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For equations of generalized Cahn–Hilliard type we present an a posteriori error analysis that is
robust with respect to a small interface length scale γ . We propose the solution of a fourth order
elliptic eigenvalue problem in each time step to gain a fully computable error bound, which only
depends polynomially (of low order) on the inverse of γ . A posteriori and a priori error bounds for
the eigenvalue problem are also derived. In numerical examples we demonstrate that this approach
extends the applicability of robust a posteriori error estimation as it removes restrictive conditions
on the initial data. Moreover we show that the computation of the principal eigenvalue allows the
detection of critical points during the time evolution that limit the validity of the estimate.

1. Introduction

The Cahn–Hilliard equation determines the evolution of interfaces in phase separation processes
on a mesoscopic length scale. This phase field model depends on a length scale 0 < γ 6 1
that is related to the width of the diffuse interfaces where the order parameter ρ interpolates
smoothly between the values −1 and 1. Moreover, for γ → 0 the Cahn–Hilliard equation
approximates the motion of surfaces in Hele–Shaw flow and the Mullins–Sekerka model [1, 22].
Phase separation processes are of great importance in engineering applications because the
coarsening of microstructure leads to aging of materials and might result in failure of devices. To
model the demixing in solder alloys, it is necessary to include elastic stresses that are due to a lattice
misfit between pure materials. These stresses are neglected in the Cahn–Hilliard model but become
dominant at later stages of the time evolution [16]. The Cahn–Larché equations describe a phase
field model that includes elastic effects [16, 9, 17, 18]. Their derivation is based on the formulation
of a Ginzburg–Landau free energy functional. Let Ω ⊆ Rd be the domain occupied by a binary
alloy and let the order parameter ρ(x) ∈ [−1, 1] be given by the difference between the volume
fractions of the two components. We consider the energy functional

E(ρ, Eu) :=
∫
Ω

(
γ 2

2
|∇ρ|2 + F(ρ)+W(ρ, E(Eu))

)
dx, (1)

where F(ρ) is a double well potential that defines the stable states at ρ = ±1. Elastic effects
are modeled by the term W(ρ, E(Eu)), where Eu is the displacement and E(Eu) denotes the strain. The
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interface dynamics is modeled as theH−1 gradient flow of (1), leading to the fourth order semilinear
parabolic equation

∂tρ −∆

(
−γ∆ρ +

1
γ
f (ρ)+

1
γ
W(ρ, E(Eu))

)
= 0, (2)

where f (ρ) := F ′(ρ) and W(ρ, E(Eu)) = ∂ρW(ρ, E(Eu)). Because the time scale of mechanical
relaxation is much smaller than the scale at which diffusion takes place, we may assume an elastic
equilibrium state. The Cahn–Larché system consists of (2), a stationary equation of the form
DEu = ρ for the elasticity problem, and initial and boundary conditions.

Within this paper, we assume that deformations are small and the elasticity tensor is
homogeneous, i.e. independent of ρ. As a consequence, there is a linear solution operator of the
elasticity problem such that Eu = D−1ρ and we can formally eliminate Eu by writing W(ρ, E(Eu)) =:
Aρ with some linear operator A. This allows us to reduce the Cahn–Larché system to the single
equation

∂tρ −∆

(
−γ∆ρ +

1
γ
f (ρ)+

1
γ
Aρ

)
= 0 (3)

with additional initial and boundary conditions. The error analysis presented in this paper is valid
for generalized Cahn–Hilliard type equations of the form (3) with a linear selfadjoint and possibly
nonlocal operator A that does not have to be related to elastic stresses.

For a fixed size of the parameter γ , the numerical analysis is well established for the Cahn–
Hilliard equations [10, 7] and Cahn–Larché equations [17, 24, 18]. When γ becomes small, the
solution ρ is of low effective regularity. Numerical approximation takes great advantage of mesh
adaptivity, which in turn requires error control based on a posteriori estimates. Unfortunately,
a straightforward analysis leads to error estimates with constants that depend exponentially on
γ−1T , where T is a time horizon. For the approximation of the sharp interface limit, T has to
be independent of γ , and we remark that the time scaling in (2) is chosen accordingly. But then the
outlined estimates become useless for γ → 0. Robust estimates have been derived in several simpler
situations, i.e. estimates that depend on γ−1 only through a low order polynomial. For the Allen–
Cahn equation a robust a priori estimate was established in [13] and a posteriori estimates followed
in [19, 3]. For the Cahn–Hilliard equation a robust a priori estimate was established in [14] and only
very recently a first a posteriori estimate was derived [15]. All these results are based on spectral
estimates of the linearized operator. The principal eigenvalue −λ of the linearized generalized
Cahn–Hilliard operator is defined as the largest number λ for which there exists a nonvanishing
function q such that

λ = ∆

(
−γ∆q +

1
γ
f ′(ρ)q +

1
γ
Aq

)
.

For the smooth evolution of interfaces it was proven in [5, 8] that the principal eigenvalue of the
linearized Allen–Cahn and Cahn–Hilliard operator is bounded from below uniformly with respect
to γ−1. This holds provided that the order parameter ρ has an admissible profile across the interface,
and only as long as no topological changes occur. For more general operators there are no spectral
estimates available.

To avoid restrictive assumptions on the initial data, we follow the approach of [3] where, in
contrast to the references given above, the linearization is taken at the approximate solution ρh
instead of the exact solution ρ. We propose to numerically approximate the principal eigenvalue−λ
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in each time step and thereby measure the stability of the evolution. The numerical computation of
the principal eigenvalue is of great importance for the Cahn–Larché system since, as mentioned
above, we are lacking a theoretical spectral estimate for these equations. Moreover it fits well
the methodology of a posteriori error estimation as it provides important information about the
approximation such as the detection of critical points of the nonlinear evolution. Our main result
states that robust a posteriori error estimation is possible as long as an approximation of−λ remains
uniformly bounded from below in a time interval [γ, T ] (cf. Theorem 3.4 and Remark 3.5 below).
Formal results of [22] suggest that an initially perturbed phase field develops an admissible profile
within a short time frame and our numerical experiments show that the principal eigenvalue is
bounded uniformly with respect to γ−1 after a time period of order O(γ ). It turns out that this is
sufficient to gain a useful error estimate on [0, γ ], which together with our main result allows robust
error control in the time interval [0, T ].

In the context of this paper, there are several differences from the situation related to the Allen–
Cahn equation, which is only of second order, is nonconservative, and obeys a maximum principle.
Here, we have to measure the error in the weaker H−1 norm. This makes it significantly harder
to get control on the superquadratic term in the error, so at least for space dimension d = 3 we
have to impose a nonstandard growth condition on the potential function f (ρ). We remark that if
a priori bounds are employed, then our error analysis could be modified to cover the case of more
general potentials. This however is not in the spirit of a posteriori error estimation. Since total mass
is conserved by the Cahn–Hilliard equation, i.e.

ρ̄(t) :=
1
|Ω|

∫
Ω

ρ(t, x) dx =
1
|Ω|

∫
Ω

ρ0(x) dx =: ρ̄0,

we obtain different constraints on the solution and the particular representation of the error defined
below. The eigenvalue problem which has to be approximated is also of fourth order and we derive
a computable a posteriori error bound for this problem.

The outline of this article is as follows. In the next section we introduce the weak formulation of
the problem in question and the relevant finite element method. The main result is stated in Section 3,
where the aforementioned a posteriori error estimate is proven. This estimate is formulated in an
abstract way that does not depend on a specific numerical scheme. The necessary ingredients to
get a fully computable estimate are given in the subsequent sections. In Section 4 we present an
a posteriori upper bound for the numerically computed eigenvalue. A finite element method for the
Cahn–Larché system is given in Section 5 along with the corresponding residual estimators. Finally,
the numerical experiments in Section 6 show that the computation of the principal eigenvalue allows
the detection of critical points during the time evolution that limit the validity of the developed
a posteriori estimate. The results also demonstrate that restrictive assumptions on the initial data are
not needed because the principal eigenvalue is uniformly bounded after sufficiently short times.

2. Problem formulation and finite element spaces

Let Ω ⊂ Rd , d = 2, 3, be a bounded Lipschitz domain and T > 0 a time horizon. Since we are
interested in robust estimates for small γ we assume 0 < γ 6 1. We use standard notation for
Lebesgue and Sobolev spaces and denote the inner product of L2(Ω) by (v,w). The duality pairing
between a Banach space X and its dual X∗ is written 〈·, ·〉. We define

v̄ :=
∫
Ω

v dx, H̊ 1(Ω) := {v ∈ H 1(Ω) : v̄ = 0}.
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The inverse Laplacian with natural boundary conditions ∆−1
N : H̊ 1(Ω)→ H̊ 1(Ω) is defined by

(∇∆−1
N v,∇ϕ) = −(v, ϕ) for all v ∈ H̊ 1(Ω) and ϕ ∈ H 1(Ω).

To reduce the regularity requirements on the solution ρ, we use the mixed form of [11] and introduce
the chemical potential w defined as

w := −γ∆ρ + γ−1(f (ρ)+ Aρ).

Based on the solution space

XCH :=
(
L2([0, T ], H 1(Ω)) ∩H 1([0, T ], H 1(Ω)∗)

)
× L2([0, T ], H 1(Ω)),

the mixed variational formulation of the Cahn–Hilliard type equation with natural boundary
conditions reads as follows:

(P)


Given ρ(0, x) = ρ0(x) ∈ H

1(Ω), find (ρ,w) ∈ XCH such that for almost all t ∈ (0, T ),

〈ϕ, ∂tρ〉 + (∇ϕ,∇w) = 0 for all ϕ ∈ H 1(Ω),

(ψ,w)− γ (∇ψ,∇ρ) = γ−1(ψ, f (ρ)+ Aρ) for all ψ ∈ H 1(Ω).

For the pure Cahn–Hilliard equation, i.e. for A = 0, the existence and uniqueness of a global
solution to (P) has been established in [12, 11]. The existence of a solution to the Cahn–Larché
system was proven in [17], together with a uniqueness result for the case of homogeneous elasticity.
We restrict our analysis to continuous potential functions, of which the most common example is
F4(ρ) := (ρ2

−1)2/4. More realistic nonsmooth logarithmic potential functions have been proposed
and quantitatively studied e.g. in [2, 7] but they require further research. The following assumptions
on the double well potential and the linear operator A are essential for our analysis:

(A1) f ∈ C1(R) and there is a constant Cf > 0 such that −f ′ 6 Cf .
(A2) There are a function g∗ and constants Cδ > 0 and δ ∈ (0, 1], with δ 6 4/5 if d = 3, such that

for all a, b ∈ R,

−(b − a)(f (b)− f (a)) 6 −f ′(b)(b − a)2 + g∗(b)Cδ|b − a|
2+δ.

(A3) A : L2(Ω) → L2(Ω) is a bounded linear selfadjoint operator and there are constants
α,CA > 0 such that

−(ϕ,Aϕ) 6 α‖ϕ‖2
L2(Ω)

for all ϕ ∈ L2(Ω),

(ψ,Aϕ) 6 CA‖∇ψ‖L2(Ω)‖∇ϕ‖L2(Ω) for all ψ, ϕ ∈ H̊ 1(Ω).

Because there is no maximum principle available for the Cahn–Hilliard equation, the properties of
f outside of [−1, 1] are of relevance. If d = 3 we cannot use f4 := F ′4 on all of R since f4 fails to
satisfy (A2). Nevertheless, a proper modification of f4 outside of [−1, 1] is possible or alternatively
a suitable replacement for the free energy function may be used.

LEMMA 2.1 (a) Let f = F ′4 for the quartic potential F4. If d = 2, then f satisfies (A1) and (A2)
with Cf = 1, δ = 1, Cδ = 1 and g∗(b) = 3b.
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FIG. 1. Left: quartic potential F4; right: alternative potentials: F1 and F2 (dashed).

(b) Let 0 < δ 6 1 and f ∈ C1,δ(R), a continuously differentiable function with a Hölder
continuous derivative with exponent δ or Lipschitz continuous derivative if δ = 1. Then f
satisfies (A2).

(c) Define

F1(x) :=
1

2+ δ
|x|2+δ −

1
2
x2
+

δ

4+ 2δ
,

F2(x) :=



2
1+ δ

(
1

2+ δ
|x|2+δ + x

)
+

2
2+ δ

if x < −1,

1
4
x4
−

1
2
x2
+

1
4

if |x| 6 1,

2
1+ δ

(
1

2+ δ
|x|2+δ − x

)
+

2
2+ δ

if x > 1.

Then f1(x) := F ′1(x) = x|x|
δ
− x and f2(x) := F ′2(x) satisfy (A1) and (A2).

Proof. (a) Since f (x) = x3
− x, we have the lower bound f ′(x) = 3x2

− 1 > −1 =: −Cf .
Moreover, we note f ′′(x) = 6x. Then, for a, b ∈ R, Taylor expansion yields

f (b)− f (a) = f ′4(b)(b − a)+ f
′′(b)(b − a)2/2+ f ′′′(b)(b − a)3/6.

We multiply this identity by −(b − a) to obtain

−(b − a)(f (b)− f (a)) = −f ′(b)(b − a)2 − f ′′(b)(b − a)3/2− (b − a)4

6 −f ′(b)(b − a)2 − 6b(b − a)3/2.

(b) Let a 6= b ∈ R and f ∈ C1,δ(R). By the mean value theorem f (b)− f (a) = f ′(ξ)(b − a)

for some ξ ∈ (min(a, b),max(a, b)) and there is a constant Cδ such that

f ′(ξ)− f ′(b) > −|f ′(ξ)− f ′(b)| > −Cδ|ξ − b|
δ > −Cδ|a − b|

δ.

Thus the assertion follows upon multiplying

f (b)− f (a)

b − a
= f ′(ξ) > f ′(b)− Cδ|b − a|

δ

by −(b − a)2.
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(c) We first note f ′1(x) = (1 + δ)|x|
δ
− 1 > −1 and then check f1 ∈ C

1,δ(R): Without loss of
generality assume |a| 6 |b|; then

|f ′1(b)− f
′

1(a)| = (1+ δ)
∣∣|b|δ − |a|δ∣∣ = (1+ δ)(|b|δ − |a|δ)

6 (1+ δ)((|b − a| + |a|)δ − |a|δ) 6 (1+ δ)(|b − a|δ + |a|δ − |a|δ)

= (1+ δ)|b − a|δ,

where in the last inequality we used that for δ 6 1 the mapping x 7→ xδ is concave. We easily
verify that f2 and f ′2 are continuous at x = ±1. Moreover f ′2 is Lipschitz continuous on [−1, 1],
hence |f ′2(b) − f

′

2(a)| 6 C̃|b − a| = C̃|b − a|1−δ|b − a|δ 6 21−δC̃|b − a|δ =: C|b − a|δ for
all a, b ∈ [−1, 1]. By the same arguments as above, we see that f ′2 is Hölder continuous with
exponent δ on the intervals (−∞,−1] and [1,∞), and by the triangle inequality we conclude that
f2 ∈ C

1,δ(R). 2

We consider discretizations of (P) using piecewise affine continuous finite elements for the
quantities ρ andw. Owing to the boundary conditions employed, the proof of an inf-sup condition is
a straightforward matter. For related estimates for the biharmonic equation with different boundary
conditions and Ciarlet–Raviart mixed finite elements, we refer the reader to [6]. Based on this stable
pair, we specify in Section 5 a discretization of (P) for a particular case (CL), where A is related to
linear elasticity.

We consider shape regular meshes T without hanging nodes, which consist of simplicial
elements and define the T -elementwise constant function hT : Ω → R by hT |K := diam(K)
for all K ∈ T . The set of all element faces within T is denoted by E(T ), and

⋃
E(T ) is the

skeleton {x ∈ Ω : x ∈ E,E ∈ E(T )} of T . To each edge E ∈ E(T ) we assign its diameter hE
and introduce the function hE ∈ L∞(

⋃
E(T )) that satisfies hE |E = hE for all E ∈ E . The space

of elementwise affine continuous functions is denoted by S. On the subspace S̊ of finite element
functions having mean value zero, the discrete inverse Laplacian ∆−1

Nh : S̊ → S̊ satisfies

(∇∆−1
Nhvh,∇ϕh) = −(vh, ϕh) for all vh ∈ S̊ and ϕh ∈ S.

The operators ∆T and divT satisfy ∆T ϕh|K = ∆(ϕh|K) for all ϕ ∈ S and K ∈ T and
divT Eξh|K = div(Eξh|K) for all T -elementwise affine vector fields Eξ . To each face E ∈ E we assign
a unique normal vector En and denote the neighboring elements K+,K− ∈ T in such a way that
E = K+ ∩ K− and the normal En points from K+ to K−. Then the jump operator is defined by
[[ϕ]] := ϕ|K+ −ϕ|K− for all T -elementwise affine functions ϕ. Let 0 = t0 < t1 < · · · < tM = T be
a partition of the time interval [0, T ]. At time step j the mesh is denoted by T (j). Throughout this
article, we abbreviate S(j) := S(T (j)) and E (j) := E(T (j)).
DEFINITION 2.2 (a) Let (ρ,w) ∈ XCH be the solution of (P) and (ρh, wh) a conforming finite

element approximation. For almost all t ∈ [0, T ], we define the errors

ē1 := ρ̄h − ρ̄0 ∈ R, e̊1 := ρh − ρ − ē1 ∈ H̊
1(Ω), e2 := wh − w ∈ H 1(Ω).

We set ρ̂h := ρh − ē1 and introduce z := −∆−1
N e̊1.

(b) For s ∈ (0, T ) the residuals R1(s), R2(s) ∈ H
1(Ω)∗ of the approximation (ρh, wh) are

〈ϕ,R1〉 := (∇ϕ,∇wh)+ 〈ϕ, ∂tρh〉 for all ϕ ∈ H 1(Ω), (4a)

〈ψ,R2〉 := γ (∇ψ,∇ρh)− (ψ,wh)+ γ−1(ψ, f (ρh)+ Aρh) for all ψ ∈ H 1(Ω). (4b)
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REMARK 2.3 (a) Because of e̊1 ∈ H̊ 1(Ω), by Poincaré’s inequality there is a constant CP ,
depending only onΩ , such that ‖e̊1‖L2(Ω) 6 CP ‖∇ e̊1‖L2(Ω). We will repeatedly apply Young’s
inequality with a positive factor ε > 0 to insert appropriate powers of γ :

‖e̊1‖
2
L2(Ω)

= (∇ e̊1,∇z) 6 ε‖∇ e̊1‖
2
L2(Ω)

+
1
4ε
‖∇z‖2

L2(Ω)
. (5)

(b) If ρ̄(0)h = ρ̄0 and a fixed triangulation T (j) = T (0) for j = 1, . . . ,M is used, or if T (j) is a
refinement of T (j−1) for all j > 0, then ē1 = 0.

We note that if the finite element solution coincides with the exact solution then the residuals
vanish. In order to derive an error equation, we choose ϕ = z in (4a), set ψ = e̊1 in (4b) and subtract
the weak formulation from the definition of the residuals, i.e.

〈z, R1〉 = (∇z,∇e2)+ 〈z, ∂t e̊1〉 + 〈z, ∂t ρ̄h〉, (6a)

〈e̊1, R2〉 = γ ‖∇ e̊1‖
2
L2(Ω)

− (e̊1, e2)+
1
γ
(e̊1, f (ρh)− f (ρ)+ Aρh − Aρ). (6b)

Note 〈z, ∂t e̊1〉 = −〈z, ∂t∆z〉 = 〈∇z, ∂t∇z〉 =
1
2

d
dt ‖∇z‖

2
L2(Ω)

and (z, ∂t ρ̄h) = 0 because z ∈

H̊ 1(Ω). By definition of z we have (e̊1, e2) = (∇z,∇e2). Thus, when adding (6a) and (6b), the
mixed terms cancel and we obtain the identity

1
2

d
dt
‖∇z‖2

L2(Ω)
+ γ ‖∇ e̊1‖

2
L2(Ω)

= 〈z, R1〉 + 〈e̊1, R2〉 − γ
−1(e̊1, Aē1)

− γ−1(e̊1, f (ρh)− f (ρ)+ Ae̊1). (7)

3. A posteriori error estimate

Besides the error representation (7) our main result needs two more ingredients. First, we need
residual estimators η1, η21 and η22 such that

〈ϕ,R1〉 6 η1‖∇ϕ‖L2(Ω), 〈ψ,R2〉 6 η21‖∇ψ‖L2(Ω) + η22‖ψ‖L2(Ω), (8)

for almost every t ∈ [0, T ] and ϕ,ψ ∈ H̊ 1(Ω). The estimators depend on the specific discretization
scheme used. When A is given by linear elasticity, i.e. the elasticity tensor is homogeneous, we
derive in Section 5 computable estimates of the residuals R1 and R2. Second, we need a lower
bound Λ∗ of the spectrum of the linearized operator,

−Λ∗ := inf
s∈[0,T ]

(−Λ− ηΛ) 6 inf
s∈[0,T ]

−λ, (9)

where −λ is the principal eigenvalue of the linearized operator at the corrected discrete
approximation ρ̂h, i.e.

−λ(s) := inf
q∈H̊ 1(Ω)\{0}
y=−∆−1

N q

γ ‖∇q‖2
L2(Ω)

+ γ−1(q, f ′(ρ̂h(s))q)+ γ
−1(q,Aq)

‖∇y‖2
L2(Ω)

. (10)
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LEMMA 3.1 (a) If (A1) and (A3) hold then

−γ−1(e̊1, f (ρh)− f (ρ)+ Ae̊1) 6
(Cf + α)

2

γ 3 ‖∇z‖2
L2(Ω)

+
1
4
γ ‖∇ e̊1‖

2
L2(Ω)

− γ−1(e̊1, f (ρ̂h)− f (ρh)).

(b) Let −Λ∗ as in (9) be a lower bound for the principal eigenvalue −λ in (10). If (A2) holds then

−γ−1(e̊1, f (ρh)− f (ρ)+ Ae̊1) 6 Λ∗‖∇z‖2
L2(Ω)

− γ−1(e̊1, f (ρ̂h)− f (ρh))

+ γ ‖∇ e̊1‖
2
L2(Ω)

+ ‖g∗(ρh)‖L∞(Ω)
Cδ

γ
‖e̊1‖

2+δ
L2+δ(Ω)

.

(c) Let η1, η21 and η22 be the residual estimators as in (8) and define

η2 :=
1
4
η2

1 +
2
γ 4 η

2
21 +

4
γ 2 η

2
22 +

C2
P

γ 6 ‖f (ρh)− f (ρ̂h)‖
2
L2(Ω)

+
4
γ 4 ‖Aē1‖

2
L2(Ω)

.

Then

〈z, R1〉 + 〈e̊1, R2〉 − γ
−1(e̊1, f (ρ̂h)− f (ρh)+ Aē1)

6 η2
+

(
1+

1
32

)
‖∇z‖2

L2(Ω)
+

1
2
γ 4
‖∇ e̊1‖

2
L2(Ω)

.

Proof. (a) From the fundamental theorem of calculus and assumption (A1) we get

−γ−1e̊1[f (ρ̂h)− f (ρ)] = γ−1e̊1

∫ ρ̂h

ρ

−f ′(ξ) dξ 6 γ−1Cf e̊
2
1.

Integrating this identity over Ω and using (A3) we deduce

−γ−1(e̊1, f (ρh)− f (ρ)+ Ae̊1) = −γ
−1(e̊1, f (ρ̂h)− f (ρ)+ Ae̊1) − γ

−1(e̊1, f (ρh)− f (ρ̂h))

6 γ−1(Cf + α)‖e̊1‖
2
L2(Ω)

− γ−1(e̊1, f (ρh)− f (ρ̂h)),

and then (5) with ε = (Cf + α)γ
2/4 proves the first assertion. For (b) we set q = e̊1 ∈ H̊

1(Ω)

in (10) and thus by definition y = z. To prove (c), we apply Young’s and Poincaré’s inequality to
obtain

γ−1(e̊1, f (ρh)− f (ρ̂h)) 6 γ−1
‖f (ρh)− f (ρ̂h)‖L2(Ω)‖e̊1‖L2(Ω)

6
C2
P

γ 6 ‖f (ρh)− f (ρ̂h)‖
2
L2(Ω)

+
γ 4

4
‖∇ e̊1‖

2
L2(Ω)

.

By Hölder’s and Young’s inequalities,− 1
γ
(e̊1, Aē1) 6 1

4ε0γ 4 η̄
2
A+ε0γ

2
‖e̊1‖

2
L2(Ω)

with some ε0 > 0,

and applying (5) with ε = γ 2, we have

−
1
γ
(e̊1, Aē1) 6

1
4ε0γ 4 η̄

2
A + ε0γ

4
‖∇ e̊1‖

2
L2(Ω)

+
ε0

4
‖∇z‖2

L2(Ω)
.
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In the same way we treat the residuals R1 and R2 to deduce that

〈z, R1〉 + 〈e̊1, R2〉 6
1
4
η2

1 + ‖∇z‖
2
L2(Ω)

+
1

4ε21γ 4 η
2
21 + ε21γ

4
‖∇ e̊1‖

2
L2(Ω)

+
1

4ε22γ 2 η
2
22 + ε22γ

4
‖∇ e̊1‖

2
L2(Ω)

+
ε22

4
‖∇z‖2

L2(Ω)
.

Combining the last three estimates and choosing ε21 = 1/8, ε0 = ε22 = 1/16, we get the
assertion. 2

REMARK 3.2 Applying (a) and (c) of Lemma 3.1 to (7) we get

1
2

d
dt
‖∇z‖2

L2(Ω)
+

1
4
γ ‖∇ e̊1‖

2
L2(Ω)

6 η2
+

(
1+

1
32
+
(Cf + α)

2

γ 3

)
‖∇z‖2

L2(Ω)
.

Integration over [0, t] and application of Gronwall’s lemma leads to

sup
s∈[0,T ]

‖∇z(s)‖2
L2(Ω)

+
γ

2

∫ T

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 2
[
‖∇z0‖

2
L2(Ω)

+ 2
∫ T

0
η2 ds

]
e2C0γ

−3T ,

with C0 = (1 + 1/32)γ 3
+ (Cf + α)

2. This estimate has an exponential dependence on γ−1 and
is only useful for T . γ 3. In [15] it was pointed out that this would be sufficient for robust error
control if the principal eigenvalue is uniformly bounded after a certain time of order O(γ 3). Our
numerical experiments in Section 6 show that for general initial data such a bound can only be
expected after some time of order O(γ ).

LEMMA 3.3 Suppose that δ ∈ (0, 1], with δ 6 4/5 if d = 3. Then there is a constant CS,δ such
that

‖e̊1‖
2+δ
L2+δ(Ω)

6 C2−δ
S,δ ‖∇z‖

δ
L2(Ω)
‖∇ e̊1‖

2
L2(Ω)

.

Proof. If δ < 1, then Hölder’s inequality with exponents 1/δ and 1/(1− δ) implies∫
Ω

|e̊1|
2+δ dx 6

∥∥|e̊1|
2δ∥∥

L1/δ(Ω)

∥∥|e̊1|
2−δ∥∥

L1/(1−δ)(Ω)
= ‖e̊1‖

2δ
L2(Ω)
‖e̊1‖

2−δ
L(2−δ)/(1−δ)(Ω)

. (11)

If d = 2, there is a constant CS,δ > 0 such that

‖v‖L(2−δ)/(1−δ)(Ω) 6 CS,δ‖∇v‖L2(Ω) for all v ∈ H̊ 1(Ω). (12)

If d = 3 and δ 6 4/5, then (2 − δ)/(1 − δ) 6 6, and again there is a constant CS,δ > 0 such that
(12) holds. Noting ‖e̊1‖

2δ
L2(Ω)

6 ‖∇ e̊1‖
δ
L2(Ω)
‖∇z‖δ

L2(Ω)
, we conclude in either case∫

Ω

|e̊1|
2+δ dx 6 ‖e̊1‖

2δ
L2(Ω)

(CS,δ‖∇ e̊1‖L2(Ω))
2−δ 6 C2−δ

S,δ ‖∇z‖
δ
L2(Ω)
‖∇ e̊1‖

2
L2(Ω)

.

Let d = 2 and δ = 1. According to the multiplicative Sobolev inequality [20, (2.10)] there is a
constant CS,δ > 0 such that

‖v‖2
L4(Ω)

6 CS,δ‖v‖L2(Ω)‖∇v‖L2(Ω) for all v ∈ H̊ 1(Ω)
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and we deduce with Hölder’s inequality that∫
Ω

|e̊1|
3 dx 6 ‖e̊1‖L2(Ω)‖e̊1‖

2
L4(Ω)

6 ‖e̊1‖L2(Ω)CS,δ‖e̊1‖L2(Ω)‖∇ e̊1‖L2(Ω)

6 C2−δ
S,δ ‖∇z‖

δ
L2(Ω)
‖∇ e̊1‖

2
L2(Ω)

,

where in the last line we used ‖e̊1‖
2
L2(Ω)

= (∇z,∇ e̊1) 6 ‖∇z‖L2(Ω)‖∇ e̊1‖L2(Ω). 2

THEOREM 3.4 Let Λ◦ := 1 + 1/32 + (Cf + α)2, ηg∗ := max(1, supt∈[0,T ] ‖g
∗(ρh)‖L∞(Ω)) and

define

µ2
1 :=

(
e−2 max(0,Λ◦+Λ∗)T

16ηg∗CδC2−δ
S,δ

)1/δ

and µ2
2 :=

3
16
e−2 max(0,Λ◦+Λ∗)T .

Given a tolerance θ 6 γ 5/δµ2
1, suppose the approximation error of the initial values and the residuals

can be controlled by this tolerance θ in the sense that

‖∇z0‖L2(Ω) +
√

2‖η‖L2([0,T ]) < µ2θ 6 µ2
1µ2γ

5/δ, (13)

where z0 := z(0) = ∆−1
N (ρ

(0)
h − ρ0 − (ρ̄

(0)
h − ρ̄0)). Then

sup
s∈[0,T ]

‖∇z(s)‖2
L2(Ω)

+
1
2
γ 4
∫ T

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 θ2.

Proof. Starting from (7) and taking from Lemma 3.1 a convex combination of γ 3 times (a) plus
(1− γ 3) times (b) yields

1
2

d
dt
‖∇z‖2

L2(Ω)
+

3
4
γ 4
‖∇ e̊1‖

2
L2(Ω)

6 〈z, R1〉 + 〈e̊1, R2〉 − γ
−1(e̊1, f (ρ̂h)− f (ρh)+ Aē1)

+ ((Cf + α)
2
+ (1− γ 3)Λ∗)‖∇z‖2

L2(Ω)

+
(1− γ 3)Cδ

γ
sup
t∈[0,T ]

‖g∗(ρh)‖L∞(Ω)‖e̊1‖
2+δ
L2+δ(Ω)

.

By Lemma 3.1(c) the residual terms are bounded, so that

1
2

d
dt
‖∇z‖2

L2(Ω)
+

1
4
γ 4
‖∇ e̊1‖

2
L2(Ω)

6 η2
+ (Λ◦ +Λ

∗)‖∇z‖2
L2(Ω)

+
ηg∗Cδ

γ
‖e̊1‖

2+δ
L2+δ(Ω)

. (14)

To apply a continuation argument as in [19], we define the time interval

Iθ :=
{
t ∈ [0, T ] : Γ (t) := sup

s∈(0,t)
‖∇z(s)‖2

L2(Ω)
+

1
2
γ 4
∫ t

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 θ2
}
. (15)

Since ‖∇z0‖L2(Ω) < θ , the interval Iθ is nonempty, and because Γ (t) is continuous, Iθ is closed.
To establish Iθ = [0, T ] we need to show that Iθ is also relatively open in [0, T ]. Let t ∈ Iθ . Then
by definition of Iθ we have ‖∇z(t)‖L2(Ω) 6 θ , as well as∫ t

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 2γ−4θ2. (16)
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Together with Lemma 3.1, this allows us to bound the superquadratic term with an extra power of θ ,
i.e.

γ−1
∫ t

0
‖e̊1‖

2+δ
L2+δ(Ω)

ds 6 γ−1C2−δ
S,δ θ

δ

∫ t

0
‖∇ e̊1‖

2
L2(Ω)

ds

6 2γ−5C2−δ
S,δ θ

δθ2 6 2C2−δ
S,δ

(
θ

γ 5/δ

)δ
θ2 6 2C2−δ

S,δ µ
2δ
1 θ

2.

By assumption (13) we have ‖∇z0‖
2
L2(Ω)

+ 2
∫ T

0 η2 ds 6 (‖∇z0‖L2(Ω) +
√

2‖η‖L2([0,T ]))
2 6

(µ2θ)
2. Upon integrating the estimate (14) in time over [0, t] we deduce, with these two inequalities,

‖∇z(t)‖2
L2(Ω)

+
1
2
γ 4
∫ t

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 2 max(0,Λ◦ +Λ∗)
∫ t

0
‖∇z‖2

L2(Ω)
ds

+ µ2
2θ

2
+ 4ηg∗CδC2−δ

S,δ µ
2δ
1 θ

2. (17)

We are now in a position to apply Gronwall’s lemma in such a way that the resulting exponent
2 max(0,Λ◦ +Λ∗)T is independent of γ−1. This yields

‖∇z(t)‖2
L2(Ω)

+
1
2
γ 4
∫ t

0
‖∇ e̊1‖

2
L2(Ω)

ds 6 [(µ2
2 + 4ηg∗CδC2−δ

S,δ µ
2δ
1 )θ

2]e2 max(0,Λ◦+Λ∗)T

6

[
3

16
+

1
4

]
θ2 <

1
2
θ2.

Hence Γ (t) < θ2 and Iθ is also open. Altogether we have proved Iθ = [0, T ]. 2

REMARK 3.5 (a) The theorem above guarantees error bounds that do not depend exponentially
on γ−1 provided that Λ∗ is independent of γ−1 or T . γ . For the latter case we notice that
Λ . γ−1 (cf. (27) below). Then we choose T1 . γ and apply the theorem separately on [0, T1]
and [T1, T ], in such a way that the error estimate on the first interval ensures the condition for
the initial error on the second interval.

(b) From (13) we see that the minimal polynomial degree in which the error estimate depends on
γ−1 is 5, if d = 2 and δ = 1. If d = 3, due to the requirement δ 6 4/5 the minimal polynomial
degree is limited by 5/δ > 6. The estimate in [15] yields the same polynomial orders.

4. Estimates for the eigenvalue approximation

In this section we derive a version of estimate (9) following ideas for the a posteriori error estimation
of eigenvalue problems in [21]. The principal eigenvalue −λ from (10) is well defined since,
possibly after a constant shift, the numerator on the right-hand side is a strictly convex functional.
Hence there is a minimizing q ∈ H̊ 1(Ω) \ {0} with

λ(v,∆−1
N q) = γ (∇v,∇q)+ γ−1(v, f ′(ρ̂h)q)+ γ

−1(v, Aq) for all v ∈ H̊ 1(Ω). (18)

In the discrete eigenvalue problem, we are looking for the smallest number −Λ and a function
qh ∈ S̊ \ {0} such that

Λ(vh,∆
−1
Nhqh) = γ (∇vh,∇qh)+ γ

−1(vh, f
′(ρ̂h)qh)+ γ

−1(vh, Ahqh) for all vh ∈ S̊. (19)
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Here, ∆−1
N and A are replaced by approximations ∆−1

Nh and Ah, respectively. If A is related to linear
elasticity, an estimator ηA for the residual (Ah − A)qh is given in Lemma 5.3 below. Keeping the
definition y := −∆−1

N qh in mind, the proof of the following lemma can be directly deduced from
standard a posteriori estimates for the Laplace equation.

LEMMA 4.1 ([23]) Let CCl be the constant related to estimates for the Clément interpolation
operator and define the residual estimator

ηNh := CCl‖hT (∆T ∆
−1
Nhqh − qh)‖L2(Ω) + CCl‖h

1/2
E [[∂En∆

−1
Nhqh]]‖L2(

⋃
E).

Then
‖∇(∆−1

N qh −∆
−1
Nhqh)‖L2(Ω) 6 ηNh for all qh ∈ S̊.

In the same way, we also get a lower bound of the form ηNh 6 C‖∇(∆−1
N qh − ∆

−1
Nhqh)‖L2(Ω),

where no oscillation terms appears because qh ∈ S̊. Hence, with the standard a priori estimates for
the Laplace equation, we can always guarantee sufficient smallness of ηNh for small mesh width h.

DEFINITION 4.2 Given (Λ, qh) ∈ R × S̊ \ {0} satisfying (19), the residual RΛ is defined to be
such that for all v ∈ H̊ 1(Ω),

〈v, RΛ〉 := Λ(v,∆−1
N qh)− γ (∇v,∇qh)− γ

−1(v, f ′(ρ̂h)qh)− γ
−1(v, Aqh).

LEMMA 4.3 Let (Λ, qh) ∈ R× S̊ \ {0} be a solution of (19) and define the residual estimator

ηqh := CCl‖hT (γ∆T qh+γ
−1(f ′(ρ̂h)qh+Ahqh)−Λ∆

−1
Nhqh)‖L2(Ω)+CCl‖h

1/2
E γ [[∂Enqh]]‖L2(

⋃
E),

with the constant CCl related to estimates for the Clément interpolation operator. If there is an
estimator ηA such that (v, (Ah − A)qh) 6 ηA‖∇v‖ for all v ∈ H̊ 1(Ω), then

|〈v, RΛ〉| 6 (ηqh + γ
−1ηA)‖∇v‖L2(Ω) +ΛηNh‖∇∆

−1
N v‖L2(Ω) for all v ∈ H̊ 1(Ω). (20)

Proof. For all v ∈ H̊ 1(Ω) and vh ∈ S̊ we subtract (19) from the definition of the residual RΛ to
find that

〈v, RΛ〉 = γ (∇(vh − v),∇qh)+ γ
−1(vh − v, f

′(ρ̂h)qh + Ahqh)−Λ(vh − v,∆
−1
Nhqh)

−Λ(v,∆−1
Nhqh −∆

−1
N qh)+ γ

−1(v, (Ah − A)qh).

An elementwise integration by parts and Hölder’s inequality imply

|〈v, RΛ〉| 6
∑
K∈T
‖h−1
T (v − vh)‖L2(K)‖hT (γ∆qh − γ

−1(f ′(ρ̂h)qh + Ahqh)+Λ∆
−1
Nhqh)‖L2(K)

+

∑
E∈E
‖h
−1/2
E (v − vh)‖L2(E)‖h

1/2
E γ [[∂Enqh]]‖L2(E)

+Λ|(v,∆−1
N qh −∆

−1
Nhqh)| + γ

−1
|(v, (Ah − A)qh)|.

Choosing vh = Πhv to be the Clément interpolant, from standard estimates and Lemma 4.1 we
deduce (20). 2
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Let Pλ denote the L2 projection onto the eigenspace related to the eigenvalue −λ, i.e. the space of
all q ∈ H̊ 1(Ω) satisfying (18). Choosing v = qh and q = Pλqh in (18) leads to

0 = −λ(qh,∆−1
N Pλqh)+ γ (∇qh,∇Pλqh)+ γ

−1(qh, f
′(ρ̂h)Pλqh)+ γ

−1(qh, APλqh).

We add this equation to the residual in Definition 4.2, where we choose v = Pλqh. Because ∆−1
N is

selfadjoint, i.e. (Pλqh,∆−1
N qh) = −(∇∆

−1
N Pλqh,∇∆

−1
N qh) = (∆−1

N Pλqh, qh), and A is assumed
to be selfadjoint, we get a representation of the error in the eigenvalue approximation,

Λ− λ =
〈Pλqh, RΛ〉

(Pλqh,∆
−1
N qh)

, (21)

provided that the denominator does not vanish. Thus the numerical approximation space has to be
large enough to resolve the eigenvectors related to the principal eigenvalue, i.e. PλS̊ 6= {0}.
THEOREM 4.4 Let−λ be the smallest number for which there exists a nontrivial q satisfying (18),
and Pλ the L2 projection onto the eigenspace related to −λ. Let (Λ, qh) ∈ (R, S̊) solve (19) with
‖∇∆−1

Nhqh‖L2(Ω) = 1. Assume S̊ is sufficiently large, such that

‖∇(∆−1
N qh −∆

−1
Nhqh)‖L2(Ω) 6 ηNh 6 1/4, (22)

and moreover
‖∇∆−1

N (qh − Pλqh)‖
2
L2(Ω)

6 1/4. (23)

Then we have the following computable a posteriori error estimate for the eigenvalue:

λ−Λ 6 ηΛ := 8γ−1/2(ηqh + ηA)((‖f
′(ρ̂h)‖∞+α)‖qh‖

2
+ 4 max(0,−Λ))1/2+ 16ΛηNh. (24)

Proof. For the denominator in (21), the assumed bound (23) implies

−2(Pλqh,∆−1
N qh) = 2(∇∆−1

N Pλqh,∇∆
−1
N qh)

= ‖∇∆−1
N Pλqh‖

2
L2(Ω)

+ ‖∇∆−1
N qh‖

2
L2(Ω)

− ‖∇∆−1
N (Pλqh − qh)‖

2
L2(Ω)

> 0+ ‖∇(∆−1
N qh −∆

−1
Nhqh)+∇∆

−1
Nhqh‖

2
L2(Ω)

− 1/4,

> (‖∇(∆−1
N qh −∆

−1
Nhqh)‖L2(Ω) − ‖∇∆

−1
Nhqh‖L2(Ω))

2
− 1/4

= ‖∇(∆−1
N qh −∆

−1
Nhqh)‖

2
L2(Ω)

+ ‖∇∆−1
Nhqh‖

2
L2(Ω)

− 2‖∇(∆−1
N qh −∆

−1
Nhqh)‖L2(Ω)‖∇∆

−1
Nhqh‖L2(Ω) − 1/4

> 0+ 1− 2 ·
1
4
· 1−

1
4
=

1
4
.

HenceΛ−λ 6 8|〈Pλqh, RΛ〉|. Now we apply Lemma 4.3, where we choose v = Pλqh to conclude

Λ− λ 6 8(ηqh + γ
−1ηA)‖∇Pλqh‖L2(Ω) + 8ΛηNh‖∇∆

−1
N Pλqh‖L2(Ω).

With (22), (23) and Lemma 4.1 we find that

‖∇∆−1
N Pλqh‖L2(Ω) 6 ‖∇∆−1

N (Pλqh − qh)‖L2(Ω) + ‖∇(∆
−1
N qh −∆

−1
Nhqh)‖L2(Ω)

+ ‖∇∆−1
Nhqh‖L2(Ω)

6 1/2+ ηNh + 1 6 2. (25)
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To bound ‖∇Pλqh‖L2(Ω) we choose v = q = Pλqh in (18). This yields

γ ‖∇Pλqh‖
2
L2(Ω)

= −λ‖∇∆−1
N Pλqh‖

2
L2(Ω)

− γ−1(Pλqh, f
′(ρ̂h)Pλqh + APλqh).

If −λ 6 −Λ we use ‖Pλqh‖L2(Ω) 6 ‖qh‖L2(Ω) and (25) to obtain

γ ‖∇Pλqh‖
2
L2(Ω)

6 4 max(0,−Λ)+ γ−1(‖f ′(ρ̂h)‖∞ + α)‖qh‖
2

and deduce (24). Otherwise, if λ 6 Λ, nothing remains to be shown since the right-hand side of
(24) is nonnegative. 2

The saturation assumption (23) in Theorem 4.4 is quite commonly used to derive error estimates
for eigenvalue approximation, but it is not clear how it can be verified in practice. To close this
theoretical gap we present an explicit a priori estimate that only requires that the Laplace operator
subject to homogeneous Neumann boundary conditions is H 2 regular on Ω , i.e. there is a constant
CH 2 > 0 such that if q, y ∈ H̊ 1(Ω) satisfy −∆y = q in Ω and ∂ny = 0 on ∂Ω , then ‖y‖H 2(Ω) 6
CH 2‖q‖L2(Ω). Instead of the difference qh − Pλq in the a posteriori estimate, we now consider
q−IT q, where IT denotes the nodal interpolation operator. Then we have the interpolation estimate

‖q − IT q‖L2(Ω) + h‖∇(q − IT q)‖L2(Ω) 6 CIT h
2
‖D2q‖L2(Ω). (26)

Analogous to the above, we need a suitable a priori estimate for (Ah − A)qh. This can be
obtained by standard methods, if A is the operator related to linear elasticity (cf. Lemma 5.3).
From standard a priori estimates for the Laplace equation we get a constant CNh > 0 such that
‖∇(∆−1

N qh − ∆
−1
Nhqh)‖L2(Ω) 6 CNhh‖qh‖L2(Ω) for all qh ∈ S̊. The optimal constant C−1,1 such

that ‖∇∆−1
N v‖L2(Ω) 6 C−1

−1,1‖∇v‖L2(Ω) for all v ∈ H̊ 1(Ω) is needed to get an a priori estimate for
the principal eigenvalue −λ. We note that C−1

−1,1 6 C2
P .

THEOREM 4.5 Assume that the Laplace operator subject to homogeneous Neumann boundary
conditions isH 2 regular onΩ and suppose there is a constantCAh > 0 such that (qh, (Ah−A)qh) 6
CAhh‖∇qh‖

2
L2(Ω)

for all qh ∈ S̊. Set

ε0 := γ 2
+ CA +max(CP , C2

P )‖f
′(ρ̂h)‖L∞(Ω),

ε1 := (2γ 2ε0C
2
−1,1 + 4(Cf + α)2)1/2,

ε2 := (ε0CH 2(γ
2C2
−1,1CP + ε1)CIT CP /2)

1/2.

Assume S̊ is sufficiently large so that 2γ−2ε2h 6 1/2 as well as γ−1(4ε1/2
1 CP + γ )CNhh 6 CP ,

and define
ε3 := 2ε2 + CNh(4γ ε

1/2
1 + γ

2/CP )/2,
ε4 := ε1ε3 + ε2(4ε2 + ε3/CP ).

Then the error of the computed eigenvalue is bounded by

λ−Λ 6 γ−7[(2γ 2
+ 6ε0)(ε1 + ε4/(4ε2))ε4 + γ

2CAh(ε1 + ε4/(4ε2))
2]h.
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Proof. In a first step we derive a priori bounds for q and |λ|. From the definition of the principal
eigenvalue −λ in (10) and (A3) we get

|λ| 6 γ−1(γ 2
+ C2

P ‖f
′(ρ̂h)‖L∞(Ω) + CA) inf

v∈H̊ 1(Ω)\{0}

‖∇v‖2
L2(Ω)

‖∇∆−1
N v‖2

L2(Ω)

6 γ−1ε0C
2
−1,1. (27)

Let (λ, q) satisfy (18) with ‖∇∆−1
N q‖L2(Ω) = 1. We choose v = q in (18) to infer with (A1), (A3)

and (5) that

γ ‖∇q‖2
L2(Ω)

= −λ‖∇∆−1
N q‖2

L2(Ω)
− γ−1(q, f ′(ρ̂h)q)− γ

−1(q,Aq)

6 |λ| + γ−1(Cf + α)‖q‖
2
L2(Ω)

6 |λ| + 2γ−3(Cf + α)
2
‖∇∆−1

N q‖2
L2(Ω)

+
γ

2
‖∇q‖2

L2(Ω)
.

From (27) we deduce the estimates

‖∇q‖2
L2(Ω)

6 2γ−2ε0C
2
−1,1 + 4γ−4(Cf + α)

2
= γ−4ε2

1, (28)

‖q‖2
L2(Ω)

= −(∇∆−1
N q,∇q) 6 ‖∇∆−1

N q‖L2(Ω)‖∇q‖L2(Ω) 6 γ−2ε1. (29)

We note ‖∆−1
N q‖L2(Ω) 6 CP ‖∇∆

−1
N q‖L2(Ω) = CP to conclude from the strong form −λ∆−1

N q =

γ∆q − γ−1(f ′(ρ̂h)q − Aq) and the assumed H 2 regularity that

‖D2q‖L2(Ω) 6 γ−1CH 2 [|λ|‖∆−1
N q‖L2(Ω) + γ

−1
‖f ′(ρ̂h)q + Aq‖L2(Ω)]

6 γ−2CH 2 [γ |λ|CP + (CP ‖f ′(ρ̂h)‖L∞(Ω) + CA)‖∇q‖L2(Ω)]

6 γ−2CH 2(ε0C
2
−1,1CP + γ

−2ε0ε1) = γ
−42ε2

2/(CIT CP ).

The second step consists in the construction of a discrete approximate eigenfunction. We define
the mean value corrected nodal interpolant ĨT q := IT q − |Ω|−1(1, IT q) ∈ S̊. Then the triangle
inequality and q ∈ H̊ 1(Ω) lead to

‖q − ĨT q‖L2(Ω) 6 2CIT h
2
‖D2q‖L2(Ω) 6 2h2γ−42ε2

2/CP .

Since for any v ∈ H̊ 1(Ω) we have ‖∇∆−1
N v‖L2(Ω) 6 CP ‖v‖L2(Ω), the assumptions on the mesh

width h yield
‖∇∆−1

N (q − ĨT q)‖L2(Ω) 6 (2γ−2ε2h)
2 6 1/4. (30)

On the other hand, from the a priori estimate for ∆−1
N we get

‖∇(∆−1
N ĨT q −∆

−1
Nh ĨT q)‖L2(Ω) 6 CNhh‖ĨT q‖L2(Ω) 6 CNhh(‖q‖L2(Ω) + ‖q − ĨT q‖L2(Ω))

6 CNhh(γ
−1ε

1/2
1 + 1/(4CP )) 6 1/4.

Combining both estimates, from the triangle inequality we get 1/2 6 ‖∇∆−1
Nh ĨT q‖L2(Ω) 6 3/2 so
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that we can define q̃h := ĨT q/‖∇∆−1
Nh ĨT q‖L2(Ω) and deduce

‖∇ (̃qh − q)‖L2(Ω) 6

∣∣1− ‖∇∆−1
Nh ĨT q‖L2(Ω)

∣∣
‖∇∆−1

Nh ĨT q‖L2(Ω)

‖∇ĨT q‖L2(Ω) + ‖∇(ĨT q − q)‖L2(Ω)

6 2
∣∣‖∇∆−1

N q‖L2(Ω) − ‖∇∆
−1
Nh ĨT q‖L2(Ω)

∣∣‖∇IT q‖L2(Ω)

+ ‖∇(IT q − q)‖L2(Ω)

6 ‖∇(IT q − q)‖L2(Ω) + 2‖∇IT q‖L2(Ω)

× (‖∇∆−1
N (q − ĨT q)‖L2(Ω) + ‖∇(∆

−1
N ĨT q −∆

−1
Nh ĨT q‖L2(Ω))

6 2((2γ−2ε2h)
2
+ CNhh(γ

−1ε
1/2
1 + 1/(4CP )))‖∇IT q‖L2(Ω)

+ ‖∇(IT q − q)‖L2(Ω)

=: γ−2ε3h‖∇IT q‖L2(Ω) + ‖∇(IT q − q)‖L2(Ω),

where we applied (30) and the assumption on the mesh size in order to reduce the polynomial
dependence on γ−1. From (28) and (26), we conclude

‖∇ (̃qh − q)‖L2(Ω) 6 γ−2ε3h‖∇q‖L2(Ω) + (1+ γ
−2ε3h)‖∇(IT q − q)‖L2(Ω)

6 γ−4ε1ε3h+ (1+ ε3/(4ε2))4γ−4(ε2
2/CP )h =: γ−4ε4h.

In the third step, we use the definitions of λ and Λ to estimate their difference. Setting vh = q̃h in
(19) and using the minimality of −Λ we get

−Λ 6 γ ‖∇q̃h‖
2
L2(Ω)

+ (̃qh, f
′(ρ̂h)q̃h)+ (̃qh, Aq̃h)+ γ

−1(̃qh, (Ah − A)̃qh). (31)

Upon adding (18), where we choose v = q, we obtain

λ−Λ 6 γ (‖∇q̃h‖
2
L2(Ω)

− ‖∇q‖2
L2(Ω)

)+ γ−1(q̃h, (Ah − A)̃qh)

+ γ−1((q̃h, f
′(ρ̂h)̃qh)− (q, f

′(ρ̂h)q)+ (̃qh, Aq̃h)− (q,Aq)).

In order to apply the binomial formula a2
− b2 6 2a(a− b), we define the shifted, positive definite

operator B := (f ′(ρ̂h)+ ε0C
−2
P )Id+ A. This yields

λ−Λ 6 γ (‖∇q̃h‖
2
L2(Ω)

− ‖∇q‖2
L2(Ω)

)+ γ−1((̃qh, Bq̃h)− (q, Bq))

− γ−1ε0C
−2
P (‖q̃h‖

2
L2(Ω)

− ‖q‖2
L2(Ω)

)+ γ−1(q̃h, (Ah − A)̃qh).

For the term containing Ah−A, we use the given a priori estimate from the assumptions to estimate

λ−Λ 6 2γ (∇q̃h,∇ (̃qh − q))+ 2γ−1(Bq̃h, q̃h − q)

+ 2γ−1ε0C
−2
P (q, q̃h − q)+ γ

−1CAhh‖∇q̃h‖
2
L2(Ω)

6 2γ ‖∇q̃h‖L2(Ω)‖∇ (̃qh − q)‖L2(Ω) + 2γ−12ε0‖∇q̃h‖L2(Ω)‖∇ (̃qh − q)‖L2(Ω)

+ 2γ−1ε0C
−2
P ‖q‖L2(Ω)‖q̃h − q‖L2(Ω) + γ

−1CAhh‖∇q̃h‖
2
L2(Ω)

6 2[γ ‖∇q̃h‖L2(Ω) + 2γ−1ε0‖∇q̃h‖L2(Ω) + γ
−1ε0‖∇q‖L2(Ω)]γ

−4ε4h

+ γ−1CAhh‖∇q̃h‖
2
L2(Ω)

.

We finally note ‖∇q̃h‖L2(Ω) 6 γ−2(ε1 + ε4/(4ε2)) to deduce the desired estimate. 2
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5. Application to Cahn–Larché equations

The last missing parts to gain robust error control are the residual estimators. These depend on the
concrete application with a particular linear operator A and on the implemented numerical method.
In this section we present a practical method for a semi-implicit treatment of the general Cahn–
Larché system and derive computable residual estimators in the case of a homogeneous elasticity
tensor.

5.1 Homogeneous elasticity

We assume a small displacement field Eu so that the strain is approximated by the symmetric gradient
E(Eu) := 1

2 (∇Eu+ ∇Eu
T). By Ē(ρ) := κIρ we denote the stress free strain, where I is the unit tensor

and κ > 0 is called misfit. For symmetric matrices A, B we define A : B := trace(ATB) =∑
i,j AijBij and the scalar product (A,B)C :=

∫
Ω
A : CB dx. The elasticity tensor C, which relates

the strain to the stress, may in general depend on ρ. It is called homogeneous if C is independent
of ρ. The elasticity tensor C ∈ Rd×d×d×d is assumed to be a symmetric positive definite fourth
order tensor, i.e.

• Cijmn = Cijnm = Cjimn and Cijmn = Cmnij for all 1 6 i, j,m, n 6 d,
• there is c∗ > 0 such that A : CA > c∗|A|2 for all symmetric matrices A ∈ Rd×d .

Following [16], the elastic energy can be modeled by

W(ρ, E(Eu)) :=
1
2
(E(Eu)− Ē(ρ)) : C(E(Eu)− Ē(ρ)).

Since the time scale of mechanical relaxation is much smaller than the scale at which diffusion takes
place, we may assume an equilibrium state governed by

0 = div(C[E(Eu)− Ē(ρ)]) in Ω.

When the natural boundary conditions En · (C[E(Eu)− Ē(ρ)]) = 0 are prescribed on all of the domain
boundary ∂Ω , then Eu is not uniquely determined by this equation. From the solution space we have
to exclude the kernel of E , which contains all rigid body motions. This does not affect the elastic
energy because W(ρ, E(Eu)) depends only on E(Eu), not on Eu itself. The set of all infinitesimal,
linearized rigid body motions is given by

RM(Ω) =

{
{(x, y) 7→ (a, b)+ c(y,−x) : a, b, c ∈ R, (x, y) ∈ Ω ⊂ R2

} for d = 2,
{x 7→ a + c × x : a, b ∈ R3, x ∈ Ω ⊂ R3

} for d = 3.

We denote H 1
RM(Ω) := (H 1(Ω))d/RM(Ω) and define the solution space of the Cahn–Larché

system to be
XCL := XCH × L

∞([0, T ], H 1
RM(Ω)).

In the weak form we seek the solution of the following problem:

(CL)



Given ρ(0, x) = ρ0(x) ∈ H
1(Ω), find (ρ,w, Eu) ∈ XCL such that for almost all t ∈ (0, T ),

(E(Eξ), E(Eu)− Ē(ρ))C = 0 for all Eξ ∈ H 1
RM(Ω),

〈ϕ, ∂tρ〉 + (∇ϕ,∇w) = 0 for all ϕ ∈ H 1(Ω),

(ψ,w)− γ (∇ψ,∇ρ) = γ−1(ψ, f (ρ)+W(ρ, E(Eu))) for all ψ ∈ H 1(Ω).
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If the elasticity tensor C is homogeneous, the first equation of (CL) defines the linear solution
operator D−1 : ρ 7→ Eu, and the contribution of the elastic energy to (CL) is

W(ρ, E(Eu)) = −κI : C(E(Eu)− Ē(ρ)). (32)

In the next lemma, we show that the mapping ρ 7→ Aρ = W(ρ, E(Eu)) satisfies (A3).

LEMMA 5.1 There is a constant CC,K such that for given ρ ∈ L2(Ω) and Eu as in (CL) we have

‖∇Eu‖L2(Ω) 6 κCC,K‖ρ‖L2(Ω). (33)

Moreover, the linear operator A : ρ 7→ W(ρ, E(Eu)) = −κI : C(E(Eu) − Ē(ρ)) is selfadjoint and
there are constants α,CA > 0 such that assumption (A3) is satisfied, i.e.

− (ρ,Aρ) 6 α‖ρ‖2
L2(Ω)

for all ρ ∈ L2(Ω),

(ψ,Aρ) 6 CA‖∇ψ‖L2(Ω)‖∇ρ‖L2(Ω) for all ρ ∈ H̊ 1(Ω).

Proof. Since we excluded rigid body motions, we can apply Korn’s inequality. On the other hand,
C is positive definite. Together this yields

CK‖∇Eu‖
2
L2(Ω)

6 (E(Eu), E(Eu)) 6
1
c∗
(E(Eu), E(Eu))C . (34)

By choosing Eξ = Eu in (CL) and employing Hölder’s inequality we infer

‖∇Eu‖2
L2(Ω)

6
1

c∗CK
(Ē(ρ), E(Eu))C =

κ

c∗CK

∫
Ω

ρE(Eu) : CI dx

6
κ

c∗CK
‖ρ‖L2(Ω)‖E(Eu) : CI‖L2(Ω) 6 κCC,K‖ρ‖L2(Ω)‖∇Eu‖L2(Ω)

with some constant CC,K > 0. The symmetry of C implies that A is selfadjoint and

(ρ,Aρ) = −

∫
Ω

κIρ : C(E(Eu)− Ē(ρ)) dx = −(Ē(ρ), E(Eu)− Ē(ρ))C

= −(E(Eu), E(Eu))C + (Ē(ρ), Ē(ρ))C > −c∗CK‖∇Eu‖
2
L2(Ω)

+ κ2c∗‖ρ‖2
L2(Ω)

.

Upon setting α = max(0, κ2(CKC
2
C,K − |Ω|))c

∗ we get the lower bound for A. For the upper
bound, we set Eξ = D−1ψ and Ev = D−1ρ. An application of Hölder’s inequality, (33) and (34) yield

(ψ,Aρ) = −(Ē(ψ), E(Ev)− Ē(ρ))C = −(E(Eξ), E(Ev))C + (Ē(ψ), Ē(ρ))C
6 (E(Eξ), E(Eξ))1/2C (E(Ev), E(Ev))1/2C + κ

2I : CI‖ψ‖L2‖ρ‖L2(Ω)

6 C2
K‖∇
Eξ‖L2(Ω)‖∇

Eξ‖L2(Ω) + κ
2I : CIC2

P ‖∇ψ‖L2‖∇ρ‖L2(Ω)

6 (C2
Kκ

2C2
C,K + κ

2I : CIC2
P )‖∇ψ‖L2‖∇ρ‖L2(Ω),

which implies the asserted estimate. 2
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5.2 Numerical scheme and residual estimates

We define SRM := Sd ∩ H 1
RM(Ω) and propose the following decoupled semi-implicit numerical

method to approximate (CL):

(CLh)



Given the approximations ρ(j−1)
h at time tj−1, first compute Eu(j)h ∈ S

(j)
RM

such that for all Eξh ∈ S(j)RM,

0 = (E(Eξh), E(Eu(j)h )− Ē(I(j)ρ(j−1)
h ))C;

then compute (ρ(j)h , w
(j)
h ) ∈ S(j) × S(j) such that for all ϕh, ψh ∈ S(j),

(ϕh, ρ
(j)
h )+ τj (∇ϕh,∇w

(j)
h ) = (ϕh, I(j)ρ(j−1)

h ),

(ψh, w
(j)
h )− γ (∇ψh,∇ρ

(j)
h )− γ−1(ψh, f

′(I(j)ρ(j−1)
h )ρ

(j)
h )

= γ−1(ψh, f (I(j)ρ(j−1)
h )− f ′(I(j)ρ(j−1)

h )ρ
(j−1)
h )

+ γ−1(ψh,W(I(j)ρ(j−1)
h , E(Eu(j)h ))).

Each time step is decoupled into an elasticity part and a Cahn–Hilliard part. Existence of a unique
solution can be shown by standard methods. Because the elasticity tensor is positive definite, the
elasticity problem is elliptic and a unique solution is guaranteed. Owing to the validity of an inf-sup
condition, unique solvability of the discrete system is guaranteed if τ 6 Cγ 2/‖f ′(I(j)ρ(j−1)

h )‖2L∞ ,
which is the same condition as for a fully implicit scheme considered in [24]. The scheme (CLh)
is equivalent to performing one Newton iteration step within each time step of an implicit Euler
discretization. From (CLh) we extract the approximated linear operator Ah as

AhI(j)ρ(j−1)
h = W(I(j)ρ(j−1)

h , E(Eu(j)h )).

With this choice of Ah the discrete eigenvalue problem (19) is well defined, and in the lemma below
we show that Ah satisfies the assumptions of Lemma 4.3 and Theorem 4.5.

DEFINITION 5.2 For ρh ∈ L2(Ω) given, denote by Euh the finite element solution of 0 =
(E(Eξh), E(Euh)− Ē(ρh))C for all Eξh ∈ SRM. The residual R3 is defined as

〈Eξ, R3〉 := (E(Eξ), E(Euh)− Ē(ρh))C for all Eξ ∈ H 1
RM(Ω). (35)

LEMMA 5.3 Suppose C is homogeneous and let W(ρ, E(Eu)) be given by (32). Let A : ρ 7→
W(ρ, E(Eu)) with Eu defined by the first identity in (CL). Similarly, let Ah : ρh 7→ W(ρh, E(Euh))
with Euh as in Definition 5.2. Set

η̃A := ‖hT (divT (C[E(Euh)− Ē(ρh)]))‖L2(Ω) + ‖h
1/2
E [[En · (CE(Euh)− Ē(ρh))]]‖L2(∪E).

Then, with ηA := κCPCC,KCClη̃A, we have

〈Eξ, R3〉 6 η̃ACCl‖∇Eξ‖L2(Ω) for all Eξ ∈ H 1
RM(Ω),

(ϕ, (Ah − A)ρh) 6 ηA‖∇ϕ‖L2(Ω) for all ϕ ∈ H̊ 1(Ω). (36)
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Under the assumption of H 2 regularity of the elasticity equations in the sense that ‖Eu‖H 2(Ω) 6
C‖∇ρh‖L2(Ω), there is a constant CAh > 0 such that we have the a priori estimate

|(ρh, (Ah − A)ρh)| 6 CAhh‖∇ρh‖
2
L2(Ω)

.

Proof. Let Eξ ∈ H 1
RM(Ω). By Galerkin orthogonality we can insert the Clément interpolant of Eξ

in (35). Using elementwise integration by parts and applying standard estimates we get

〈Eξ, R3〉 6 η̃ACCl‖∇Eξ‖L2(Ω).

Define Ev := D−1ρh. Then Aρh = −κI : C(E(Ev) − Ē(ρh)) and for ϕ ∈ H̊ 1(Ω) set Eξ := D−1ϕ.
Since Euh − Ev ∈ H 1

RM(Ω) is an admissible test function, we have

(ϕ, (Ah − A)ρh) = (Ē(ϕ), E(Euh)− E(Ev))C
= (E(Eξ), E(Euh)− E(Ev))C = (E(Eξ), E(Euh)− Ē(ρh))C = 〈Eξ, R3〉.

With Lemma 5.1 and Poincaré’s inequality we infer (36). For the a priori estimate, we choose
ϕ = ρh and apply Hölder’s inequality to deduce

|(ρh, (Ah − A)ρh)| = |(E(Ev), E(Euh)− E(Ev))C | 6 (E(Ev), E(Ev))1/2C (E(Euh − Ev), E(Euh − Ev))1/2C
6 c∗CK‖∇Ev‖Ch‖D

2
Ev‖L2(Ω),

due to (34) and standard a priori estimates for linear elasticity with a constant C > 0. We finish the
proof by using (33) and the H 2 regularity of Ev. 2

LEMMA 5.4 Let (ρ(j)h , w
(j)
h , u

(j)
h )j=0,...N be the solution of (CLh) and let (ρh, wh, uh) denote the

piecewise affine in time interpolation. Set r(j) := max(‖ρ(j−1)
h ‖L∞(Ω), ‖ρ

(j)
h ‖L

∞(Ω)) and I (j) :=
[−r(j), r(j)]. Let η(j)A be as in Lemma 5.3. Define the residual estimators η(j)1 := CClη

(j)

1h + η
(j)

1t

+ η
(j)

1c , where

η
(j)

1h := ‖hT (j)(τ
−1
j (ρ

(j)
h − I

(j)ρ
(j−1)
h )−∆w

(j)
h )‖L2(Ω) + ‖h

1/2
E (j) [[∂Enw

(j)
h ]]‖L2(

⋃
E (j)),

η
(j)

1t := CP ‖∇w
(j)
h −∇w

(j−1)
h ‖L2(Ω),

η
(j)

1c := τ−1
j CP ‖I(j)ρ(j−1)

h − ρ
(j−1)
h ‖L2(Ω),

η
(j)

21 := CClη
(j)

21h + η
(j)

21t + γ
−1(η

(j−1)
A + η

(j)
A ), where

η
(j)

21h := ‖hT (j)(w
(j)
h + γ∆T (j)ρ

(j)
h − γ

−1[f (I(j)ρ(j−1)
h )+W(I(j)ρ(j−1)

h , E(Eu(j)h ))

+ f ′(I(j)ρ(j−1)
h )(ρ

(j)
h − I

(j)ρ
(j−1)
h )])‖L2(Ω) + γ ‖h

1/2
E (j) [[∂Enρ

(j)
h ]]‖L2(

⋃
E (j)),

η
(j)

21t := γ ‖∇(ρ(j)h − ρ
(j−1)
h )‖L2(Ω),

η
(j)

22 := η(j)2t + η
(j)

2c + η
(j)

2` ,

η
(j)

22t := ‖w(j)h − w
(j−1)
h ‖L2(Ω) + γ

−1
‖f ′‖L∞(I (j))‖ρ

(j)
h − ρ

(j−1)
h ‖L2(Ω)

+ γ−1
‖W(ρ

(j)
h , E(Eu(j)h ))−W(ρ

(j−1)
h , E(Eu(j)h ))‖L2(Ω),

η
(j)

22c := γ−1
‖W(ρ

(j−1)
h , E(Eu(j)h ))−W(I(j)ρ(j−1)

h , E(Eu(j)h ))‖L2(Ω)

η
(j)

22` := γ−1
‖f (ρ

(j)
h )− f (I(j)ρ(j−1)

h )− f ′(I(j)ρ(j−1)
h )[ρ(j)h − ρ

(j−1)
h ]‖L2(Ω).
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Then, for almost all s ∈ (tj−1, tj ), j = 1, . . . , N , we have

〈ϕ,R1(s)〉 6 η
(j)

1 ‖∇ϕ‖L2(Ω) for all ϕ ∈ H̊ 1(Ω), (37a)

〈ψ,R2(s)〉 6 η
(j)

21 ‖∇ψ‖L2(Ω) + η
(j)

22 ‖ψ‖L2(Ω) for all ψ ∈ H̊ 1(Ω). (37b)

Proof. We add and subtract terms to the residuals defined in Definition 2.2, so that we split the
residuals into R1(s) = R

(j)

1h +R1t (s)+R
(j)

1c and R2(s) = R
(j)

2h +R2t (s)+R
(j)

2c +R
(j)

2` + γ
−1(A−

Ah)ρh, where the subscripts c, `, h and t refer to coarsening, linearization, space discretization,
and time discretization residuals, respectively. The space discretization residuals are given by the
discrete operator applied to test functions in the whole space H̊ 1(Ω),

〈ϕ,R
(j)

1h 〉 := τ−1
j (ϕ, ρ

(j)
h − I

(j)ρ
(j−1)
h )+ (∇ϕ,∇w

(j)
h ), (38a)

〈ψ,R
(j)

2h 〉 := γ (∇ψ,∇ρ(j)h )+ γ−1(ψ, f ′(I(j)ρ(j−1)
h )(ρ

(j)
h − I

(j)ρ
(j−1)
h ))− (ψ,w

(j)
h )

+ γ−1(ψ, f (I(j)ρ(j−1)
h )+W(I(j)ρ(j−1)

h , E(Eu(j)h ))). (38b)

The linearization residual is

〈ψ,R
(j)

2` 〉 := γ−1(ψh, f (ρ
(j)
h )− f (I(j)ρ(j−1)

h )− f ′(I(j)ρ(j−1)
h )[ρ(j)h − I

(j)ρ
(j−1)
h ]) (39)

and the coarsening residuals contain the remaining explicit terms in the scheme, i.e.

〈ϕ,R
(j)

1c 〉 := τ−1
j (ϕ, I(j)ρ(j−1)

h − ρ
(j−1)
h ), (40a)

〈ϕ,R
(j)

2c 〉 := γ−1(ϕ,W(ρ
(j−1)
h , E(Eu(j)h ))−W(I(j)ρ(j−1)

h , E(Eu(j)h ))). (40b)

Finally, the time discretization residuals are given by

〈ϕ,R1t (s)〉 := (∇ϕ,∇wh(s)−∇w
(j)
h ), (41a)

〈ψ,R2t (s)〉 := γ (∇ψ,∇ρh(s)−∇ρ
(j)
h )− (ψ,wh(s)− w

(j)
h )

+ γ−1(ψ, f (ρh(s))− f (ρ
(j)
h )+W(ρh(s), E(Euh(s)))−W(ρ(j−1)

h , E(Eu(j)h ))).

(41b)

With Lemma 5.3 we can directly estimate (ψ, (A−Ah)ρh(s)) 6 (η
(j)
A +η

(j−1)
A )‖∇ψ‖L2(Ω) because

ρh is affine in (tj−1, tj ). By Galerkin orthogonality we can insert the Clément interpolant Πhϕ
into the space discretization residual R(j)1h . Then, by elementwise integration by parts and standard
estimates, we conclude

〈ϕ,R
(j)

1h 〉 =
∑

K∈T (j)
(ϕ −Πhϕ, τ

−1
j (ρ

(j)
h − I

(j)ρ
(j−1)
h )−∆T (j)wh)+

∑
E∈E (j)

(ϕ −Πhϕ, [[∂Enwh]])

6 CClη1h‖∇ϕ‖L2(Ω).

Analogously, we infer 〈ψ,R(j)2h 〉 6 CClη21h‖ψ‖L2(Ω). Since ρh and wh are affine in (tj−1, tj ), by
Hölder’s and Poincaré’s inequality we conclude

〈ϕ,R1c〉 6 τ−1
j ‖I

(j)ρ
(j−1)
h − ρ

(j−1)
h ‖L2(Ω)‖ϕ‖L2(Ω) 6 η1c‖∇ϕ‖L2(Ω)
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and in analogous way 〈ϕ,R(j)1t 〉 6 η
(j)

1t ‖∇ϕ‖L2(Ω). Further application of Hölder’s inequality proves

〈ψ,R
(j)

2` 〉 6 η
(j)

22`‖ψ‖L2(Ω) and 〈ψ,R(j)2c 〉 6 η
(j)

22c‖ψ‖L2(Ω). The first term of the time discretization
residual R2t (s) is estimated with η21t . Moreover, W is linear with respect to E(Eu) and for each
x ∈ Ω there is some rx between ρh(s, x) and ρ(j)h (x) such that

f (ρh(s, x))− f (ρ
(j)
h (x)) = f ′(rx)(ρh(s, x)− ρ

(j)
h (x)) 6 ‖f ′‖L∞(I (j))|ρ

(j)
h (x)− ρ

(j−1)
h (x)|.

Then, by Hölder’s inequality, we deduce 〈ψ,R(j)2t 〉 6 η
(j)

21t‖∇ψ‖L2(Ω) + η
(j)

22t‖ψ‖L2(Ω). 2

6. Numerical experiments

In this section we illustrate the theoretical results of the previous sections and analyze the asymptotic
behavior of the estimators as well as the range of applicability of the a posteriori error estimate. In
particular, we are interested in the endpoints of the time interval in which a uniform bound for
the principal eigenvalue holds. We analyze two prototypical examples of topological changes. The
relevant quantities are the approximate eigenvalue −Λ(t) as well as the Ginzburg–Landau energy
E(t) and the error estimators.

We used the numerical method (CLh) to approximate the nonlinear evolution. A rearrangement
of the estimators in Lemma 5.4 leads in a natural way to local indicators for grid refinement and
coarsening,

η2
h :=

1
4
η2

1h +
2
γ 4

(
η21h +

1
γ
ηA

)2

, η2
c :=

1
4
η2

1c +
4
γ 2 η

2
22c.

The discrete eigenvalue problem in the j th time step reads as follows:

(EVh)



Given ρ(j)h , find (qh, zh, Evh,Λ) ∈ S(j) × S(j) × S(j)RM × R such that

for all Eξh ∈ S(j)RM and for all ϕh, ψh ∈ S̊(j),

(E(Eξh), E(Evh)− Ē(qh))C = 0,
γ (ϕh, qh)− γ (∇ϕh,∇zh) = 0,

γ (∇ψh,∇qh)+ γ
−1(ψh, f

′(ρ
(j)
h )qh +W(qh, E(Evh))) = −Λ(ψh, zh).

We solve this problem by a shifted inverse vector iteration. Therefore, we introduce a term
ε0(ψh, zh) to each side of the last equation of (EVh). We note that the eigenvalue problem cannot be
decoupled into an elasticity part and a Cahn–Hilliard part, so the size of the linear system to solve
is twice as large compared to each subproblem in (CLh). Due to the constraints related to the spaces
S̊(j) and S(j)RM this matrix has a large bandwidth, thus it is not well suited for direct solvers.

6.1 Sharp interface limit and detection of topological changes

To check the accuracy of the numerical method we compare the numerical solution to a reference
solution. We therefore neglect elastic effects and consider the pure Cahn–Hilliard problem, i.e.
A = 0. In the sharp interface limit γ → 0, the Ginzburg–Landau energy E from (1) converges to
the interface length in the corresponding Mullins–Sekerka problem.



GENERALIZED CAHN–HILLIARD EQUATIONS 67

EXPERIMENT 1 Let r1 = 0.55 and r2 = 0.2 and choose

ρ0(x) = min
(
− tanh

(
|x| − r1

γ
√

2

)
, tanh

(
|x| − r2

γ
√

2

))
.

Initially the interface consists of two concentric circles. Then the smaller circle shrinks until it
vanishes completely and the solution reaches a stable state with only one circular interface (see
Figure 2). Given this initial data the Mullins–Sekerka problem can be reduced to a system of
ordinary differential equations for the radii r1 and r2 (cf. [4, 24]). For γ → 0 the Ginzburg–
Landau energy E converges to the interface length 2π |r1(t)+ r2(t)| (see Figure 3). In the numerical
computations we chose a uniform time step size of τ = γ 2/10. We adaptively refined elements
K ∈ T (j) which the estimator ηh(K) > 1

2 maxK ′∈T ηh(K ′), but limited the mesh size to h 6 γ /16.
Further reduction of step sizes did not lead to a significant change in E(t) or Λ(t).

When the inner interface vanishes, the system undergoes a topological change and the
numerically computed principal eigenvalue shows the expected peak inΛ that grows proportionally

FIG. 2. Experiment 1. Left: initial values; right: final state.
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FIG. 3. Left: Ginzburg–Landau energy E(t)/(2π) and interface length in the Mullins–Sekerka problem (thin solid line);
right: numerically computed negative principal eigenvalue Λ(t).
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FIG. 4. Experiment 1. Left: curvature of the inner interface in relation to the principal eigenvalue; right: the energy E(t)
indicates a rapid decay of perturbations in the initial values.

to γ−1 (see Figure 3). The relation of the principal eigenvalue to the maximal interface curvature
in the solution is illustrated in Figure 4. With decreasing parameter size γ , the interface thickness
reduces and larger curvatures can be resolved.

In the given experiment, the moving fronts of the solution show a stable profile across the
interface. The chosen initial data ρ0 does not perfectly match such a profile. Thus, the Ginzburg–
Landau energy E is initially larger than the corresponding energy in the Mullins–Sekerka problem,
but shows a fast relaxation during a time proportional to γ (see Figure 4).

6.2 Smooth transition layers after T ∼ γ

In [22] it is stated that perturbations of a smooth transition layer between the bulk phases vanish
within a short time frame. The maximal interface curvature can also be expected to be uniformly
bounded after short times, as long as there are no topological changes. The numerical experiments
below confirm a uniform lower bound for the principal eigenvalue −Λ after a time period of order
O(γ ). This is sufficient for robust error control on the whole time interval [0, T ] (cf. Remark 3.5).
In the following experiments we used τ = γ 2/400 and h 6 γ /16.

EXPERIMENT 2 The initial configuration is given by a single circular interface

ρ0(x) = − tanh
(
|x| − r1

2γ
√

2

)
,

where the profile is flat compared to the final state in Experiment 1. During the time evolution, there
are no other changes in the solution than a steepening of the interface profile to − tanh

(
|x|−r1
γ
√

2

)
.

From Figure 5 we see that within a time proportional to γ the initially large Ginzburg–Landau
energyE reaches a lower level related to the final interface profile. As required by the error estimate,
the negative principal eigenvalue Λ reduces to order O(1) during a period t ∼ γ .

When we prescribe initial values ρ0 with a steep profile close to a jump, the principal eigenvalue
initially takes large negative values of Λ, which are uncritical with respect to the error estimate.
Again, Λ relaxes to order O(1) within a time frame proportional to γ .
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FIG. 5. Experiment 2. Left: reduction of the Ginzburg–Landau energy E(t); right: negative principal eigenvalue Λ(t).

EXPERIMENT 3 The initial values take the form

ρ0(x) = − tanh
(
|x| − r1

γ
√

2

)
+ noise.

Here, the circular interface is perturbed by noise on a length scale between the mesh width h and the
interface thickness γ (see Figure 6). As in Experiment 2, the numerical results confirm that the nega-
tive principal eigenvalue drops below an upper bound of orderO(1)within a time proportional to γ .
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FIG. 6. Experiment 3. Left: initial values; right: principal eigenvalue −Λ(t).

6.3 Application to Cahn–Larché equations

We set κ = 0.1 and choose the elasticity tensor to be of cubic symmetry by setting C1111 = C2222
= 2, C1122 = 1 and C1212 = 20.

EXPERIMENT 4 We set γ = 1/64 and on Ω = (−2, 2)2 we prescribe pseudo-random data
representing a mixture with a mass fraction of 48% for one of the phases. Until t ≈ 0.0002, spinodal
decomposition takes place. Then regions of pure phases have developed but large parts of the domain
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FIG. 7. Experiment 4. Coarsening after spinodal decomposition: snapshots of the solution ρh at t = 0.0002, t = 0.0024
and t = 0.006. Top row: Cahn–Hilliard evolution; bottom row: Cahn–Larché evolution with the same initial data and cubic
symmetry of the elasticity tensor.

are occupied by interfaces. The subsequent coarsening of the microstructure is known as Oswald
ripening. It allows adaptive coarsening of the mesh while still tracking the moving interfaces with
locally refined elements. In the numerical calculations we set τ = γ 2/64 and limited the mesh width
to h 6 γ /2. While we used a uniform grid with h = γ /2 until t = 0.001, we afterwards adaptively
refined and coarsened the mesh so that ηh 6 γ /(2τ) and ηc 6 γ /(256τ), resulting in a significant
reduction in the degrees of freedom (see Figure 8). The anisotropy in the elasticity tensor leads to a
preferred orientation of the phase boundaries in the directions of the coordinate axes (see Figure 7).

EXPERIMENT 5 We choose the same initial data as in Experiment 1, but now we are considering
Cahn–Larché equations with material parameters as in Experiment 4. First, we set γ = 1/32. On a
uniform grid with h = 1/256 and using τ = γ 2/32, the indicator ηh(t) is bounded by θ := γ /(4τ).
Figure 9 shows that the required amount of degrees of freedom to guarantee ηh(t) 6 θ = γ /(4τ)
and even ηh(t) 6 θ/2 is far less on nonuniform grids that were adapted according to the indicator ηh.
Next, we simulated the same problem on several uniform grids, where we varied h between 1/128
and 1/512 and set τ = 16γ 2h. For each simulation, we computed the quantity ‖η‖L2([0,T ]) that
enters Theorem 3.4. The numerical results in Figure 9 show ‖η‖L2([0,0.012]) ∼ h, which is known to
be the optimal scaling when approximating a linear parabolic problem with P1 finite elements and an
implicit Euler time discretization with τ ∼ h. We also analyzed the dependence of ‖η‖L2([0,T ]) on γ .
On a uniform mesh with h = 1/256 and τ = h/128 we performed several simulations where γ was
varied between 1/16 and 1/64. From the results in Figure 9 we conclude ‖η‖L2([0,0.012]) ∼ γ

−7/2.
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uniform and on adaptively refined meshes.
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6.4 Merging of particles

EXPERIMENT 6 We choose initial values ρ0 that describe two circular particles, where one is
slightly larger than the other. The radius of the larger particle is 1/6 whereas the radius of the other
one is about 5.5% smaller. During the time evolution, the larger particle grows whereas the smaller
one shrinks and is finally absorbed by the larger one by diffusion (see Figure 10).

The numerical experiment underlines the importance of tracking the approximated principal
eigenvalue. As required for the error control, Λ(t) stays uniformly bounded with respect to γ−1 as
long as there is no topological change in the solution. The critical point in time, when the smaller
particle vanishes, is a priori unknown but can be detected by a peak in Λ(t) that is proportional
to γ−1. To illustrate the influence of the elasticity we compared the numerical solution with the
results of a simulation where elasticity was neglected but all other parameters have been kept fixed
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FIG. 10. Experiment 6. Merging of two particles; snapshots of the solution ρ of the Cahn–Larché equation with
homogeneous elasticity and γ = 1/32 are shown for t = 0, t = 0.282 and t = 0.3.
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FIG. 11. Experiment 6. Left: Numerically computed eigenvalues. The singularity reflects the topological change when the
smaller particle vanishes; right: comparison of the interface shape when elastic effects are neglected (dashed lines). Isolines
ρ(j)(x) = 0 are shown at times short before and after the vanishing of the smaller particle.

and the same initial data was used. Due to the anisotropy of the elasticity tensor the interface shows
a more square like shape, compared to the pure Cahn–Hilliard case, where particles always develop
a spherical shape. Moreover with elasticity included, the particles stay at a larger distance from each
other (see Figure 11).
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