 or αηB (z) > 0. We assume the former, the latter
case being analogous.

Let then Γ , {γ ∈ supp ηA | z ∈ img γ }. Define τ(γ ) , inf{t | γ (t) = z} and v(γ ) ,
γ x[τ(γ ), 1] for γ ∈ Γ . Then v is seen to be measurable by adapting Lemma 2.1. Also let E ,
Jv#(ηxΓ )K, i.e.,E(ω) =

∫
Γ

Jγ x[τ(γ ), 1]K(ω) dηA(γ ). Then ∂E = αηA(z)(δx−δz), because γ (1) =
x ηA-a.e. and αηA(z) = ηA(Γ ). Thus we have found an edge between x and z. Such edges connect
all z with αη(z) > 0 via x. 2

LEMMA 3.13 Suppose S 6 T is a one-dimensional bundle and S′ 6 T a normal current with
0 6= −∂S′ 6 ∂S. Then S + S′ contains a cycle if non-zero.

Proof. Since −∂S′ 6 ∂S, there is a density f = f+ + f− such that ∂S′ = −f ∂S ((∂S′)∓ =
f±(∂S)±). Let x ∈ Rm,A = JηAK andB = JηBK be as in Definition 3.4. DefineA′ , J(f−◦p0)ηAK
and B ′ , J(f+ ◦ p1)ηBK. Then

∂A′(ω) =

∫
Jγ K(dω)(f− ◦ p0)(γ ) dηA(γ )

=

∫
(δp1(γ )(ω)− δp0(γ )(ω))(f

−
◦ p0)(γ ) dηA(γ )

=

∫
δx(ω)(f

−
◦ p0)(γ ) dηA(γ )−

∫
δz(ω)f

−(z) dηA,0(z)

= δx(ω)(f
−ηA,0)(Rm)− (f−ηA,0)(ω)

= (∂S′)+({x}c)δx(ω)− (∂S
′)+x{x}c(ω). (3.2)

Likewise,
∂B ′(ω) = −(∂S′)−({x}c)δx(ω)+ (∂S

′)−x{x}c(ω).

Thus
∂A′ + ∂B ′ + ∂S′ = ∂S′({x}c)δx − ∂S

′x{x}c + ∂S′ = 0,

where the latter equality follows because ∂S′({x}c)+ ∂S′({x}) = ∂S′(Rm) = 0 by the compactness
of the support of S′. Finally, we cannot have both S′ 6 T and −S′ = A′ + B ′ 6 S 6 T unless
S′ = 0, so A′ + B ′ + S′ 6= 0. 2

LEMMA 3.14 Suppose S is an acyclic one-dimensional real rectifiable normal current. Then S =∑
∞

i=1 Si , with each Si a subbundle of S.

Proof. We may assume S 6= 0. Represent S = JηK. Let a1 = ess supαη (inH1 sense). Then a1 > 0
by the rectifiability of S. Choose x such that αη(x) > a1; such a point exists because αη is upper-
semicontinuous by [14, Lemma 7.2], and has compact support. Let Γ1 , {γ ∈ supp η | x ∈ img γ }
and S1 , JηxΓ1K. Then M(∂S1)/2 > a1 and ∂S1 6 ∂S. Indeed, S1 is a subbundle of S, as seen by
cutting each γ ∈ Γ1 into two parts at x as follows: Similarly to the proof of Lemma 3.12, define
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fA(γ ) , γ x[0, inf{t | γ (t) = x}] and fB(γ ) , γ x[inf{t | γ (t) = x}, 1], measurable on Γ1 by
adapting Lemma 2.1. Then let X = J(fX)#(ηxΓ1)K for X = A,B.

Next we form S2 similarly from S − S1 = JηxΓ c1 K, and recursively continue the process. Let
S′ , S −

∑
∞

i=1 Si = Jηx(
⋃
∞

i=1 Γi)
cK. We get ess supαηx(⋃Γi )

c 6 limi→∞ ai = 0 thanks to the
bound

∑
∞

i=1 ai 6 M(∂S)/2 <∞ from the construction. Therefore S′ = 0, that is, S =
∑
∞

i=1 Si . 2

LEMMA 3.15 Suppose T is an acyclic normal current, V an open set, and S 6 T xV a one-
dimensional bundle. Then there is a V -subbundle T ′ of T with S 6 T ′ and ∂S ∧ ∂T xV 6 ∂T ′.

Proof. We first consider the case V = Rm. Let I , ∂S ∧ ∂(S − T ). Since I 6 ∂S, ∂(S − T ), there
are densities f , f+ + f− and g , g+ + g− with f±(x), g±(x) ∈ [0, 1] a.e., I± = f±(∂S)±,
and I∓ = g±(∂(S − T ))∓ = g±(∂(T − S))±. (Note the signs!) Now,

∂T = ∂S + ∂(T − S) = f ∂S + (1− f )∂S + g∂(T − S)+ (1− g)∂(T − S)
= I + (1− f )∂S − I + (1− g)∂(T − S) = (1− f )∂S + (1− g)∂(T − S).

Since a.e. f± 6 f±+(1−f±)(1−g∓) = 1−(1−f±)g∓ 6 1 and g∓ 6 g∓+(1−f±)(1−g∓) =
1− (1− g∓)g± 6 1, we must have (1− f±)(1− g∓) = 0 a.e., for otherwise I± could not be the
maximal subcurrent of both ∂S and ∂(S−T ). Therefore, ((1−f )∂S)±∧ ((1− g)∂(T −S))∓ = 0,
and consequently also

(∂T )± = (1− f±)(∂S)± + (1− g±)(∂(T − S))±. (3.3)

Represent T − S = JηK, and let A′ , A+ J(g+ ◦ p1)ηK and B ′ , B + J(g− ◦ p0)ηK, where A
and B are as in Definition 3.4. Then, following the derivation of (3.2),

∂A′(ω) = ∂A(ω)+

∫
δz(ω)g

+(z)dη1(z)−

∫
δp0(γ )(ω)(g

+
◦ p1)(γ ) dη(γ )

= ∂A(ω)+ I−(ω)−

∫
δp0(·)(ω)(g

+
◦ p1)((1− g−) ◦ p0) dη

= ∂A(ω)+ (f−(∂S)−)(ω)− (h−(∂(T − S))−)(ω) (3.4)

for some density h− 6 1 − g−. The second equality holds because (1 − g−) ◦ p0 = 1 a.e. for
(g+ ◦ p1)η. Otherwise we would have η({γ | (g− ◦ p0)(γ )(g

+
◦ p1)(γ ) > 0}) > 0, and then

a cycle could be constructed by application of Lemma 3.13 with S′ , J(g− ◦ p0)(g
+
◦ p1)ηK.

The existence of h− follows from noting that ((1 − g)∂(T − S))−(ω) =
∫
ω(1 − g−) dη0 =∫

δp0(·)(ω)((1− g
−) ◦ p0) dη.

Similarly to (3.4),

∂B ′(ω) = ∂B(ω)− (f+(∂S)+)(ω)+ (h+(∂(T − S))+)(ω).

Since ∂Ax{x}c = −(∂S)−x{x}c and ∂Bx{x}c = (∂S)+x{x}c, we have

∂A′x{x}c = −[(1− f−)(∂S)− + h−(∂(T − S))−]x{x}c,

∂B ′x{x}c = [(1− f+)(∂S)+ + h+(∂(T − S))+]x{x}c.

Letting T ′ , A′ + B ′ and recalling that ∂A+ ∂B = ∂S, we have

∂T ′ = (1− f )∂S + h∂(T − S), with h , h+ + h− > 0.
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Since h± 6 1 − g± a.e., we see by reasoning similarly to (3.3) that (∂T ′)± = (1 − f±)(∂S)± +
h±(∂(T − S))±. Hence ∂T ′ 6 ∂T . Also, from this property, ∂A′x{x}c = −(∂T ′)−x{x}c and
∂B ′x{x}c = (∂T ′)+x{x}c. Thus T ′ is a subbundle of T with S 6 T ′.

Finally, by (3.3), Lemma 3.3 and the fact

(1− g±)(∂(T − S))± ∧ f±(∂S)± = (1− g±)(∂(T − S))± ∧ g∓(∂(T − S))∓ = 0,

we find (∂S ∧ ∂T )± = (∂S)± ∧ (∂T )± = (1− f±)(∂S)±. Hence (∂S ∧ ∂T )± 6 (∂T ′)±. The case
V = Rm has been shown.

If V ( Rm, we replace all the paths in the support of A′ − A = J(g+ ◦ p1)ηK by the paths
only beginning upon entering V . This is done by defining the map v(γ ) , γ x[sup{t > 0 |
γ (t) ∈ V c}, 1] for γ ∈ ΓV , {γ ∈ supp η | γ (1) ∈ V }. Then v is measurable by adapting
Lemma 2.1. For (g+ ◦ p1)v#(ηxΓV )-a.e. path γ , img γ \ {γ (0)} ⊂ V . We may thus redefine
A′ , A+J(g+◦p1)v#(ηxΓV )K. Similarly to (3.4), we then get for some density h−, zero outside V ,

∂A′xV (ω) = ∂AxV (ω)+
∫
V

δz(ω)g
+(z)dη1(z)−

∫
img γ⊂V

δp0(γ )(ω)(g
+
◦ p1)(γ ) dη(γ )

= ∂AxV (ω)+ (f−(∂S)−xV )(ω)− (h−(∂(T − S))−)(ω).

We do a similar modification for the paths of B ′−B = J(g− ◦p0)ηK, tracing from t = 0. The entire
reasoning above then continues to hold after masking the boundaries with V . 2

DEFINITION 3.5 C is a V -cycle if ∂CxV = 0 and CxV 6= 0.

THEOREM 3.1 Suppose T is a one-dimensional normal current with real rectifiable boundary, and
V an open set. Then we have the following equivalences:

(i) If T is edge-connected in V , contains no V -cycle disjoint in V , and T xV is normal, then T is
connected in V .

(ii) If T is connected in V , acyclic, and real rectifiable, then T is edge-connected in V .

Proof. (i) We may assume that T 6= 0. To reach a contradiction, suppose therefore that A and
B decompose T into non-trivial disjoint components in V . A and B are normal since T xV was
assumed to be. Furthermore, ∂AxV, ∂BxV 6 ∂T xV are non-zero, because T was assumed to
contain no V -cycle disjoint in V .

Suppose E is an edge of T in V . By the definition of disjointness, the fact suppE ⊂ V , and V
being open, we have ∂(A∧E), ∂(B∧E) 6 ∂E and ∂(A∧E)+∂(B∧E) = ∂E. But ∂E = α(δx−δy),
whence the compact support of T implies that either ∂(A ∧ E) = 0 or ∂(B ∧ E) = 0. We may
assume the latter, the other case being analogous. Then, by acyclicity, B ∧ E = 0, so E = A ∧ E,
i.e., E 6 A.

Suppose that SB 6 B is normal, and let S , E + SB . Then (∂E ∧ ∂SB)xV = ∂(A ∧ S) ∧

∂(B ∧ S)xV = 0, as well as ∂SBxV 6 ∂SxV = (∂SB + ∂E)xV . Therefore, if a ∈ img ∂E, then
a 6∈ img ∂SB .

Let then E1, . . . , En be a connection of T in V between any a ∈ img(∂AxV ) and b ∈
img(∂BxV ), existing by edge-connectedness and 0 6= ∂AxV, ∂BxV 6 ∂T xV . By the argument of
the previous paragraph (with SB = B, and assuming E = En 6 A), we find En 6 B. But since
there is always some x with x ∈ img ∂Ei ∩ img ∂Ei+1, the argument above (with SB = Ei+1) again
tells us that Ei 6 B for all i = 1, . . . , n. But a ∈ img ∂A and a ∈ img ∂E1 is then a contradiction
of the same result. Therefore T must be connected in V .
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(ii) We say that x0 is V -bundle-connected to xn if there exists a finite sequence of V -subbundles
Ti = JηiK, i = 1, . . . , n, with αη1(x0), αηn(xn) > 0, and either Ti∧Ti+1 6= 0, or ∂Ti∧∂Ti+1xV 6= 0
(i = 1, . . . , n − 1). In the former case H1({x ∈ Rm | αηi (x), αηi+1(x) > 0}) > 0, and in the latter
case there exists x ∈ img ∂T xV with αηi (x), αηi+1(x) > 0. Thus we find that there exist points xi
(i = 1, . . . , n − 1) with αηi (xi), αηi+1(xi) > 0. Lemma 3.12 now shows that x0 and xn are edge-
connected.

Choose then x0 ∈ img ∂T , and letΣ be the set of points V -bundled-connected to x0. By Lemma
3.12, T ′xΣ = T ′ or T ′xΣ = 0 for any V -subbundle of T . Define TA = T xΣ and TB = T xV −A.
We now intend to show that TA and TB are disjoint components of T in V . Since T xΣ 6= 0, we must
in fact have T xΣ = T . This in particular implies that there is a connection between any boundary
points of T . (Otherwise a different base point x′0 would yield Σ ′ with Σ ′ ∩Σ = 0 and T xΣ ′ 6= 0.)

Clearly TA and TB split any S 6 T xV . To show that ∂S is split in V , more work is needed.
Towards that end, decompose S into subbundles S1, S2, . . ., as shown by Lemma 3.14. (Since S =
SxV , the Si are also V -subbundles.) According to Lemma 3.15 these bundles can be extended to
V -subbundles Ti of T . Consequently, by the construction of Σ , SixΣ = Si or 0. Thus, letting
I , {i | SixΣ = Si}, we have TA∧S =

∑
i∈I Si and TB ∧S =

∑
i 6∈I Si . Therefore also TA∧S and

TB∧S are normal, ∂(TA∧S)xV, ∂(TB∧S)xV 6 ∂SxV , and ∂(TA∧S)xV +∂(TB∧S)xV = ∂SxV .
If ∂(TA ∧ S) ∧ ∂(TB ∧ S)xV 6= 0, then ∂Si ∧ ∂SjxV 6= 0 for some i ∈ I , j 6∈ I . There exists

a density h , h+ + h− with (∂Si ∧ ∂Sj )±xV = h±(∂Si)±. We may assume that h−(∂Si)− 6= 0,
the case h+(∂Si)+ 6= 0 being similar. Let Ak = JηkK, and Bk be the A and B from Definition 3.4
for Sk , k = i, j . Denote byA′i = Ai+Jη′K andB ′i the corresponding unindexed variables for Si from
Lemma 3.15. Let Âj = Aj + J(h− ◦p1)η

′K, B̂j = Bj , and Ŝj = Âj + B̂j . Finally, extend Ŝj as a V -
subbundle T̂j of T by Lemma 3.15. We must have either Ti ∧ T̂j 6= 0, or (∂Ti)− ∧ (∂T̂j )−xV 6= 0,
both of which imply j ∈ I , since T̂j > Sj . The former follows if J(h− ◦ p1)η

′K 6= 0, since
J(h− ◦ p1)η

′K 6 A′i, Âj . Otherwise, if J(h− ◦ p1)η
′K = 0, then h−(∂Si)− ∧ (∂(T − Si))+ = 0, so

h−(∂Si)
− 6 (∂T )−. But then 0 6= h−(∂Si)

− 6 (∂Ti)
−xV, (∂T̂j )−xV by Lemma 3.15. We have

thus established the contradiction j ∈ I , so T must be edge-connected. 2

3.5 The case of finite V c

With the partial equivalence of connectedness and edge-connectedness now at hand, we consider
additional properties that follow when V has the form {x1, . . . , xn}

c.

DEFINITION 3.6 A collectionA of currents is said to be mutually disjoint in V if for all A,B ∈ A
with A 6= B, A and B decompose A+ B into a pair of disjoint components in V .

REMARK 3.6 Any collection of connected components in V of a normal current T is mutually
disjoint: Suppose A1 6= A2 are connected components of T in V . By Lemma 3.5, A1 ∨ A2 is a
disjoint component of T in V , and then of Ai by Remark 3.2(ii). Thus A1∧A2 = 0 and A1+A2 =

A1∨A2. Since T xV−A1 andA1 splitA1∨A2, the same remark says that (T xV−A1)∧(A1∨A2) =

(A1 ∨ A2)− A1 = A2 and A1 ∧ (A1 ∨ A2) = A1 are disjoint components of A1 + A2.
If T is normal, any finite or countable sum of mutually disjoint (disjoint) components of T in V

is a disjoint component of T in V . This can be seen by repeated application in Definition 3.2 of the
equalities

(A1 + A2) ∧ S = (A1 ∧ S)+ (A2 ∧ S) = (A1 ∧ S) ∨ (A2 ∧ S) 6 S, A1, A2 ∈ A,
from Lemmas 3.3 and 3.1, and their boundary and V -restricted variants.
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LEMMA 3.16 Suppose T is an acyclic one-dimensional normal current with real rectifiable
boundary. Then T is a sum of at most countably many connected components in V whenever V c is
a singleton or empty. If T is real rectifiable and contains no circuit, the claim holds whenever V c is
finite.

Proof. Any disjoint component A = A ∧ T of T in V is normal (since T is) with ∂AxV 6 ∂T xV ,
∂AxV + ∂(T − A)xV = ∂T xV , and ∂A ∧ ∂(T − A)xV = 0. Therefore, actually ∂A = ∂T xU +∑
x∈V c αxδx for some set U ⊂ V and αx ∈ R.
Since ∂T is real rectifiable, there can be at most countably many mutually disjoint components

with ∂AxU 6= 0. So suppose ∂A =
∑
x∈V c αxδx . If V c is empty, the claim follows by the acyclicity

of T . If V c is a singleton, and ∂A = αxδx , compactness of the support implies αx = 0, and acyclicity
implies A = 0. Thus the claim follows.

If V c is simply finite, any disjoint component with boundary points in V c may still be assumed
connected (in Rm!). Now, when T is real rectifiable, there exist edges between the boundary points,
by Theorem 3.1. Since there are only finitely many possible boundary point combinations in V c

(although the weights can vary uncountably), a circuit can be constructed if there are uncountably
many components of T mutually disjoint in V . But T had no circuits.

We have thus shown there are at most countably many disjoint components of T , hence at most
countably many (mutually disjoint) connected components that sum to T . 2

LEMMA 3.17 Suppose T is a one-dimensional normal current containing no circuit, with real
rectifiable boundary. Suppose C and D are disjoint components of T in V , {x1, . . . , xn}

c, edge-
connected in Rm. Then for at most one i ∈ {1, . . . , n}, neither C norD is a disjoint component of T
in V ∪ {xi}.

Proof. Employing the representation T = JηK, we may observe that for any point x, µT ({x}) =∫
M(Jγ Kx{x}) dη(γ ) =

∫
H1(img γ ∩ {x}) dη(γ ) = 0. Therefore, if

∂(S ∧ C)x{x1} = 0 for all normal S 6 T xV, (3.5)

then by Lemma 3.8, C is a disjoint component of T in V ′ , V ∪ {x1}. Similar conclusions hold
when C is replaced by D or x1 is replaced by x2 in (3.5). So assume that the condition is violated
by all the four combinations.

Let therefore S be in violation of (3.5). We may assume S = S ∧ C. If ∂C(x1) 6= 0, we choose
yC,1 = x1 and let EC,1 = 0. Otherwise, ∂(C − S)(x1) = −∂S(x1). We may also assume that
img(∂S)+ = {x1} or img(∂S)− = {x1} after a possible redefinition restricting a transport measure
for S to paths beginning or ending at x1. Since the construction for the other case is analogous,
we assume for simplicity that actually img(∂S)+ = {x1}. Then S is a bundle, with A = S, and
B = 0. We may by Lemma 3.15 extend it to a subbundle S′ of C. In particular, by the proof,
−∂A′x{x}c 6 (∂C)−{x}c, while still img(∂A)+ = {x1}. Thus A′ consists of edges between x1 and
some points in img(∂C)−, ∂C being an at most countable sum of Dirac measures. Choose one of
these points as yC,1, and denote the corresponding edge by EC,1.

Similarly to the above, we may produceEC,2,ED,1, andED,2, connecting xi to a boundary point
yX,i of X = C,D for i = 1, 2. Since C and D are edge-connected we may also find connections
between yC,1 and yC,2 inC, as well as between yD,1 and yD,2 inD. By composing these connections
with EC,1, EC,2, ED,1, and ED,2, a circuit can be constructed in T . This is a contradiction. 2
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3.6 Branches

We now assume that R ∈ R∗, where the latter denotes the set of one-dimensional acyclic normal
real rectifiable currents with real rectifiable boundary.

DEFINITION 3.7 Given a point x ∈ Rm, the connected components of R in {x}c that are not
connected components of R in Rm, are called the branches of R at x. The point x is called a branch
point if the cardinality of branches at x is at least 3. If the cardinality is at least 2, x is a cut point. If
x is not a cut point, it is a non-cut point. (We only apply this last concept to boundary points.)

REMARK 3.7 According to Lemma 3.16, the definition is sound: R is a sum of at most countably
many branches. Also, by the proof, all the branches continue to have real rectifiable boundary.

In fact, if C is a branch of R at x, then ∂(S ∧ C)x{x} 6= 0 for some normal S 6 R, because
otherwise C would be a disjoint component of R in Rm already. If R contains no circuit, then
actually ∂C(x) 6= 0. Otherwise, similarly to the proof of Lemma 3.17, we could construct edges
E1 6 S′ 6 C and E2 6 C − S′ connecting x and some y1, y2 ∈ img ∂C \ {x}, and then form a
circuit and a contradiction by connecting these points.

The next two lemmas are intuitively clear, but demand proof due to our abstract current-based
definitions of the concepts involved.

LEMMA 3.18 SupposeR is connected, contains no circuit, and x1 is a cut point ofR. Then x2 6= x1
is a cut (resp. branch) point of R if and only if it is a cut (resp. branch) point of one of the branches
of R at x1.

Proof. Let Ci , i = 1, 2, . . . , be the connected components of R in V , {x1, x2}
c. Again by Lemma

3.16, there are at most countably many of them. Let Ck , k = 1, 2, be the collection of those Ci that
remain disjoint components of R in {xk}c. Since C ∈ Ck is connected in V , it is connected in
{xk}

c by Lemma 3.7. Therefore, C ∈ Ck is a branch of R at xk . Since R has no circuit and is real
rectifiable, Lemma 3.17 shows that there is at most one index j such that Cj 6∈ C1 ∪ C2.

Fix k ∈ {1, 2} and let ` be the other element. Since R is normal,
∑
C∈Ck C and Bk , Cj +∑

C∈C` C = R −
∑
C∈Ck C decompose R into disjoint components in {xk}c; cf. Remark 3.6. Bk

is also connected: any disjoint component A of Bk must be a disjoint component of R in {xk}c by
Lemma 3.4, as well as in V by Lemma 3.7. By the latter, A is a sum of C ∈ C` and Cj , which
contradicts the former unless A = Bk or A = 0. Since R was connected, Bk is a branch of R at xk ,
as are C ∈ Ck .

Finally, C ∈ C` is a branch of Bk at x`, as is Cj . To see this, first observe that according to
the previous paragraph, these are not disjoint components of Bk in Rm. Secondly, observe that
C = C ∧ Bk is a disjoint component of Bk in {x`}c, being a disjoint component of R in {x`}c;
cf. Remark 3.2. The same must hold of Cj = Bk −

∑
C∈C` C. As these subcurrents are connected

in {x`}c, we have shown the claim: to every branch at x` of R, there corresponds a branch of Bk at
x`, while Bk is a branch of R at xk . 2

LEMMA 3.19 Suppose R is connected with no circuits and no branch points. Then

(i) At most two points of img ∂R are non-cut points.
(ii) The points of img ∂R can be given a total order ≺ satisfying: if A1 and A2 are the branches of

R at a cut point x ∈ img ∂R, then with either (i, j) = (1, 2) or (i, j) = (2, 1), we have y ≺ x
for all y ∈ img ∂Ai , and x ≺ z for all z ∈ img ∂Aj .
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Proof. (i) Suppose there are three non-cut points a, b, c ∈ img ∂R. For each of these points, x =
a, b, c, there would exist a connection Ex = {(τx,i, Ex,i)}nxi=1 in {xc} between the other two points.
Here τx,i = ±1 is the direction of the edge Ex,i . We may assume all the connections to have equal
strength. We claim that E , Ea ∪ Eb ∪ Ec would form a circuit in R.

By rectifiability and the finite number of edges in E , we may, similarly to the proof of Lemma
3.11, assume that any edges with a non-zero intersection are equal, and that each edge occurs at
most once in each of the connections Ex , x = a, b, c. Note that

∑
(τ,E)∈E τ∂E = 0. Therefore,

if the edges do not form a circuit,
∑
E∈E τEE = 0. Thus, positively weighted edges correspond

exactly to negatively weighted edges: each edge occurs exactly twice; once in two of the three
connections, with different direction.

Now, take, e.g., x = a. If there are two distinct edges in E (disregarding direction) with x as
a boundary point, then set w = x. Otherwise, disregard both copies of the sole edge E with x as
a boundary point, and continue with x as the other boundary point of E. By repeating the process,
eventually distinct edges and w 6= b, c must be found, to reach both b and c. Now, some of the
remaining edges of E form a connection between b and c and from a, passing through w. Therefore,
if there exists a connection between any two of the points a, b, c in {w}c, a circuit is found. If this
does not happen, there must exist at least two connected components of R in {w}c, i.e., w is a cut
point in contradiction to our assumptions.

(ii) If there are only two points in img ∂R, they must both be non-cut points, and can be ordered
arbitrarily.

Assume then that there are more than two points, and exactly one non-cut point x0 ∈ img ∂R.
Let x ∈ img ∂R be a cut point, with A and B the branches of R at x. Since ∂Ax{x}c and ∂Bx{x}c

split ∂R, we may assume that x0 ∈ img ∂A, possibly after replacing the roles of A and B. We then
declare y ≺ x for all y ∈ img ∂A.

Suppose that y 6= x, x0. By Lemma 3.18, y is a cut boundary point of A. Let Ay and By be
the branches of A at y, ordered so that x0 ∈ img ∂Ay and x ∈ img ∂By . This is doable by (i), as x
and x0 remain non-cut boundary points of eitherAy or By , and y is by definition a non-cut boundary
point of both. Now note that By + B is edge-connected (via x), so Ay 6 A and By + B are the
branches of R at y ≺ x. This shows antisymmetry and transitivity of the relation≺. Totality follows
analogously by considering y ∈ img ∂B.

If there is another non-cut boundary point x1 of R, we set x ≺ x1 for all x ∈ img ∂R, noting
that we cannot have x1 ∈ img ∂A, i.e., x1 ≺ x, for any x ∈ img ∂R \ {x1}. For, otherwise all x0, x1,
and x would be non-cut boundary points of A, in contradiction to (i).

Finally, if there are no non-cut boundary points of R, we take some cut boundary point, apply
the above process to the halves obtained that way, and combine the results, reversing the order on
the other half. 2

4. Optimal networks

4.1 The problem

Given a signed measure µ = µ+ − µ− with compact support and µ+(Rm) = µ−(Rm) < ∞, we
consider the problem

min
∂(W+R)=µ

J (W,R), J (W,R) , JW (W)+ JR(R), (P)

where W and R are one-dimensional real flat chains of finite mass. We assume that JW is
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subadditive:
JW (W1 +W2) 6 JW (W1)+ JW (W2), (A-S)

and JR is strictly “quasi-concave on circuits”:

min{JR(R + C1 − C2), JR(R − C1 + C2)} < JR(R) (A-C)

whenever (C1, C2) is a circuit of R. To ensure a (real) rectifiable set of stations, we also assume

JR(R) <∞ implies that ∂R is real rectifiable and R normal. (A-N)

Then both W and R are actually normal currents. In fact, R is real rectifiable and acyclic, i.e.,
R ∈ R∗, as shown by Lemma 4.1 below.

By further assumptions on JR , our plan is to show that the number of stations is actually finite,
and consequently R is a Lipschitz image of a polyhedral current. These assumptions take the form

JW (B)+ JR(R − B) < JR(R) when B ∈ B, (A-D)

for a varying set B. Combining with (A-S) it then follows that J (W + B,R − B) < J(W,R), so
that decrease is achieved while maintaining the constraint ∂(W + R) = µ.

4.2 Circuits and rectifiability

The pair (W,R) of finite mass real flat chains is said to be finitely optimal if it solves (P) and
J (W,R) <∞. The same is said of just R if this holds with some W .

LEMMA 4.1 Any finitely optimal R contains no circuit and is real rectifiable. Thus R ∈ R∗.
Proof. Clearly (A-C) and optimality exclude circuits, since ∂R′ = ∂R if R′ , R ± (C1 − C2) and
(C1, C2) is a circuit of R.

Since R contains no circuit, it is also acyclic (choose C2 = 0). Therefore, we may use the
representation (2.2) by transport measures, R = JηK.

By (A-N), ∂R =
∑
∞

i=1 αiδxi for some αi ∈ R and xi ∈ Rm. Therefore, for some pairs (i, j),
there is a set Γ ij ⊂ supp η of non-zero η-measure of transport paths between xi and xj . According
to Lemma 3.10, ηxΓ ij is concentrated on a singleton {γ ij }. Because there are at most countably
many paths γ ij (modulo equivalent parametrisations) corresponding to different pairs (i, j), R must
be real rectifiable. 2

REMARK 4.1 Even if R = JηK is real rectifiable with real rectifiable boundary, η may not be
concentrated on a countable set if R contains a circuit. Just consider the acyclic current on the sides
of the unit rectangle, with boundary points of mass ±1 at some of the two opposing corners. If
copies scaled to 2−i (i = 1, 2, . . .) of the side length (but preserving boundary mass) are chained
together at their opposing corners, one obtains a normal real rectifiable current with two boundary
points that have 2N, i.e., uncountably many possible paths between them.

4.3 Connected components

LEMMA 4.2 Suppose (A-D) holds for some β > 0 with

Bβdisj , {B is a disjoint component of R with M(∂B) 6 β}.

Then any finitely optimal R consists of finitely many connected components.
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Proof. By Lemma 3.16, R is the sum of at most countably many connected components {Ri}∞i=1.
Since

∑n
i=1 ∂Ri ⊂ ∂R for all finite subcollections, we have

n∑
i=1

M(∂Ri) 6
n∑
i=1

(M(∂R)−M(∂R − ∂Ri))

6 M(n∂R)−M
(
n∂R −

∑
i

∂Ri

)
6 M

(∑
i

∂Ri

)
6 M(∂R).

Thus lim supi→∞M(∂Ri) = 0. Consequently M(∂Ri) < β for suitably large i, and an application
of (A-D) yields a contradiction to optimality. 2

4.4 Branching

LEMMA 4.3 Suppose (A-D) holds for some β > 0 with

Bβdisj,x , {B is a disjoint component of R in {x}c with M(∂B) 6 β | x ∈ R}.

If (W,R) is optimal and J (W,R) < ∞, then each connected component of R has finitely many
branch points, each with finitely many branches.

Proof. Let T be a connected component of R. Let us denote the branch points of T by X. Choose
some x ∈ X, and let {Ti}i∈I be the branches of T at x. Set X′ = {x}. Then proceed recursively as
follows.

Let X′(Ti) ⊂ X′ denote the smallest subset such that Ti remains a disjoint component of T in
(X′(Ti))

c. Such a set exists, for if there are two contenders, finiteness of the sets (µT (X′) = 0) and
the definition of disjointness establishes that the intersection satisfies the requirements of Definition
3.2 as well. Let Ix ⊂ I denote the indices i such that X′(Ti) = {x}, i.e., Ti is a branch of T at x (as
is the case on the first iteration). If for some i ∈ Ix we had M(∂Ti) < β, an application of (A-D)
to B = Ti would show that the cost J can be reduced. Therefore M(∂Ti) > β for all i ∈ Ix . But∑
i∈Ix

M(∂Ti) 6
∑
i∈Ix

2M(∂Tix{x}c) 6 2M(∂T x{x}c) 6 2M(∂R) < ∞. This implies that Ix is
finite.

Note that according to Lemma 3.17, since R contains no circuit by Lemma 4.1, if x′ ∈ X′ \ {x},
then x′ ∈ X′(Tj ) for at most one branch. Since X′ is finite, there can thus only be finitely many
branches Ti , i ∈ I \ Ix , that are not branches of T at x. Thus I is finite, which shows the second
half of the claim of the lemma. For the first half, assume to the contrary that X is infinite. Then one
of the branches, say Tj , continues to have infinitely many points of X \ X′ as its branch points, by
Lemma 3.18.

Update T̃ , Tj , and let X̃ be the branch points of T that remain branch points of T̃ . Choose a
new point x̃ ∈ X̃ \X′, and update also X̃′ , X′(T̃ ) ∪ {x̃}.

If there is at least one branch Ti distinct from T̃ , such that X′(Ti) = {x}, then M(S) > β/2
for S , ∂Tix{x}c 6 ∂T 6 ∂R. Therefore, by iterating the above arguments with (T ,X,X′, x) ,
(T̃ , X̃, X̃′, x̃), eventually a discardable low-mass branch must be found, violating the optimality of
(W,R).

If it however happens that all the other branches have X′(Ti) ) {x}, then #X̃′ < #X′, as at least
two points of X′ are not contained in X′(T̃ ). This is due to Lemma 3.17 and x being a branch point
of T , whence there are at least two branches other than T̃ . Consequently, since X′ is finite, this case
can only happen finitely many times in uninterrupted sequence. 2
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LEMMA 4.4 Let B , {x ∈ Rm | x is a branch point of R}. Then, under the assumptions of
Lemma 4.3, every connected component of R in Bc has exactly two non-cut boundary points and
no branch points.

Proof. Let C be one of the connected components of R in Bc. It has no circuits, by Lemma 4.1,
and no branch points, by Lemma 3.18. Therefore, by Lemma 3.19(i), C has at most two non-cut
boundary points. If C has finitely many cut boundary points, it must have exactly two non-cut
boundary points. To see this, cut C into two halves at one of its cut boundary points x. If C has
fewer than two non-cut boundary points, one of the halves will have at most x as a non-cut boundary
point. Recursively continuing the process on this half until all the finitely many cut boundary points
have been exhausted (recall Lemma 3.18) will yield a current with fewer than two boundary points.
This is not possible by acyclicity and compact support.

Suppose then that C has countably many cut boundary points. Every x ∈ B is a non-cut point,
so at most two of them can be boundary points. If we denote this set by BC , then C is a disjoint
component of R in (BC)c. If BC has at least two elements, we are done, so assume that it has fewer
than two elements.

If y is a cut boundary point of C, then one of the branches, A, of C at y will be a disjoint
component of R in {y}c by Lemma 3.17. If M(∂A) < β, then according to (A-D), cutting away A
would improve cost. To reach a contradiction, it remains to choose y appropriately. This can be
done by ordering the cut boundary points in a sequence y1, y2, . . ., and choosing K to achieve∑
∞

i=K+1 |C(yk)| < β. Then we take y ∈ Y , {y1, . . . , yK} to be a minimal or maximal point of
Y ∪ BC , in the order of Lemma 3.19(ii). 2

4.5 Finiteness

We finally show that there are actually only finitely many stations under certain assumptions.

LEMMA 4.5 Suppose (A-D) holds in either of the cases:

(i) For a given δ > 0, with some g : (0,∞)→ (0,∞) and

Bδ,gseg = {∂R(y)Jx, yK | x, y ∈ img ∂R; y ∈ B(x, δ); |∂R(y)| 6 g(|∂R(x)|)}.

(ii) With Bβdisj,x for some β > 0, and for some g : (0,∞)→ (0,∞) and given M, θ > 0 with

BM,θ,gconn =

{
∂R(y)C

∣∣∣∣ x, y ∈ img ∂R; θC1, θC2 6 R; C , C1 − C2
∂C = δy − δx; M(C) 6 M; |∂R(y)| 6 g(|∂R(x)|)

}
.

Then the set img ∂R is finite if (W,R) is finitely optimal.

Proof. Write mx , ∂R(x). Under the assumption that R and then ∂R are supported on a compact
set, the claims follow in both cases by showing that in a suitable fixed neighbourhood of each station
mxδx , there can be only finitely many other stations myδy . This in turn follows from showing that
there is a lower limit on |my | in this neighbourhood, since there can be only finitely many stations
of greater mass.

(i) In this case, we may simply lay new track to fuse nearby stations. Given δ > 0, finitely
many balls B(x, δ) with x ∈ img ∂R cover img ∂R. So suppose y ∈ B(x, δ) with |my | 6 g(|mx |).
Then, by (A-D) and our assumptions, J (W + myJx, yK, R − myJx, yK) < J (W,R), yielding a
contradiction to optimality.
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(ii) Note that (A-D) holding for Bdisj follows from it holding for Bdisj,x, thanks to the compact
support of R. Therefore, R has finitely many connected components (in Rm) by Lemma 4.2. By
Lemma 4.3, each of them has finitely many branch points with finitely many branches. Therefore,
if {Ri}∞i=1 are the connected components of R in Bc, then at most finitely many of them are disjoint
in Rm or {x}c for x in B, the set of branch points of R. An application of Lemma 3.17 then shows
that R can actually have only finitely many connected components R1, . . . , RN in Bc. By Lemma
4.4, each Ri has no branch points, and exactly two non-cut boundary points xi,0 and xi,1.

Fix i, and let E1, . . . , En 6 Ri be the connection between xi,0 and xi,1. Denote its strength
by θi , and the traversal directions of the edges by τj = ±1.

Let x and y be distinct cut boundary points of Ri . By Lemma 3.18, Ri decomposes into three
connected componentsA, B0 and B1 in {x, y}c, withA the unique one that is not a disjoint in {x}c or
{y}c, and xi,j ∈ img ∂Bj , j = 0, 1. ThenE′j , A∧Ej is a (possibly zero) edge inA. We cannot have
E′i = 0 for all i, because otherwise a circuit could be found by combining E1, . . . , En 6 B0 + B1
with connections of suitable pairs of x, y, xi,0, and xi,1 in A, B1, and B2. Likewise, we cannot
have Ei ∧ Bj = 0 for all i for any j = 0, 1. Therefore, since x or y is in img ∂E′j whenever
0 6= E′j 6= Ej , and the edges E′j cannot form a circuit, we must have x ∈ img ∂E′i and y ∈ img ∂E′j
for some i, j ∈ {1, . . . , n}. Thus E′1, . . . , E

′
n must form a connection between x and y.

Let C1 =
∑
τj=±1 E

′

j/θi , C2 =
∑
τj=∓1 E

′

j/θi , and C = C1 − C2, with the directions/signs

summed over chosen in the order that achieves ∂C = δy−δx . Then M(C) 6 Mi ,
∑n
j=1 M(Ej )/θi ,

while Mi 6 M , maxi=1,...,N Mi , and θi > θ , mini=1,...,N θi . But then, by (A-D) and our
assumptions, we have the contradiction J (W + myC,R − myC) < J(W,R), provided |my | <
g(|mx |). 2

The results of this section are summarised in the following theorem. To actually show the existence
of a solution, it is more convenient to work with more specific objective functions. This is done in
the next section.

THEOREM 4.1 Suppose the assumptions (A-S), (A-C), and (A-N) hold and that (A-D) holds with
appropriate parameters for either (i) BM,θ,gdisj,x and Bβconn, or (ii) Bβseg. Then any finitely optimal R is a
Lipschitz image of a polyhedral current with no circuit.

Proof. By combining the above lemmas, R is real rectifiable, and has no circuit, while ∂R is finite.
By considering R = JηK =

∑s
i=1

∑d
j=1 αij Jγij K, we find a finite collection of Lipschitz paths on

which R is concentrated. This says that R is a Lipschitz image of a polyhedral current. 2

5. Weighted areas

5.1 Definitions and basic results

Let W denote the set of non-decreasing concave functions [0,∞) → [0,∞) that take the value 0
at the origin. Such functions are subadditive as well. We symmetrically extend them to all of R for
convenience of notation. Throughout the section, w, r, s ∈ W . We write w 4 r if r 6= 0 and for
some τ > 0, w/r is a non-decreasing function in (0, τ ) (and thus has a limit from the right at zero).
If actually limt↘0w(t)/r(t) = 0, we write w ≺ r .

The identity function is denoted by id : t 7→ t . Note that id 4 r with τ = ∞ for all r ∈ W not
identically zero (as follows from 0 6 r ′(t) 6 r(t)/t and r(s) − r(t) 6 r ′(t)(s − t), s > t). Other
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important examples of functions in W include t 7→ tα for α ∈ [0, 1) (with the convention 00
= 0).

If α < β, then tβ ≺ tα with τ = ∞.
Given a weight function r ∈W , we define the r-mass of a k-dimensional real rectifiable current

T = JΣKxθ as

Mr(T ) ,
∫
Σ

r(θ) dHk.

Mr is lower-semicontinuous on real rectifiable currents with regard to convergence in the Whitney
flat distance F (as follows similarly to the proof for (integer) rectifiable currents by De Pauw and
Hardt [10] according to Paolini and Stepanov [14]). It may therefore be extended to a lower-
semicontinuous function on the set of flat chains by taking the infimum of lim inf Mr(Ti) over
all approximating sequences. According to White [15, 6], one could equally well use polyhedral
currents in the approximating sequence. Clearly Mr is also subadditive for real rectifiable T1 and T2,
i.e., Mr(T1 + T2) 6 Mr(T1)+Mr(T2), and otherwise the property follows by approximation.

LEMMA 5.1 Suppose id ≺ r and T is a flat chain with M(T ) + Mr(T ) < ∞. Then T is real
rectifiable. If T is 0-dimensional and r(∞−) , limt→∞ r(t) = ∞, then automatically M(T ) 6
r−1(Mr(T )), so it suffices to have Mr(T ) <∞.

Proof. Since r increases at 0 faster than any linear function, there is no continuous non-constant
curve of finite length when the distance between two points is given by (x, y) 7→ (id+ r)(‖x−y‖).
Thus the results of White [16, 8] show the rectifiability of T .

In the case that T is 0-dimensional with Mr(T ) < ∞, approximate T in F by real rectifiable
currents Tk =

∑nk
i=1 αk,iδxk,i with Mr(Tk) → Mr(T ). Then r(M(Tk)) = r(

∑
i |αk,i |) 6∑

i r(αk,i) =Mr(Tk). But M(T ) 6 lim inf M(Tk) and r is continuous and non-decreasing, whence
M(T ) 6 r−1(Mr(T )) <∞. 2

The next two lemmas adapt results of [14].

LEMMA 5.2 Suppose T is a real rectifiable current with M(T ) < ∞. Let F(σ) , Mr(T xσ) for
σ ∈ K , {σ : Rm→ [0,∞) | σ Borel }. Then F is concave on K .

In particular, if σ̃ : Rm → [−1, 1] is Borel, then f (t) , F(1+ t σ̃ ) is concave for t ∈ [−1, 1],
strictly if T xσ̃ 6= 0 and r is strictly concave.

Proof. Since T = JΣKxθ and T xσ = JΣKx(σθ), we get

λF(σ)+ (1− λ)F (σ ′) =
∫
Σ

(λr(σθ)+ (1− λ)r(σ ′θ)) dHk

6
∫
Σ

r((λσ + (1− λ)σ ′)θ) dHk
= F(λσ + (1− λ)σ ′).

Clearly, if r is strictly concave, then the inequality is strict for λ ∈ (0, 1) unless θσ = θσ ′ HkxΣ-
a.e. In the case of f this means σ̃ = 0 a.e. for µT = θHkxΣ , so the claim follows. 2

LEMMA 5.3 Suppose T is an acyclic one-dimensional real rectifiable normal current. If w 4 r

with non-decrease threshold τ , and M(∂T )/2 6 τ , then

Mw(T ) 6 Mr(T )

[
w

r
(M(∂T )/2)

]
. (5.1)

If τ = ∞ and (w/r)(∞−) = ∞, then it suffices to assume that T is an acyclic one-dimensional
real rectifiable current of finite mass and compact support.
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Proof. Clearly, if (w/r)(∞−) = ∞, then (5.1) holds whenever M(∂T ) = ∞, so we may assume
M(∂T ) < ∞ = τ , and the special case reduces to the generic one. We may also assume that
M(∂T ) = 0, as otherwise T = 0, and there is nothing to prove.

We have the expression T = JΣKxθ , where Σ is a rectifiable set. According to [14, Lemma 7.1
& Theorem 7.3], θ 6 M(∂T )/2 H1-a.e. Thus, because M(∂T )/2 6 τ by assumption, we find

Mw(T ) =

∫
Σ

w(θ) dH1 6
∫
Σ

w(M(∂T )/2)
r(M(∂T )/2)

r(θ) dH1
=Mr(T )

[
w

r
(M(∂T )/2)

]
. 2

The next lemma provides a variant of standard approximation results, employing Mr(T ) instead of
M(T ), and with preservation of rectifiable boundary.

LEMMA 5.4 Suppose 0 < r ′(0) <∞, T is a one-dimensional real flat chain with compact support,
and Mr(T )+M(∂T ) <∞. Then, given ε > 0, there exists a normal real rectifiable current T ′ with
real rectifiable boundary, supp T ′ ⊂ conv supp T + B(0, ε), M(∂T ′) 6 M(∂T ) + ε, Mr(T ′) 6
Mr(T )+ ε, and F(T ′ − T ) 6 ε/r ′(0).

If φ 6 ∂T is real rectifiable, then we can take φ 6 ∂T ′. In particular, if ∂T is real rectifiable,
then ∂T ′ = ∂T .

Proof. Take φ = 0 if not given. Denote K , conv supp T , and B̄ , B(0,min{ε, 1}). Choose

a sequence {Ti}∞i=1 of polyhedral currents with Ti
F
−→ T , supp Ti ⊂ K + B̄/3, and Mr(Ti) 6

Mr(T ) + ε/3. Then F(∂T − ∂Ti) 6 F(T − Ti) 6 Cε/12 for i sufficiently large and C ,
1/[r ′(0)(diamK + 2)]. Also choose a sequence {φ′i}

∞

i=1 of polyhedral 0-dimensional currents with

φ′i
F
−→ ∂T − φ, suppφ′i ⊂ K + B̄/3, and M(φ′i) 6 M(∂T − φ) + ε. For sufficiently large i, again

F((∂T − φ)− φ′i) 6 Cε/24. Since φ is a sum of Dirac masses with M(φ) <∞, we may also find
a polyhedral φ′ 6 φ with M(φ) 6 M(φ′)+ Cε/24.

Letting φi , φ′ + φ′i , we find

F(∂T − φi) 6 M(φ − φ′)+ F((∂T − φ)− φ′i) 6 Cε/12.

Therefore, F(φi − ∂Ti) 6 Cε/6. Since φi and ∂Ti are polyhedral, this implies by [11, Lemma
4.2.23] the existence of a polyhedral current Qi with

M(φi − ∂Ti − ∂Qi)+M(Qi) 6 Cε/4

and suppQi ⊂ K + B̄/2,
Now, consider ψi , φ + φ′i − ∂Ti − ∂Qi . It is supported on K + B̄/2, and

M(ψi)+M(Qi) 6 M(φ − φ′)+M(φi − ∂Ti − ∂Qi)+M(Qi) 6 Cε/3.

Thus ψ+i (R
m) = ψ−i (R

m) = M(ψi)/2 < ∞. Since ψi is also real rectifiable, i.e., a countable
weighted sum of Dirac measures, we may construct a real rectifiable current Ri with ∂Ri = ψi and
M(Ri) 6 M(ψi) diam(K + B̄). By convexity of K , we can take suppRi ⊂ K + B̄. Letting

T ′i , Ti +Qi + Ri,

we therefore have supp T ′i ⊂ K + B̄ and ∂T ′i = φ + φ
′

i , whence

M(∂T ′i ) 6 M(φ)+M(φ′i) 6 M(φ)+M(∂T − φ)+ ε =M(∂T )+ ε.
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We also have M(T ′i ) <∞ and, moreover, Mr(T ′i ) 6 Mr(Ti)+Mr(Qi)+Mr(Ri) by subadditivity.
But, since r 6 r ′(0)id and

Cr ′(0) = 1/(diamK + 2) 6 1, (5.2)

we get
Mr(Qi) 6 M(Qi)r

′(0) 6 Cr ′(0)ε/3 6 ε/3,

and likewise,
Mr(Ri) 6 M(Ri)r ′(0) 6 Cr ′(0) diam(K + B̄)ε/3 6 ε/3.

Thus Mr(T ′i ) 6 Mr(T )+ ε, and, employing (5.2) twice, we obtain

F(T ′i − T ) 6 F(Ti − T )+M(Qi)+M(Ri) 6 Cε/12+ Cε/4+ (Cε/3) diam(K + B̄) 6 ε/r ′(0).

We have the first part of our claim.
Finally, since φ is real rectifiable, i.e., a countable sum of Dirac masses, while φ′i is a finite sum

of Dirac masses, we may choose φ′i while maintaining φ 6 φ + φ′i . Hence φi 6 ∂T ′i = φ + φ
′

i . 2

LEMMA 5.5 Suppose r 6= 0 and T is a one-dimensional normal current. Then there exists a normal
current T ′ with supp T ′ ⊂ K , conv supp T + B(0, 1), ∂T ′ = ∂T , Mr(T ′) 6 Mr(T ), and

M(T ′) 6 Mr(T )

[
id
r
(M(∂T )/2)

]
. (5.3)

If id ≺ r and Mr(T ) <∞, then T ′ 6 T is real rectifiable and acyclic.

Proof. If M(∂T ) = 0, we may choose T ′ = 0. Therefore, we may assume M(∂T ) > 0 and
Mr(T ) <∞, for otherwise there is nothing to prove.

Recall that id/r is non-decreasing on all of (0,∞), so τ = ∞. If id ≺ r , then Lemma 5.1
implies that T is real rectifiable. We are therefore done after removing cycles from T , as can be
done by [14, Proposition 3.12], and applying Lemma 5.3.

Otherwise 0 < r ′(0) < ∞, and we may choose ε ∈ (0, 1) and apply Lemma 5.4 to yield
normal real rectifiable Tε with supp Tε ⊂ K , Mr(Tε) 6 Mr(T ) + ε, M(∂Tε) 6 M(∂T ) + ε, and
F(Tε − T ) 6 ε/r ′(0). We remove cycles from Tε and denote the result by T ′ε . As ∂T ′ε = ∂Tε , still
supp T ′ε ⊂ K , Mr(T ′ε ) 6 Mr(T )+ ε, M(∂T ′ε ) 6 M(∂T )+ ε, and F(∂Tε − ∂T ) 6 ε/r ′(0).

By Lemma 5.3, we now have

M(T ′ε ) 6 Mr(T ′ε )

[
id
r
(M(∂T ′ε )/2)

]
6 (Mr(T )+ ε)

[
id
r
((M(∂T )+ ε)/2)

]
. (5.4)

Thus, M(T ′ε ) is uniformly bounded as ε ↘ 0, as is M(∂T ′ε ) 6 M(∂T ) + ε, and supp T ′ε ⊂ K .
We may therefore take T ′ as the F-limit of a subsequence of {T ′ε }. Note that in addition to being
non-decreasing, id/r is concave, hence continuous in (0,∞). Therefore, the property M(T ′) 6
lim infε↘0 M(T ′ε ) and (5.4) take care of (5.3). 2

5.2 Instances of problem (P)

We now consider problem (P) in the setting

JW (W) , Mw(W), JR(R) , Mr(R)+Ms(∂R)+H(MrH (R)+MsH (∂R)), (J-WA)

where w, r, s, rH , sH ∈ W , and H : [0,∞) → [0,∞] is lower-semicontinuous and non-
decreasing, satisfying H(∞−) = ∞. We also write JR(R) = J̃R(R)+H(JH (R)).
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THEOREM 5.1 Suppose that (i) w 6= 0, (ii) either id ≺ s and s(∞−) = ∞, or id ≺ sH and
sH (∞−) = ∞, and (iii) either id ≺ r , or id ≺ rH . Then there exists a solution to the problem
(P)&(J-WA) with W normal and R ∈ R∗.

Proof. If there were no solution with finite J (W,R), we could take as W the solution of the
(1-Wasserstein distance) Monge–Kantorovich problem for µ, and R = 0. (A normal solution W
exists; cf., e.g., [1, 17].) So suppose (Wi, Ri) is a pair of real flat chains of finite mass such that
J (Wi, Ri) <∞ and ∂(Wi + Ri) = µ.

By the assumptions (ii) on s (or sH ), JR(Ri) < ∞ implies that ∂Ri is rectifiable with
M(∂Ri) < s−1(Ms(∂Ri)) <∞ through Lemma 5.1. Since µ is assumed to have compact support,
we may assume that Ri andWi are supported for all i on some compact setK , employing a standard
projection argument. Thus Wi and Ri are actually normal currents.

We consider the case id ≺ r , the case id ≺ rH being similar. By the assumptions (iii) and
Lemma 5.5, we may replace Ri with real rectifiable and acyclic R′i satisfying ∂R′i = ∂R, Mr(R′i) 6
Mr(Ri) and M(R′i) 6 Mr(Ri)

[ id
r
(M(∂Ri)/2)

]
6 C for some constant C > 0. Since in the present

case id ≺ r , actually R′i 6 Ri by the lemma, we also have MrH (R′i) 6 MrH (Ri). Likewise,
by the assumption (i) and Lemma 5.5, we get W ′i with ∂W ′i = ∂Wi , Mw(W ′i ) 6 Mw(Wi), and
M(W ′i ) 6 Mw(Wi)

[ id
w
(M(∂Wi)/2)

]
6 C. Consequently, J (W ′i , R

′

i) 6 J (Wi, Ri). Furthermore, by
the lemma, suppW ′i , suppR′i ⊂ K + B(0, 1).

Thus, given a minimising sequence {(Wi, Ri)}
∞

i=1 for (P)&(J-WA), we can find another
minimising sequence {(W ′i , R

′

i)}
∞

i=1 with uniformly bounded mass, boundary mass, and support.
Therefore, we can find a subsequence F-convergent to some normal currents W and R, that must
solve the problem (P) by the lower-semicontinuity of J with regard to F-convergence. Furthermore,
R and ∂R remain rectifiable, and R can be taken acyclic, by the same arguments as above. 2

REMARK 5.1 We do not require that H is concave and finite-valued, as do Paolini and Stepanov
[14]; it might even be used to “cap the costs” to an interval [0,M]. The convergence proof here
also differs from the base steps of the one in that paper, in that we do not impose rectifiability
requirements on W (which is where Lemma 5.4 becomes useful), and we do not force W,R 6
W + R. Indeed, since the construction of stations can be relatively expensive for small amounts of
traffic, one might have to “walk along the track” in the opposite direction.

By the above proof, by restricting the area of definition of J to enforce compact support, (A-N)
can be taken to hold. Clearly (A-S) also holds since Mw is subadditive. In the remainder of this
section, we intend to show (A-C) and (A-D) under various assumptions on w, r, s, rH , sH , and H .

DEFINITION 5.1 rH is compatible with r if rH (t) = Ar(t)+ Bt0, A,B > 0.

LEMMA 5.6 Suppose R ∈ R∗. Then (A-C) holds in the following cases:

(i) r is strictly concave, and rH compatible with r .
(ii) rH is strictly concave, r compatible with rH , and H strictly increasing.

(iii) r is strictly concave, and H concave.
(iv) rH and H are strictly concave.

Proof. (i) Suppose (C1, C2) is a circuit of R. Define C , C1−C2. Then C = Rxσ for some Borel
σ : Rm → [−1, 1], so R ± C = Rx(1 ± σ). By Lemma 5.2 and the strict concavity of r , f : t ∈
[−1, 1] 7→ Mr(Rx(1+ tσ )) is strictly concave. We therefore find that (f (−1)+ f (1))/2 < f (0),
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whence

min{Mr(R + C),Mr(R − C)} 6
1
2
(Mr(R + C)+Mr(R − C)) < Mr(R).

Since C1, C2 6 R, we have Mt 7→t0(R±C) 6 Mt 7→t0(R). The compatibility assumption on rH then
ensures that the minimising choice cannot increase MrH . Also ∂R = ∂(R ± C), so the boundary
costs are unaffected. Thus JR is improved by replacing R by one of R ± C.

(ii) This case is analogous to case (i), this time applying Lemma 5.2 with rH . Since H is strictly
increasing, the decrease is transferred to JR .

(iii) & (iv) In these cases f : t ∈ [−1, 1] 7→ JR(Rx(1+ tσ )) is strictly concave by Lemma 5.2
and the concavity assumptions on H . A similar reasoning now shows the claim. 2

LEMMA 5.7 Suppose R ∈ R∗ and w ≺ r . Then there is a β > 0 such that (A-D) holds for Bβdisj
and Bβdisj,x.

Proof. We first consider the case of Bβdisj. Denote the non-decrease threshold of w/r by τ > 0.
By Lemma 5.3, if B is a disjoint component of R with M(∂B)/2 < τ and (w/r)(M(∂B)/2) 6 1,
then Mw(B) 6 Mr(B)

[
w
r
(M(∂B)/2)

]
< Mr(B). Thus, by disjointness of B 6 R and R − B,

Mw(B) + Mr(R − B) < Mr(R). Since ∂B 6 ∂R, we have Ms(∂R − ∂B) 6 Ms(∂R). Thus
JW (B)+ J̃R(R−B) < J̃R(R). We likewise get JH (R−B) 6 JH (R), since in this case just w = 0.
Therefore, JW (B)+ JR(R − B) < JR(R), so (A-D) holds.

Let now x be a cut point. If B is a disjoint component of R in {x}c, then the above estimates
hold except possibly for s and sH . To show that the costs do not increase, note that subtracting ∂B
from ∂R adds mass only at x while all mass is removed from other points of img ∂B, since ∂B
and ∂(R − B) split ∂R in {x}c. The mass removed is in total at least as much as that added at x,
because |B(x)| 6 (∂B)±(Rm) =M(∂B)/2. Therefore, if ∂B =

∑
y∈Y myδy , then Ms(∂R−∂B)−

Ms(∂R) 6 s(mx)−
∑
y∈Y\{x} s(|my |) 6 s(|mx |)− s(

∑
y∈Y\{x} |my |) 6 0. An analogous estimate

holds for sH . 2

The next two lemmas ensure the conditions of the cases of Lemma 4.5.

LEMMA 5.8 Suppose R ∈ R∗, w, r ≺ s, and rH ≺ sH (or rH = sH = 0). Then, given δ > 0,
there is a g : (0,∞)→ (0,∞) such that (A-D) holds for Bδ,gseg .

Proof. Let x, y ∈ img ∂R with ‖x − y‖ 6 δ. Write m , ∂R(x) and t , ∂R(y). Then

JW (tJx, yK)+ J̃R(R − tJx, yK)− J̃R(R)

6 Mw(tJx, yK)+Mr(tJx, yK)+Ms((m+ t)δx)− [Ms(mδx)+Ms(tδy)]
= ‖x − y‖(w(t)+ r(t))+ s(m+ t)− s(m)− s(t).

This value is dominated from above by

f (t) , δ(w(t)+ r(t))+ s(m+ t)− s(m)− s(t).

= s(m+ t)− s(m)− s(t)

[
1− δ

w(t)+ r(t)

s(t)

]
.

Now, since w, r ≺ s and m 6= 0, f (t)/t → s′(m) − s′(0) = −∞ as t ↘ 0. Therefore, f (t) <
f (0) = 0 for t ∈ (0, g̃(m)) and some g̃(m) > 0.
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Similar estimates hold for JH (R − tJx, yK)− JH (R), yielding threshold gH (m). Therefore, we
get the claim with g(m) = min{g̃(m), gH (m)}. 2

LEMMA 5.9 Suppose R ∈ R∗ and w ≺ s. Then, given M, θ > 0, there is a g : (0,∞)→ (0,∞)
such that (A-D) holds for BM,θ,gconn .

Proof. With the notation of Lemmas 5.8 and 4.5,

JW (tC)+ J̃R(R − tC)− J̃R(R)

6 Mw(tC)+Mr(R − tC)−Mr(R)+Ms((m+ t)δx)−Ms(mδx)−Ms(tδy)

=Mw(tC)+Mr(R − tC)−Mr(R)+ s(m+ t)− s(m)− s(t).

The right hand side is thus dominated as a function of t by

f (t) , Mr(R − tC)−Mr(R)+ s(m+ t)− s(m)− s(t)

[
1−

Mw(tC)

s(t)

]
.

Clearly f (0) = 0, while f (t)/t → Mr(R + ·C)′(0) + s′(m) − s′(0) = −∞, if we can show that
Mr(R + ·C)′(0) <∞ and limt↘0 Mw(tC)/s(t) = 0.

We may assume C1 ∧ C2 = 0, where C , C1 − C2 with θC1, θC2 6 R. (Otherwise replace
C1 by C1 − C1 ∧ C2 = C1 ∨ C2 − C2, etc., recalling Lemma 3.2.) Therefore, since R contains no
circuit, C cannot contain one either. Since C is a rectifiable edge with ∂C = δy − δx , by Lemma
3.10, C = Jγ K for some Lipschitz path γ . Furthermore, H1(img γ ) 6 M , so

Mw(tC) =

∫
img γ

w(t) dH1 6 w(t)H1(img γ ) 6 w(t)M.

Also R = JΣKxσR for a rectifiable set Σ (with implicit tangent vector field) and Borel σR : Rm →
[0,∞). Since img γ ⊂ Σ , C = JΣKxσC for some Borel σC : Rm → {−1, 0, 1} with the estimate
θ |σC | 6 σR . Employing the fact that r ′ is non-negative and decreasing,

Mr(R + ·C)′(0) =
∫
Σ

r(σR + · σC)
′(0) dH1 6

∫
Σ

r ′(σR)|σC | dH1

6
∫

img γ
r ′(θ |σC |)|σC | dH1 6 r ′(θ)M.

But r ′(θ) <∞ since θ > 0. Also w(t)/s(t)↘ 0 as t ↘ 0. Therefore, the required estimates hold.
Similar estimates hold for JH , as then essentially justw = 0. The rest now follows by combining

the estimates as in Lemma 5.8. 2

Summarising, we finally get

THEOREM 5.2 Let µ be a signed measure with µ+(Rm) = µ−(Rm) < ∞. Suppose that
w, r, s, rH , sH ∈ W , w 6= 0, and that H : [0,∞) → [0,∞) is lower-semicontinuous and non-
decreasing, satisfying H(∞−) = ∞. Suppose also one of

(i) r is strictly concave, and rH compatible with r ,
(ii) rH is strictly concave, r compatible with rH , and H strictly increasing,

(iii) r is strictly concave, and H concave,
(iv) rH and H are strictly concave,
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as well as one of

(v) w ≺ r, s,
(vi) w, r ≺ s, rH ≺ sH (or rH = sH = 0), and either id ≺ r or id ≺ rH ,

along with

(vii) either s(∞−) = ∞, or id ≺ sH and sH (∞−) = ∞.

Then there exists an optimal solution to the problem (P)&(J-WA), and any finitely optimal R is
polyhedral and contains no circuit.

Proof. The assumption w ≺ r implies id ≺ r , and w ≺ s implies id ≺ s. Therefore, the conditions
of Theorem 5.1 hold in all cases, and any finitely optimal R is inR∗. The conditions of Lemmas 5.6
through 5.9 also hold in the corresponding cases of Theorem 4.1. Consequently R is the Lipschitz
image of a polyhedral current with no circuit. Finally, the current with the optimal weighted area
between any two points is the straight line, whence R is actually polyhedral. 2

REMARK 5.2 Actually in Lemma 5.7, instead of w ≺ r , we only need to assume w 4 r and
(w/r)(0) < 1. Likewise in Lemma 5.8, it suffices to assume w, r 4 s, rH 4 sH , and id ≺ s, sH ,
if we allow the lemma to determine δ. Similarly, w 4 s and id ≺ s suffices for Lemma 5.9, if
M is determined by it. Therefore, Theorem 5.2 can, without much effort but with some additional
statement complexity, be made to hold in a slightly wider class of objective functions.

A. Connectedness and BV functions

Set E , (e1∧· · ·∧ em)∧Hm, where {e1, . . . , em} is the canonical basis of Rm. Denote by P(G) =
M(∂(ExG)) the perimeter of a set G. Define the density

Θ∗(G, x) , lim sup
r↘0

Hm(G ∩ B(x, r))

Hm(B(x, r))
,

and denote the essential boundary and essential closure of G by

∂∗G , {x ∈ Rm | Θ∗(G, x) > 0, Θ∗(Gc, x) > 0}, G , {x ∈ Rm | Θ∗(G, x) > 0}.

See, e.g., [3, 2] for details.

THEOREM A.1 Suppose f : Rm → [0,∞) is a function of bounded variation, and T , Exf .
Then A is a disjoint component of T if and only if A and T − A split T , and ∂A 6 ∂T .

Proof. As always, let B , T −A. The “only if” direction holds by definition. For the “if” direction,
we must show that the requirement ∂A ∧ ∂B = 0 and, more generally, the subcurrent primitive-
decomposition requirement are superfluous. Note that ∂A 6 ∂T simply means M(∂A)+M(∂B) =
M(∂T ).

As A and B split T , we have A = T xa and B = T xb for some BV functions a, b : Rm → R
with 0 6 a, b 6 f , a + b = f , and ab = 0 Hm-a.e. Furthermore, the co-area formula for BV
functions (e.g., [3]) gives

M(∂A) =
∫
∞

−∞

P({a > t}) dt, (A1)

where the perimeters are finite H1-a.e.
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Denote At , {a > t} and Bt , {b > t}. Since Hm(At ∩ Bt ) = 0, when At and Bt have finite
perimeter, by [2, Proposition 1],

P(At )+ P(Bt ) = P(At ∪ Bt )+ 2Hm−1(∂∗At ∩ ∂
∗Bt ).

But At ∪ Bt = {f > t}, so (A1) and M(∂A)+M(∂B) = M(∂T ) imply Hm−1(∂∗At ∩ ∂
∗Bt ) = 0

for H1-almost all t .
Let now S 6 T be normal, i.e., S = Exs for a BV function s : Rm → R (supported on a

compact set). That A ∧ S and B ∧ S split S is automatic as before, as is the boundaries summing
to ∂S, assuming normality of the former. We thus have to show that, moreover, M(∂(A ∧ S)) +
M(∂(B ∧ S)) =M(∂S) and ∂(A ∧ S) ∧ ∂(B ∧ S) = 0.

We have A∧S = Ex(a∧ s). Thus, for the first requirement it suffices by the co-area formula to
show that P({a∧ s > t})+P({b∧ s > t}) = P({s > t}) forH1-almost all t . Since s 6 a a.e. when
a > 0, we have {a ∧ s > t} = {s > t} ∩ {a > u} up to an Hm-negligible set for any 0 < u 6 t . We
take u such that Au and Bu have finite perimeter and satisfy Hm−1(∂∗Au ∩ ∂

∗Bu) = 0. This and
the fact Hm(Au ∩ Bu) = 0 force Hm−1(∂∗(Au ∩ St ) ∩ ∂

∗(Bu ∩ St )) = 0 by the definition of the
essential boundary. Thus, by another application of [2, Proposition 1], we get the required

P(Au ∩ St )+ P(Bu ∩ St ) = P((Au ∩ St ) ∪ (Bu ∩ St )) = P(St ).

As for the intersection, it suffices to show that the total variation measures µ∂(S∧A) and µ∂(S∧B)
are mutually singular. By the co-area formula, these can be written in the forms

µ∂A(Ω) =

∫
∞

−∞

P(At |Ω) dt =
∫
∞

0
Hm−1(∂∗At ∩Ω) dt,

noting that for t < 0, At = Rm (mod Hm), whence Hm−1(∂∗At ) = 0.
Let Ã ,

⋃
u>0Au. Note that µ∂A(Ã) =

∫
Hm−1(∂∗At ) dt = M(∂A) by the definitions of

the essential boundary and closure. Thus µ∂A is concentrated on Ã, and it suffices to show that
Hm−1(∂∗At ∩ B̃) = 0 (for almost all t). This follows if Hm−1(∂∗At ∩ Bu) = 0 for the almost all
0 < u 6 t satisfying Hm−1(∂∗Au ∩ ∂

∗Bu) = 0. Consider first x ∈ ∂∗At ∩ ∂∗Bu. This implies 0 <
Θ∗(Bu, x) 6 Θ∗(Acu, x), and 0 < Θ∗(At , x) 6 Θ∗(Au, x). Thus x ∈ ∂∗Au. But Hm−1(∂∗Au ∩

∂∗Bu) = 0. Next, suppose x ∈ (Bu \ ∂∗Bu) ∩ ∂∗At . Then Θ∗(Bu, x) > 0 but 0 = Θ∗(Bcu, x) >
Θ∗(Au, x) > Θ∗(At , x). Thus x 6∈ ∂∗At . The claim follows. 2

COROLLARY A.1 When T ′ is a set of finite perimeter, ExχT ′ being connected per Definition 3.2
is equivalent to the non-existence of sets A′, B ′ with Hm(T ′ 4 (A′ ∪ B ′)) = 0, Hm(A′ ∩ B ′) = 0,
Hm(A′),Hm(B ′) > 0 and P(A′)+ P(B ′) = P(T ′).

Thus, in this case, connectedness is equivalent to indecomposability in the sense of [3, 2] up to
Hm-negligible sets. (In these references {A′, B ′} is a partition of T ′.)
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