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Ice melts at 0°C under a pressure of 1 atm, and increasing the pressure decreases the melting
temperature. In the present paper, a new problem is posed that describes the process of phase
transition in an incompressible viscous fluid, taking into account the above-described pressure effect.
This problem is described as a free boundary problem in terms of the Navier—Stokes equations
coupled with the heat equation, where the equilibrium temperature is assumed to be related to the
pressure by the Clapeyron—Clausius equation. We prove the existence of a global-in-time solution.

1. Introduction

Let £2; be a time-dependent bounded domain in R>. Let the boundary of £2, consist of two
pieces, namely, a time-dependent piece I; and a rigid piece X. Let £2; represent a liquid region,
and I} represent an interface with another phase. In £2;, the velocity v, the pressure p, and the
temperature 7 are assumed to satisfy

0 1
V.v=0, 8—1:+(U-V)’U+—Vp—vAv=O,
0
T 0T - a7 = 22 D) : D(w) v
- v - —_ = — V) v),
at pCp c,
where v, p, Cp, and « are the kinematic viscosity, the density, the specific heat at constant pressure,
and the heat conductivity, which are assumed to be positive constants, and D(v) is the velocity

deformation tensor with elements (D(v));; = %(g—)‘: + 2—2) (i, j = 1,2, 3). Equation (1) includes
the Navier—Stokes equations and the heat equation with transport and viscous dissipation terms.
On I3, we assume the following conditions, which are derived by applying the laws of conservation
of mass, conservation of momentum, and conservation of energy across the interface (see, e.g.,

(7], [14]):
v-n= <1 _ &>V, T(w, p)n = [v(v — V) In — pym,
0 ()
lp,V=—«VT-n, T=T,,

where p, and [ are the density of the solid and the latent heat, which are assumed to be positive
constants, 7, is the equilibrium temperature, n and V are the unit normal to I pointing into the
liquid region and the normal velocity of the interface, respectively, and T (v, p) = —pl + 2vpD(v)
is the stress tensor. The notation a’ is used for the transposed vector of a. In addition, we assume
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that the equilibrium pressure p,, at the interface is given by
ppel
P — Pe
where T is a constant, and, for convenience, instead of T, T},,, we take T — T,, T,, — T, as unknowns
and denote them by T, T;,,. To complete the problem, we give the boundary condition on X,

vy =0, T|yx=H, 4)

Pm = — (nT, —InT.), 3

and the initial condition _ )
(v, T)|;=0 = (vo, Tp) on 2 = 2. )

When two phases are in equilibrium, a variation in pressure induces a corresponding change in
temperature. This is an important consideration in technological applications. For example, the use
of pressure as a factor in controlling crystal growth has been reported [8]], [L1], [19]. In order to take
into account this pressure effect, we adopt the condition as a thermodynamic condition at the
interface. This is achieved by integrating the equation

dpn _ ool 1
dT, p—pe Tm’
known as the Clapeyron—Clausius equation.

The Stefan problem is a mathematical model describing the process of liquid/solid phase
transition. If the liquid region is assumed to be stagnant, this problem is formulated as a free
boundary problem for the heat equation, in which the unknowns are the interface separating the
liquid region and the solid region and the temperature distributions in both regions (see, e.g., [13],
[LL5]], [25]). Since the 1980’s, more generalized Stefan problems, which describe the phase transition
in flowing media, have been investigated in mathematics (see, e.g., [LL], [2l], [4], [S], [9]). However, in
many cases, in the formulation of models, the melting point is given independently of the pressure,
which means that the pressure effect mentioned above is neglected. The primary difference between
the problem examined in the present paper and the models considered in earlier studies is that such
a pressure effect is taken into account. This is a new problem, and as far as the authors know, there
is no mathematically exact result.

In the present paper, we prove the unique (global-in-time) solvability of problem (I)-(3). The
basic concept of the proof is based on a study by Shibata and Shimizu [18]], who proved the existence
of a global-in-time solution of the free boundary problem for the Navier—Stokes equations by
iteration based on a maximal regularity result for the linearized problem on the time interval (0, 00).

The remainder of the present paper is organized as follows. In Section 2, we rewrite the problem
as an initial boundary value problem defined in the initial domain and state the main result. Sections
3 and 4 are devoted to the investigation of the linear problem, which is arranged to define an
iteration scheme to obtain the global solution to the nonlinear problem. In Section 3, we consider the
resolvent problem, and, in Section 4, we prove the maximal regularity result. Finally in Section 5,
we solve the nonlinear problem by successive approximation.

(6)

2. Reduction of the problem and the main result

The first step of the proof is to rewrite problems () through () as an initial-boundary value
problem defined in a domain with a fixed boundary. The transformation from Eulerian coordinates
to Lagrangian coordinates was first introduced in order to solve the free boundary problems of the
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Navier—Stokes equations [23]]. This method has an advantage in that no geometric restrictions on the
interface are required, although the following kinematic condition is required. The interface consists
of the same particles as those located on the interface at the initial time. Such a condition cannot be
assumed in the phase transition problem, because mass transfer occurs at the interface. However, in
the model considered herein, the following consideration enables the use of the transformation into
the Lagrangian coordinates.

Let us define v’ = (1 — pe/p)_lv. Then we have

/ v’ Pe / ’ / -1

Vv =0, ¥+ l—— )@ -V)v —vAv 4+ (p—p.)” Vp =0,
0

oT
1=V T - Eoar
Jat P pCp

2v e\

= —(1 - —) D) :D®) in$2; x {t}, t > 0,

c, Jo

v -n=YV,

2vD@)n— (p — p.) "' pn

t
- l[«/((l - &>v’ - Vn) }n—i— le(ln(T +T,)—InT.)n,
P 1Y (0 — Pe)

lpeV=—«VT - -n onl; x{t}, t >0,
vV=0, T=H onX x{t},t>0,

-1
v'|i=0 = (1 - &) vo, Tl=o=Typ onf.
0

Note that, in the above problem, the kinematic condition, V = v’ - n, is satisfied. Hence, by the
transformation from the Eulerian coordinates (x, t) to the Lagrangian coordinates (&, ) defined by

t
Y= XuE 0 =&+ / e, 1) dr, ™
0

where u(&, t) is the velocity at time ¢ of the particle located at £ at + = 0, we can rewrite this
problem in the given cylindrical domain £2; = £2 x (0, 7) as follows:

ou

Vaou=0. - %(u Va)u = vV2u A+ (p— p)” Vg =0,
ou p K o 2v P 2 .
e Fe(u VU — Equ = C—p<1 - f Dy (w) : Dy(u) in £27,
20Dy (u)ny — (p — pe)” ' qny

1 ! l

= —|:u<<1 — &>u — Vnu) i|nu + %(ln(U + T.) — InT)ny,, ®)

p p (P — pe)
1oV = —kVU -my onT;=1T x(0,7),
u=0, U=H onX;j=2Xx(0,1),

pe) -

ul;=0 = ug (= (1 - ;‘) vo), Ulz=o=To on £2,
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where g = poXu, U=ToXy,Vy= (J_l)’V = J*V, ny = no Xy, and D, (u) is the tensor

with elements 1 3 Zk (@’ Jk 3;}1 + atk Bu’) (l ] = 1,2, 3). Here, we denote the Jacobian matrix of

Xq by J and the (i, j)-element of J* by a'’l.

Now, let us introduce the function spaces. Let m > 0, and let 1 < p < oo. In addition, let
2 C R". Here, W[’,”(.Q) denotes the space of functions defined on the domain £2 with the finite
norm defined as follows:

If m is an integer, then

LIS = Y 1D fllp.e.

|e|=m

where

1/p
1 fllpe= (/Q If(x)l”dx) I<p<), |flowe= esss[lzlplf(x)l.

If m is not an integer,
A1 = A1 + A1,

o |D® f (x) — DY £ (y)|? p
o= Z </9 o |x — y|rpln—lmD dx dy) :

la|=[m]

where

Next, let 27 = 2 x (0, T). Then W;,"’I(SZT) denotes the space
Ly (0, T; W' (2)) N W0, T; Ly(£2))

with the norm

N ,0 0,!
LIS, = A1+ 11 e,

where

/p 1/p
||f||2’f’.éz°32(f (e r>||(’”)>1’dt> , ||f||§037_</ ULF G N g7 dx) .

For the same space defined on a cylinder 2o, = §2 x (0, c0), we use the same notation as above,
except that oo is used instead of T.
Finally, W 1(.Q) = 0 r p,(.Q)* denotes the dual space of

¢lr =0}, Wherep = p/(p — 1), with the norm

Wor,y(2) ={¢ € W, (2) |

1r15e sup{‘fgf&dx‘ ‘ IVllyo=1¢c WO{F,,,,(Q)}.

The following is the main result of the present paper.

THEOREM 2.1 Let3 < g < o0o. Assume that

g€ Wy R), Toew, @), Hew, /'™ (x5 ) r=rec? xec?
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Then there exists a constant K such that if ||uo||;2;22/q) + ||To||;2_(_22/w + ||H||;2}¥q’1_1/2q) < K2,

then problem with £ = oo has a unique solution (u,q,U) € qu’l(.Qoo) X W,}’O(.Qoo) X
W' (200) satistying

2,1 1,0 2,1
le" ullg) + lle' gl + e Ul < K

for some positive constant .

3. Resolvent estimate
In this section, we consider the following problem:
ru—vAu+coVg=f, V.-u=g,
AU —xAU =h in £2,
2v[ID(u)yn =F (= (F1, F2)), 2vD(u)n-n—coqg —c1U = F3, )
VU -n+cu-n=G onl,
u=0, U=H onlX.

Here, I1 is a projection operator on I" defined by I7Tf =f — (f - n)n.
The goal here is to prove the following theorem.

THEOREM 3.1 Letl < g < ooand /3 < € < 7/2. Assume that

feLy2), geW(@NW ' (@), heLyR), F=(F.F) FeWw, D),
Gew, (), Hewl'(x), rec®: xect

Then, for every A € X U {0}, where ¥ = {A | A # 0, — + € < argA < 7 — €}, problem (9 has
a unique solution (u, g, U) € W (2) x W, (22) x W (£2) satisfying

2 1 2
[l + M lulg.e + g1y + [U1SG + 121U g0

< Clfllg.2 + 18100 + 1A Igls o + I1hllq.0
n [F]L(Il’;]/q) + |/\|1/2_1/24||F||q,1" + [F3]((]{;]/q) + I/\Il/z_l/qulﬁllq,r
+IGIL D + 22 Gl p + TS S 4 TV H Y s). (10)
where C = C(q, €, §2) is a positive constant.

REMARK The constants cg, c1, and ¢3 correspond to (p — )Y, ppel /(0 — pe)*T,), and lpe /K.
Note that in both cases p — p, > 0 and p — p, < 0, we can assume that cjcy is positive. This
assumption is essential for the argument in this section and the following section.

First, we prove the existence of the weak solution. By introducing the new unknown functions
u— V@ and U — U, where @, U are the solutions of the problems

AD =g in$2,
®=0 onl, V®-n=0 onlX,



162 Y. KUSAKA

AU — xAU =0 in £2,
VU -n=0 onl, U=H onZX,

we can reduce problem @I) to the problem with g = 0, H = 0. Hence, we assume g = H = 0 in
the following argument.
Through integration by parts, we have

k/ u~'vdx+2v/ D(u):D(v)dx—/clU'wndI":/ f-vdx+/(F,F3)~vd1" (11
2 2 r 2 r
and

)»/ Ude—i—X/ VU~Vde+/csz(u~n)dF=f thx—i—/xGTdF. (12)
2 2 r 2 r

Multiplying (I2) by ¢1/(c2x) and adding to (TT), we have

x/ (u.v+c—‘UT)dx+2u/ D(u):D('v)dx+c—1/ VU-Vde—CI/(Uv—Tu)-ndF
2 X 2

:/ foode 4+ thx+/(F F3)-vdl + < | erar. a3
2 X Cc2

The left-hand side of this equality defines a bilinear form B, [(u, U), (v, T)]. Then the following
condition is also satisfied:

|Bol(w, U), (u, D] = COluls ) + U5 5D (14)

for arbitrary (u, U) € WUI’Z(.Q) X W&ZJ(Q), where W;,z(g) and Wol,x,z(g) are the function
spaces defined as W;l(.Q) ={fe W,(2)| V-£=0,f-n|y =0} and WOI’E’Z(SZ) ={feWl ()]
f1x = 0}, respectively. Hence, the Lax—Milgram theorem implies the following theorem:
THEOREM 3.2 Let W, ,(£2)* and W{ 5 ,(£2)* be the dual spaces of W, ,(£2) and Wy 5 ,(£2),
respectively. Then, for arbitrary A € X, f € W1 ,(82)*, h e WO 5. (&), F, F3,G € Lo(I'), there
exists a unique (u, U) € wi 2([.2) X W0 5. 2([.2) satisfying the equality

Now, let us consider the case of A = 0. Setf =0, h =0, F =0, and F;3 = G = 0. Then, from

(T3) we have
[ulS'y, + [U15, < CBol(w, U), (u, U)]'? = 0.

In addition, using Korn’s inequality and Poincaré’s inequality, we have ||u|l2.o + [|U|l2.2 = 0, and
so it follows that w = 0 and U = 0. Thus, the conclusion of Theorem 3.2 holds for A = 0.

Now, we proceed to the estimation of the solution. Here, the proof is based on Schauder’s
method. The problem is reduced to the following whole space problem and half-space problems
using a partition of unity:

s5)

Au—vAu+cgVg =1, V-u=g,
AU — xAU =h inR,
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M —vAu+coVg=f, V.-u=g,
M — AU =h inR} ={(z1,22.23) € R” | z3 > 0}, (16)
Ulp—0 =1, Ulz—o=H on R2,

and

ru—vAu+coVg=f, V.u=g,

AU — xAU =h inR3,

ou; Ju
v<_/+_3> =F (j=12), (17)
073 0z; 23=0
0 oU
2v£—c0q—c1U =F, — +4ocus =G onR%
9z3 23=0 923 23=0

Before stating the results, let us introduce the following function spaces:

o Wq‘l(R3) = qu,(R3)*, where

Wy R ={f € W) 1, R) | Df € Ly (R}, ¢’ = qu
° Wq_ 1(R3_) = qu, (Ri)*, where

: q

Wy @) = {f € Wy oo ®D) | DF € Ly @D} ¢/ = ——7

o Wy, (RY) =W,  (R})*, where
Wo R = (f € Wy 1ooR) | Df € Ly (RY), fla=0 =0}, ¢’ = ——.
For problems (T3), (I6), and (I7), we have the following results.
THEOREM 3.3 Letl <g <ooand0 < € < w/2. Assume that
feL,RY), geW,RHNW 'R}, helL,®),

and that g has a compact support. Then, for every A € X, problem (I3) has a unique solution
(u, Vg, U) € W7 (R?) x Ly(R?) x W7(R?) satisfying

2 2
(] P + M Nl e + 19 22 + (U1 + AU o

M =D
< Ol re + L8], g3 + 12Nl g3 + 1AllgRs)s  (18)

where C = C(q, €) is a positive constant.

THEOREM 3.4 Letl <g <ooand0 < € < /2. Assume that

P 2—1 2—1
feL,R)), ge W ®RDNW IR, heL,®), Tew, "®»), Hew, 'R,
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and that g has a compact support Then, for every 1 € X, problem (I6) has a unique solution
(w,Vq,U) € WZ(R}) x Ly(R}) x W2(R?Y) satisfying
[l s + Al g + 19l g2 + U1 G + AU gy
R q.Ry q.Ry q.R
1 —1
< CAIfl, 3, + 181, o + 12 ||g||( o+l my

2—1 2—1 _
+ IR+ 1 ]/quIIIIquJr[H]( [0 T2 ). (19)

where C = C(q, €) is a positive constant.
THEOREM 3.5 Letl < g < ooand /3 < € < 7/2. Assume that

feL,R))., geW,®R] )nWO '®R3), heL,R),
Fi.Fy F;e W, R, Gew, "R,

and that g has a compact support Then, for every A € X, problem (I7) has a unique solution
(u,Vq,U) € WZ(JR ) x L (]R ) X WZ(R ) satisfying

(@)

2
()% + Ml g+ 1Vl g3+ VI g + AU g

1) (=D
C (I, 23 + L1 g + IS 53 + Il g5

3

1-1 1-1 _

+ ARG + 2T o) + 1G) 2+ 027Gl ge), (20)
i=1

where C = C(q, €) is a positive constant.

We next present the proof of Theorem 3.5. Theorems 3.3 and 3.4 can be proven in a similar, and
simpler, manner.

Proof. In the proof, we use C for various positive constants independent of 1. We seek the solution
of problem in the form

1
u=U+VV4+w, g=—A—-—vA)V+rn, U=1+6,
o

where U, V, 7 and (w, &, 0) are solutions of the following problems:

AW —vAU=f inR3,
21
Ul,,—0=0 onR?
AV=g—-V.-U=g inR3,
& & + (22)
Vis=0=0 onR?
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AT — XAT =h inRi,
0 Vv 23
2 =G—C2(—+U3) =G OHRZ, 23)
823 23:0 8Z3 13:()
Aw —vAw + Ve =0, V-w =0,
A0 — xA9 =0 inR3,
(8w,~ 3w3)
v [— R
9z3 09z /|0
0 oV 0 aV .
_Fl_v_ Ul+_ —V— U3+_ (l=172)7
0z3 0z2i / | 15=0 0z 023 /| ;5=0 (24)
8w3
v—— —comw — 10
3Z3 z3=0
0 A%
=F—-2v— U3z + — — AV —vAV)| ;=0 + c17T]z3=0,
023 9073 23=0
a9
cow;z + — =0 onR>.
8Z3 z3=0
For problems (21, (22), and (23)), we have the following estimates:
2)
211U, g+ (010 < CIEl, 55 25)
AV, g +VVIZ L < Cg1 s + al 1810 (26)
q.R3 q,]Ri q,Rz_ q,Ri ’
(2) 1q(1=1/q) 1/2=1/2q |~
ATl g + [0 < CAlRIL g3 + (G5 + 12 16l ) @)

Next, let us prove the solvability of problem (24). To simplify the notation, we denote the
members on the right-hand side again by Fj, F3, and F3. By applying the Fourier transformation

~ 1 . !
FUE ) = € =5 /R R )

to ([24)), we obtain the following system of ordinary differential equations:

712N d2ﬁ)1 e~
A+ v[E' w1 —v—75- + coiim =0,
dzz
2 d%i, e
A+ vI§[DW2 —v——7- Fcoib2m =0,
dz3
d? dm
O+ VI3 — v 4 o =0, (28)
dz3 dz3
L~ - dws
i&1wy +i&wy + — =0,
dZ3
- d%
A+ xIE'1H0 - x— =0,
dz3
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with boundary conditions

z3=0

lI),',ﬁ',é—)O (z3 — 00).

Solving the above equations, we obtain

6=
V(RQ + 2c1c2/8'|(r +15'1)

vQ iz vQ =
3 / / 3
By — iy 4SBT HIED |<r +1€') S Gje S - cilg'(r? Q+ &' S Greren .
j:l v J=
o5 GO EDC ) ié.e—lé/lzzﬁ,
COQ j=1 J J
Here,
W _Fi e §<(3r—|s DGELF +i&Fy) —r(r — |& |>F3) s
vr vrQ
2 (& Fy + ik Fy) — (% + €D F
+i§i( ri& Fi +i&F) — (2 + &) 3>€1(Z3),
vQ
e T EDGEF 4 i8R+ +IEDE .,
3= — e
vQ
21 |ri&1 Fi + i&Fy) — |80 + €' Fs
- e1(z3),
vQ
5 2 HEDrGE P +ig ) = ¢+ 1§D+ e,
coQ ’
where

- 5 e T3 _ g lElz
r=,/=+IER R= [+ ea@)=—1——,
v X r—|§']|

O, IE') =1 + |&1r? +3r &1 — 1&')°.

_caclg|r+ 1€ DFs + crea(r — &) (& Fy + i F) o R — ZG o Ro
]

- MZG T F, +MZ(;]€1(Z3)F,

(29)

(30)

3D
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For W; and P, the following estimate has been obtained in [[17]:
y 2 - a-1/q)
D WA T + IR IWilly g) + IV P, gy < C AR + M VIE  m). (2)
i=1 ’ j=1
Let us estimate the remaining terms. We first prove that
2 - (1-1/q)
wg@+mwwﬂﬁ<c§}mhwq+MW”W5MW» (33)
, =
The following lemmas are used to derive this estimate.

LEMMA 3.1 ([I7]) If JargA| < w — €, then

100 D] = Ce(r? + 181,
where C(€) is a positive constant.

For A satisfying |arg A| < 27 /3, we have |arg(R Q) — arg(|&'|(r + |€']))| < 7. This implies the
following lemma.

LEMMA 3.2 If JargA| < 27/3 — €, then

IRQ +2c1c2l€1(r + 1€'D] = C(O)URI Q] + 1&"1(Ir| + ")),

where C(¢€) is a positive constant.

We set
9 = — i & crea(r — |E')i&; R B e g -
’ /R2e V(RQ+201C2|§/|(r+|§/|))e j(€)dg (j )
o= [ e 12l + 18D W
} /RZe V(RQ + 2c100|&'|(r + |E1|))e 3(§7) d§

We estimate only 63, because 61 and 6, can be estimated in the same manner. Since

r2LJR? V(RQ + 2c102|8'|(r £ 1§'])) ’

we can write

%:_/</ewg creal€’|(r + 1)
R2 \JR2 V(RQ + 2cic2l8'[(r + 15'1))

f&mgy@@umd—&wnxﬁ

Set

2 l ’
] = Dk, icl & C]CZ'E |(r + |€ |) )DZ—]( —Rz3 d /'
Z/RZ ¢ <e V(RQ +2c1028'(r + €))7 ‘ :
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Let us choose a rotation of the coordinates such that R¢’ = (|¢’|, 0), and let us perform the change
of variables &' = |A|'/?Rn’ and ¢’ = |x|71/2Z’. Then, by shifting the path of integration for o to
the contour s + i8(|B| + |s]), s € R, § > 0, where («, B) = Ry, I is estimated as follows:

2 00 poo 2 nk+1 ’ 2—k 2
/ ASR R R
1] < sz / o~ 1Z/1(B+9) |2 [“IRn’| (r—|—|/ n'DIR| / €_RZ3|)\.|dﬁdS — Zlk~
o Jo [AFIRIQI + ARy [(r] + [Rn'DI =

In addition, let us introduce the new variable p = /82 + s2. Then we have
3 1+k 3—k
i< c [T e Bl SCE P et g
IA2(1+ p)* + Al + p)

* 7C|Z/|p |)»|3)01+k(1 + p)37k *C(1+p)‘)\|1/223
<C e e pdp
0 W2+ )20 2(1+ p)172

< C/OO —IZ I 2003 32 2 4 < € IA]3/2 34)
S S UTAZN+ M Pz3)3 T (R + 223
Using this estimate, we obtain
1
D265, </ ———— ;& =) = ()4 dl
z .9 R2 (|§/|2+Z%)3/2 Zq
B 1P = &) = F@)IE , \ V4 d¢’ V'
b fR (L' + 23)3/4+4/2 /R (I¢')2 + 21+ 4
1 IIFs(z’—g“/)—Fs(z’)IIZ/,q N\ Ve
= 1/2q /R2 (|§/|2+Z2)3/4+q/2 d{ '
23 3
Thus,
1/q
D20 < Fy@ —¢) = B@)IY , d dz3
I1Dz631l, g2 (/]RZ I1F3(z' = ¢') = F3(@)I7 , d¢’ o 2t 2y
< R3] ). (35)

q.R?
On the other hand, we have

/ o A2p%(1
e R | Modte)
o R 0 AP+ p)2pl2(1 + p)!/2

< CIAEA=VD | 1/24 =M 23

which i]nplies
| | ” 3||q,R2 X | | ” 3”(1,RZ' ( )

Thus, we have the estimate given in (33).
Next, we estimate the remaining terms in (30). We set

i _cibre—1ED & c1igj (> + §'17)
e e e B )
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! ! I (2 72
Ksx = fl(wgkem) Lyi= f1<_ cilg| + 187
vQ o)
’ 2 12
M =7—1(Cl(r+ u Dg T )er"f"“) G=12k=123),
o

where F~1( f) denotes the inverse Fourier transformation

1 ! /
f_l(f)(Z’,Z3)E—2 / e fE 23) dE
T JR2

We then set
3 3
Wi=> (Kij*Fj+Lij*F), P=Y Mx*Fj,
Jj=1 j=1

where f * g denotes the convolution fRz f@Z =1, z3)g(c))de.
Using the inequality |[RQ + 2cac3|€'|(r + |€'])]| = C|§’||r + |§’||, we have

C

AMIK; ;| + |D?K; i, |ID:M;| < ———————.
P 1K1+ 1DZKi 1 1DM | < s

On the other hand, using the inequalities

1 — e~ —1&"Dz3

r— 1€
IRQ +2c2¢3[&"|(r + E')] = CIRQ|V|E"|V2|r + 18]

le1(z3)] = 71 < ce s,

1/2

we have the following estimate:

o

AL D?L; ;| < —— 3
| || l,]|+| Z l,]|\ (|Z/|2+Z%)3/2

which is derived in the same manner as (34). These inequalities imply
3 o 3

Ew IWilly s, + Wil ) < C
i= Jj=

(a=1/q)
[F]]} g
1

and

3
1-1
IVPI, 5 < C Z;[F,J;R/‘”.
j:

Thus, we have completed the proof of Theorem 3.5.

’

Grei(z3)

)
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(37)

(38)

(39)

Next, we derive an a priori estimate of the solution of problem (9). Let x( be an arbitrary point
on I'. Let us denote the neighborhood {x | |x — x¢| < &} of xg by Bs(xg). Let ¢ € Cgo (R3) be such
thatp(x) =1 (x| < 1/2), ¢(x) = 0 (|x| > 1). With no loss of generality, we may assume that xg
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is the origin and that the x3 axis is directed along the normal to I" at xg. Let us introduce the new

coordinate z defined by

7=x', m=x3—-FX)

where F is a function defining the surface in the neighborhood of xg = O by x3 = F (x). In addition,
let us denote w(Uz), q(Uz), UUz) by u, g, U, Wh§re U represents tkle transformation from x
to z defined above, and let us denote u¢s(z), g¢s(z), Ugs(z) by u, g, U, where ¢s5(z) = ¢(z/6).
Then @, ¢, and U satisfy
A — VAL + VG = — v(VZ = VD& + ¢o(V — V)§
—v(Vid; - V)i — vaV2¢ps + cogVeps = F,

Vi=4+(NV-V)-a+u- Vos =g,
AU — xAU = h — x (V2= VAU — xVU - Vs — xUV3¢s = I, 0
2vIID(@)n = F + 20[TD(@)n — 2vITD(@)f + 2vIT((D]¢s)it; + (Dgps)ia; )i =F', “40)
2vD(@)n - n — co§ — U

= F3 +2vD(@)n - n — 2vD(@)h - i + 2v((D¢s)it; + (D)js)iii )i - b = FJ,
VU -n+ci-n=G6+ (VU -n—VU -h) + (Vs - U + 2@t - (n—n) = G/,

where

- F F

(=VyF, 1)

JIV2FI2+1

It =f— (- DA,

n=

~ 1
D(u) = E(Dl{uj + D}u,-)ij.
For the right-hand sides of {0}, we have the following estimate:

me) ’ r(1=1/q) 1 (I=1/9) md=1/q)
e e e | e | e (G

M (1-1/q) (1-1/q) (1-1/q)
< Clilfllg.s; + l1glly 5, + Inllg.zs + IFI 57+ WEsN 5 + G 5

2 2 1 — _
+ 8l + 1015, + 1915 + 872 (lullg.8, + 1Ullg.5,) + 8 qllq.5}.

where Bs = {z € R? | |z] < 8} and Bs = {z € R? | |z] < 8,z3 = 0}. From the expression
g — &=V R, where

0E(z — -
R=(R) = (81-3 > Fyi - | Ma@).m@)dy), EG) = -

j=1.2 R, 9z

4r|z|’
we have the following estimate:

-1 — —1 -1
18/l g3 < CO~Mully 5 + gl 5)-



A FREE BOUNDARY PROBLEM 171

Therefore, applying Theorem 3.5, we have

2 2
(8] + M 18l g2 + 1931 g2 + 101750 + AT g

1 1-1
C(Ifllg.5, + 181, + 1Al gl )+||h||q35+[F]‘ e 1

q,Bs q.Bs

1-1/9) 1/2—1/2q . (1-1/9) 1/2—1/2¢ B
+[F3]q,l§5 + [A] I F3l Jr[G]qJ,;5 + || 1G1l,, 5

q,Bs

1 —1 1
+ [l 4 Ml g + gl 8, + (U1, + (L4 AU g, 5,)-

Similar inequalities can be obtained in the same manner for the solution to the problem localized in
Bjs(x), where x is an arbitrary interior point of £2, which is more distant than § from the boundary,
or an arbi_trary point on X. Since £2 is bounded, we can choose a finite collection {Bg(xy)}r
covering £2. Summing all of the estimates over { Bs(xx)}r, we have
@ +a v U1, + AU
[ul, 9+| ||IUI|q:2+|| qllg.e + Ul o + A Ullg.
1 1-1
C(Iflg.2 + 121 + AL 18IS & " lllg. + DRI 29 4 3 /27124 Ky
1-1 1-1 21
+IR1 A 4 2R F g 1610 PR Gl TG
+ 1TV Hllg x4 Tulg o + 1l g+ lallg.e + UL G + A+ AUl ).

(1) (=D

+ Al +

Since the solution of problem @) is unique, we can eliminate the term [u]
ligllg. +[U]((1{)52 +(1+|rY%)||U|l4. & from the right-hand side. Thus, we have proven Theorem 3.1.

To end this section, we state a result concerning the following nonstationary problem:

u
— —VvAu+coVg=f, V-u=0,

ot

U

— — xAU =h in Q«,

5 X in 24

2v[ID(u)n =0, 2vD(uw)n-n—cyg —c U =0, 41

VU -n+cu-n=0 only,
u=0, U=0 onXy,
(uw, U)|t=0 = (ug, Ug) on $2.

Let us formulate the problem as an evolution equation. Let us introduce a decomposition L, (§2) =
Jy(82) @ G,4(£2), where J;(2) ={u € Ly(2) | V-u =0, u-n|y =0} and G,(£2) = {Vp |
p e qu (£2), plr = 0}, and let us introduce the projection operator P on J,(£2). Then, applying
P to problem (1), we have the evolution equation

(u,U); = A(u,U) + (£, h) int >0,

(u, U)li=0 = (uo, Vo),

where A(u, U) is the operator (—P (vAu) + Vg, x AU) defined on
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D(A) = {(u, U) € (Jy(£2) N W (£2)) x W (£2) | 2vD(u)n — cogn — ¢ Un|p = 0,
VU -n+cu-njr=0,u-nyxy=0 Ulg =0}
and ¢ is the solution of the problem
Ag=0 in 2,
cog =2vD(u)n-n—c U|r onT,
Vg-n=0 onX.
From Theorems 3.1 and 3.2, we can obtain the following theorem.

THEOREM 3.6 Let 1 < g < oo. Then A generates an analytic semigroup {e‘A’},>0 with the
property of exponential stability.

4. Linear problem

In this section, we consider the following nonstationary linear problem:

dv

E—vAv+c0Vp=f, V.v=g,

or AT =h in$2

— — = in ,

a1 X o0

2v[ID(v)n =F (= (F1, F2)), 2vD@)n-n—cop —c1T = F3, (42)

VT -n+cv-n=G only,
v=0, T=H onXy,

V|i=0 =vo, Tli=0=7Tp on§2.

The goal is to prove the following maximal regularity result.
THEOREM 4.1 Let1 < g < co. Assume that

feLly(@x), g€W'(2), hely@e). Hew, 01715y,

F=(F,F), Few, 02120y gew, Vo212,
vo e W, (Q), Toew, ),
andg =V -R, Re Wq] (0, 00; Ly (82)). Then problem has a unique solution
. p. T) € W' (£200) x W, (200) x W (200)

satisfying the estimate

@1 (1,0) 2,1

lolZa, + 1P e, + 17185

1,0 0,1 2-2 2-2
< Clflg 0 + 12150 + IRISE. + 1Al 2 + lvolly g + 1Tl 5

1-1/g,1/2—1/2 1-1/q,1/2—1/2 1-1/q,1/2—1/2
+ ”F”(([,]"oo/q / /2q) + ||F3||((1,Foo/q / /2q) + ”G”((J,Foo/q / /2q)

2—1/q,1-1/2
I H TR0, 43)

where C = C(q, £2) is a positive constant.
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We begin by investigating the following model problems:

ou
E—VAU—FCOVq:f, Vu:g’
oU
5 —XxAU=h in R}, = R> x (0, 00), (44)
u|t=0 = 0, T|t=0 =0 on R3,
ou
E—UA'UJ—FCOVq:f’ Vu:g,
oU .3 5
W—xAU:h mIDOOER+><(O,oo), (45)
Ulz—0 =1, Uly—0=H on Rgo,
uli—o=0, Uli—o=0 onR3,
and

ou

E—UAU—{-Cqu:f, Vu:g’

oU

— —xAU=h D>,

ot X >

ou; 9 0
v(ﬁ+£) —FG=12, 2 q—qu| =R (46
9z3 0z /5= 923 2320

oU

— + cu3 =G onRZ,

923 z23=0

ulicg =0, Ulizo=0 onR3.

For the above problems, we have the following theorems. Theorems 4.2 and 4.3 can be proven in
essentially the same manner as Theorem 4.4, and these proofs are simpler than the proof of Theorem
4.4. Therefore, we present only the proof of Theorem 4.4.

THEOREM 4.2 Let1 < g < oo. Suppose that
feLyRY), g€ Lg(0, 00 Wy(R?)NW, (0,00 Wy ' (R), heLy(R),

and that g has a compact support. In addition, assume that the solution (u, g, U) of problem
tends toward O as |z| — oo. Then problem has a unique solution satisfying the following

estimate:

2,1 2,1 0,—1 1,0
[l 23 + 1Vl my, + UL < Al gy + il s + L8102 + Ikl ps). (47)

where C = C(q) is a positive constant.
THEOREM 4.3 Let 1 < g < oo. Suppose that

feL,D)). g e Ly, 00 W (RN W, (0, 00; W, (R])),
heLyDy), Tew; "O"V®E), Hew VTR,
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and that g has a compact support. In addition, assume that the solution (u, ¢, U) of problem (@3]
tends toward 0 as z3 — oo. Then problem (@3) has a unique solution satisfying the following
estimate:

2,1 2,1) 0,—1 1,0
[l %53 +1Vqll,p3 + U1 < CAUflL, py, + Nl oy + L8100 + il o3,
2—1/q,1—-1/2. 2—1/q,1-1/2
+ WY » + [H];’R%o/q 120, (48)

where C = C(q) is a positive constant.

THEOREM 4.4 Let1 < g < oo. Suppose that

feL(DOO) geL(OooW(R ))ﬂW(OooW_l(]R ), heL(]D))
Fi. F>. F5 € qu 1/g.1/2— 1/2q(RC2>0)7 G e qu 1/g.1/2— 1/2q(ROO)’
and that g has a compact support. In addition, assume that the solution (u, g, U) of problem (46)

tends toward 0 as z3 — oo. Then problem (46) has a unique solution satisfying the following
estimate:

(1,0)

2,1
[ul %)) + 181+ Il s,

2,1 0,—
L+ IVl py +IUI% < C(||f||qD3 S ey

where C = C(q) is a positive constant.

Proof. In the proof, we denote various constants that are independent of ¢ by C. Let us seek the
solution in the form

1 /0@
(u,q,U) = (W—G—V(D + w, n——(g—vA<D>, U+6’),

where W, @, U/ and (w, 7, ) are solutions to the following problems:

W
o VAW =T in D3,
Wl;;—0=0 on Rgo, (50)

Wi—o=0 onR3,

AP =g—-V-W=g' inD,

®@|,—0=0 onRZ D
B
B—Zj —xAU=h inD3,
ou AP
— =G - C2<— + W3> =G onRZ, (52)
923 23=0 923 3=

Ui==0 onR3,
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ow

W—VAU)—FC()V]T:O, V.-w=0,
20

— —xA60=0 inD,

o~ M Poo

(8w,~ 8w3>
W—+ —
023 0z;

wl—0=0, Oli—o=0 onR3.
For W, @, U, the following estimates are easily obtained:
(e
W1 < Cllfl, 3 -
2,1) (1,0) 0,—-1)
Vo1 < g1 + gl .

2,1 1-1/q,1/2—1/2
W02 < Cllhl, g, +1G g, /"7,

z3=0
F, a(W+M)> 3<W +a¢> (i=12)
= ;— ) — 7 _— —V— - 1= ’ )
' azz\ ' 0z 2320 0z : 923 / | 13=0
Jws
v—— —com — 10
023 23=
F3 -2 0 (W 8cp> <8q) A@) + cid|
323 923 )| mo  \ 01 23=0 “
20
— tows =0 onRZ,
323 23=0

175

(53)

(54)
(55)
(56)

Let us next estimate the solution of problem (53). We denote the terms on the right-hand side

by F;,i = 1, 2, 3. The solution is given as follows:
wi = (FL) (W) + L7 OV,
q=FL)(P)+LT(P).

3
0 =D (Y G,
=

where W; and P are given in and W, and P are given in (37). In the above formula, £~! and
(FL)~! denote the inverse Laplace transformation and the inverse Fourier—Laplace transformation,

respectively, which are defined as follows:

a+ioo
clpen=o [ ere o,

1 o a-+ioo
FONNEn = G [ e [ mn

For (FL£)~'(W;) and (FL£)~'(P), the estimate
3

3
D LEFELT WIS +IVEFEL T (Pl py, < € Y (FI g/
i=1

i=1

has been reported in [22].

(57)
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Let us next estimate the remaining terms. We begin with the derivation of the following estimate
of the kernel G; (z, 1) = (FL)~'(G;), where G; is given in .

LEMMA 4.1 The following inequalities hold:
IDDYGi(z, )| < Ct= P MI2=3/2g=ckP/t ;= 1,2, 3), (58)
First, we prove the following lemma that is essential to obtaining estimate (58).
LEMMA 4.2 The roots A of RQ + 2cic2|&'|(r + |€']) satisfy the following condition:
Re i < —38|¢|? (59)

for a positive constant §.

Proof. Set Is = {A» | Rer = —68|&|?} for a positive constant §. On I5, r is written as
ro= \/(l —8/v)|€'|2 +iImA/v. Then, for arbitrary § < v, we have |argr| < m/4, and R has
the same property: for arbitrary § < x, we have |arg R| < /4 on [s. These properties imply
larg(RQ) — arg(2c1c2|€|(r + |&]))| < 7, and so

IRQ +2cic2l&"|(r + E'D] = C(IRQI + 18"1[r + 1€"1]) (60)

on [5 for some positive constant C. Since the roots of RQ and |&’|(r + |£’]) satisfy Re A < —8'|&'|?
for a positive constant &', the inequality shows that |[RQ + 2c1c2|€'|(r + |€’|)| has no roots on
[s for arbitrary § < min(v, x, &"). This implies that the lemma holds.

Now, let us proceed to the proof of Lemma 4.1. We shall give the proof only for G3. The estimates
for G; and G are derived in the same manner. First, we set

=2, EVt=v, =V, =i

Then we have
Gy = t_”_‘”‘/2_3/2Gu,u,

where

Guw = | e g [ () el |+ DR ey
" w VPR + 2eer Rl + D)

+ioco

Lemma 4.2 indicates that it is possible to replace the path of integration {A" | ReA’ = a} by
I(a) = {} | ReX = a—8|n'|* — e|Im 1|} for sufficiently small § and €. Therefore, we estimate the
following integral:

G / i g / i @n)Y crcaln'|(r + ' D(=R)™ R
vV — .
- @) R v(i~12RQ + 21t 210 |(r + I0'])

First, we prove that
Gl < eI, (61)

Here, we introduce the new variables o’ = #/|¢/|~! and p’ = A'|¢/|72 and shift the path of
integration from /(a/|¢’|?) to [(a). Then we have
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Guy

=f o Pt P dp// e SN G el 1 + @ DR gy
@ R v(~2IE | RQ + 2cicat 2| |(r + o))

We then shift the integration contour o’ to 8’ + iy’. By elementary calculations, it is easily verified

that if we choose ' = (y/, ;) satisfying |y’| < v/a/(v +§), then |argr| < 7 /4. Thus, from ,
if we take po/a/M ¢'/|¢'| as y', where M = max(v +8, x +38) and p is a sufficiently small positive

constant, then |[RQ + c1c2|€'|(r + |&'])| = CIRQ|Y?|E')1/2|r + |§’||1/2 on this integration contour.
Thus, using the inequalities

C(1+ B> + [Im p'|)3/2,
C(L+ B +Imp'Hh'/2,
LRI CA+ 1B + [Imp'/2,

0|
IR|
|+ lo'|

2
>

we have
/ 4 . / 1 .
/ ¢ e P e iy T I iy IR
. . 172
@ C'BIRQIV2IB + iy/|V2|r + 18 + iyl
< C|§/|2u+|u’\+U3+3e(a+3p2a/M—p4/a/M*)|§/|2
Iy2mA [ +1/2 2 /1y1/2+
/°° i ppre—rxtimp A IBDPT2A 4 B + I p/DI e
0 1+ |12 4 [Im p’|
< |é_/|2M+|v’\+U3+3e(a+5p2a/M—pW)|{/\2(] + |IB/|)2,u+|v'|+v3—1e—5|5'|2\5/|2.

X

I d|Im p’

As a consequence of this estimate, we have

/ 2 72 / 121+712
|Gu,v| < C|;/|2/L+|U \+U3+3e(a+3,o a/M—pa/M)|{'| ‘/]1;2(1 + |ﬁ/|)2/t+|v \+v371678|ﬁ [=1¢’] dﬂ/

< C|é_/|26(a+502a/M—,0\/a/M)|§/|2_

Since a + 8p%a/M — pJa/M < 0 for sufficiently small a, if we choose such an a, we have the
estimate given in (61).
Next, we prove that

1G] < Ce™ 5. (62)

For this purpose, we introduce the new variables ¢ = ¢5 2} and o = §3_1n’ . After changing the
variables and shifting the path of integration from /(a/ §32) to [(a), we have

W+vi+4 . ’ ’ v
i) cier |’ |(r + o' ) (—R)V3
Gy = §3zu+zqﬂe;3zq d 45 i (ia")" c1c2] 2I( lo’[)(—R) e (63)
i(a) R2 V(&5 V2RO + 2c1c08511 21| (r + |']))
Using the estimate |RQ + 2c1c2|&'|(r + |&)] = CIRQ|Y2E')V/2|r + |g/||”2 and the inequalities
|01 > C(a + |o/* + [Imgq|)*?,
IRl > C(a+ |o'|* + [Img])'/?,
[r+1e/l], IR < Ca + |&/|* + [Img])!/2,
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(63) is estimated as follows:
* 2u+2 I 2
Gl < [ Ugre ™0 dltmg)
0

[V |+v3-+4 v3+1

43
R? t}|a + le’|? + |Img]|
< CglelaVas,

|a/|\v/|+l|a + |a/|2 + |Imq||

=8lo'2¢2 (a—ca) i} g,/
3 e 3e 3 da

Thus, if we choose a sufficiently small, we obtain (62). Combining (61I) and (62), we have the
desired result. Thus, we have completed the proof of Lemma 4.1.

Now, we estimate the following kernels:
Kij(z,t) =LKz A),  Lijz)=LT"Lijzr), M) =L Mz L)

LEMMA 4.3 The following inequalities hold:

IDFDYK;i j(z, )] < Ctm#=IM/2=3/2=clelP/t (64)
IDI'DYL; j(z, 1)) < Ct7H(3 4+ 0)72(|z)2 + 1)~ 1VHD/2, (65)
IDEDYM;(z,0)] < Ct V2 (|22 + 1)~ MHD2 () =1,2,3). (66)

Proof. Estimate (64) can be obtained in the same manner as the proof of Lemma 4.1.
Let us proceed to the proof of (65). We estimate only L3 because the other kernels can be
estimated in the same manner. We can represent £1 3 in the form

3
Li3G ) = /0 dys fR LG~y 0DREM Y,
where
cli& (r* + &%) c1ol&'|(r + [E'])

L(z,t) = .7:[:1< erzg) and E(z) = —

0 V(RQ + 2cie2l'[(r + |E7]) drlz|
As in the proof of Lemma 4.1, we can obtain the estimate
IDYD}L| < CtM/2=3/2 el
Using it, we will obtain
|D!D} J(z, y3.1)| = ’D;D;‘ /RZL(Z —y,1)Dy, E(y)dy’
< CrV2r=vs2 (172 4 )= WD 2 p=e =321 (67)
by calculations similar to those used in the proof of Lemma 2.2 in [22].
First, we have
DIDI G0 < Crr MR [ R, )y
< Ct—H—1/2-3/2 j=c(Z3~Y3)* (68)

The last inequality is derived by substituting z//t = Z, y//t = Y.
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On the other hand, through integration by parts, we obtain

D!D}'J(z,y3.1) = / D:D{L(z -y, D} Dy, E(y) dy’
By i@

n / DYD'L(z — y, 1) Dy, E(y) dy’
NG

+ / DEDYDIL(z — y, t)Dy, Dy, E(y)dS
K11 =lv |17 9B ()
=hL+DhL+1,
where p = |z| and B, ;(2) = O eR | /@ - y)2+ Z% < o/2/E). Thea we have
3/2—pu—|vl/2 e=¢(Z3=12)?

Ly <cr3nel )

" (o//D)FHI )

L] < Cr32mrm 2l z =, (70)

1 2

" (p/N/1)2HIV an

Combining estimates (68) through (71), we have

IDYDI (2, y3, 0] < Cro¥2mnmM2 (1 4 g1y 72l meZaha?
< Cr V2 H=ws/2 (|72 4 )= 1= V112 ==yt

~

which is (67). Hence we can obtain (63)) as in the proof of Corollary 1 in [22].
Estimate (66)) is obtained in the same manner. Thus, we have proven Lemma 4.3.

Based on the pointwise estimates given in Lemmas 4.1 and 4.3, we can obtain the following
estimate:

W

D?

3
2,1 — 2,1 1-1/q,1/2—1/2
Z LTI +IVET Pl py, + 1017 < Y IRIN/ TR0 2
i=1

Combining the estimates given in (36), (33), (57), and (72), we obtain (#9). Thus, the proof of
Theorem 4.4 is complete.

Next, we prove Theorem 4.1. We shall find a solution in the form (v, p, T) = (w+u, 7+ P+q,
W + U), where (w, w), W, P, and (u, g, U) are solutions to the following problems:

Jw .
E—vAw—i—coVn:f, V-w=g in N,
2D =F, 2vD(w)n-n—com = F; on Iy, (73)
w=0 onXy, w|—=v9 onS§2,
ow .
? - XAW =h in Qoo,
(74)

VW -n=—cw-n+G only,
W=H onXy, W|=o=To onS2,
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AP =0 in 2,
coP = —c1W on Iy, (75)
VP -n=0 on Xy,

ou

o vAu + cgVg = —coVP, V-u =0,

oU .
— — xAU =0 in 2,

ot (76)
2v[ID(u)n =0, 2vD(u)n-n—cop —c1U =0,

VU n4+cu-n=0 only,
(u,U)=1(0,0) onXs, (u,U)l;=0=1(0,0) onS2.

In the manner described in [19], we can prove that problem has a unique solution (w, )
satisfying the following estimate:

2,1
4,20

(1,0

1,0 0,1
SO < Clliflg.an + g1 o) + IRICS)

4,20
1-1/q,1/q—1/2 1-1/¢,1/2—1/2 2-2
S L P ) Y e o K20 PR M €)

lw] + Il

Problems and have unique solutions W and P satisfying

2,1 1-1/q,1/2—1/2 1-1/q,1/2—1/2 2—1/q,1-1/2 2-2
IWIZ G < Cllwlly /2120 g P20 gy g 2T ITP0 7 25H7)
(78)

and

2,0 2—q/2,1-1/2
IPIGS. < w2 1=z, (79)

Finally, we consider problem (76). First, using the localization method with the local estimates
obtained in Theorems 4.2 through 4.4, we have

2,1 2,1
[wlg) + 1Vqllg. 2. + UL G, < CUVPlg0. + lullg.0. + 1Ullg.2.)-

Since the derivation is basically analogous to the argument presented in Section 3, we omit it.
The term |[ullg, 2. + U llg, 2+ is estimated as follows. From Theorem 3.6, we have

t
lu@®llg.e +1UM g2 < C/O e VCONIVP(T) g0 dr

for a positive constant y. From this estimate, by using Young’s inequality, we obtain
lullg 20 + 1Ullg, 20 < CIVPg2n-
Then we have

2,1 2,1
lul g, + 1Vqllg. 2. + 1SS, < CIVPlg.0n- (80)

Combining the estimates in through (80), we deduce {@3)). Thus, we have completed the proof.

In the following section, we prove the solvability of the nonlinear problem. For this purpose, it
is more convenient to restate the above result as the following theorem easily derived from Theorem
4.1 for a sufficiently small y.
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THEOREM 4.5 Let1 < g < o0o. Assume that
vo e W, (), Toew, R),

e Ly(R00). €8 e WD), eheLy(2x), 'Hew, TV (5,
eV'F qu—l/q,l/Z—l/Zq(FooL e F € qu—l/q,l/2—1/2q(1~oo)’ VG e qu—l/q»l/2—1/2q(lwoo)’
andg =V -R,e""R e qu (0, 00; Ly(82)). Then problem has a solution

. p. T) € W' (£200) x W, (200) x W' (200)
satisfying the estimate

t,, 121D t o (1,0) t (2,1
le" ol + lle” plIS S + e T,

1,0 0,1 2-2 2-2
< Clle" fllg e + e IS + e RIVE + e hllg 0 + 0l g™ + I1To) 577

1-1/q,1/q—1/2 1-1/¢q,1/2—1/2 1-1/q,1/2—1/2
+ ”eth”((I r /a:1/q—1/2q) + ”e)/tFS”;’FOO/q / /2q) + ”eth”((I,FOO/q / /29)

s 4 00

2—1/q,1—-1/2,
+lle? H | T, (81)

where C = C(q, §2) and y are positive constants.

5. Nonlinear problem

In this section, we prove Theorem 2.1. First, let us rewrite problem (8) in the following equivalent
form:

E;—? —vAu+ (p — ,oe)_IVq =Fi(u,q), V- -u=7F(u),

v _ K Au= Fi(u,U) in R,

ot pCp

20[ID(uw)n = Fi(u),

20D -n— (p— po)~'q — L‘JZU = Fs(u,q,U), (82)
(0 = pe)°Te

/
VU -n+ &u-n:}},(u, U) only,
K

u=0, U=H onXy,

uli=0 = up, Uli=0=Up on £2,

where
Fi(u, q) = v(VE = VU — (0 — po) ' (V. — V)q + pep ™ (- V)u,
Fo(u) = —(Voy — V) - u,

K 2v
Fyu, U) = ——(Va, = VU + pep™ " (w- VIU + =Dy (1) : Doy(w),
pCp Cy

Fa(u) = =201 (Dy(u)ny, — D(u)n)

o ((1-5) )]
+ Iy ul {1 —— Ju— (u-ny)ny | [Ny,
o p
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Fs(u, q,U) = —2v(Dy(u)ny - Ny, — D(u)n - n)

L(0-%) )]
+ —lu(|1—— Ju— (u-ny)ny | [Ny - Ny
P p

ppel ( U )
+ """ (nU+T)-—InT,— =),
(p— ,Oe)z ¢ ¢ T,

l
Fe(u,U) = — (Vo U -nyy — VU -n) + &u- (Ny — M).
K
For K,y > 0, we set
Xy k ={(,q,U) € W' (200) x W0 (200) x W' (200) | I, g, V)l < K},

2,1 1,0 2,1
where [|(u, g, U)l, = lle” ullg) + lle”'qlli o) + e Ul .

LEMMA 5.1 Let3 < g < oo. Then, for arbitrary (u, g, U) € X, g,

1,0 2 0,1
le”" Fi(w, @) lg. 20 + e P20+ lle”" Fa(w) S + le” Fa(w, U)llg.an

1-1/q,1/2—1/2 1-1/4,1/2—1/2 1-1/q,1/2—1/2
+le" Fally /2T PO e Fu, g, UG /2P0 e Fou, Uy 4 2T

< CK?,

where 5 (w) = (J~! = Du and C is a positive constant that is independent of u, ¢, U, y, and K.

Proof. Here, we derive the estimates only for F;, F,, and .7:'2, because the other terms can be
estimated in the same manner. In the proof, the notation || f|l4,, 2, denotes the norm defined

by ( fooo ( f o lfx, ) dx)"/4dr)!/", and C represents various constants that are independent of
u,q,U,y,and K.
We first estimate the nonlinear terms

(V2 =VHu, (Vu-V)g, (Vu—-V)-u, (J'=Du,

which are derived from the transformation of coordinates in (7).
For (Vi — Vz)u, we have

le”" (Vg — VHullg,2u

e’ (T* = DV - T*Vullg.0. + e’ (V- (T* = DV)ullg 0.
C1T* = o, 200 1 DT *llg.00, 200 l1e? Dtll s, 206

F1T* = o200 1T * oo, 200 lle? ' D*uullg. 2,

+ ID(T* = Dllg.00. 2. 16" Dllco.g.20 + 1T = Iloo.25 l€” D*ully ., )-

<
<

Using the estimate

t
‘/ Dudr
0

00 , 1/q' 2.0)
< C</ e VT dr) ||ey’u||q”_Qoo < CK,
00,200 0



A FREE BOUNDARY PROBLEM 183

we have [|T* = Ilco, 200> ID(T* — Dllg.00.200> DT *llg.00.200 < CK, and [|[T* 0,2, < C,
and consequently [le"' (V2 — VHul, o, < CK. In the same manner, [[¢”(Vy, — V)qll4. 200 »

le?! (Vo — Vyulll' ) < CK.
The nonlinear term (u - V)u can be estimated as follows:

2
(- Vullg, e, < Cllullo,o. e’ Dullg,e. < CK™.

From these estimates, we obtain the estimates for F; and J, as stated above.
Next, let us estimate F,. From the estimates ||%(j‘1 - Dlgo. < C||u||;1£)oo <

Clle’"ull's) < CK and | J~! = Illoo.2, < CK,we have

~ (0,1 — 0,1
1721105, < Clle” (T~ = Dull Sy
9 -1 yt -1 d vt 2
<C(|=@ =D N ulloo.an + 1T 7" = Tlioo,0 | = (€7 w0) < CKZ
ot 4,200 ot 4.2

Thus, we have proven the lemma.
In a similar manner, we obtain the following lemma.

LEMMA 5.2 Let3 < g < oo. Then, for arbitrary (u1, g1, U1), (u2, g2, U2) € X, k,

le”" (Fi(u. q1) — Fi (w2, q2))llg. 2 + e’ (Fa(ur) — Fr(u) 9.

+ e (Fau) — Fa(ua) IS + lle” (Fa(u, Ur) — Fa(uz, U2))llg.0.

1-1/q,1/2—1/2
+ e (Fatur) — Faun)lly, p/ 4127120
+ lle?! (Fsur, g1, Un) — Fs(ua, qa, Up) g /4127120

1-1/g.1/2—1/2
+ lle”" (Fe(ur, Uy) — Fo(ua, U2))||((1’1“00/q PR < CK(uy — w2, g1 — g2, Uy — U)lly,

where C is a positive constant that is independent of w1, u2, q1, g2, U1, Uz, y, and K.

Now, we define the mapping F that maps (u, g, U) € X, g to the solution (&, g, U) of the
problem L(u, g, U) = F(u, q,U), where L(u, g, U) and F(u, q, U) represent the left-hand side
and the right-hand side, respectively, of (82).

Lemmas 5.1 and 5.2 indicate that F' is a contraction on X, g for suitably chosen K.

From Theorem 4.1 and Lemma 5.1, we have

~ o~ 2-2 2-2 2—1/q,1-1/2
1@, G, D)y < Clluoll s + UGS + I HIS 547120 4 k).

Thus, if we choose K < 1/2C, then for arbitrary (wo, Uy, H) satisfying ||u0||((1%;22/q) +

||Uo||;%;22/q) + ||H||(§;1/q’17]/2q> < K2, we have the estimate

(@, g, ), < K. (83)

This implies that F' maps X, g to itself.
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Next, let us consider the equation

L(@) — 2, §1 — G2, Uy — Ua) = F(ur, q1, Ur) — F(uz, g2, U),

where (u1, g1, Ur) and (u2, g2, Us) are arbitrary elements of X,, k. By the same argument as above,
considering Lemma 5.2 and Theorem 4.5, we have the estimate

(@) — @2, G1 — G2, Uy — Ua)|ly, < CK|l(u1, q1, Ur) — (w2, g2, U2) |l (84)

Thus, if we choose K < 1/2C, then F is a contraction on X, k.

Therefore, from the contraction mapping principle, we can obtain the solution of problem (82).

Thus, we have completed the proof of Theorem 2.1.
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