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We consider the problem of finding a global weak solution for two-dimensional, incompressible
viscous flow on a torus, containing a surface-tension bearing curve transported by the flow. This is
the simplest case of a class of two-phase flows considered by Plotnikov in [16] and Abels in [1]. Our
work complements Abels’ analysis by examining this special case in detail. We construct a family
of approximations and show that the limit of these approximations satisfies, globally in time, an
incomplete set of equations in the weak sense. In addition, we examine criteria for closure of the
limit system, we find conditions which imply nontrivial dependence of the limiting solution on the
surface tension parameter, and we obtain a new system of evolution equations which models our flow-
interface problem, in a form that may be useful for further analysis and for numerical simulations.

1. Introduction

In [16] P. I. Plotnikov considered the motion of two immiscible fluids with the same density,
separated by an interface in the presence of surface tension, with distinct, strain-dependent
viscosities, in two space dimensions. The interface was modelled as a varifold and Plotnikov proved
global existence of a weak solution under a certain strain-thickening hypothesis (non-Newtonian) on
the viscosities. In [1]] H. Abels extended Plotnikov’s work in several ways, in particular extending
it to three-dimensional flows and proving the existence of measure-valued varifold solutions in a
broader class of rheologies, which include the Newtonian case. Both varifold solutions and measure-
valued varifold solutions satisfy incomplete sets of equations, and we refer to the problem of proving
the existence of a global weak solution of the original system, for reasons which we will make
clear, as the closure problem. The purpose of the present work is to complement Abels’ results by
considering in detail the simplest case; that of two-dimensional Newtonian flows with the same
viscosity on each side of the interface. We construct a new family of approximations to this problem
and we prove the existence of a weak limit satisfying an incomplete set of equations. We see that, in
particular, Abels’ measure-valued varifold solution actually becomes a varifold solution in this case.
While we use a different approximating sequence and avoid varifolds, the proof of our main theorem
has many elements in common with that of Abels. We include it basically for expository purposes,
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since our simplified context and distinct approach bring the closure problem into sharper focus.
We find regularity conditions under which the limiting solutions we obtain depend non-trivially on
the surface tension, and we examine criteria for solving the closure problem, extending and adding
further detail to the analysis performed by Abels. Finally, our method of approximation suggests a
new set of evolution equations for the flow-interface dynamics.

To be more precise, we consider a pair of viscous incompressible two-dimensional fluids, which
we assume to be of constant unit density, separated by a curve C; on which we assume there is
surface tension. The surface tension is a force that is normal to C; and proportional to the curvature «.
Let o > 0 be the coefficient of surface tension and let 72 be the unit normal vector. For simplicity
we will assume that the domain of the fluid flow is the two-dimensional torus, T2. Balance of force,
together with incompressibility, in Eulerian coordinates, takes the form

V.v=0, M

{ dv+ (v-Vv+Vp —vAv = oknde,,

in T? x R, where v is the velocity, p is the pressure, v > 0 is the coefficient of viscosity and e,

is the 1-dimensional Hausdorff measure on the curve C;. In addition we require that the curve C; be
transported by v. Throughout we assume v > O and o > 0.

We are interested in the construction and approximation of solutions of (I)) for all times 0 < ¢

< 00, given initial conditions at ¢+ = 0. The difficulty is that the solution and the interface may

become turbulent. The only available a priori estimate is given formally by the conservation of

energy,
d(1
a{§/|U|2dx+aL} =—u/|w|2dx @)
where L is the length of C;.

Given the energy estimate above, it is natural to look for solutions (u,C;) of with u
in L®((0, 00); L) N L2((0, 00); H') (the Leray space) and C; in a space of rectifiable curves.
However, neither the normal vector nor the curvature are defined for general rectifiable curves. The
first difficulty we must address is, therefore, that of defining the surface tension for such objects.

In Section 2, we introduce what we call Eulerian theory of interface transport. We describe an
interface by means of a finite Radon measure, M, defined on T2 x R? x R4, which expresses the
position x of a fluid interface at each time ¢, together with the interface’s tangent direction n. We
notice that we can write the surface tension force, Kﬁéct, in terms of the measure M. The resulting
expression for the surface tension force, which we call s(M), turns out to be linear in M:

5(M)=Vx~/ nQNM dn,
RZ

where 7 = n/|n|, and where we have abused notation by writing M dn instead of the more precise
dM (n). We derive an evolution equation for M, when the interface is transported by a smooth
velocity v:

M +v-VyM+ DuvnV,M = 7DviM. 3)

In coordinates, this equation is

(B + vi 0y, )M + (8x,0;); 0y, M =17 (8, v,) M.
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We do not know how to solve equation (3) if v is a vector field in the Leray space and the
initial measure M (+ = 0) has support on a curve, even a smooth one. Our strategy is to mollify the
velocity used to transport the interface, and to adjust the surface tension term in the Navier—Stokes
system in order to retain an energy estimate. A large part of our effort is to produce a solution to
this approximate problem.

With this in mind, we are ready to state our main result. We denote the space of bounded Radon
measures on a domain U by BM(U).

THEOREM | Fix o > 0 and v > 0. Let £2¢ be a domain in T2 whose smooth boundary 0§29 = Cy
is a Jordan curve. Let vg € L*(T?) be a divergence-free vector field.

(i) There exist
v e L¥((0, 00); LE(T?)) N L2((0, 00); HY(T?)), M e L*((0, 00); BM(T? x R?))

such that the support of M(-, 1) is contained in {(x, n) € T2 x R? : || = 1} and the following
equations hold in the sense of distributions:

0 v+ (- Vv +Vip —vAw =0V, - [T @7Mdy,
Ve v =0, @)
vix,t =0) = v,

where 7 = n/|n|, the pressure p is a distribution, and the test functions are divergence-free.

(i1) For each t > 0 there exists an open set £2(¢) C T2 with rectifiable boundary 0§2(t) = C; such
that if b(, 1) = x(), then b € L((0, 00); BV (T?)) N C([0, 00); LP(T?)) for all p < oo and
the following equation is satisfied in the sense of distributions:

0 +v-Vy)b=0, )
b(x,t =0) = xg,.
Moreover, the vector function
p= —/nﬂﬁdn, 6)
where n = (—n2, n1), is related to b by
0 = Vib. (N

Note that equation (4] implies that v € C([0, 00); H —k(T2)) for some k so that it makes sense to
restrict v to t = 0. We choose to assume that the initial interface is a Jordan curve for convenience.
This assumption is made simply to ensure that there are two distinct fluid regions at the initial time,
without need for other conditions. The solution we obtain, however, may develop self-intersections.

Theorem E] is a special case of Theorem 1.6 of [1]], in the case where the fluids are Newtonian
and viscosity-matched, and in the spatially periodic setting. This is not obvious in the statement
of Theorem 1.6 because, first, Abels’ result is cast in the language of geometric measure theory,
while our result, given the simplified context, may be stated using the standard language of partial
differential equations. Second, our notion of weak solution, which amounts to a varifold solution in
the terminology of Abels, is stronger than the notion of measure-valued varifold solution whose
existence is obtained in [L]]. It is easy to see, however, that, in the special case of Newtonian,
viscosity-matched fluids, Abels’ proof of Theorem 1.6 also provides a varifold solution.
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It is worth mentioning that Abels did not establish the added regularity, in time, which we obtain
for b, namely, b € C([0, co0); L? (T?)) forall p < oco. This smoothness is what allows us to conclude
(7) pointwise in time. The corresponding result, in Abels” work, is (1.15) of []], which holds a.e.
in time. Finally, we observe that our proof of Theorem [I| differs from Abels’ proof of Theorem 1.6
of [1]] in that we introduce a new sequence of approximations which transport both the approximate
interface and its tangent directions. -

Our approach is to obtain the solution (v, M) of @) as a weak limit of a sequence of
suitable approximations for which the energy (2)) is uniformly bounded. In particular, we obtain
a sequence of smooth approximating curves with uniformly bounded length. We show that, passing
to subsequences as needed, there exists a limit rectifiable curve C;. Now, length is weakly lower
semicontinuous, so this opens the possibility that there may be a length defect in the passage to the
limit. We show that, in the absence of such a length defect, v and the limit curve C; are distributional
solutions of the original problem (T). We also present an example which suggests that the weak limit
v together with the limit curve C; may satisfy (I)) even if there is a length defect.

We now mention some related work. Without surface tension (o = 0) there are the papers of
Nouri and Poupaud and Giga and Takahashi for v > 0 and Delort for v = 0 [ILS], [9], [7]. Nouri
and Poupaud studied a multifluid Navier—Stokes problem, with different densities and viscosities
for each fluid, and proved the existence of global weak solutions. Giga and Takahashi similarly
treated multifluid Stokes flows, proving the existence of global weak solutions when the viscosities
are nearly equal. In a celebrated result, Delort showed the existence of global weak solutions for the
Euler equations for vortex sheet initial data, in the case that the vortex sheet strength has a single
sign. However, these papers do not provide any information at all about the nature of the interface.
None of these works considered the effect of surface tension; the difficulty of handling surface
tension is that one has to explicitly consider the interface.

Other articles which do treat the effect of surface tension either treat only smooth solutions
or are numerical works. Beale proved the global existence of small, smooth solutions in a
one-fluid viscous case (see [S]). Hou, Lowengrub, and Shelley (HLS) developed an efficient
numerical method for the inviscid, irrotational case [11], [12]. Ambrose used ideas of HLS
to prove short time well-posedness of smooth solutions of any size, still in the irrotational
inviscid setting [3|]. The works of Ambrose and HLS used in a fundamental way that the free
surface was non-self-intersecting, so that topological transitions could not be treated. Smooth
solutions for short times with surface tension have also been studied in three dimensions in the
inviscid case by Ambrose and Masmoudi [4]; Cheng, Coutand, and Shkoller [6]; and Shatah
and Zeng [17]. Tauber, Unverdi, and Tryggvason have a numerical method for viscous fluids
with surface tension, but again, the interface is explicitly tracked, so that topological transitions
cannot be studied [18]. Herrmann has introduced a numerical method (using level sets) in the
inviscid case; by means of level sets, topological transitions can be handled [10]. Herrmann’s
method, however, fundamentally uses the vortex sheet structure, which would not be possible with
viscosity.

The plan of the paper is as follows: In Section 2 we discuss the classical problem and our
Eulerian model for interface transport. In Section 3 we introduce the approximate system, discuss
its properties, and solve the approximate system. In Section 4 we take the weak limits, proving
Theorem 1. In Section 5 we discuss possible defects. This includes a discussion as to the proper
definition of such defects, a sufficient condition which excludes such defects, and the presentation
of an illuminating example. In Section 6 we conditionally prove the nontriviality of solutions in
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certain ways. Finally, in Section 7, we give a new approximate system which is more amenable to
numerical simulation.

2. Eulerian interface dynamics

Our objective in this section is to formulate an Eulerian model for the evolution of interfacial
Navier-Stokes flows with surface tension. To this end, we introduce an equation designed to
propagate a curve (the interface) and its tangent vector. Let us assume that v = v(x,t) €
COO(’]I‘2 x Ry) is a smooth, divergence-free, vector field and consider the initial-value problem
{8,M+v-VXM—I—Dv(x,t)n-VanﬁDv(x,t)ﬁM, @)
M(x,0) = My(x).

It is elementary to verify that V;, - (Dvn) = Vi - v =0.
Let X = X () € Cl(a, b]; T?) be any regular parametrization (i.e., X'(0) # 0) of a smooth
Jordan curve in T2. We denote by M[X] the measure on T? x R? defined by duality as

b aX\|ax
(¢, M[X]) Zfa ¢(X, %)‘8_0 do 9)

for all ¢ € Co(T? x R?).
We use the notation w*-BM(T? x R?) to mean BM(T? x R?) endowed with the weak*
topology.

PROPOSITION 1 Let Cy be a smooth Jordan curve on the torus, with a regular parametrization xg =
x0(0), a < 6 < b. Then there is a unique distributional solution M € C([0, 00); w*-BM(T? x R?))
of (8) with M (t = 0) = M[xp]. Let x (6, t) satisfy

ax/ot = v(x,t),
x(6,0) = xp(0).

The solution M = M(-, t) of (B) is given explicitly by M = M[x(-, )].

Proof. We use the method of characteristics. We introduce the characteristic curves x = x(0, 1),
n=n(,t)and ¢ = ¢(0, t) as the unique solutions of the system of ordinary differential equations
below:
dx /ot = v(x,t),
an/ot = Dv(x, t)n,
¢ /9t = nDv(x, )7L,
x(0,0) = xo(0),
(6, 0) = x,(6),
£(0,0) = |x,(0)],

The solution exists for all time because v is globally Lipschitz continuous.
Let M € L*((0, 00); BM(T? x R?)) denote the time-dependent measure defined through the
expression

(10)

b
(¢, M(-, 1)) =f ¢ (x(0,1),n(0,1))5(0, 1) do
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for all ¢ € C.(T?> x R?). Actually, M is continuous in 7 with values in the space of
bounded measures, endowed with the weak* topology. Note that, since 8 — x¢(0) is a regular
parametrization, (6, 0) does not vanish. Therefore, since the equation for 1 in (TI0) is linear with a
smooth coefficient Dv, 1(6, t) does not vanish, and the support of M (-, t) stays bounded away from
T? x {0}. It is a straightforward calculation to check that for all ¢ € C 2°((0, 00) x T? x R?),

oo b
(¢, 0 M) =—(0:¢p, M) = —fo / 0 (x(0,1),n(0,1),1)¢(0,1)do dt

= (v-Vy¢ + Dv(x,1)n - Vy¢ +Dv(x, 1), M).

Hence, since v is divergence-free with respect to x and Dv 7 is divergence-free with respect to 7,
M is a distributional solution of equation (8).

Next, we observe that, if x, n, ¢ is a solution of (I0) then x, dpx, |dgx| is also a solution of
(10) with the same initial data. The calculations that show this are elementary and straightforward.
It follows by uniqueness for systems of ODEs that x, dgx, |dgx| is the only solution of (I0).
Furthermore, since the equation for ¢ is linear with respect to ¢ and since the initial parametrization
was assumed to be regular, it follows that x = x(-, 7) is a regular parametrization for all + > 0.
Therefore M = M[x(-, 1)].

Finally, uniqueness of the distributional solution follows by a Holmgren-type argument in a
straightforward manner. Indeed, by duality the uniqueness is equivalent to the existence of a smooth
solution ¢ to the adjoint problem in [0, T'] for arbitrary 7 with the right-hand side being a test
function ¥ and with final condition ¢ (x, T') = 0. The existence is proved as usual by the method of
characteristics. |

Next, we introduce a distribution which incorporates the surface tension term, written in terms of

the measure M. If M € BM(T? x R?) has support bounded away from the set { = 0} then we
define the R2-valued distribution

s[M](x) = Vy - /Rzﬁ@) 7 M(x,n)dn. an

We reiterate that above and throughout the remainder of this paper we will abuse notation,
writing for instance M dn instead of dM (1), and s[M] dx instead of ds[M].

PROPOSITION 2 Let C be a smooth closed curve on the torus T2 with a regular parametrization
x=x(0),a <0 <b.Let M = M[x]. Then

s[M] = kndc,

where « is the curvature of C and 7 is the unit normal vector to C chosen so that {x’, 77} is a positive
basis.

Proof. Let ¢ = ¢(x) = (¢'(x), ¢*(x)) be a smooth, compactly supported test vector field. We
write
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2 i
77 n
(@, s[M]) = E <g0’ , xJM>

G\ Il Inl
2

/ Zax-sof(xw))x’»(e) 5O gy f W OO g
= I @) @)

2 x[(b) x/(a)
Z(/ L@k @)D (@)X (©)]d0 — ¢ (x () == + ¢’ (x(a)) — )
= X' (b)] X' ()]

as (x//|x'])'(0) =« (x O)7! (x(0))|x'(0)]. Hence we obtain

(@, s[M1) = (g, kndc) — (@, X' (B)xp) — X' (@)dx(a))-
The boundary terms disappear since the curve C is closed, which concludes the proof. O

Coupling the equations for transport of the interface with a viscous flow v, using the surface tension
term introduced in (TI)), we write the following system of equations:

M +v(x,1)- VM + Dv(x, t)n - VoM = qDv(x, )M,

v+ (v- Vv =—-Vyp+vA,v+ os[M],

Vi -v(x,t) =0, (12)
M(x,n,0) = Mo(x),

v(x, 0) = vo(x).

This set of equations is what we propose as an Eulerian model for the evolution of viscous interfacial
dynamics in the presence of surface tension. (Although we do not study inviscid models in the
present work, notice that Propositions 1 and 2 do not depend in any way on the presence of viscosity.
Thus, setting v = 0 in (I2) would also provide us with an Eulerian model for the evolution of
inviscid interfacial dynamics in the presence of surface tension.) We conclude this section with
energy estimates for solutions of the system (12).

PROPOSITION 3 (i) Let (M, v) be a solution of with M € C1([0, o00); w*-BM(T? x R?))
and v € C'(T? x [0, 00)) and with initial data (Mo, vo). If, additionally, M decays fast enough
at infinity with respect to n and has support bounded away from {n = 0}, then

1 t
—/ |v(x,t)|2dx+a/ / M(x,n,t)dndx—i—v[/ |Vv|2(x,s)dxds
2 T2 T JR2 o Jr2
1
:-/ |U0(X)|2dx+0/ / Mo(x, n) dn dx.
2 T2 T2 JR2

(ii) If M is of the form M([x] with x a regular parametrization of a smooth Jordan curve C on T?

then the quantity
L [ e anax
T2 JR?

is the length of the curve C = {x = x(6)}.
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Proof. We begin by multiplying the evolution equation for v in (I2Z) by v itself and integrating
over T? to obtain

d 1 24 _ - 2 i 2
T T2§|v(x,t)| dx—o/]T2 v(x,t) - s[M](x,t)dx v;/va (x, 1) dx. (13)

Next note that

2 i j
a/ v(x,t)-s[M](x,t)dx:oZ/ / v L9, ML dn dx
e ™ Jr2 7l

2 o
=—O'Z/ / —8va‘—Mdndx=—a/ / nDvyM dn dx
=1/ JRe Il I T2 JR2

d
=—O’/ / (8,M+U~VXM+Dvn-V,7M)dr]dx=—a—/ / M(x,n,t)dndx.
T JR2 dr T2 JR2

We have used here the facts that the x-divergence of v and the n-divergence of Dv n vanish and that
M decays sufficiently fast as || — oo. Using this observation in (I3)) we deduce that

d 1 2 ‘
— f —|v(x,t)|2dx+o/ / M(x,n,1)dndx =—v2/ Vol (x, )] dx.
dt ']1‘22 T2 JR2 = T2

which yields (i), upon integration in time.
Next, to obtain (ii) we note that, if M is of the form M[x], then

b
/ M(x,n,t)dndxz(l,M):f
T2 JR2 a

which is precisely the length of C. This concludes the proof. O

9 0 1)l o
P R

3. The approximate system

Let Cy be a smooth Jordan curve on the torus, i.e. a simple curve which divides the torus into two
connected components, with the regular parametrization xg = x0(0), a < 8 < b. For each ¢ > 0,
let J¢ be a standard Friedrichs mollifier in x. We introduce the following approximate system:

01V + Vg - Vyvg = — xp£+VAxv£+J805(Ms)a
M+ (J¥ve) - ViMe + (J*Dvg)n - VyMe = (D J ve)TMe,
V, v =0, (14)

ve(x, 0) = vo(x),
M(x,n,0) = M[xo].

Note that, once we establish existence for (I4), we will infer, by virtue of Proposition [T} and
because J¢v, is smooth and divergence-free, that M? is the measure M[x, (-, t)], where x. (-, t) is a
regular parametrization of the image of Cy by the flow induced by J¢v,.
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LEMMA 1 The mollified system satisfies the basic energy conservation:

l t
-/ |v£|2dx+v/ / |Vvs|2dx+a/ M, dx dn = E,
2 J2 0 JT2 R2 JT2

where

1
Eo=—/ |v0|2dx+o/ / M(xo] dx dn.
2 Jr2 Rr2 JT2

We do not include a proof, since the proof is the same as in Proposition [3]i).

We denote by P the Leray projector on the torus, given by Pv = v — VA, ! div v, where Ay !
is the solution operator for the Laplacian with zero average. We now establish existence for the
approximate problem (T4). The proof is surprisingly delicate. The strategy is based on Picard’s
existence theorem for ODEs on Banach spaces; we use several levels of mollification in order
to produce approximations which satisfy an energy estimate, which preserve nonnegativity of the
transported scalar and which keep the support of the transported scalar bounded away from n = 0.

THEOREM 2 Lete > Oand T > 0. Then there are v, € L((0, T); L>(T?))NL2((0, T); H'(T?))
and M, € L*®((0, T); BM(T? x R?)) which satisfy in the sense of distributions.

Proof. We wish to find a global solution to the approximate problem (I4). To begin, we introduce
a system with three further regularization parameters, ' > 0, § > 0 and y > 0. These parameters
are all mollification parameters. We will apply mollifiers j)j‘ and JJ’ to the initial data. We also
will include mollifiers which have §' > 0 and § > 0 as the mollification parameter in the evolution
equations. We denote these new mollifiers by gf, jax and 7, 577; in each case, the mollification occurs
with respect to the variable indicated in the superscript.

Before introducing our mollified system, we make an aside on transport equations. Consider the
class of transport equations

O f+J°g-Vif+kiJ°Dgn-V,f =k f. (15)

We take g(x, 1), k1(n), and k2 (x, 7, t) to be given functions, and we take the initial data f(x, n, 0) =
fo, with supp(fo) € {(x,n) : 1/2 < |n| < 3/2}. We furthermore assume that ||gl;2 < Ep
for all ¢ and |k;(n)| < 1 for all 5. This equation can be solved along characteristics; much as in
Proposition[I} we have the characteristic equation 7 = k1J¢ Dgn. Together with the assumption on
the L?-norm of g, this implies a bound on the growth of the n-support of f, and in particular, there
exists a closed annulus ¥ € R? such that for all 7 € (0, T), supp(f) € {(x,n,t) : n € Y}. Itis
important to note that ¥ can be taken to be independent of fy, g, k1, and k>, as long as the above
conditions are satisfied. Naturally, given the above condition on the initial support of f, we have
{n:1/2 < |n] <3/2} € Y. We note that Y can be taken to be bounded and to exclude the origin.
We introduce a smooth cutoff function 7 = 7" (). We take 7" to be identically equal to 1 on the set
Y, and 0 < 7 (n) < 1 for all , and we take 7" to be compactly supported such that the origin is not
included in the support of 7. We reiterate that it is important that we are only solving until time 7,
and that 7" is independent of time.

Using this cutoff 7, the new mollifiers, and the Leray projector, and replacing M with m?, we
write the new system

v +PJTF (v Vo T3 v) — (T2 Acv = Po S s(m?* 1), (16)
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1
am + T (Jov - Ve Tym) + T3 (Y J* Doy - V(T3 m)Y)) = E’n‘(ﬁDv)ﬁmT. (17)

We take the initial data

v(x,0) = Tyvo(x),  m(x,n,0) =,/TFITy Mlxol, (18)

where of course we assume V, - vy = 0. We also place a requirement on the operator j}y: we require
that supp(m(x, n,0)) € {(x,n) : 1/2 < |n] < 3/2} for all y.

With the presence of the cutoff function 7" and the smoothing operators 8)5, Jg', Jg and J¢, all
of the terms except the time derivatives in (I6)), are now bounded (i.e. Lipschitz), with respect
to v and m, where the space L2(T?) is used for v and L2(T2 x R?) is used for m. The Picard Theorem
for ODEs on a Banach space guarantees existence of a unique solution until a time 7 ,, 5 5. We give
the names v, ), 5,57, Me 5,5 tO solutions of , ; these solutions are in C' ([0, Tey 5,80 L?) in
each case. (The reader might consult [14] to see a similar approach used to prove the existence of
solutions for just the Navier—Stokes equations.)

These are in fact autonomous ODEs on a Banach space, and the continuation theorem for such
ODEs guarantees existence of a solution as long as the L?-norm of the solution does not blow up.
We multiply (I6) by v and (I7) by 2m, and we find the following energy conservation:

1 4 ~
E[p vj%g,a,dwr/o Azwv@vs,y’a’yﬁwrofqp Azmg,y,s,a,dndszo. (19)

In particular, we have v, 55 € L>((0, T); L?(T?)) and mg 58 € L0, T); L3(T? x R?)),
for any T > 0. Thus, there is a solution to the (g, y, 8, 8")-IVP on [0, T) for arbitrary T > 0.

At this point, we also have higher regularity of m, , 5 s. That is, m , s & is in any Sobolev
space, and is bounded in these spaces uniformly in 6" and uniformly in §. That m, ,, s 5 (t = 0) is in
any Sobolev space is clear, because of the presence of the ), mollifiers. Now, we let P € Z* and
we let p be a multi-index of order at most P. Applying the derivative operator 97 to equation (17)),
we have

1
8,0Pm = =T3P (JEv-Vo Tim)— TP (Y JEDvn-V, (T'm)Y)+dP | =qJ DvijmY ).  (20)
$ ) b n S 2

We multiply by d”m and integrate with respect to  and x. We get

d1
— 3Pm)? dn dx
dt2‘/;1-2‘4§2( m)” dn

—/ / (@Pm) (T 8P (Jv - Vy J5'm)) dn dx

T2 JR2

- f / (3Pm) (T3 9P (Y J* Dvn - V,((Jy'm)T))) dn dx
T2 JR2

1 ~
+ / (0Pm) (8p<—nJ’9Dvan>> dndx
T2 JR2 2

=1 +I+1I. 1)

We now perform estimates for /; the estimates for /7 and /II are entirely similar. Using the fact that
Jg‘ is self-adjoint and commutes with derivatives, we have

I=- / / @7 T5m) (07 (Jv - Vi J5'm)) dn dx.
T2 JR2
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We add and subtract to rewrite the second factor:
I = —/ / @ TFm)({Jv} - V3P Tim) dndx
T2 JR2
—/ / (aP%xm)(aP[{J%}.vxﬂm]— [{ng}-VxE)pjaxm])dndx =Is+1g. (22
T2 JR2

We can integrate /4 by parts, and we can use the divergence-free condition of v:

Iy = —/ / l{Jev}~V(8PJ§‘m)2dndx z/ / l(div{/‘?v})(apj,;fm)zdndx =0.
T2 JR2 2 2 JR2 2

Taking P sufficiently large, and using standard commutator estimates, we have the following
estimate for /p:
2
[g| < cllmllgr I vl gr |V Tsmlligr < climliyp.

In the above estimate, the constant ¢ depends on ¢ and on Ej, since we have used Lemmabelow.
Summing over all multi-indices of order at most P yields

d 2 2
lmlp < climll.

Thus, we see that the H” norm of m grows at most exponentially, for any sufficiently large P.
Furthermore, the growth rate depends only on ¢, P, and Ey, and the initial H P horm depends on y.
Thus, the norm of m in any Sobolev space is bounded independently of §" and &, for all ¢ € [0, T),
as claimed.

We will now in turn send each of &', §, and y to zero, taking weak® limits, passing to
subsequences as needed. The argument in each case is essentially the same. We begin with §’.
Using the conserved energy (19), me 5,8 is bounded, uniformly in 8, in L*°((0, T); L2). Also,
because of the presence of the cutoff and the abundance of mollifiers, together with the
conserved energy implies that 9;,m; , s s is bounded (again, uniformly in §)in L>®((0, T); H™Y).
This implies that (up to subsequences) m. ,, s s convergesin C ([0, T']; w—Lz) to an elementm, , 5 €
L%((0, T); L?), where w-L? denotes L? with the weak topology (cf. Appendix C of [[13])). Next we
note that, using the energy estimate, it follows that 9,v, , 5 s is bounded in L*°((0, T); H ~2), and
hence, (up to subsequences) v , 5,6 also converges in C([0, T]; w-L?) to an element Ve,y,5, With
Ve.ys € L0, T); L?).

We now verify that the limit as 8’ — 0 is a solution of the system

{ qv+ TFP - Vi T v) — vAww = PoJés(m?Y), (23)

dm + TF (T - Ve Tim) + T3 (Y JEDvy - V) (Jym)T)) = 15776 Dvim Y,

with initial data . First we discuss convergence in the m; ,, s s evolution equation; for the linear
term this is straightforward. The nonlinear terms each involve a product of J®v; , 5 & and m, , 5 5.
By Lemma E] below, we know that J° Vgy.8,6 1S bounded, uniformly with respect to 8" and ¢, in
any Sobolev space. Furthermore, as we have already seen, using equation (T6) together with the
bounds for v, , 54 and m, , 5 5, we can establish bounds in low-regularity spaces for d;v, , 5.5
and 9;m, , 5 5, uniformly in §". Thus, using the Aubin—Lions lemma, we find that J®v, , 5 is
precompact, with respect to &', in C([0, T]; H®) for arbitrarily large s and hence the nonlinear
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terms in the m, , s & equation each form a weak-strong pair. (That is, we get strong convergence
in the J®v, , 5 5 term because of the compactness afforded us by its smoothness.) Similarly, to
get convergence in the v, 55 €volution equation, we only need to pay careful attention to the
nonlinear terms, which are quadratic in v, 55 or in m, , 5 5. For the first of these, we have a
uniform bound, in any Sobolev space, on J v, 5 5 from the conserved energy and properties
of mollifiers. Furthermore, using and @]), we can establish a uniform-in-8’ estimate for 9,7, 5)‘ v
in H=2. Thus, by the Aubin-Lions lemma, we find that J;'v; , 5.5 are contained in a compact
subset of C([0, T']; H"). This implies that v, , 5 s and ijsxvg,%&y form a weak-strong pair. We
treat the second nonlinear term (i.e., the surface tension term) in the same way, this time using the
uniform bounds for m, ,, 5 5 in any Sobolev space which we established above. Of course, using this
regularity for m, ,, 5 5/, Lemmabelow, and , we can bound 9, ,, 5 5 uniformly in 8’ in H L

Notice that by Lemma E] below, we have additional regularity for solutions of @: Veys €
L®((0, T); L) N L*((0, T); HY).

We now take the limit as § — 0. By the same argument as before, m, , 5 converges, in
C([0, T1; w-L?), to an element me, € L0, T); L?); furthermore, using the new energy estimate
in Lemma we find (up to subsequences) that v, , 5 converges weak™ to ve , € L*°((0, T); LHnN
L2((O, T); H'). In the same way as before, we can verify that m, , and v, , satisfy the following
system:

v+ P - Vyv) —vAw = Po Jés(m?2Y), o4
{8tm+Jsv~me+TJ8Dvn~V,7(mT) = %ﬁJSDvﬁmT, 24

with initial data (I8). Indeed, the main difference from the previous argument comes when handling
the mollified convective term in the velocity equation; previously, for this term, we relied on the
presence of the operator 73", while now we need estimates independent of §. The estimate implied
by Lemma 2] includes the basic energy estimate for solutions of the Navier—Stokes equations and
hence the same argument used to pass to the limit in the convection term in order to obtain
Leray weak solutions for Navier—Stokes can be applied in our case as well, i.e., compactness in
L?((0, T); L?) for velocity. The nonlinear surface tension term is dealt with analogously to the
limit 8 — 0, using the compactness afforded by the higher order energy estimates for m.

The evolution equation for m in (24) is a transport equation for m, and in particular, this is a
transport equation of the type with g = v, k; = T2, and kr = %'n\(JeDv)ﬁT —Y(J¢Dv)n -
V, Y. This implies that supp(m, ) € {(x,n,?) : n € Y}, and thus mT = m and mV,T = 0. This
implies that the system satisfied by v, m;  is in fact

{ ve,y +Pve,y - Vivey) — vALve, =PoJés(m? ), 25)
Oimey + JVsy - Vemg , + JEDvg 0 - Vymg ), = %ﬁ]EDvg,yﬁmsyy,

with initial data (T8).
We introduce now M, , = mf,y. We multiply the m, ,, evolution equation in l| by mg , to
get the system satisfied by v ,,, M ,:

{ AVey +P(ey - Vavey) — VA, = PoJés(M, ), 26)

Mg, + vy - ViMey, + J*Dvg 0 - VM, ,, = ﬁJSDvg,yﬁMgﬁy,
now with initial data

Vey (1, 0) = TFvo(x). My (x,1,0) = T3 T Mixol. @7)
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Since M, , and v, are uniformly bounded in their spaces (the space for M, is
L%((0, T); L)), we obtain weak* limits M, and v, as ¥ — 0 in the same manner as before.
Furthermore, we check that v, and M, satisfy the approximate system (T4). This is straightforward
given the above remark about the support, and in fact is just the same as the prior proof that v, , and
mg , satisfy , but with M, ,, now taken in L' and the limit M, taken in BM, and the surface
tension term now being linear. O

In the preceding proof, we relied on the following lemmas.

LEMMA 2 The mollified systems (i.e., with ¢ > 0, ¥ > 0, and § > 0, but without &) satisfy the
basic energy conservation:

1 2 r 2 2 I
5[}1‘2 v&%(;dx+/0 [H‘ZU|VU5,},,5| dx+0/T2 /Rzms%adndszo.

Again, the proof of this is omitted, as it is essentially the same as the proof of energy
conservation in the non-mollified case.

LEMMA 3 If Q is a bounded positive measure such that the support of Q does not include n = 0
and if there exists K > 0 such that [ [ Qdndx < K then for any nonnegative y, p; and py,
ALNAL2J® [ (T®M Q(x, n)dnisin L'NL>, and the L' and L> norms are bounded by a constant
depending only on K and e.

Proof. This is the standard theory of mollifiers, together with the bound for Q. We denote by f; the
function such that for all g, Jég = f. * g. We start by looking at the absolute value of the quantity
in question:

am g e /Rﬁ@ﬁ)Q(x, n)dn‘ _ Mr Az(aﬁ‘azzfg(x —W)E® MO, m dndy
< cs/ / 0(y. ) dydy < C.K. (28)
T JR2

This proves the L estimate. The L' estimate follows just by integrating in x. O

LEMMA 4 If there exists K > 0 such that [|[v]|;» < K, then J®* Dv € H® for any s, and the norm
is bounded by a constant depending only on K and ¢.

We exclude the proof, since this is exactly the standard theory of mollifiers. See, for example,
[2]] or [14].

4. Proof of Theorem 1

In this section we give the proof of our main result.
First, for any smooth JorNdan curve C with regular parametrization X = X (0),a < 6 < b, we
introduce another measure M = Mg, supported on {|5| = 1}, induced by M = M[X]. Define

~ [P X\ |ox s,
<¢,Mc)=fa ¢(X(9),%)’¥ 6, ¢ € Co(T? x R?). (29)
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Here V means V /1V|. Note that ./\7(; is indeed independent of parametrization. Notice also that,
from the definition of s(M) in (1), if M = M[X] then, for any test vector field ¢,

bax
(@, 8(M)) = — Do(X )—’— do = (¢, s(M)). (30)
a
Next, fix T > 0. Let Cp be a smooth Jordan curve on the torus with a regular parametrization
xo = x0(0),a < 6 < b.Letvg € L*(T?) be a divergence-free vector field and set M (x, n,0) =
M(xo], defined by (©). Let us start by observing that Theorem[2]gives the existence of a family M, of
measures uniformly bounded in L*°((0, T'); BM (T2xR?)), anda family of smooth divergence-free
vector fields v, uniformly bounded in L2°((0, T); L>(T?)) N L?((0, T); H'(T?)), which satisfy
(T4) with initial data v, M (x, n, 0). Let C? denote the image of the curve Cp under the flow induced
by ve. As stated below (T4), M, = M[x.(-, )], where x. (-, t) is the regular parametrization of Cf
induced by xo(-) and v,. Consider also the induced measures M, = /\/lcls, which are measures with
support on {|n| = 1} that are uniformly bounded in L>((0, T'); BM(T? x R?)).
Using these uniform bounds only and passing to subsequences as necessary, we obtain weak
limits M and v such that

ve = v weak® in L®((0, T); L>(T?)) and weakly in L>((0, T); H'(T?)), (1)

M. — M weak* in L®((0, T); BM(T? x R?)), (32)

and such that the support of M is contained in {(x,n,t) : |n] = 1}. Using additionally that the
surface tension term appearing in the equation for v is linear, together with the fact that 7 is a
legitimate test function for M, we can pass to the limit in all the linear terms of the evolution
equation for v.. Additionally, from the uniform bounds we have for v, and for M., together with
the system (14), we can find estimates for d;v, which are enough to ensure that v, is precompact in
C((0,T); L% by the Aubin-Lions lemma. This allows us to pass to the limit in the nonlinear term
of the Navier—Stokes equations, thereby obtaining that v and M satisfy, in the sense of distributions,

dv+v-Vu+Vp—vAv=o0s(M), V-v=0. (33)

Since the initial velocity for the approximate problem is vg(x,t = 0) = vg and given that
v e C(0, T); H*(T)) for some k, it follgws that v(x, t = 0) = vg as well. This establishes the
first part of Theorem 1, namely that v and M are distributional solutions of (d).

We are not able to pass to the limit in the evolution equation for M due to insufficient regularity
of v but will come back to this issue in Section 5. Instead, we observe that there exists a “limiting
curve” C; for ae.t > 0, and we deduce an equation for its evolution. We have not succeeded in
proving that M = Mc,, i.e., that the limiting measure is given by the limiting curve, but we will
establish a weak link between C; and the measure M.

As observed, C? is a smooth Jordan curve on T? for each ¢ > 0. Let £2¢ denote the domain
bounded by C; consisting of the image of £2 under the flow induced by J®v,. Set b = xgq¢. The
evolution equation for b, is simply

dbe + Jvp - Vb = 0, (34)

i.e., b, is a distributional solution of this transport equation. Moreover, b, (x, 0) = xg, forall ¢ > 0.
Now the energy estimate of Lemma [I| gives a bound on the total length of the boundary C; of £27.
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Since C; is smooth, it follows from Theorem 5.8.1 in [[19] that Vb, (-, 1) = (Scfﬁf, where 7if is
the unit normal to C¢ chosen so that (9x¢/d7, n?) is a positive basis. Therefore |Vb, (-, 1)| = dcr
so that ||[Vbg(-, t)||ga is the length of C;. This establishes the uniform boundedness of {b.} in
L>®((0, T): BV (T?)) for any T > 0. Furthermore b, (x, t) € {0, 1} for all (x, t), so that b, is also
uniformly bounded in L™ (R ; L>®(T?)).

We use DiPerna—Lions transport theory to characterize the limit as ¢ — 0. Using Theorem I1.3,
part 1, of [8]] we find that {b.} are renormalized solutions of (34)), with transporting divergence-free
vector fields {J¢v.} converging in L2((0, T); L3(T?)) to v. In particular, these vector fields satisfy
the hypotheses of Theorem I1.4, part 2, in [8]], as does the initial data for (34). It follows immediately
from this result (passing to subsequences as needed) not only that there exists the strong limit
b, — bin C((0,T); Lp(']I‘Z)) for every 1 < p < oo, but also that b is a renormalized solution
of (B). Given the extra regularity of b and of v we find by consistency (cf. Theorem I1.3, part 1, in
[8]]) that b is a distributional solution of (3)), as desired. As b, — b strongly in C((0, T); L” (T?))
for every 1 < p < o0, it follows that b, — b almost everywhere as well. Thus, we conclude that
b(x,t) € {0, 1} ae. T2 x (0, T). Setting £2; = {x : b(x,t) = 1}, we have b = xgp, a.e. Since
b € L*®((0, T); BV(T?)), we deduce that the set 2, has bounded perimeter, that is, the boundary
is a rectifiable curve. This concludes the proof of the second part of Theorem [T}

For fixed ¢, let p, = — fRZ n-M, dn, where n- = (—n2, n1). This is the measure given by

ox

bloxe o\ .
(9, pe) = —fa (@(&0) w(xe(&t))‘%(&t) do

for any ¢ = @(x) € C(T?). It is immediate that p, = SC;h\f. Hence we find
pe = Vbe = 8¢: . (35)

We have already shown that M, — M weak* in L°((0, T); BM(T? x R?)) and that these
measures are all supported on the unit circle with respect to 7. It follows that there exists the limit

pe = P (36)

weak* in L>®((0, T); BM(T?)). We also know that b, — b strongly in C((0, T); L?(T?)) for
every p > 1. Now, since {b.} is bounded in L*°((0, T); BV(T?)), we have Vb, — u weak* in
L>®((0, T); BM(T?)). By linearity of the gradient we get . = Vb. Putting this together with B3
and (36), we obtain p = Vb, which concludes the proof of Theorem|[I}

5. Remarks on surface tension defects

In this section, we introduce the notion of a surface tension defect and we discuss surface tension
defects and length defects. The present section is divided into two subsections. In the first, we give
the precise definition of a surface tension defect. In the second, we prove a sufficient condition for
the absence of such defects.

5.1  Surface tension defects

In this subsection we do not consider fluid dynamics; instead, we only look at questions of
convergence of sequences of curves.



38 D. M. AMBROSE ET AL.

We begin by observing that, although we defined Mc in 29) only for smooth curves, the
definition can be extended to all rectifiable curves since, for such curves, there exists, a.e., a tangent
vector. ~ .

Let us now consider the following problem. Assume that M, = M., (defined in 29)) for some
smooth curves C,. Suppose, as usual, that C, are Jordan curves, so that C, = 9§2, for some £2,.
Suppose also that the curves C; have uniformly bounded lengths. It follows that yo,, which are
bounded in BV(’]IQ), converge, up to subsequences, strongly in L? (Tz), 1 < p < oo, to xo for
some domain 2 with rectifiable boundary C, as in the preceding proof. We ask about conditions
under which N ~

s[M,] — s[Mc] inD'(T?).
Recall that, if x* = x®(0) denotes a regular parametrization of C? then by definition

Bxg 3)6

be
(¢5[Ms = Z/ x] t%ae

for ¢ = (p1, @) € C*® (T?). If we choose the test function ¢(x) = (x1, x2), which has a nonzero
divergence, then

dax®
90

~ be| gxt
(@, s[Mc]) = —f 29

which is the length of the curve C?. Therefore if the lengths of C* do not converge to the length of C,
i.e., if there is a length defect in the approximation process, then s[ M,] cannot converge to s[ M¢]
in D’ (note that the length is lower semicontinuous, so that the length of C is not greater than the
limit of the lengths of C, ). However, given that the flow of interest is incompressible we will see that
we need only concern ourselves with convergence of the divergence-free part of the surface tension
term. Recall the notation for the Leray projector, P, introduced in Section 3.

de,

DEFINITION 1 Let {C,} be smooth Jordan curves on T2, C, = 9£2,. Assume that X0, converges,
strongly in LP(T ), 1 < p < 00, to xp for some domain §2 with rectifiable boundary LetC =042.
Let Mg Mc be as defined in (29). We say that there is a surface tension defect in MS if P(s[Mg])
does not converge to IP’(s[Mc]) in D'(T?).

We now show that the occurrence of a length defect does not imply occurrence of a surface
tension defect, i.e. we consider the question of whether the Leray projector of the surface tension
term is weakly continuous with respect to ¢.

More precisely, let us consider divergence-free test functions ¢ = (¢!, ¢?) € C*®(T?) and let
y = y(0) = (y1(0), y2(9)) be a regular parametrization of some curve C. By (30), we have

dyi d
(. LM f Z Dl 6

ly /(9)|

_ IN2 N2 1 Iy 2 1 do
/a {[(yl) (yz) ]3x1¢’ +y1y2[3x.<,0 +8x2¢ ]} |y/(9)|

The issue of whether P(s[ﬂs]) — P(s[M¢]) in D’ is equivalent to whether

be (9y]/060)(dy5/06)
1 2 £ 1 2
9 (O, + 02 97) (y" () 9y /90|

do




TRANSPORT OF INTERFACES 39

and

£ 2 3 2
(9y;/00)~  (3y;/96) }d@

b
3 0 ) (YO
(Ga @) 07C ))[ 0ye/00]  [9yF/00)]

Ag

converge to the corresponding expressions Wlthout e. To see this, let ¢ € C™ (T?) and consider
the Hodge-Kodaira decomposition ¢ = VA, dlvgo + Pg. Then (@, ]P’(E[Mg])> Py, IP’(5[M8]))
whence it is enough to test against a dlvergence free vector field.

EXAMPLE Consider the straight line segment (6,0), 0 < 6 < 1, being approximated by a

“staircase function”
(9’ 9 _ L) 0 < 21+1 ,
yn (6) — { n I

i+1 5 +1 it1
@%—@ﬁa <O <55

fori = 0,...,n — 1. Although these are not Jordan curves, they can be easily closed. We will
not concern ourselves with this issue, however, concentrating instead on the local behavior of the
tangent vectors, which are highly oscillatory.

The approximating curves C, : y" = y"(#), 0 < 6 < 1, have length equal to /2 for all n,
whereas the limiting curve C has length 1, so that there is a length defect.

We see easily that dpy] = 1 and

J+1

J <O <—— forj=0,...,2n—1.
2n

By = (=17 if -
Therefore |95 y™ (0)| = ~/2 forall 0 < 6 < 1 and

oy 09 yh 1
M——Z?gy;AO asn — 00.

1yl V2
Moreover,

(9y})* — (005 )2
E

On the other hand, the limiting curve is C : y = y(0) = (6, 0), 0 < 6 < 1, for which

99109 y2
[39y1

=0

and
(Bpy1)? — (Bpy2)?

=1. (37)
|39y

However, when the expression (which is identically equal to 1) in is tested against 3, ¢!, we
get zero. Thus we see that (¢, P(s[Mc])) = 0. ~

In this example, there is a length defect; as discussed above, this obviously implies that s[M,]
does not converge to 5[./\/lc] where M,, = MC Nevertheless, P(s[M,,]) does converge weakly to
P(s[Mc]) in D'(T?).
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5.2 A sufficient condition

In this subsection, we prove a sufficient condition for the absence of a surface tension defect,
namely that, in the absence of length defect there is no surface tension defect. Again, this is a
purely analytical result, irrespective of fluid dynamics.

THEOREM 3 Consider a family of rectifiable closed curves C, € R? of length L" and let y" be
their arclength parametrizations. Assume that {y”} is bounded in WI]O’COo (R) and that L™ < K for
all n. Then there exist y and L (and a subsequence) such that y* — vy, weakly* in Wll)’coo and
L" — L. Let C be the curve with parametrization y and let L be the length of C. If L = L, then
P(s[M¢,]) converges to P(s[Mc]) in D'.
Consequently, the limit y above is, in fact, an arc length parametrization of C.

Proof. By weak compactness, together with a diagonal argument, we can extract a single
subsequence, which we do not relabel, such that

n * s 1,00
y'—=y weak"in W .

As W is compactly imbedded in L on bounded sets, we can assume that y" — y uniformly
on compact subsets of R. Also, without loss of generality we may assume that L" — L by passing
to a further subsequence if necessary. We observe that y is L-periodic. Indeed, we have

YL +5) = y"(s), and y'(L"+5) > y(L+s), y'(s) = y(s),

using the uniform convergence. Note that, since dy”/ds — dy/ds weak* in L°°, we have
|dy/ds| < 1. The length of the limiting curve is

i
d
L=/ Y
0

— | ds.
ds s

We now impose the hypothesis that there is no length defect, i.e., L = L. From this it follows that

dy

=1 ae.onR,
ds

since |dy/ds| < 1. Therefore the limiting curve is parametrized by arclength.
Now for any interval [ in the real line, observe that

dy" |2 dy |?
/dy ds:/—y ds = |1].
I \) [dS
Consider 5
dy" d dy" d
f y Y ds:/ 229 g
/| ds ds I ds ds

Since dy”/ds — dy/ds weak* in L™ and since dy/ds € Ll it follows that dy"/ds — dy/ds

loc
strongly in leoc. Passing to a further subsequence if needed, this implies the almost everywhere

convergence of each component of dy” /ds. Hence

hidy; | didy
ds ds ds ds
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dyifl 2 dyg 2 dyl 2 dy2 2
J— % RN J— —_—
ds ds ds ds
a.e. and strongly in Llloc. This is all we need with regard to the Leray projection of the surface
tension term, which concludes the proof. O

and

Note that, in fact, we proved above that 5[/\7@”] converges to 5[/\7(3] in D’ in the absence of length
defects, and not only their Leray projections.

6. Dependence on the surface tension

In this section we examine the dependence of our solutions on the surface tension coefficient o. We
establish a conditional nontriviality theorem.

LEMMA 5 Let Cy be a smooth Jordan curve and let vg € LZ(TZ). Set Azo = MCO- Suppose there
exists a solution (v, 1\7) to with initial data vg. Assume that P(s[M]) € C([0, T); H* (T?)) for
some k >~0. If v is also a weak solution of the Navier—Stokes equations without surface tension,
then P(s[Mp]) = 0.

Proof. Assume that v is a weak solution of both the Navier—Stokes equations with zero surface
tension and of our system (@). Then P(s[M]) = 0 for all # > 0. From the hypothesis that P(s[M]) €
C ([0, T); H~*(T?)) for some k > 0 we find that P(s[M]) = 0 at7 = 0 as well. To conclude the
proof recall that s[M] = s[M]. O

Thus, with this assumption of regularity, if initially there is some surface tension, then there is also
some surface tension at some later time.

THEOREM 4 Let Cy be a smooth Jordan curve, let vg = 0, ¢ > 0, and let 1\70 = /WCO with
IP’(s(AZo)) # 0. Assume that there exists a solution (v, M ) to (@), corresponding to the initial data
vo, with parameter o. Suppose, additionally, that P(s[M]) € C([0, T); H —k(T?)) for some k > 0.
Then there is a number 6’ > 0 such that, if 0 < ¢” < o/, then all solutions (v, M) of @),
corresponding to the initial data v9 = 0 and Cy but with surface tension coefficient o”, satisfy

v £,

Proof. First, we prove that v is not identically zero. We prove this by contradiction. Assume that
there exists a solution (v, M) of @) with data vp = 0 which vanishes identically. In this case the
evolution equation for v reduces to the statement that s(M) must always be a gradient. But this
cannot be the case, by Lemma I (since we have a nontrivial P(s[My])). Thus v is not identically
Zero.

Second, since v is not identically zero, there must be a time 0 < T’ < T at which ~there
is a positive amount of kinetic energy. Let K be the kinetic energy for the solution (v, M) at
time 7'. Let the length of the initial curve be L. Take 0’ = K/Lg, and ¢” to be a positive number
smaller than o’. Then, for any solution (v', M”) corresponding to data vy = 0 and surface tension
coefficient o”, the kinetic energy K is unattainable, since the total energy at any time can never
be greater than the initial energy, and since the initial energy is 6”’Ly < K. Thus v # v’. This
completes the proof. O
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7. Moment closure

In this section, we propose another formulation of the problem.
We define the following moments of M:

nn2
o= [ R (38)
r2 (7]
2_ .2
)= / T2y an, (39)
Rz |7l
Let C be a smooth curve and consider an arclength parametrization y = (y{, y2). Note that, if
M = Mg, then
(9, P(s(M))) = /—D 2 g (40)

for all test functions ¢ = (¢!, ¢?) such that ‘le + (pxz = 0. Writing dy/ds = (y1,s, ¥2.5), and using
the divergence-free property of the test functions, we see that this is the same as

T
(. s(M)) = — / /C (7 = B )@ 0y + yayase), +¢2) oydsdr. @)
0
Interpreting this in terms of the g;, we have

(@.s(M)) = =gy, 82) — (o1, + 93, 81)-

Moving derivatives from the ¢’ to the gj, thisis

(@, s(M)) = (9", g2.2)) + (01, 81.15) + (9%, 81.01) = (@, (82,5, + &1xs &1x)))-

We can hence express P(s(M)) as

X + 05,81
P(s(M)) = (1827 %
(s(M)) ( e 2 )

We now turn to the question of finding evolution equations for the g;. If we multiply the M
evolution equation by n1m2/|n)* and integrate with respect to 1, we can find an evolution
equation for g;. Similarly, if we multiply instead by (n% - n%) /In|* and integrate, we find an
evolution equation for g;. Unfortunately, this does not lead to a closed system of equations (with
a given velocity), as the equations for gi; and g»; would include terms of the form [ pl‘;—(lZ)M dn,
where p4 is a fourth degree polynomial.

There are, however, a large number of other moments of M which, given the velocity, do form
a finite, closed system of evolution equations (in x and 7). Let P, be the set of all polynomials with
domain R? of degree at most 7, and let Q,, = { f L (")M dn : p € P,}. Then, given the velocity, the
evolution equations for the elements of Q, 1nvolve only elements of Q,,. To see this, first write the
equation for M in the form

8,M+v-VxM+|n|divn<Dv%M> —0. 42)
n
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Multiplication of @2) by p/|n|, for some p € P,, yields

a<|p| >+v v, (| | )—I—pdiv,,(Dv%M):O. (43)

After integrating (43)) in the n variable and integrating by parts we find

a,(/ £Mdn> tu- vx(/ ﬁMdn) —f(vnp)DviMdn —0, (44)
nl n 1l ]

which is the same as

([ an) o[ man) —elow fep e fuan) <o e
n

Clearly equation {@3)) involves only elements of Q,. Since Q, is a finite-dimensional vector space
it follows that there is a finite closed system of evolution equations for the basis elements.

Going back to the evolution of g; and g, which come from the surface tension term, we can
introduce an approximation based on the Taylor polynomials of 517/|5| and (? 1= ’72) /In| about
some unit vector 1. We write

n - Z > aal = m)" (46)

and

. Ly Z ba(n — 10)°, @)

|77|2 ==

where o = (1, ap) € N2 is a multi-index. We now propose to truncate these series at some kg < 00
and we consider the evolution equations for g]fo and g/2<o’ where these are the moments of M with

respect to the truncated series above. Since g]fo and g§° are elements of Qy,, and since there is a
finite, closed system of evolution equations for a basis of Qy, (given a velocity field), we have an
approximation to our system if we take the Q,-system together with the following equations:

{ 9, vk0 ko L wyko v pko — y Apko = a(axlgé0 + 8x2g]f°, 8xlg’f°), (48)
V- vk = 0.

It is a subject of further work to determine how well a solution of this approximate system
approximates a solution of the original system.

We now have a new system of evolution equations in (@8) with the following features: the
surface tension term is linear, and the spatial domain is two-dimensional (as compared to the
four-dimensional domain of M). Because of these features, this system might allow for efficient
numerical simulations of interfacial Navier—Stokes flows with surface tension. It is also possible
that the formulation in this section may be applicable to numerical simulations in the Euler equation
case, i.e. v = (. Although analysis (of global weak solutions) in this case would seem beyond our
reach at present because of the lack of regularity of the velocity, this problem should be numerically
tractable. Again, the formulation of this section would allow for the study of topological transitions
in the free-surface problem with surface tension, by an alternative method to level-set and phase-
field methods.
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