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We investigate the preservation of convexity of the free boundary by the solutions of the porous
medium equation. We prove that starting with an initial datum with some kind of suboptimal α-
concavity property, the convexity of the positivity set can be lost in a short time.

1. Introduction

We consider the Cauchy problem for the porous medium equation,{
∂tu = ∆u

m in RN × (0,∞),
u(x, 0) = ϕ(x) > 0 in RN , (1.1)

where ∂t = ∂/∂t , N > 2, m > 1, and ϕ ∈ C0(RN ). It is well known that the problem (1.1) has a
unique strong solution u ∈ C(RN × (0,∞)), and that the positivity set of u(·, t),

Pϕ(t) = {x ∈ RN : u(x, t) > 0},

is bounded for any t > 0 and increases with time.
This paper is concerned with the following problem.

PROBLEM (P) Let Ω be a bounded convex domain and let the initial datum ϕ be a nonnegative
function, belonging to C0(RN ) ∩ C∞(Ω), whose positivity set Pϕ(0) coincides with Ω . Moreover,
set f = ϕm−1 and assume that

(Aα)

{
(i) there exists a positive constant µ such that f + |∇f | > µ in Ω;
(ii) f is α-concave in RN for some α ∈ [−∞,∞].

Is then Pϕ(t) convex for every t > 0? (See Section 2 for the definition of α-concavity.)

The porous medium equation provides a simple model in many physical situations, in particular,
the flow of an isentropic gas through a porous medium; in such a case, u and um−1 represent
the density and the pressure of the gas, respectively. Due to its practical interest, regularity
and geometric properties of the free boundary ∂Pϕ(t) have been extensively studied by many
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mathematicians; see for instance [1], [3]–[8], [14]–[16] and the monograph [17], which gives a
good survey of the study of the porous medium equations and a comprehensive list of references. In
connection to problem (P), in [14], Lee and Vázquez proved that Pϕ(t) is convex for all sufficiently
large t , even if Pϕ(0) is not convex; in fact, they proved that the pressure um−1 becomes a concave
function on its support after a suitably long time, if the initial support is compact. Furthermore,
under suitable regularity conditions on the initial datum ϕ, in [7], Daskalopoulos, Hamilton, and
Lee proved that, if f = ϕm−1 satisfies condition (Aα) with α = 1/2, then the pressure u(·, t)m−1

remains 1/2 -concave for t > 0, which again implies that the set Pϕ(t) is convex for every t > 0.
This gives an affirmative answer to problem (P) with α > 1/2. We may then wonder if the exponent
1/2 has some optimality property and, similarly to [14] and [17, page 520], we ask: is the α-
concavity of the initial pressure um−1 preserved even if α < 1/2? And, if not, does the α-concavity
(α < 1/2) of the initial datum implies the β-concavity of u(·, t) for every t > 0, for some suitable
β < α? Notice that problem (P) corresponds exactly to the latter question for β = −∞.

In this paper we give a negative answer to problem (P) (and hence to all the stronger questions
posed above) for some α > 0, proving the following result.

THEOREM 1.1 Let Ω be a C2 bounded convex domain in RN , N > 2, and let t∗ > 0. Then there
exists a nonnegative function ϕ ∈ C0(RN ) satisfying the condition (Aα) for some α > 0 and such
that Pϕ(0) = Ω , while Pϕ(t) is not convex for some t ∈ (0, t∗).

The above theorem essentially tells us that even starting with an initial datum with some kind of
suboptimal concavity, the spatial convexity of the free boundary can be lost in an (arbitrarily chosen)
short time. We remark that we are not simply saying that the α-concavity of the initial pressure (for
some α < 1/2) is not preserved, but that such a property may be completely destroyed by diffusion
in a porous medium, since an α-concave initial datum can result in a solution which is not even
quasi-concave at any time t > 0.

Notice that quasi-concavity is the weakest concavity property one can imagine: roughly
speaking, a function u is quasi-concave if all its superlevel sets are convex. In fact, this corresponds
to (−∞)-concavity.

We finally recall that α-concavity for all α > 0 implies log-concavity; hence Theorem 1.1 shows
in particular that starting with a log-concave initial datum is not sufficient to maintain the convexity
of Pϕ(t). For comparison, we recall that the heat flow, corresponding to (1.1) for m = 1, preserves
log-concavity (see [2], [13], [10]). In this connection, the present authors proved in [9] that the
mere quasi-concavity of the initial datum is not inherited, in general, by the solutions of the heat
equation. Now, we are able to improve this result by showing that α-concavity, for some α < 0,
is not necessarily preserved by the heat flow. Indeed, in Theorem 4.1, we construct examples of
α-concave initial data, with α < 0, that generate a heat distribution which is not quasi-concave after
a small time.

2. Preliminaries and notation

In this section we introduce some notation and recall some basic properties of α-concave functions
and of solutions of the porous medium equation.

For any x ∈ RN and r > 0, we put B(x, r) = {y ∈ RN : |x − y| < r}. Let D be a set in RN .
We denote by χD the characteristic function of D, that is, χD(x) = 1 for x ∈ D and χD(x) = 0 for
x 6∈ D.
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Let λ ∈ (0, 1) and α ∈ [−∞,∞]; for s, t > 0 with st > 0 we define

gα(s, t : λ) =


(λsα + (1− λ)tα)1/α if α 6∈ {±∞, 0},
min{s, t} if α = −∞,
max{s, t} if α = ∞,
sλt1−λ if α = 0,

and
gα(s, t : λ) = 0 if st = 0.

Let u be a nonnegative function defined in a convex set Ω . Following [2] and [11], we say that u is
α-concave if

u((1− λ)x + λy) > gα(u(x), u(y) : λ)

for all x, y ∈ Ω and λ ∈ [0, 1].
In other words, for α > 0 [< 0], u is quasi-concave if uα is positive and concave [convex] in a

convex set Pu and vanishes outside Pu. Furthermore, u is 0-concave (or log-concave) if u is positive
in a convex set Pu, vanishes outside Pu and log u is concave in Pu.

For more details regarding α-concave functions, we refer to [2] and [11]; here we recall just the
following two properties, which are used in this paper:

(C1) if f is α-concave, then f is β-concave for all β 6 α.
(C2) Let α, β ∈ [0,∞], and f and g be α-concave and β-concave functions on bounded convex

subsets Ω1 and Ω2 of RN , respectively. Then the convolution f ∗ g, defined as usual by

(f ∗ g)(x) =

∫
Ω1∩(x−Ω2)

f (y)g(x − y) dy,

is γ -concave in Ω1 +Ω2, with γ−1
= N + α−1

+ β−1.

Next we recall some properties of solutions of (1.1). For any nonnegative function ϕ ∈ L1(RN ),
there exists a unique (strong) solution u = S(t)ϕ of (1.1), and the following statements hold (see
Section 9 in [17]):

(S1) (S(t)ϕ)(x) is a continuous function in RN × (0,∞).
(S2) If 0 6 ϕ1 6 ϕ2 almost everywhere in RN and ϕ2 ∈ L

1(RN ), then

0 6 (S(t)ϕ1)(x) 6 (S(t)ϕ2)(x) in RN × (0,∞).

(S3) If Pϕ(0) is bounded, then Pϕ(t) is bounded for all t > 0 and

Pϕ(t1) ⊂ Pϕ(t2) if 0 < t1 < t2.

It is well known that the equation (1.1) has a family of self-similar solutions called Barenblatt–Pattle
solutions given by

UM(x, t) = t
−kN

[
cM −

(m− 1)k
2m

|x|2t−2k
]1/(m−1)

+

,

where [v]+ = max{v, 0}, k = (N(m− 1)+ 2)−1 and cM is given by mass conservation∫
RN
UM(x, t) dx = M > 0.
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Then, for any t > 0, we have

{x ∈ RN : UM(x, t) > 0} = {x ∈ RN : |x| < c′M t
k
}, (2.1)

where c′M =
√

2mcM/(m− 1)k.
The following proposition, taken from [4], gives a lower bound of the speed of propagation of

the support of solutions for porous medium equations.

PROPOSITION 2.1 (See Proposition 3.1 in [4]) Let ϕ ∈ L1(RN ) be a nonnegative function and set

E(x : ϕ) = sup
R>0

R−(N+
2

m−1 )

∫
|y−x|<R

ϕ(y) dy. (2.2)

There exists a constant c∗ = c∗(N,m) such that (S(t)ϕ)(x) = 0 for every (x, t) ∈ RN × (0,∞)
such that

0 < t < c∗E(x : ϕ)1−m. (2.3)

3. Proof of Theorem 1.1

LetΩ be a C2 bounded convex domain in RN . Here we can assume, without loss of generality, that

Ω ⊂ {xN < 0}, 0 ∈ ∂Ω. (3.1)

For any r > 0, put
Ω(r) = {x ∈ Ω : dist(x, ∂Ω) > r}.

Then there exists a positive constant δ such that⋃
x∈Ω(r)

B(x, r) = Ω, 0 < r < δ. (3.2)

For n = 1, 2, . . . , define

Ωn = nΩ, Ω ′n = nΩ(n
−2), Ω ′′n = nΩ(2n

−2)

By (3.1), the convexity and the regularity of Ω , we have

Ωn ⊂ Ωn+1 ⊂ {xN < 0},
∞⋃
n=1

Ωn =

∞⋃
n=1

Ω ′n =

∞⋃
n=1

Ω ′′n = {xN < 0}. (3.3)

Set

ρ(x) =

{
1− |x|2 for |x| < 1,
0 for |x| > 1.

(3.4)

Furthermore, for any n = 1, 2, . . . , we put

ρn(x) = n
Nρ(nx), dn(x) =

∫
Ω ′n

ρn(x − y) dy. (3.5)

Then, by (3.2), we have
{x ∈ RN : dn(x) > 0} = Ωn
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for all n = 1, 2, . . . with n > δ−1. Furthermore, since ρ is 1-concave, by (C2) the function dn is
(N+1)−1-concave in RN . This implies that d1/(N+1)

n is concave in RN . Therefore, since dn(x) = 1
in Ω ′′n and dn(x) = 0 on ∂Ωn, for any sufficiently large n there exists a constant cn,1 such that

dn(x)
1/(N+1) > cn,1dist(x, ∂Ωn) in Ωn \Ω ′′n . (3.6)

Let A be a positive constant to be chosen later. Put

ϕn(x) =

(
A

∫
Ω ′n

e−|y|
2
ρn(x − y) dy

)1/(N+1)(m−1)

(3.7)

and un(x, t) = (S(t)ϕn)(x). For any sufficiently large n, since e−|x|
2
χΩ ′n is αn-concave for some

αn > 0, by (C2) there exists a positive constant βn such that

the function ϕm−1
n is βn-concave in RN . (3.8)

On the other hand, by (3.2)–(3.5), for n > δ1/2, we have

{ϕn(x) > 0} =
⋃
x∈Ω ′n

B(x, n−1) = n
⋃

x∈Ω(n−2)

B(x, n−2) = nΩ. (3.9)

Furthermore, by (3.5)–(3.7), for any sufficiently large n, there exists a constant cn,2 such that

ϕn(x)
m−1 > (Acn,2dn(x))

1/(N+1) > cn,1(Acn,2)
1/(N+1)dist(x, ∂Ωn)

in Ωn \Ω ′′n . This implies that there exist positive constants cn,3 and δn such that

|∇(ϕn(x)
m−1)| > cn,3 (3.10)

for all x ∈ Ωn with dist(x, ∂Ωn) < δn.
Let t∗ > 0. By (2.2), there exists a positive constant L such that

0 < t∗ < c∗E(LeN : χ{xN<0})
1−m, (3.11)

where c∗ is the constant given in Proposition 2.1. Since c′M → ∞ as M → ∞ we can take a
sufficiently large constant M such that

c′M + L+ 2 < c′M(t∗ + 1)k. (3.12)

Since
suppUM(· + (c′M + 2)eN , 1) ⊂ B(−(c′M + 2)eN , c′M) ⊂ {xN < −1},

by (3.3) and (3.9) we can take a sufficiently large constant A so that

ϕn(x) > UM(x + (c
′

M + 2)eN , 1) in RN (3.13)

for all sufficiently large n. Then, by (S2) and (3.13), we have

un(x, t) > UM(x + (c
′

M + 2)eN , t + 1) in RN × (0,∞),
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and by (2.1) and (3.12) there exists a positive constant L′ > L such that

un(leN , t∗) > UM((l + c
′

M + 2)eN , t∗ + 1) > 0 (3.14)

for all 0 < l 6 L′ and sufficiently large n.
On the other hand, since

sup
n∈N
‖ϕn‖L∞(RN ) <∞, lim

|x|→∞
ϕn(x) = 0 uniformly for all n,

by (3.3) and (3.9) there exists a constant R∗ such that

E(x : ϕn) = R−(N+
2

m−1 ) sup
x∈RN

∫
|y−x|<R

ϕn(y) dy 6 E(LeN : χ{xN<0}) (3.15)

for all x = (x′, xN ) with x′ > R∗ and xN > L and for all n ∈ N. By Proposition 2.1, (3.11) and
(3.15), we have

un(x, t∗) = 0 (3.16)

for all x = (x′, xN ) with x′ > R∗ and xN > L and all n ∈ N.
Put

λ =
L+ L′ + 2
2(L′ + 1)

.

Then λ < 1 and

1− λ =
L′ − L

2(L′ + 1)
.

By (3.3), we can take a large integer n so that (3.14) holds and

x̄ =

(
R∗

1− λ
, 0, . . . , 0,−1

)
∈ nΩ, (3.17)

and fix n. Then, by (3.9) and (3.17), we have

un(x̄, t) > 0 for all t > 0. (3.18)

Furthermore, the set Pϕn(t∗) is not convex. Indeed, if Pϕn(t∗) is convex, then, by (3.14), (3.17), and
(3.18), we have

(1− λ)x̄ + λ (0, . . . , 0, L′) = (R∗, 0, . . . , 0, (L+ L′)/2) ∈ Pϕn(t∗).

Since (L+ L′)/2 > L, this contradicts (3.16).
Finally, we put

ϕ(x) = nNϕn(nx), U(x, t) = nNun(nx, n
1/kt), t̄ = n−1/kt∗ ∈ (0, t∗),

where k = (N(m − 1) + 2)−1. Then U(t) = S(t)ϕ, and by (3.8), ϕm−1 is βn-concave in RN .
Furthermore, by (3.9) and (3.10), we have Pϕ(0) = Ω and

ϕ(x)m−1
+ |∇ϕ(x)m−1

| > C in Ω

for some constant C. Therefore, since Pϕ(t̄) = n−1Pϕn(t∗) is not convex, the proof of Theorem 1.1
is complete. 2
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4. Heat equation

In this section we apply the argument of Section 3 to the heat equation, and improve a result of our
previous paper [9]. Let u be a nonnegative solution of ∂tu = ∆u in Ω × (0,∞),

u(x, t) = 0 on ∂Ω × (0,∞) if ∂Ω 6= ∅,
u(x, 0) = ϕ(x) > 0 in Ω,

(4.1)

where Ω is a convex smooth domain in RN and N > 2. Then, for any nonnegative solution u of
the Cauchy–Dirichlet problem (4.1), if the initial datum u(·, 0) is 0-concave, then for any t > 0,
the solution u(·, t) is 0-concave, in particular, u(·, t) is quasi-concave. In our previous paper [9],
we discussed the preservation of the quasi-concavity by the heat flow, and gave an example of a
quasi-concave initial datum for which the solution of (4.1) is not quasi-concave at some time. By
the arguments in the previous sections and [9], we can now prove the following theorem.

THEOREM 4.1 Let Ω be any smooth convex domain in RN (possibly Ω = RN ) and t∗ > 0. Then
there exists a nonnegative function ϕ ∈ C0(Ω) such that

(1) ϕ is α-concave in Ω for some α ∈ (−∞, 0),
(2) the solution of (4.1) is not quasi-concave in Ω for some t 6 t∗.

Proof. Let

ψ(x) = (1+ e−|x|
2
)χ{xN<0},

v(x, t) = (et∆ψ)(x) ≡ (4πt)−N/2
∫

RN
exp

(
−
|x − y|2

4t

)
ψ(y) dy.

Let t∗ > 0. Then, by the same argument as in Lemma 3.1 of [9], there exist two points X and Y in
RN such that

v(X, t∗) >
1
2
, v(Y, t∗) >

1
2
, v

(
X + Y

2
, t∗

)
<

1
2
. (4.2)

Next, for any n = 1, 2, . . . , we put

ψn(x) = ψ(x)χB(xn,n)(x), xn = −(n+ n
−1)eN , un(x, t) = (e

t∆ψn)(x).

Then we have
lim
n→∞

sup
x∈B(0,R)

|un(x, t)− v(x, t)| = 0

for any R > 0 and t > 0, and by (4.2), for any sufficiently large n,

un(X, t∗) >
1
2
, un(Y, t∗) >

1
2
, un

(
X + Y

2
, t∗

)
<

1
2
. (4.3)

We take a sufficiently large n so that (4.3) holds, and fix n. Put

ηm(x) =

{
0 if |x − xn| < n−m−1,

(n− |x − xn|)
−1
−m if n−m−1 6 |x − xn| < n,
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FIG. 1. The function v and some of its level sets at time t = 0.1.

where m = 1, 2, . . . . Then ηm(x) is a convex function in B(xn, n). On the other hand, since ψn is
αn -concave for some αn < 0, ψαnn is convex in B(xn, n), and the function ψαnn + ηm is also convex
in B(xn, n). Put

ϕm(x) =

{
(ψn(x)

αn + ηm(x))
1/αn if x ∈ B(xn, n),

0 otherwise,

um(x, t) = (e
t∆ϕm)(x).

Then ϕm(x) is an αn-concave function such that

ϕm ∈ C0(RN ), suppϕm = B(xn, n) ⊂ {xN < −n−1
},

lim
m→∞

sup
x∈B(xn,n)

‖ϕm(x)− ψn(x)‖ = 0. (4.4)

Hence
lim
m→∞

sup
B(0,R)

|um(x, t)− un(x, t)| = 0

for any R > 0 and t > 0. This together with (4.3) implies that, for any sufficiently large m,

um(X, t∗) >
1
2
, um(Y, t∗) >

1
2
, um

(
X + Y

2
, t∗

)
<

1
2
; (4.5)

thus um(·, t∗) is not quasi-concave in RN .
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If Ω = RN , we put ϕ(x) = ϕm(x), and the proof of Theorem 4.1 is complete.
For Ω 6= RN , without loss of generality, we can assume (3.1). We pick a sufficiently large m so

that (4.5) holds. By (3.3) and (4.4), we can take an integer l such that ϕm ∈ C0(Ωl). Let Ul be the
solution of  ∂tU = ∆U in Ωl × (0,∞),

U(x, t) = 0 on ∂Ωl × (0,∞),
U(x, 0) = ϕm(x) in Ωl .

(4.6)

Then
lim
m→∞

sup
B(0,R)

|Ul(x, t)− um(x, t)| = 0

for any R > 0 and t > 0. By (4.5), there exists a sufficiently large L such that

UL(X, t∗) >
1
2
, UL(Y, t∗) >

1
2
, UL

(
X + Y

2
, t∗

)
<

1
2
; (4.7)

thus UL(·, t∗) is not quasi-concave in ΩL. Finally, we put

u(x, t) = UL(Lx,L
2t), ϕ(x) = ϕm(Lx) ∈ C0(Ω)

for all x ∈ Ω and t > 0. Then u is a solution of (1.1) and ϕ is αn-concave in Ω . Furthermore,
by (4.7), u(·, t̄) is not quasi-concave in Ω , for t̄ = L−2t∗ 6 t∗; thus the proof of Theorem 4.1 is
complete. 2
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