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The existence question for two-dimensional symmetric steady waves travelling on the surface of a
deep ocean beneath a heavy elastic membrane is analyzed as a problem in bifurcation theory. The
behaviour of the two-dimensional cross-section of the membrane is modelled as a thin (unshearable),
heavy, hyperelastic extensible rod, and the fluid beneath is supposed to be in steady two-dimensional
irrotational motion under gravity. When the wavelength has been normalized to be 2π , and when
gravity and the density of the undeformed membrane are prescribed, there are two free parameters in
the problem: the speed of the wave and the drift velocity of the membrane.

It is observed that the problem, when linearized about uniform horizontal flow, has at most two
independent solutions for any values of the parameters. When the linearized problem has only one
normalized solution, it is shown that the full nonlinear problem has a sheet of solutions consisting
of a family of curves bifurcating from simple eigenvalues. Here one of the problem’s parameters is
used to index a family of bifurcation problems in which the other is the bifurcation parameter.

When the linearized problem has two solutions, with wave numbers k and l such that
max{k, l}/min{k, l} /∈ Z, it is shown that there are three two-dimensional sheets of bifurcating
solutions. One consists of “special” solutions with minimal period 2π/k; another consists of
“special” solutions with minimal period 2π/l; and the third, apart from those on the curves where it
intersects the “special” sheets, consists of “general” solutions with minimal period 2π .

The two sheets of “special” solutions are rather similar to those that occur when the linearized
problem has only one solution. However, points where the first sheet or the second sheet intersects the
third sheet are period-multiplying (or symmetry-breaking) secondary bifurcation points on primary
branches of “special” solutions. This phenomenon is analogous to that of Wilton ripples, which arises
in the classical water-wave problem when the surface tension has special values. In the case of Wilton
ripples, the coefficient of surface tension and the wave speed are the problem’s two parameters. In
the present context, there are two speed parameters, meaning that the membrane elasticity does not
need to be highly specified for this symmetry-breaking phenomenon to occur.
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1. Introduction

The existence question for symmetric, 2π -periodic steady waves travelling with speed c0 on the
surface of a heavy, inviscid fluid which is at rest at infinite depth beneath a heavy, thin (unshearable)
elastic membrane was considered in [11] as a global problem in the calculus of variations. Here
we use local methods to study the bifurcation of such waves. We will show that there are two
free parameters, c0 (the wave speed) and c1 (the membrane drift velocity), and that when the
problem is linearized about a uniform horizontal stream with the membrane unstretched, there are
no more than two linearly independent solutions. (See equation (5.2), in which λ1 = ρ(c0 − c1)

2,
λ2 = c2

0, ρ is the density of the membrane and C is the Hilbert transform of a 2π -periodic function.)
When there is no nonzero solution, nonlinear waves do not bifurcate from uniform horizontal
streams; when there is only one solution, a sheet of solutions representing a parametrized family
of bifurcations from simple eigenvalues occurs; when there are two independent solutions, there
bifurcate three sheets of small-amplitude periodic waves. The latter corresponds to the presence of
secondary bifurcations from curves of “special” solutions, the hydroelastic analogue of what are
known as Wilton ripples [15], as described in the Abstract and in Section 1.2. To quote from [6],
“Waves characterized by two dominant modes are often called Wilton’s ripples in the literature in
reference to Wilton’s paper (1915). It turns out that the phenomenon described as Wilton’s ripples
was accounted for at least twice prior to Wilton’s paper: in an unpublished addendum to an essay
that Bohr (1906) wrote in order to win the Royal Danish Academy prize on the theme ‘The surface
tension of water’ and in a paper by Harrison (1909).” (Bohr’s essay is [5].)

A key feature of the present analysis is the reduction of the physical problem (1.4 a-g) to an
equation (4.7) for one 2π -periodic function of one real variable and two parameters.

Physical problem

The derivation of the equations used here has its origins in Zakharov’s Hamiltonian theory of water
waves [7, 16]; see also [13], but since we do not use variational methods for their analysis it is not
appropriate to review that material here. Instead we rely on the description of the problem for a
heavy membrane in [9, 11] and for a weightless membrane in [4, 12]. To summarize, we consider
waves on the surface of an infinitely deep expanse of fluid bounded above by an elastic sheet and
moving under gravity when there is no friction between the sheet and the fluid. The elastic sheet
is resistant to bending, stretching and compression. (In solid mechanics, a sheet of an extensible
material would be called a shell or a membrane depending on its bending stiffness. Here the sheet
can be deformed both by stretching and bending, and we refer to it throughout as a membrane.
Once might think of an ice sheet or a ‘very large floating platform’.) Since the water depth is
infinite, there is no loss (after normalizing length scales appropriately) in restricting attention to
waves that have period 2π in the horizontal direction. The fluid’s Eulerian velocity field is supposed
to be two-dimensional and stationary at the same time as the material of the membrane is in motion,
driven by gravity, by forces and couples due to its elasticity and by pressure from the fluid. The
resulting mechanical behaviour of the surface membrane is modelled by regarding its cross-section
as a heavy, unshearable, extensible hyperelastic rod, using the treatment in Antman [1, Ch. 4]. We
deal with this first.

Membrane elasticity. Let (x, 0) ∈ R2 be the rest position of a material point in the membrane
cross-section and let r(x) ∈ R2 be its position after deformation. In the notation of Antman, ϑ(x)
is the angle between the horizontal positive semi-axis and the vector r′(x) (where ′ means d/dx).
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FIG. 1. ν(x) = |r′(x)|, µ(x) = ϑ ′(x), σ̂ (r(x)) = µ(x)/ν(x).

Let
ν(x) = |r′(x)| and µ(x) = ϑ ′(x). (1.1)

Thus ν(x) is the stretch of the membrane at the point r(x) and

σ̂ (r(x)) = µ(x)

ν(x)

is its curvature. We suppose that the elastic properties of the membrane are described as follows.

H1 (Hyperelasticity). There exists a C∞-function E(ν, µ) > 0, ν > 0, µ ∈ R, such that, after the
deformation (x, 0) 7→ r(x), the elastic energy of the reference segment {(x, 0) : x ∈ [x1, x2]}
is

E(r) =
∫ x2

x1

E(ν(x), µ(x)) dx,

where ν(x), µ(x) are defined in (1.1). E is called the stored energy function.

We also assume that the reference configuration, unstretched and unbent, is a local minimizer of the
elastic energy, which is locally convex.

H2 (Rest state and local convexity).

E(1, 0) = E1(1, 0) = E2(1, 0) = E12(1, 0) = 0, E11(1, 0) > 0, E22(1, 0) > 0.

Subscripts 1, 2 denote partial derivatives with respect to ν, µ, respectively.

REMARK Since this is a study of bifurcating waves, regularity questions that are significant for
large-amplitude waves are unimportant here. It is therefore for convenience only that we suppose
E ∈ C∞. With a little more technical effort the theory can be developed for E with much less
regularity.

Travelling waves. For a periodic travelling wave, the position at time t of the material point with
Lagrangian coordinates (x, 0) in the undeformed membrane is assumed to be given by

R(x, t) := (x + c1t + u(x − ct), v(x − ct)),
where u and v are 2π -periodic and c, c1 ∈ R. Let c0 = c + c1. Then the surface profile at time t is



4 P. BALDI AND J. F. TOLAND

the curve

S(t) = {(x + c1t + u(x − ct), v(x − ct)) : x ∈ R}
= {(s + u(s), v(s)) : s ∈ R} + (c0t, 0) =: S + (c0t, 0), (1.2)

where s = x − ct will be regarded henceforth as a steady Lagrangian coordinate. Thus S(t) is
represented by a profile S of fixed shape propagating from left to right, say, without changing shape
at a constant velocity c0 while at the same time the material point with Lagrangian coordinates
(x, 0) has temporal period 2π/c relative to a frame moving with speed c1. We refer to c0 as the
wave speed and to c1 as the drift velocity of the membrane, both calculated relative to the fluid at
rest at infinite depth.

Since the membrane is in motion relative to the moving frame, there are inertial effects due to
its mass, but it is supposed throughout that there is no friction between the fluid and the membrane.
Under this assumption, it was shown in [11] that the inertial effects lead to an equivalent steady-wave
problem in which the wave speed and the drift velocity coincide, and the stored energy function is
perturbed by a quadratic term.

REMARK To motivate this observation and what follows, it is worth observing the corresponding
situation that arises when travelling-wave solutions R to an analogous nonlinear wave equation

(E′(Rx))x = ρRt t , ρ > 0,

are sought. This equation describes longitudinal motion in a one-dimensional elastic rod for which
E is the stored energy function, ρ is the undeformed density andR(x, t) ∈ R is the position at time t
of the point with Lagrangian coordinate x ∈ R. It is significantly simpler than the hydroelastic wave
problem because here there are no body forces and because the shape of the rod does not change,
only the relative positions of its material points in a straight line change with time.

First note that a stationary (time-independent) solution satisfies (E′(Rx))x = 0 and is given by
a critical point of the potential energy functional∫ 2π

0
E(Rx) dx.

On the other hand, R is a periodic travelling wave with drift velocity c1 if

R(x, t) = c0t + r(x − ct),
for some c and c0, where r(s + 2π) = 2π + r(s) and c1 = c0 − c. Here we regard the variable s
(= x − ct) as a steady Lagrangian coordinate for travelling waves. The equation for r(s) is then

{E′(rs)− c2ρrs}s = 0, (1.3)

which corresponds to critical point of∫ 2π

0

(
E(rs)− ρ2 c

2r2
s

)
ds.

Therefore periodic travelling waves correspond to a boundary-value problem for stationary solutions
of a nonlinear wave equation with a different stored energy function

E(p) := E(p)− ρ
2
c2p2,
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instead of E(p). In [11], E is called the pseudo-potential energy of travelling waves. If c is
sufficiently large, E is not convex, even when E is convex [9].

Note that if r and c correspond to a travelling wave, then a family, parametrized by c0 ∈ R, of
travelling waves with drift velocity c1, is given by

R(x, t) = c0t + r(x − ct), c1 = c0 − c.
However, in the hydroelastic wave problem, the interaction of the membrane with the fluid means
that the dependence of waves on both parameters is not so trivial. In fact, we will see that the
solutions r(s) = s, c0 and c arbitrary, to this one-dimensional problem, when combined with a wave
profile with zero elevation, is a family of trivial solutions of the hydroelastic wave problem which
we describe next. They correspond to an undeformed membrane drifting with velocity c1 = c0 − c
on the surface of a uniform flow with horizontal velocity c0.

To summarize the analogous treatment in [11] of the equivalent hydroelastic travelling-wave
problem, let (s, 0) be the steady Lagrangian coordinate (1.2), r(s) its deformed position, and let µ
and ν be defined as in (1.1), with s in place of x. Let ρ be the density of the undeformed membrane
section and let η(s) = j · r(s), where j is the unit vector in the upward vertical direction (η is the
wave elevation). In [11, (1.8)] it is shown that ν, µ and η satisfy

d
ds

{
ν(s)E1(ν(s), µ(s))− ρ2 c

2ν(s)2 + µ(s)E2(ν(s), µ(s))− E(ν, µ)− gρη(s)
}
= 0, (1.4a)

which is the analogue of (1.3) in the present situation. The pressure P in the fluid, internal forces
and gravity combine to deform the membrane. Thus, from [11, (1.7e)],

P(r) = 1
ν

(
E2(ν, µ)s

ν

)
s

− µ
ν
(E1(ν, µ)− c2ρν)+ gρ cosϑ

ν
, (1.4b)

where, as in [11], we assume that the material in one period of the membrane surface is a
deformation of an interval of length 2π of the reference membrane:

S ∩ ([0, 2π ]× R) = {r(s) : s ∈ [s0, s0 + 2π ]} for some s0 ∈ R. (1.4c)

REMARK Since the membrane does not acquire additional mass in one period, the reference
membrane must stretch when it is bent by the wave, because its horizontal period remains 2π .
Consequently, by H2, internal forces and couples are generated in the material. The resistance to
stretching can be compared to a nonlinear surface tension effect in which the coefficient of surface
tension depends on the stretch of the material. In surface-tension wave problems it is usual to assume
that E is independent of µ, that is, bending stiffness is absent. Classical capillarity corresponds to
the linear case E(ν, µ) = βν, with β ∈ R a constant. Even in this case of no bending stiffness, the
pressure term in the boundary condition (1.4b),

−µ
ν
(β − c2ρν)+ gρ cosϑ

ν
,

involves the curvature µ/ν of the wave, with a coefficient that depends on the stretch when the
membrane has positive density.
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Fluid motion. In the moving frame the fluid velocity field is two-dimensional, stationary and
irrotational, the membrane cross-section coincides with a streamline and the flow at infinite depth
is horizontal with velocity −c0. The surface S is a zero level line for the stream function ψ(X, Y ),
which is harmonic and represents horizontal laminar flow at infinite depth. So

∆ψ = 0 below S, (1.4d)
ψ = 0 on S (the kinematic boundary condition), (1.4e)

∇ψ(X, Y )→ (0, c0) as Y →−∞. (1.4f)

Membrane-fluid interaction. When the fluid density is taken to be 1, the dynamic boundary
condition takes the form

−1
2
|∇ψ(X, Y )|2 − gY + c

2
0
2
= P(r(s)) when (X, Y ) = r(s) ∈ S. (1.4g)

Here P is given by (1.4b) and the left side of (1.4g) is the pressure in the fluid.

1.1 The free-boundary problem

A steady hydroelastic wave with speed c0 and drift velocity c1 is a non-self-intersecting smooth 2π -
periodic curve S in the plane for which there exists a solution of the free boundary-value problem
(1.4) with c = c0 − c1. Since we are interested in symmetric waves, we require that S is symmetric
about a vertical line. To examine the solution set of this elaborate system we will use standard
bifurcation-theory methods based on the implicit function theorem. Before going into the details,
we give a schematic outline of what we have achieved (much remains to be done). Throughout we
treat g (gravity) and ρ (density of the undeformed membrane) as constants and regard

λ1 := c2ρ, λ2 := c2
0, λ = (λ1, λ2) ∈ [0,∞)2,

as the physical parameters. (Because bifurcation theory studies the existence of solutions with small
amplitudes and slopes, the question of self-intersection of wave surfaces does not arise in the present
study. By contrast, in the theory of large-amplitude waves [4], considerable effort is required to
ensure that there is no self-intersection.)

1.2 Bifurcation picture

In this section we explain schematically the geometric picture of small amplitude hydroelastic waves
close to a bifurcation point. See Theorems 7.1 and 8.1 for a detailed statement.

The first observation is that, for all choices of the two independent parameters, the problem,
when linearized at the trivial solution of uniform horizontal flow under an undeformed membrane,
has at most two linearly independent solutions. If there is only one linearized solution when
(λ1, λ2) = (λ∗1, λ∗2) say, there is at most one linearized solution for all nearby (λ1, λ2). Therefore,
with either one of the parameters held fixed, there are bifurcations from simple eigenvalues with
respect to the other parameter. Their union is a two-dimensional sheet of solutions which bifurcates
from (λ∗1, λ

∗
2). The details are in Section 7.

On the other hand, suppose that at λ∗ = (λ∗1, λ
∗
2) the linearized problem has two solutions

cos(kτ ) and cos(lτ ), where k and l are positive integers with max{k, l}/min{k, l} /∈ Z. By restricting



HYDROELASTIC TRAVELLING WAVES 7

attention to solutions in Zk = span {cos(jkτ) : j ∈ N}, or in Zl = span {cos(j lτ ) : j ∈ N}, the
problem may be reduced to one of “bifurcation from a simple eigenvalue” for particular solutions
that have minimal period 2π/k or 2π/l, respectively. This is straightforward and similar to what
is done in Section 7. Locally we obtain a sheet of solutions of minimal period 2π/k and a sheet
of solutions of minimal period 2π/l. Each of these sheets is locally the graph of a function which
gives λ2 in terms of the wave amplitude and λ1 (the roles of λ2 and λ1 can be reversed). We will
refer to these solutions with minimal periods less than 2π as “special” solutions.

In Section 8 we show that in addition to these two sheets of “special” solutions there is a two-
dimensional sheet of “general” solutions and that the sheet of “general” solutions intersects each of
the sheets of “special” solutions in a curve. The solutions on the sheet of “general” solutions, except
where it intersects the sheet of “special” solutions, have minimal period 2π . Therefore the general
solutions on this sheet represent a symmetry-breaking (or period-multiplying) secondary bifurcation
on the curves of special solutions. This is the hydroelastic analogue of Wilton ripples, a type of water
wave which arises in the presence of surface tension [8, 14, 15]. In Wilton-ripple theory there are
also two parameters, the wave speed and the surface tension coefficient (which measures surface
elasticity). Wilton ripples bifurcate from uniform streams at certain values of the wave speed, when
the surface tension has particular values. Here the two parameters are independent of the elasticity
of the membrane. Therefore the wave and drift speeds can conspire to produce ripples, for any
prescribed elastic membrane.

After Lyapunov–Schmidt reduction, when the linearized problem has two independent solutions,
cos(kτ ) and cos(lτ ), there are two bifurcation equations in four unknowns

Φk(t1, t2, λ1, λ2) = 0, Φl(t1, t2, λ1, λ2) = 0, (1.5)

where t1 and t2 near 0 are the coefficients of cos(kτ ) and cos(lτ ), respectively. Solutions with t1 = 0
or t2 = 0 correspond to “special” solutions. The hypothesis that max{k, l}/min{k, l} /∈ Z leads to
the key observation that, for all t1, t2 near 0,

Φk(0, t2, λ1, λ2) = 0, Φl(t1, 0, λ1, λ2) = 0.

Then each of the sheets of “special” solutions is found by solving one equation in three unknowns,
as is done in Section 7.

To find the “general” solutions, we seek solutions of (1.5) with neither t1 nor t2 equal to 0. This
problem is reduced in Section 8 to a desingularized one of the form

Ψk(t1, t2, λ1, λ2) = 0, Ψl(t1, t2, λ1, λ2) = 0, (1.6)

for which (0, 0, λ∗) is a solution and ∂(Ψk, Ψl)/∂(λ1, λ2) at (0, 0, λ∗) is invertible. Then the implicit
function theorem gives λ in a neighbourhood of λ∗ in R2 as a function of (t1, t2) in a neighbourhood
of the origin in R2. This is the sheet of general solutions we are seeking. It intersects the “special”
sheets when t1 = 0 or t2 = 0. The present analysis, which yields a qualitative local description
of the set of all 2π -periodic hydroelastic waves near a bifurcation point, is sufficient to show that
secondary bifurcations occur.

REMARK A more detailed geometrical description of the bifurcating sheets depends on the
coefficients in Taylor series arising in the bifurcation equations, and to calculate their values can
be very complicated. For example, suppose that we want to draw a picture of the solution set when
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one of the parameters, λ2 say, is fixed, and assume that (1.6) has the form

f (λ1)+ (At21 + Bt1t2 + Ct22 )− λ2 = 0,

g(λ1)+ (αt21 + βt1t2 + γ t22 )− λ2 = 0,

where f and g are smooth functions and A, α,B, β, C, γ are constants. Suppose also that

f ′(λ∗1) 6= g′(λ∗1).
Then it is clear from the implicit function theorem that locally

λ1 = Λ((A− α)t21 + (B − β)t1t2 + (C − γ )t22 ),
for some function Λ with Λ′(0) 6= 0. Therefore, for fixed λ2 close to λ∗2 the solution set is given
locally by the level set of the function

f (Λ((A− α)t21 + (B − β)t1t2 + (C − γ )t22 ))+ At21 + Bt1t2 + Ct22 .
The complexity of the dependence of this set on A, α,B, β, C, γ, f and g is evident. These
quantities in turn depend, in an explicit but highly nontrivial way, on the elastic properties of the
membrane.

REMARK In the case when max{k, l}/min{k, l} ∈ Z, analysis is still possible, but the details are
yet more complicated. In these cases, we still have the sheets of “special” solutions. However, the
secondary bifurcations may not form the closed loops illustrated in Figure 2 and in some cases they
may bifurcate from only one, rather than from both the sheets of “special solutions”. See [2, 3]
for numerically produced bifurcation diagrams in the analogous problem of capillary-gravity waves
(classical surface tension and no bending stiffness).

0

t1

t2

λ1

b

b

b

b

b b

FIG. 2. A possible bifurcation diagram in the space (t1, t2, λ1), when λ2 is fixed. The dashed curves correspond to the two
branches of “special” solutions on the planes t1 = 0 and t2 = 0, and the solid curve gives the secondary branch of “general”,
symmetry-breaking solutions.
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REMARK In the present work solutions are found for values of parameters that are not covered by
the maximization argument in [11]. Indeed, a convexity hypothesis of the form E11(ν, µ) > c2ρ =
λ1 was crucial in the existence proof of [11], whereas both primary and secondary bifurcations occur
here provided only that λ1 6= E11 (see Lemmas 5.1 and 5.2).

2. Mathematical formulation

Suppose that in the free-boundary problem (1.4), the shape of S is known. Then ψ is given by the
unique solution to (1.4 d,e,f). Thus the kinetic and potential energies of the fluid are determined
solely by the shape of S. On the other hand, the elastic and gravitational potential energy of the
membrane are determined by the positions of the material points (x, 0) in the deformed membrane.
To deal with this distinction, and ultimately to prove in Section 4 that only the shape matters,
suppose that the shape of S is given by a parametrization

S = {ς(τ ) : τ ∈ R}, where ς(τ + 2π) = (2π, 0)+ ς(τ ).

Then, as in [11], we seek for travelling waves R in the form

R(x, t) := (c0t, 0)+ ς(χ(x − ct)), (2.1)

where χ : R → R is a diffeomorphism with χ(s + 2π) = 2π + χ(s). As before, s is the steady
travelling-wave Lagrangian coordinate, the unknowns are ς(τ ) and χ(s), and r(s) = ς(χ(s)), so
that S = {r(s) : s ∈ R}.

Let w be a 2π -periodic real-valued function with second derivative locally square-integrable
on R, and let C denote its Hilbert transform. The Hilbert transform is most simply defined by
C(einτ ) = −i sgn(n)einτ , n ∈ Z. Consequently, u 7→ Cu′ is the positive square-root of the one-
dimensional Laplacian with periodic boundary conditions and

ς(w)(τ ) := (−τ − Cw(τ),w(τ)), τ ∈ R, (2.2)

parametrizes a 2π -periodic curve in the plane. As explained in [10], the use of (2.2) to parametrize
a periodic curve S means that the Lagrangian (2.4) has a rather tidy form in which the Dirichlet–
Neumann operator for S does not appear. In its place, for example in the kinetic energy term, we
find the operator u 7→ Cu′, which is the Dirichlet–Neumann operator for periodic functions on a
half-space.

Thus w is the unknown that describes the wave shape. The other unknown is the stretch of the
reference membrane. To describe it we follow [4] by introducing diffeomorphisms κ(τ) (κ = χ−1

in (2.1)) of the interval [0, 2π ] such that κ(0) = 0 and κ(2π) = 2π . Then if the material point s of
the membrane in the reference configuration is

s = κ(τ) ∀τ ∈ R, (2.3)

its position r(s) after deformation is

r(s) = ς(w)(τ ),

and the stretch of the membrane is given in terms of κ and w by

ν(s) = |ς(w)
′(τ )|

κ ′(τ )
= Ω(w)(τ)

κ ′(τ )
,
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where
Ω(w)(τ) =

√
w′(τ )2 + (1+ Cw′(τ ))2.

Also, since r(s) = ς(w)(τ ), there is a useful formula for the curvature,

σ̂ (r(s)) = σ(w)(τ) = − 1
Ω(w)(τ)

C
(
Ω(w)′(τ )
Ω(w)(τ)

)
.

Roughly speaking, given a profile parametrized by (2.2), the diffeomorphisms (2.3) describe the
family of all physical deformations (s, 0) 7→ r(s) of the reference state which produce the same
profile ς(w). Note that the parametrization of a curve and the stretch of the material in it are
independent. It will be convenient later to replace κ with the new unknown

ξ(τ ) := κ ′(τ )− 1.

Then ξ has zero mean, which we write

[ξ ] := 1
2π

∫ 2π

0
ξ(τ ) dτ = 0,

because κ(0) = 0 and κ(2π) = 2π . In [11] it is shown how solutions to this hydroelastic wave
problem with a heavy membrane correspond to critical points of a Lagrangian which, in terms of
the unknown (w, ξ), is written

J (w, ξ) := c2
0
2

∫ 2π

0
wCw′ dτ − g

2

∫ 2π

0
w2(1+ Cw′) dτ

−
∫ 2π

0
(1+ ξ)E

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)

dτ + c
2ρ

2

∫ 2π

0

Ω(w)2

1+ ξ dτ

− gρ
∫ 2π

0
w(1+ ξ) dτ. (2.4)

The first term on the right in (2.4) is the fluid’s kinetic energy in one period, relative to the moving
frame; the second term is minus the change in gravitational potential energy of the same body of
fluid relative to a uniform flow; the third is minus the elastic energy of one period of the deformed
membrane; the fourth is the kinetic energy of the membrane; the fifth term is minus the gravitational
potential energy of one period of the membrane. (For the derivation, see the discussion leading to
[11, (2.18)].)

This will be the starting point for this analysis. Local bifurcation theory will be used to give a
complete description of all small-amplitude 2π -periodic waves represented by critical points of J
close to a bifurcation point.

3. The equations

Define the notation (E −∇E·)(ν, µ) by

(E −∇E·)(ν, µ) := E(ν, µ)− νE1(ν, µ)− µE2(ν, µ).
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Suppose that w and ξ are small in an appropriate norm and that J is differentiable at (w, ξ). Then
the partial derivative with respect to ξ in a direction ζ , where [ζ ] = 0, is

dξJ (w, ξ)ζ = −
∫ 2π

0
ζ

{
(E −∇E·)

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
+ c

2ρ

2

(
Ω(w)

1+ ξ
)2

+ gρw
}

dτ.

Let L[w], depending on w, be the linear operator defined in [4, Section 4.5] by

L[w](u) := w′u+ (1+ Cw′)Cu
Ω(w)2

,

with the property that

dwΩ(w)h = Ω(w)L[w](h′), dw(Ω(w)σ(w))h = −C(L[w](h′))′. (3.1)

Then the partial derivative of J (w, ξ) with respect to w in the direction h is

dwJ (w, ξ)h =
∫ 2π

0
h{c2

0Cw′ − gw(1+ Cw′)− gC(ww′)− gρ(1+ ξ)} dτ

+
∫ 2π

0

{
c2ρΩ(w)

1+ ξ − E1

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)}
Ω(w)L[w](h′) dτ

+
∫ 2π

0
E2

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
(CL[w](h′))′ dτ.

Now, suppose that (w, ξ) is a critical point of J . Define the projection

Pu := u− [u], [u] := 1
2π

∫ 2π

0
u(τ) dτ,

for all 2π -periodic, locally integrable functions u. Then Pu has zero mean on [0, 2π ]. Note that the
operator L[w] is independent of the mean of w. A simple calculation shows that dwJ (w, ξ) = 0 if
and only if

[w + wCw′]+ ρ = 0 and dwJ (w, ξ)Ph = 0 ∀h.
Hence it suffices to study the equation dJ0(w, ξ) = 0, where J0 is defined by

J0(w, ξ) := J (w, ξ)+ gπ([wCw′]+ ρ)2,

over a class of functions satisfying [w] = [ξ ] = 0, because then dJ0(w, ξ) = 0 implies that
dJ (w∗, ξ) = 0, where

w∗ := w − [wCw′]− ρ.
From a calculation similar to that for J , partial derivatives of J0 are given by

dξJ0(w, ξ)ζ = −
∫ 2π

0
ζ

{
(E−∇E·)

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
+ c

2ρ

2

(
Ω(w)

1+ ξ
)2

+gρw
}

dτ (3.2)
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and

dwJ0(w, ξ)h =
∫ 2π

0
h{c2

0Cw′ − gw(1+ Cw′)− gC(ww′)− gρ(1+ ξ)} dτ

+
∫ 2π

0

(
c2ρ

Ω(w)

1+ ξ − E1

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
))
Ω(w)L[w](h′) dτ

+
∫ 2π

0
E2

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
C(L[w](h′))′ dτ

+ 2g([wCw′]+ ρ)
∫ 2π

0
hCw′ dτ. (3.3)

In [4, Sections 4.1 & 4.2] the membrane density ρ is zero. However, the calculations there are easily
extended to take account of the extra terms here which involve ρ > 0. To proceed, we adapt the
notation from [4] to the case of positive ρ. For u with zero mean, let

∇I0 :=
(
c2

0 +
g

π

∫ 2π

0
wCw′ dτ + 2gρ

)
Cw′ − gw(1+ Cw′)− gC(ww′)− gρ(1+ ξ).

With the L2-adjoint of the inverse operator L[w]−1 given by

(L[w]−1)∗(u) = w′u+ C((1+ Cw′)u),
let

m0 := (L[w]−1)∗
(∫ τ

0
P(∇I0) dt

)
. (3.4)

Then, as in [4], the equations for critical points of J0 can be written as follows:

P
{
(E −∇E·)

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
+ c

2ρ

2

(
Ω(w)

1+ ξ
)2}
+ gρw = 0, (3.5a)

PE2

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
+ C

{∫ τ

0
P
(
m0 +Ω(w)E1

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)

− c2ρ
Ω(w)2

1+ ξ
)

dt
}
= 0. (3.5b)

Note that (w, ξ) = (0, 0) solves (3.5) for all values of c, c0, g, ρ.
The free-boundary problem in Section 1.1 is for symmetric waves, so we can simplify matters

by studying the bifurcation problem in spaces of even functions. This is what we do subsequently.
Note that, if w and ξ are even functions, then Cw′, Ω(w), σ(w) and 1+ ξ are also even.

LEMMA 3.1 Suppose that (w, ξ) are even functions such that

dJ0(w, ξ)(h, ζ ) = 0 (3.6)

for all even (h, ζ ) with sufficient regularity. Then (3.6) holds for all (h, ζ ).

Proof. Since every 2π -periodic function is the sum of even and odd functions, by the hypothesis
it suffices to observe that (3.6) holds for (h, ζ ) odd when w, ξ are even. This follows by (3.2) and
(3.3), since L[w](h′) is odd for odd h. 2
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4. A further simplification

In this section we use the implicit function theorem to show that, for solutions of (3.5a), ξ is a
function of (w, λ1) near w = ξ = 0. This means that the stretch variable ξ can be eliminated and
the problem reduced to one for the unknown shape which is given by w. For k ∈ N, let H k

0 denote
the space of real-valued, 2π -periodic, even, zero-mean functions, with kth weak derivative locally
square-integrable. For r > 0, let Br(X) denote the open ball of radius r centred at the origin in a
Banach space X. Fix r > 0 such that

1/2 6 Ω(w) 6 2, |σ(w)| 6 1, |ξ | 6 1/2

for all (w, ξ) ∈ Br(H 3
0 )× Br(H 1

0 ). Then a map M : Br(H 3
0 )× Br(H 1

0 )× (0,+∞)→ H 1
0 may be

defined by

M(w, ξ, λ1) := P
{
(E −∇E·)

(
Ω(w)

1+ ξ ,
Ω(w)σ(w)

1+ ξ
)
+ λ1

2

(
Ω(w)

1+ ξ
)2}
+ gρw,

because E is smooth, and Ω(w)/(1+ ξ) and Ω(w)σ(w)/(1+ ξ) are bounded functions. Thus, the
Euler equation (3.5a) may be written as

M(w, ξ, λ1) = 0.

Moreover, M(0, 0, λ1) = 0 for all λ1. We note that

M ∈ C∞(Br(H 3
0 )× Br(H 1

0 )× (0,+∞),H 1
0 ),

and, when (w, ξ) = (0, 0),

Ω(0) ≡ 1, σ (0) ≡ 0, dΩ(0)h = Ch′, d(Ωσ)(0)h = h′′. (4.1)

Since L[0] = (L[0]−1)∗ = C, it follows from H2 and (3.1) that

dwM(0, 0, λ1)h = −(E11 − λ1)Ch′ + gρh, (4.2)
dξM(0, 0, λ1)ζ = (E11 − λ1)ζ, (4.3)
dλ1M(0, 0, λ1) = 0, (4.4)

where for convenience we have written E11 instead of E11(1, 0).

LEMMA 4.1 When λ̂1 6= E11, there exist a neighbourhood W of (0, λ̂1) in H 3
0 × (0,+∞) and a

map ξ ∈ C∞(W, Br(H
1
0 )) such that

M(w, ξ(w, λ1), λ1) = 0

for all (w, λ1) ∈W , and, if M(w, ξ, λ1) = 0 with (w, λ1) ∈W , then ξ = ξ(w, λ1). Moreover, for
all λ1 6= E11,

ξ(0, λ1) = 0, (4.5)

dwξ(0, λ1)h = Ch′ + gρ

λ1 − E11
h. (4.6)
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Proof. To obtain the existence of ξ , apply the implicit function theorem using (4.3). The required
formulae then follow by the chain rule and (4.2) and (4.4). 2

Because of this, all solutions (w, ξ, λ) of (3.5) with (w, λ1) ∈W are solutions of (3.5b) of the form
(w, ξ(w, λ1), λ). Let m(w, λ) denote m0 (see (3.4)) when ξ = ξ(w, λ1), and let

ei(w, λ1) := Ei
(

Ω(w)

1+ ξ(w, λ1)
,
Ω(w)σ(w)

1+ ξ(w, λ1)

)
, i = 1, 2.

Then on the set D := {(w, λ) : (w, λ1) ∈W, λ2 > 0}, define the function

F(w, λ) := Pe2(w, λ1)+ C
{∫ τ

0
P
(
m(w, λ)+Ω(w)e1(w, λ1)− λ1Ω(w)

2

1+ ξ(w, λ1)

)
dt
}
,

so that the system (3.5), for (w, λ1) ∈W and λ1 6= E11, becomes

F(w, λ) = 0, (w, λ) ∈ D. (4.7)

5. The linearized equation

Recall that F(0, λ) = 0 for all λ with λ1 6= E11 and that F ∈ C∞(D, H 1
0 ). We now calculate its

partial derivatives. When w = 0, (4.1) holds, ξ = 0 by (4.5) and, as a consequence, P(∇I0) = 0.
Hence, by (4.6),

dwm(0, λ)h = −(λ2 + gρ)h+
(

(gρ)2

E11 − λ1
− g

)
C
(∫ τ

0
h(t) dt

)
,

and, by H2,

dwF(0, λ)h = E22h
′′ + λ1h− λ2C

(∫ τ

0
h(t) dt

)
+
(
g + (gρ)2

λ1 − E11

)
P
(∫ τ

0
P
(∫ t

0
h(s) ds

)
dt
)
, (5.1)

where, as above, Eii = Eii(1, 0), i = 1, 2.
Now suppose that h ∈ H 3

0 \ {0} and that dwF(0, λ)h = 0. Then h ∈ H 5
0 , and differentiating the

equality dwF(0, λ)h = 0 twice with respect to τ yields

E22h
′′′′ + λ1h

′′ − λ2Ch′ +
(
g + (gρ)2

λ1 − E11

)
h = 0. (5.2)

It is easy to see that (5.2) has a nonconstant even solution h if and only if

E22k
4 − λ1k

2 − λ2k + g + (gρ)2

λ1 − E11
= 0, (5.3)

for some positive integer k. Since E22(1, 0) is assumed to be positive, for every fixed λ1, λ2 > 0,
(5.3) possesses at most two positive integer solutions. (This follows by noting that the graph of the
quartic curve x 7→ E22x

4 − λ1x
2 on the half-plane {x > 1} intersects any straight line with slope

λ2 at most twice.)
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5.1 Nontrivial kernel

Let g, ρ,E11, E22 > 0 be fixed. Then λ1, λ2 > 0, λ1 − E11 6= 0 and (5.3) holds for some integer
k > 1 if and only if

0 < λ2k = E22k
4 − λ1k

2 + g + (gρ)2

λ1 − E11
= pk(λ1)

E11 − λ1
and λ1 > 0, (5.4)

where
pk(X) := k2X2 − (E22k

4 + E11k
2 + g)X + E11(E22k

4 + g)− (gρ)2.
The discriminant of pk is

∆(pk) = (E11k
2 − E22k

4 − g)2 + (2gρk)2 > 0,

and, since pk(E11) = −(gρ)2, its roots

X±k := E11k
2 + E22k

4 + g ±√∆(pk)
2k2

satisfy
X−k < E11 < X+k .

Moreover X−k > 0 if and only if E11(E22k
4 + g) > g2ρ2. It follows that (5.4) holds if and only if

λ1 ∈ (0, X−k ) ∪ (E11, X
+
k ), λ2 = fk(λ1),

where (0, X−k ) is meant to be empty if X−k 6 0, and

fk(λ1) := E22k
3 − λ1k + 1

k

(
g + (gρ)2

λ1 − E11

)
.

X−k → E11 and X+k → +∞ as k → +∞. Thus, for every λ1 6= E11, there exists an integer
k̄ = k̄(λ1) such that λ1 ∈ (0, X−k )∪ (E11, X

+
k ) for all k > k̄. Therefore, for every k > k̄, (5.3) holds

with λ2 = fk(λ1), and we have proved the following lemma.

LEMMA 5.1 Let g, ρ,E11 and E22 be fixed, positive constants. For every fixed λ1 6= E11, the
parameters λ2 for which the linearized operator dwF(0, λ1, λ2) has a nontrivial kernel form a
sequence {λ(k)2 = fk(λ1) : k > k̄(λ1)} with

λ
(k)
2 = fk(λ1)→+∞ as k→∞.

Thus, for every g, ρ,E11, E22 > 0 there exists a set A formed by infinitely many curves Ak in
the parameter quadrant {(λ1, λ2) : λ1 > 0, λ2 > 0},

A =
⋃
k∈N

Ak, Ak = {(λ1, λ2) : λ2 = fk(λ1)} ∩ {λ1 > 0, λ2 > 0}

(see Figure 3), such that the kernel of the linearized operator dwF(0, λ) is nontrivial if and only if
λ ∈ A. Note that there is no restriction on λ1 except that λ1 6= E11.
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FIG. 3. Plots of the curves Ak , k = 1, . . . , 7, when g = 9.81, gρ = 1, E11 = 4 and E22 = 1, first in the region
3.96 < λ1 < 4.10 and 0 < λ2 < 330, with two different scales for the two axes, and then in the region 0 < λ1, λ2 < 30,
with the same scale for λ1 and λ2.

5.2 Double eigenvalues

The kernel of dwF(0, λ) is two-dimensional if and only if (5.3) has two positive integer solutions
k 6= l, namely the curves Ak and Al cross at λ. Now, k 6= l solve (5.3) if and only if

λ2 = hk,l(λ1) := (k + l)(E22(k
2 + l2)− λ1) and qk,l(λ1) = 0, (5.5)
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where

qk,l(X) := klX2 − (E11kl + E22kl(k
2 + kl + l2)− g)X

+ E11E22kl(k
2 + kl + l2)− E11g + (gρ)2.

For all kl sufficiently large, the discriminant of qk,l ,

∆(qk,l) = (E11kl − E22kl(k
2 + kl + l2)+ g)2 − 4kl(gρ)2,

is positive, and the roots X−k,l and X+k,l of qk,l are both greater than E11.
Since hk,l(X+k,l) < 0 for all kl sufficiently large, there are at most finitely many solutions λ of

(5.5) with λ1 = X+k,l and λ2 > 0. On the other hand, hk,l(X−k,l) > 0 for all kl sufficiently large, and

X−k,l → E11, hk,l(X
−
k,l)→+∞

as kl→+∞. Thus, we have proved the following lemma.

LEMMA 5.2 Let g, ρ,E11 and E22 be fixed, positive constants. The parameters λ for which the
linearized operator dwF(0, λ) has a two-dimensional kernel form a sequence λ(n) = (λ

(n)
1 , λ

(n)
2 )

with
λ
(n)
1 ↘ E11, λ

(n)
2 →+∞ as n→∞.

REMARK Double eigenvalues with λ1 < E11 are possible, provided we assume some additional
hypotheses on E, namely

E22(kl)
2 < g < E22kl(k

2 + kl + l2)
and E11 sufficiently large. In any case, they are at most finitely many.

6. Lyapunov–Schmidt reduction

We turn now to study the bifurcation of solutions of (4.7). Recall that throughout we are dealing
with 2π -periodic functions w of zero mean. Suppose that λ∗ = (λ∗1, λ∗2) ∈ A, λ∗1 6= E11. Then the
kernel

V := Ker dwF(0, λ∗) ⊂ H 3
0 ,

of the linearized operator, is a subspace of dimension 1 or 2, depending on the number of integer
solutions of (5.3), and the range

R := Range dwF(0, λ∗) ⊂ H 1
0

is orthogonal to V with respect to the L2(0, 2π) scalar product, namely

H 1
0 = V ⊕ R, H 3

0 = V ⊕ (R ∩H 3
0 ).

In fact, it is evident from (5.1) that dwF(0, λ) is a diagonal operator with respect to the basis of even
2π -periodic functions {cos(jτ ) : j = 1, 2, . . .}, for all λ.

Following the classical Lyapunov–Schmidt decomposition, we write

w = v + y, v ∈ V, y ∈ R ∩H 3
0 ,
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and denote by ΠV ,ΠR the projections onto V and R respectively. The equation F(w, λ) = 0 is
then equivalent to the system{

ΠVF(v + y, λ) = 0 (bifurcation equation),
ΠRF(v + y, λ) = 0 (auxiliary equation).

(6.1)

LEMMA 6.1 (Auxiliary equation) There is a neighbourhood U of (0, λ∗) in V × R2, a neighbour-
hood U of 0 in R ∩H 3

0 and a function y ∈ C∞(U , U) such that

ΠRF(v + y(v, λ), λ) = 0

for all (v, λ) ∈ U , and, if ΠRF(v + y, λ) = 0 with y ∈ U and (v, λ) ∈ U , then y = y(v, λ).
Moreover, for all (0, λ) ∈ U ,

y(0, λ) = 0, dvy(0, λ) = 0, dλiy(0, λ) = 0, i = 1, 2, (6.2)

and there exists a constant C > 0 such that

‖y(v, λ)‖H 3 6 C‖v‖2
H 3

for all (v, λ) ∈ U .

Proof. Apply the implicit function theorem, and note that, for all λ, dwF(0, λ) is diagonal in the
basis {cos jτ }, j = 1, 2, . . . , therefore ΠR dwF(0, λ)v = 0 for all v ∈ V and all λ. 2

In this way, the bifurcation problem for the equation (4.7) has been reduced to

ΠVF(v + y(v, λ), λ) = 0, (6.3)

with (v, λ) ∈ U ⊂ V × R2.

7. Sheets bifurcating from a simple eigenvalue

Here we study the elementary case in which equation (5.3), and hence the linearized operator (5.1),
has a one-dimensional kernel. From the discussions in Section 5 this is the case for parameter values
(λ∗1, λ

∗
2) on the union of countably many curves with countably many points removed.

Hence suppose that there exists a unique integer k > 1 that satisfies (5.3) for λ∗ = (λ∗1, λ
∗
2).

Then
V := Ker dwF(0, λ∗) = {t cos(kτ ) : t ∈ R}

and, by (6.3), the system (6.1) is equivalent to the problem

Φ(t, λ) := ΠVF(t cos(kτ )+ y(t cos(kτ ), λ), λ) = 0. (7.1)

Φ is a smooth real-valued map of three real variables (t, λ1, λ2), defined on a neighbourhood of
(0, λ∗1, λ

∗
2). Since F(0, λ) = 0 for all λ, from Lemma 6.1 it follows that

Φ(0, λ) = 0 for all (0, λ) ∈ U .
Also, from (6.2) and the orthogonality of V and R, we find that

∂tΦ(0, λ∗) = 0. (7.2)

To find solutions of (7.1) with t 6= 0 we invoke the implicit function theorem in the usual analytic
approach to bifurcation problems.
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THEOREM 7.1 Suppose that there exists a unique integer k > 1 that satisfies (5.3) for λ∗ =
(λ∗1, λ

∗
2), with λ∗1 6= E11. Then there exist neighbourhoods U1 of (0, λ∗1) in R2 and U1 of λ∗2 in R,

and a map λ2 ∈ C∞(U1, U1) with λ2(0, λ∗1) = λ∗2 such that

Φ(t, λ1, λ2(t, λ1)) = 0 for all (t, λ1) ∈ U1,

and, if Φ(t, λ1, λ2) = 0 with (t, λ1) ∈ U1, t 6= 0 and λ2 ∈ U1, then λ2 = λ2(t, λ1). As a
consequence,

F(w(t, λ1), λ1, λ2(t, λ1)) = 0,

where
w(t, λ1) := t cos(kτ )+ y(t cos(kτ ), λ1, λ2(t, λ1)) = t cos(kτ )+O(t2).

Proof. First, we prove that
∂2
t,λ2
Φ(0, λ∗) 6= 0. (7.3)

By (6.2),

∂tΦ(0, λ) = ΠV dwF(0, λ)(1+ dvy(0, λ)) cos(kτ ) = ΠV dwF(0, λ) cos(kτ ),

and
∂2
t,λ2
Φ(0, λ∗) = ΠV d2

w,λ2
F(0, λ∗) cos(kτ ).

By (5.1),

dwF(0, λ) cos(kτ ) =
(
−k2E22 + λ1 + λ2

k
−
(
g + (gρ)2

λ1 − E11

)
1
k2

)
cos(kτ ),

whence
ΠV d

2
w,λ2

F(0, λ∗) cos(kτ ) = 1/k∗ > 0,

and (7.3) is proved. Since

Φ(t, λ) =
∫ t

0
(∂tΦ)(x, λ) dx = t

∫ 1

0
(∂tΦ)(zt, λ) dz,

it follows that Φ(t, λ) = 0, with t 6= 0, if and only if ϕ(t, λ) = 0, where

ϕ(t, λ) :=
∫ 1

0
(∂tΦ)(xt, λ) dx.

From the smoothness of Φ it follows that ϕ is also smooth. By (7.2), ϕ(0, λ∗) = 0. Moreover,
∂λ2ϕ(0, λ

∗) 6= 0 by (7.3). The result now follows from the implicit function theorem. 2

REMARK Since

ΠV d
2
w,λ1

F(0, λ∗) cos(kτ ) = 1+
(

gρ

k(λ∗1 − E11)

)2

> 0,

the roles of λ1 and λ2 can be swapped.
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8. Bifurcation from a double eigenvalue

We have observed that for any (λ1, λ2) there are at most two positive integer solutions, k, l, of (5.3),
and this happens only if fk(λ1) = fl(λ1) = λ2. Suppose that there are indeed two such solutions, k
and l, with

max{k, l}
min{k, l} /∈ Z. (8.1)

Let Zk be the closure of span {cos(jkτ) : j ∈ N} in L2(0, 2π), and similarly for Zl . (Zk and Zl are
the subspaces of L2(0, 2π) consisting of the functions with period 2π/k and 2π/l respectively.)
Now note that if one seeks waves with minimal period 2π/k or 2π/l, the original bifurcation
problem (4.7) may be specialized to a problem on Zk or Zk and the reduced problem (6.3) is
similarly restricted to Zk or Zl . In each of these restricted settings separately, only one solution,
k or l, of (5.3) is relevant, and there is a simple eigenvalue from which a curve of solutions in
Zk ∩ H 3

0 or Zl ∩ H 3
0 bifurcates, exactly as in the preceding section. However, we will now show

that other solutions that are neither in Zk nor Zl bifurcate at λ∗ when k and l are solutions of (5.3)
with λ = λ∗ and (8.1) holds.

In this case the kernel of the linearized problem is two-dimensional,

V := Ker dwF(0, λ∗) = {t1 cos(kτ )+ t2 cos(lτ ) : (t1, t2) ∈ R2},
and the bifurcation problem (6.3) is

Φ(t1, t2, λ) = 0, λ = (λ1, λ2), (8.2)

where
Φ(t1, t2, λ) := ΠVF(v + y(v, λ), λ), v = t1 cos(kτ )+ t2 cos(lτ ).

Let Φk cos(kτ ) := ΠkΦ and Φl cos(lτ ) := ΠlΦ, where Πk and Πl denote the projections onto
span {cos(kτ )} and span {cos(lτ )}, respectively. Thus (8.2) becomes

Φk(t1, t2, λ1, λ2) = 0,
Φl(t1, t2, λ1, λ2) = 0,

a system of two equations in four unknowns which is satisfied by (0, 0, λ1, λ2) for all λ. The key to
our result is the following observation.

Suppose that t1 = 0, and v = t2 cos(lτ ), t2 ∈ R. Then an application of Lemma 6.1 in the
subspace Zl of 2π/l-periodic functions yields y(v, λ) ∈ Zl ∩R, because of the local uniqueness in
the implicit function theorem. Hence v + y(v, λ) is 2π/l-periodic, therefore F(v + y(v, λ), λ) is
also 2π/l-periodic. As a consequence,

Φk(0, t2, λ) = 0 for all t2, λ. (8.3)

For the same reason,
Φl(t1, 0, λ) = 0 for all t1, λ. (8.4)

We now require the nondegeneracy condition(
gρ

λ∗1 − E11

)2

6= kl. (8.5)
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REMARK It is easily checked that condition (8.5) is equivalent to the geometrical assumption that
f ′k(λ

∗
1) 6= f ′l (λ

∗
1). In other words, the curves Ak and Al are not tangential at their intersection

point λ∗1.

THEOREM 8.1 Suppose that there exist two integers k, l that satisfy (5.3) for λ∗ = (λ∗1, λ∗2) where
λ∗1 6= E11, and (8.1) and (8.5) hold. Then there exist neighbourhoods U2 of the origin and U2 of
λ∗ in R2, and functions λ(t1, t2) = (λ1(t1, t2), λ2(t1, t2)), λ ∈ C∞(U2, U2) with λ(0, 0) = λ∗ such
that

Φ(t1, t2, λ(t1, t2)) = 0 for all (t1, t2) ∈ U2,

and, ifΦ(t1, t2, λ) = 0 with (t1, t2) ∈ U2\{(0, 0)} and λ ∈ U2, then λ = λ(t1, t2). As a consequence,

F(w(t1, t2), λ(t1, t2)) = 0,

where

w(t1, t2) := t1 cos(kτ )+ t2 cos(lτ )+ y(t1 cos(kτ )+ t2 cos(lτ ), λ(t1, t2))

= t1 cos(kτ )+ t2 cos(lτ )+O(t21 + t22 ).
Proof. Let Ψ := (Ψk, Ψl),

Ψk(t1, t2, λ) :=
∫ 1

0
(∂t1Φk)(xt1, t2, λ) dx, Ψl(t1, t2, λ) :=

∫ 1

0
(∂t2Φk)(t1, xt2, λ) dx.

Ψk and Ψl are smooth by (8.3) and (8.4). Moreover, since

Ψk(0, 0, λ) = ΠkdwF(0, λ) cos(kτ ) = −E22k
2 + λ1 + λ2

k
−
(
g + (gρ)2

λ1 − E11

)
1
k2 , (8.6)

and, analogously,

Ψl(0, 0, λ) = −E22l
2 + λ1 + λ2

l
−
(
g + (gρ)2

λ1 − E11

)
1
l2
, (8.7)

it follows that
Ψ (0, 0, λ∗) = 0.

To apply the implicit function theorem to Ψ at the point (0, 0, λ∗), it is sufficient to prove that the
2×2 matrix representing the linear map ∂λΨ (0, 0, λ∗) is invertible. Now, differentiating (8.6) and
(8.7) with respect to λ1 and λ2, we obtain

det(∂λΨ (0, 0, λ∗)) =
{(

gρ

λ∗1 − E11

)2

− kl
}(

1
k
− 1
l

)
1
kl
,

which is nonzero by (8.5). 2

REMARK By the definition of Ψ , for (t1, t2) ∈ U2, with t1 6= 0 and t2 6= 0, Theorem 8.1 gives
solutions of problem (8.2) which do not belong to Zk nor Zl , as was stated above.



22 P. BALDI AND J. F. TOLAND

Acknowledgements

JFT acknowledges the support of a Royal Society/Wolfson Research Merit Award. PB is supported
by the European Research Council, FP7, project New connections between dynamical systems and
Hamiltonian PDEs with small divisors phenomena. The main part of this paper was written when
PB was supported by the UK EPSRC at the University of Bath, and by the Italian MURST, project
Variational methods and nonlinear differential equations.

The authors are grateful to M. C. W. Jones for the reference to the work of Bohr mentioned in
the Introduction.

REFERENCES

1. ANTMAN, S. S. Nonlinear Problems of Elasticity. Springer, New York (1995). Zbl 0820.73002
MR 1323857

2. ASTON, P. J. Local and global aspects of the (1, n)mode interaction for capillary-gravity waves. Phys. D
52 (1991), 415–428. Zbl 0737.76006 MR 1129004

3. ASTON, P. J. Understanding the global solutions of the capillary-gravity wave problem. Wave Motion 17
(1993), 113–141. Zbl 0778.76010 MR 1209433

4. BALDI, P., & TOLAND, J. F. Steady periodic water waves under nonlinear elastic membranes. J. Reine
Angew. Math., to appear.

5. BOHR, N. Collected Works. North-Holland, Amsterdam (1906), pp. 67–78.
6. CHRISTODOULIDES, P., & DIAS, F. Resonant capillary-gravity interfacial waves. J. Fluid Mech. 265

(1994), 303–343. Zbl 0806.76014 MR 1271683
7. DYACHENKO, A. I., KUZNETSOV, E. A., SPECTOR, M. D., & ZAKHAROV, V. E. Analytic description

of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A
221 (1996), 73–79.

8. JONES, M. C. W., & TOLAND, J. F. Symmetry and the bifurcation of capillary-gravity waves. Arch.
Ration. Mech. Anal. 96 (1986), 29–53. Zbl 0615.76023 MR 0853974

9. PLOTNIKOV, P. I., & TOLAND, J. F. Strain-gradient theory of hydroelastic travelling waves and their
singular limits. Univ. of Bath, in preparation.

10. SHARGORODSKY, E., & TOLAND, J. F. Bernoulli free-boundary problems. Mem. Amer. Math. Soc. 196,
no. 914 (2008). Zbl 1167.35001 MR 2458311

11. TOLAND, J. F. Heavy hydroelastic travelling waves. Proc. R. Soc. Lond. A 463 (2007), 2371–2397.
Zbl pre05229570 MR 2345232

12. TOLAND, J. F. Steady periodic hydroelastic waves. Arch. Ration. Mech. Anal. 189 (2008), 325–362.
Zbl 1147.76008 MR 2413099

13. TOLAND, J. F., & IOOSS, G. Riemann–Hilbert and variational structure for standing waves. Far East J.
Appl. Math. 15 (2004), 459–488. Zbl pre02163182 MR 2108570

14. TOLAND, J. F., & JONES, M. C. W. The bifurcation and secondary bifurcation of capillary-gravity
waves. Proc. R. Soc. Lond. A 399 (1985), 391–417. Zbl 0575.76023 MR 0799114

15. WILTON, J. R. On ripples. Philos. Mag. (6) 29 (1915), 688–700. JFM 45.1090.02
16. ZAKHAROV, V. E. Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl.

Mech. Tech. Phys. 2 (1968), 190–194.
17. ZYGMUND, A. Trigonometric Series I & II. Corrected reprint (1968) of 2nd ed., Cambridge Univ. Press,

Cambridge (1959). Zbl 0085.05601 MR 0107776

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0820.73002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1323857
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0737.76006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1129004
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0778.76010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1209433
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0806.76014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1271683
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0615.76023&format=complete
http://www.ams.org/mathscinet-getitem?mr=0853974
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1167.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2458311
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05229570&format=complete
http://www.ams.org/mathscinet-getitem?mr=2345232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1147.76008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2413099
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre02163182&format=complete
http://www.ams.org/mathscinet-getitem?mr=2108570
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0575.76023&format=complete
http://www.ams.org/mathscinet-getitem?mr=0799114
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0085.05601&format=complete
http://www.ams.org/mathscinet-getitem?mr=0107776

	Introduction
	The free-boundary problem
	Bifurcation picture

	Mathematical formulation
	The equations
	A further simplification
	The linearized equation
	Nontrivial kernel
	Double eigenvalues

	Lyapunov–Schmidt reduction
	Sheets bifurcating from a simple eigenvalue
	Bifurcation from a double eigenvalue

