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Stable constant-mean-curvature hypersurfaces are area minimizing in
small L1 neighborhoods
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We prove that a strictly stable oriented constant-mean-curvature hypersurface in a smooth closed
manifold of dimension less than or equal to 7 is uniquely homologically area minimizing for fixed
volume in a small L1 neighborhood, proving a conjecture of Choksi and Sternberg.
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1. Introduction

By work of White [W] and Grosse-Brauckman [Gr], a strictly stable oriented constant-mean-
curvature hypersurface S0 in a smooth ambient Riemannian manifold M is minimizing in a small
Riemannian distance neighborhood U of S0 among competitor hypersurfaces S ⊂ U enclosing the
same volume. AssumingM compact, we extend their results to a small L1 neighborhood of S0, i.e.,
to hypersurfaces S such that S − S0 bounds a region with net volume 0 and small total volume.

Stable constant-mean-curvature hypersurfaces in M appear in particular as solutions of the
isoperimetric problem; see for instance [R1, R2].

If the ambient space is a flat 3-torus T 3 there is a connection between the isoperimetric problem
and the study of mesoscale phase separation phenomena. For example, in diblock copolymers,
different pieces of large molecules repel each other and, in an attempt to minimize the interfaces
between such pieces, create a periodic structure. See Choksi and Sternberg [CS]. One simple model
postulates periodic surfaces separating regions of fixed volume fraction and minimizing interface
energy or area. A more sophisticated model with diffuse interfaces replaces a function which is 1
on one region and −1 on the other with a general L1 function u with fixed integral and minimizes
the Cahn–Hilliard functional

Eε(u) =

∫
T 3

(
ε2

2
|∇u|2 +W(u)

)
dx,

where W is nonnegative with W(±1) = 0. The W term encourages u to focus on the values ±1,
while the ∇u term would minimize the transitions. So-called Γ -convergence theory shows that as
ε → 0, some subsequence of global minimizers of the Cahn–Hilliard energy converges to a sharp
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interface limit with u = ±1 of solutions to the isoperimetric problem (see [B, Example 0.1 and
Comments p. 112], [CS, Prop. 3.1]). Conversely, Kohn and Sternberg [KS, Prop. 2.1 and §3.3] and
Choksi and Sternberg [CS, Prop. 3.2] show by compactness that if a hypersurface S0 minimizes
area uniquely (up to translations) for given volume in an L1-neighborhood, then there are nearby
L1-local minimizers of the Cahn–Hilliard energy Eε for small ε. Choksi and Sternberg [CS, p. 382
and Remark 7(ii)] conjecture that it suffices to assume S0 has positive second variation. Our results
prove this conjecture, providing local Cahn–Hilliard minimizers (Corollary 5). Pacard and Ritoré
[PR, Thm. 4.2] use perturbation theory for PDEs to prove a similar result for nondegenerate critical
points rather than local minima.

In flat 3-tori there are some beautiful minimal surfaces, the Schwarz P and D surfaces and
the Gyroid G of A. Schoen, which are closely related to complex phases appearing in periodic
phase separation. Ross [Ro] has proved that these surfaces are stable for fixed volume and there is
a particular interest in providing a mathematical treatment of these complex phases by minimizing
locally the Cahn–Hilliard energy or other more sophisticated models. Corollary 5 proves nearby
Cahn–Hilliard diffuse-interface versions of these surfaces.

For background in geometric measure theory see Giusti [G] and Morgan [M1].

2. The proof

Two homologous oriented hypersurfaces S and S′ in Mn bound a region. Technically, this region
is an n-dimensional integral current which is unique (up to multiples of M in the case that M is
orientable). We define the L1-distance ‖S − S′‖L1 between them as the minimum of the masses of
the regions they bound. For example in Rn if S and S′ bound regions (of multiplicity +1) Ω and
Ω ′, respectively, then ‖S − S′‖1L is just the volume of the symmetric difference between Ω and Ω ′.

FIG. 1. Proof of the area growth estimate: S at the left. At the right we have a competitor hypersurface which differs from S

inside a ball of radius r and encloses the same volume as S in this ball.

We will need the following isoperimetric version of the classical result after Fleming [F, Sect. 5]
that for n 6 7, area-minimizing hypersurfaces in the Rn are hyperplanes. For n = 3 da Silveira
([dS], see also [LR]) proved the result under the weaker hypothesis that S be stable for fixed volume,
i.e., in competition with surfaces which together with S bound net oriented volume 0.

PROPOSITION 1 Let S be an oriented hypersurface (multiplicity one) without boundary in Rn,
n 6 7, area-minimizing for fixed volume under changes of compact support. Then S is either a
hypersphere or a hyperplane.

Proof. If S is compact, S is a hypersphere by the standard isoperimetric inequality. Assuming S is
not compact, the hypothesis of the proposition implies that S has constant mean curvature and is
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stable for fixed volume. Given r > 0, inside the ball B(r) around a fixed point of S, replace the
region bounded by S by a ball B(ρ), 0 6 ρ 6 r , of the same volume as in Figure 1. The resulting
area inside B(r) is at most twice the area of the hypersphere ∂B(r). Hence the original area inside
the ball of the minimizer S is at most Crn−1, for some C. Since this holds for all r > 0, by Cheung
[C] the hypersurface S has mean curvature 0. By monotonicity of the mass ratio [A, Cor. 5.1(3) p.
446], the area divided by αnrn−1, where αn is the volume of the unit ball in Rn−1, is nondecreasing
in r , varying from 1 as r approaches 0 to a limit C0 as r approaches infinity. Therefore homothetic
contractions, restricted to balls about the origin, have area bounded below and above, so that by
compactness [M1, 5.5 and remark p. 88], a subsequence converges to a nonzero limit, which has
constant area ratio C0 and is therefore a cone [A, Cor. 5.1(2)]. Since the cone minimizes area for
given volume and n 6 7, by regularity [M2] the cone must be a hyperplane (with multiplicity 1
because it is the boundary of a region) and C0 = 1. Hence likewise S has constant mass ratio 1 and
must be a hyperplane. 2

Now we prove our main result.

THEOREM 2 In a smooth closed Riemannian manifold of dimension n 6 7, let S0 be a smooth
oriented constant-mean-curvature hypersurface, possibly with boundary, with positive second
variation for fixed volume and boundary. Then S0 is uniquely homologically area minimizing for
fixed volume among oriented hypersurfaces in a small L1 neighborhood.

In particular, if S0 bounds a region, then it minimizes area among hypersurfaces S enclosing the
same volume with ‖S − S0‖L1 small. It is not necessary to assume that S0 is a boundary. Our proof
gives that S0 minimizes among competitors S such that ∂S = ∂S0 and S − S0 bounds net oriented
volume 0.

Proof. Denote area, volume, and mean curvature by A, V , and H . The subscript 0 refers to S0.
Our hypersurface S0 has positive second variation under smooth variations which fix volume (or
equivalently under smooth variations which fix volume to first order). By Grosse-Brauckmann [Gr,
Lemma 5], for some C > 0, S0 has positive smooth second variation for the energy

F = A+H0V + (C/2)(V − V0)
2

under general smooth variations. As Grosse-Brauckman [Gr, last paragraph] points out, [W, Thm. 3]
applies to show that S0 uniquely minimizes F in a neighborhood. To see this, let ω be a smooth
differential form which over homologous surfaces gives the volume enclosed by S0, such that Cω
is small in a neighborhood of S0 [W, end of Intro.]. To apply [W, Thm. 3], take F to be the area
integrand, F1 = F + Cω, F2 = F , and φ(x, y) = (x − y)2/2C. By [W, Thm. 3], S0 uniquely
minimizes F in a small neighborhood U of its support. In particular, for fixed volume, S0 uniquely
minimizes A in U .

To obtain a contradiction, suppose that there is a sequence of surfaces Si of no more area than S0
converging in L1 to S0 and enclosing net signed volume 0 with S0. Because the ambient manifold
is compact, we may assume that Si minimizes area for fixed ‖Si − S0‖L1 = εi → 0. On the
complement of S0, Si has two parts: where the regionΩi bounded by S0−Si has positive or negative
orientation. (If Si and hence Ωi has multiplicity, both decompose into pieces of multiplicity 1 [M1,
Fig. 10.1.1].) Each part minimizes area for fixed volume; therefore Si is a smooth constant-mean-
curvature surface [M2, Cor. 3.7] (although the constants on the two parts need not be equal; we
assert no regularity at points of S0). By the first paragraph of this proof, each Si strays outside U .



154 F. MORGAN AND A. ROS

By replacing Si by a subsequence, we may assume that each Si strays outside of U always with the
same part or always with both parts. Hence by monotonicity, for a relevant part of Si , the curvature
of the sequence Si is not bounded in M − U . Indeed, if the mean curvature were bounded, then
by monotonicity of the mass ratio [A, Cor. 5.1(3) p. 446 and Remark 4.4], the area of Si outside a
smaller neighborhood U ′ would be bounded below by some positive constant δ, and then

A(S0) 6 lim infA(Si)− δ 6 A(S0)− δ,

the desired contradiction.
Choose a point outside of U on a relevant part of Si of maximum |II |2 (the sum of the squares

of the principal curvatures) and scale the picture to make |II |2 = 1. A limit is minimizing for fixed
volume in Rn and hence must be a round sphere by Proposition 1. Hence for some large i, Si includes
a small, nearly round sphere partly outside U . We may assume that there are no other points of that
part of Si outside U , since otherwise we could repeat the argument on Si minus the first sphere and
obtain a second such sphere, while replacing them with one sphere would do better. Hence in each
part of Si , there is at most one such sphere partly outside U . For a constant cn depending only on
the dimension n, the total area and volume of such spheres satisfy a > cnv

(n−1)/n.
Let Ti be Si minus such spheres, so that Ti lies in the neighborhood U of S0. Now

F(Ti) < A(Si)− cnv
(n−1)/n

+ |H0|v + (C/2)v2 < A(Si)

for small v and hence for large i. Then

F(Ti) < A(Si) < A(S0) = F(S0),

a contradiction of the fact that S0 minimizes F in U . 2

REMARK 3 For minimal surfaces, the result also holds without volume constraints. The same proof
holds, with simplifications.

REMARK 4 When the ambient manifold M has nontrivial isometries, it suffices to assume that S0
has positive second variation orthogonal to the isometries, for fixed volume. Our same proof applies
because [W, Thm. 3] immediately generalizes. White observes that a sequence of other minimizers
in shrinking physical neighborhoods of S are almost minimizing and hence Hölder differentiable
manifolds that converge Hölder differentiably to S, contradicting the positive second variation of S.
In the presence of isometries, one may translate the nearby minimizers to be graphs of functions
orthogonal to the isometries to obtain the same contradiction.

As a direct consequence of [CS, Prop. 3.2], Theorem 2, and Remark 4, we have the following:

COROLLARY 5 In a flat torus T n of dimension n 6 7, let S0 be a smooth oriented constant-mean-
curvature hypersurface, possibly with boundary, with positive second variation orthogonal to any
isometries of M for fixed volume and boundary. Then for some ε0 > 0, for 0 < ε < ε0, there is a
family uε of L1-local minimizers of the Cahn–Hilliard energy Eε converging in L1 to S0.

In particular, as Ross [Ro] proved that the P , D, and G minimal surfaces in T 3 have positive
second variation orthogonal to the isometries of T 3, it follows that there are L1-nearby diffuse-
interface local minimizers of the Cahn–Hilliard energy.
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