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We present a variational formulation for the evolution of surface clusters in R3 by mean curvature
flow, surface diffusion and their anisotropic variants. We introduce the triple junction line conditions
that are induced by the considered gradient flows, and present weak formulations of these flows. In
addition, we consider the case where a subset of the boundaries of these clusters are constrained to lie
on an external boundary. These formulations lead to unconditionally stable, fully discrete, parametric
finite element approximations. The resulting schemes have very good properties with respect to
the distribution of mesh points and, if applicable, volume conservation. This is demonstrated by
several numerical experiments, including isotropic double, triple and quadruple bubbles, as well as
clusters evolving under anisotropic mean curvature flow and anisotropic surface diffusion, including
computations for regularized crystalline surface energy densities.
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1. Introduction

Equilibrium bubble clusters are stationary solutions of the variational problem in which one seeks
a least area way to enclose and separate a number of regions with prescribed volumes. The relevant
energy in this case is given as the sum of the total surface area. In this paper we study gradient
flows of this energy leading to mean curvature flow and surface diffusion depending on whether we
consider the gradient flow with respect to the L2- or the H−1-inner product. In the case of surface
diffusion the enclosed volumes are preserved, and hence stationary solutions are equilibrium bubble
clusters; whereas in the case of mean curvature flow the enclosed volumes are not preserved, and
bounded initial data will in general vanish in finite time. Hence steady state solutions for surface
diffusion are natural candidates for surface area minimizing bubble constellations for fixed given
volumes. In geometric measure theory such minimizers are frequently called soap bubble clusters.
Intriguingly, although the search for such area minimizing constellations historically has received
a lot of attention among mathematicians, only very few things are actually known. For instance,
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while it is conjectured that the so-called standard k-bubble is the unique global minimizer among all
bubbles enclosing and separating k different volumes for k 6 4, the proof for this is only known in
the cases k = 1 and k = 2; see [48] for the proof of the double bubble conjecture. Here we recall that
the standard 4-bubble in R3 is homeomorphic to the barycentric subdivision of a tetrahedron into
four smaller tetrahedra, and that the standard k−1-bubble is homeomorphic to the result of removing
an outer surface from the standard k-bubble, for k = 2→ 4; see e.g. [3]. Numerical approximations
of the standard k-bubble for k = 2→ 4 can be seen in Figures 5, 14 and 19, below. We remark that
all of these conjectured minimizers are spherical clusters, i.e. each surface making up the cluster is
either flat or part of a sphere. But in general, the surfaces need only have constant mean curvature,
and it was conjectured in [66] that for k = 6 a soap bubble cluster enclosing k volumes exists which
contains non-spherical surfaces, and in addition that k = 6 is the smallest such number. Here we
recall that it was proven by Taylor (see [68]) that in a soap bubble cluster each surface has constant
mean curvature, that only three surfaces can meet at so-called triple junction lines (at equal angles
of 120◦), and that only four triple junction lines can meet at so-called quadruple junction points (at
equal angles of arccos(−1/3) ≈ 109◦). Of course, these angles are also well-known in the theory
of minimal surfaces; see e.g. [46]. When the total surface area is replaced with a weighted sum of
surface areas, local minimizers are called immiscible fluid clusters. Here even less is known, and
there is often even a lack of conjectures. We refer to the recent review article [53] for more details
on historical developments and open questions in this area.

We now return to the discussion of the gradient flows considered in this paper, i.e. surface
diffusion and mean curvature flow. For these geometric flows we impose force balance conditions
at points where different surfaces meet, or where a surface meets a fixed external boundary; see [44,
72, 34, 15] and the references therein. For example, in the case of mean curvature flow with equal
constant surface energy densities this results in a 120◦ angle condition at triple junction lines, while
a 90◦ contact angle holds where a surface meets an external boundary. Mean curvature flow is a
parabolic equation of second order, whereas surface diffusion leads to a parabolic equation of fourth
order. As surface diffusion is of higher order, one would expect that additional boundary conditions
have to hold at triple junction and boundary contact lines. Physically motivated boundary conditions
have been derived in [36], via formal asymptotics, as a singular limit of a degenerate Cahn–Hilliard
system. There it turns out that, besides the angle condition, a flux condition and, in the case of triple
junction lines, a condition related to the continuity of the chemical potentials have to be prescribed.
Geometrically these triple junction line conditions imply that the derivatives of the mean curvature
in the direction of the conormal of the surfaces are equal and that a weighted sum of the mean
curvatures of the surfaces has to vanish, respectively, and in this paper we will enforce these triple
junction line conditions for the fourth order flow surface diffusion. The last condition is also related
to the well-known fact that for an equilibrium bubble cluster the mean curvature of the surface is
given as a pressure difference.

In the plane, existence of solutions for mean curvature flow and surface diffusion with triple
junction points has been shown in [20] and [36], respectively. For the higher dimensional case it is
known that very weak solutions exist for the mean curvature flow. In fact, the theory of Brakke, who
in his seminal paper [17] first proved an existence result for the mean curvature flow of so-called
varifolds of arbitrary dimension and codimension, also allows one to consider triple junctions. A
well-posedness result for classical solutions of the mean curvature flow of surface clusters in R3

has been shown recently in [25]. To the best of our knowledge, corresponding results for the surface
diffusion flow of surface clusters with triple junction lines remain open.
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Here we will also study situations in which the energy is proportional to surface area, but now
the constant of proportionality might be different on each of the surfaces making up the bubble.
This frequently appears in the case of clusters of immiscible fluids, where the energy depends upon
which fluids are separated by the surface. Another important situation in applications is the case
when the surface energy depends not only on its area but also on its tangent plane (which for
hypersurfaces is equivalent to a dependence on the normal). Such energies are called anisotropic,
and for highly anisotropic situations equilibrium shapes can be polytopes. In such a case one speaks
of crystalline energies. For a good introduction to variational problems involving clusters we refer
to the book [54], where also the most relevant references can be found. In addition, we refer to [2,
68, 29, 51, 52, 41, 1, 66, 69] for additional information on variational problems involving surface
energies for clusters. Curvature driven surface evolution with triple junction lines and/or boundary
contact plays a fundamental role in many applications. For example, grain boundaries are driven by
mean curvature flow and surface diffusion is an important transport mechanism in the context of
thermal grooving, sintering, epitaxial growth and electromigration; see e.g. [64, 44, 56, 67] and the
references therein.

In this paper we study the evolution of surface clusters by mean curvature flow or surface
diffusion, and their anisotropic variants, in R3. In particular, we are interested in the numerical
approximation of these geometric evolution laws for surface clusters. This paper generalizes the
parametric finite element approximation for the evolution of curve networks in the plane, that was
introduced and analysed by the present authors in [7, 6, 9], to the natural analogue in three space
dimensions. Of course, in this higher dimensional setting the topology is richer, and, in addition to
triple junction lines, quadruple junction points have to be considered. In particular, we will present
parametric finite element approximations for second and fourth order geometric evolution equations
that are unconditionally stable and that exhibit very good mesh properties due to an intrinsic discrete
tangential motion. The latter makes a heuristical remeshing during the evolution unnecessary.
A detailed description of this discrete tangential motion and the implied properties for the two-
dimensional meshes can be found in [10, §4]. Finally, we will also extend these approximations
from isotropic to anisotropic surface energy densities, by utilizing ideas that were introduced by the
present authors in [12].

Existing approaches for the numerical approximation of surface clusters include the well-known
Surface Evolver by Brakke, [18], where a direct parameterization and a gradient descent method
for a given energy are used in order to find certain surface area minimizers. We note that the
Surface Evolver has recently been used to numerically study large soap bubble clusters; see e.g.
[23] and [50]. A level set approach for the simulation of the evolution of soap bubbles has been
considered in [77]. An alternative numerical method for the mean curvature flow of surface clusters
has been employed in [62]. On the other hand, phase field methods provide a natural way to
approximate curvature flows with triple junction lines and we refer to e.g. [32, 33, 58]. Numerical
results for a finite element approximation of a phase field model for multi-component surface
diffusion, i.e. surface diffusion with triple junction lines, are given in [59]; while an alternative
finite element approximation of the same phase field model will be given in the forthcoming
article [14]. Note that most of the existing numerical results are for isotropic surface energies
only.

The main contribution of this paper is the inclusion of triple junction lines and boundary
lines in the geometric evolution equations considered. We recall that isotropic and anisotropic
evolution laws for closed surfaces without boundary have been approximated in previous work



190 J. W. BARRETT, H. GARCKE AND R. NÜRNBERG

by the authors; see [10, 11, 12]. Here we remark that the variational formulation employed there
had been previously introduced for curves in the plane by the authors in [7] (see also [6, 9]) in
order to derive numerical approximations for the evolution of closed curves and, crucially, curve
networks with triple junction points. Extending these formulations from curve networks in R2 to
surface clusters in R3 is the subject of this paper. A major characteristic of this variational approach
is that all the triple junction conditions are handled naturally in a weak formulation. In particular,
for second order flows only one condition and for fourth order flows only two conditions need
to be enforced strongly via the trial spaces, while the remaining conditions are enforced weakly
through the corresponding test spaces. Of course, conforming finite element approximations inherit
this property and setting up the necessary discrete trial and test spaces is straightforward for curves
and only slightly more involved for surfaces.

The remainder of the paper is organized as follows. In Section 2 we state the evolution equations
for a cluster of surfaces that are of interest in this paper, i.e. mean curvature flow and surface
diffusion, together with appropriate weak formulations. The variational structure of the stated
geometric evolution equations is discussed in Section 3, and in particular we demonstrate that
mean curvature flow and surface diffusion can be interpreted as L2- and H−1-gradient flows of
(weighted) surface area, respectively. Stable, fully discrete finite element approximations, which
are based on the weak formulations introduced in Section 2, are introduced in Section 4. Efficient
solution methods for the arising systems of algebraic equations are given in Section 5, and numerous
numerical simulations are presented in Section 6.

2. Geometric evolution equations for surface clusters

Let us now specify the geometric evolution equations for a cluster of surfaces in more detail. We
assume that the surface cluster is connected and consists of IS ∈ N, IS > 1, hypersurfaces with
boundaries in R3, and IT ∈ N, IT > 0, different triple junction lines. In order to parameterize
the surfaces we choose a collection of domains Ωi ⊂ R2, i = 1 → IS , with piecewise smooth
boundaries ∂Ωi . The surface cluster is then given with the help of parameterizations Exi : Ω i ×
[0, T ] → R3 with Exi(Ωi, t) = Γi(t), where the Γi , i = 1 → IS , are the surfaces constituting the
evolving cluster. Here and throughout we will often use the shorthand notation Ex(Ω, t) = Γ (t),
where Ω := (Ω1, . . . ,ΩIS ) and Γ (t) := (Γ1(t), . . . , ΓIS (t)). Note that for the standard double
bubble we have IS = 3 with IT = 1, and for the standard triple bubble we have IS = 6 and IT = 4;
see e.g. Figures 5 and 14. In the former case two volumes are enclosed by the surface cluster, in the
latter three. In these cases, one can choose, for example, all the domains Ωi , i = 1→ IS , either as
the unit disk in R2; Ωi = B2 := {Ez ∈ R2 : |Ez| < 1} with boundary ∂Ωi = S1 := ∂B2, i.e. the unit
circle in R2, or as the upper half of the unit disk; Ωi = {Ez ∈ B2 : z1 > 0} with piecewise smooth
boundary ∂Ωi .

Typically three surfaces meet at line junctions, and in this paper we will restrict ourselves to
this case; i.e. we will not allow for four surfaces meeting at a line. In the case that all surfaces
have the same isotropic energy such a case would be unstable. But we point out that quadruple
junction lines can also be stable, if the energies are not the same; see e.g. [22] and [35]. We note
that generalizing the presented formulations and numerical approximations to situations where more
than three surfaces meet at a junction line is straightforward.

Fundamental for the following considerations will be the identities

∆s Exi = E~i ≡ ~i Eνi, i = 1→ IS, (2.1)
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which for a single surface, with or without boundary, was first used in [26] to design a finite
element method for geometric partial differential equations and mean curvature flow; see also [27].
The identity (2.1) is well-known from surface geometry (see e.g. [24]), where ∇s is the surface
(tangential) gradient, ∆s ≡ ∇s .∇s is the surface Laplacian (Laplace–Beltrami operator), Exi is a
parameterization of Γi , E~i is the mean curvature vector, ~i is the sum of the principal curvatures
and Eνi is a unit normal to Γi . Here we use the sign convention that ~i is positive, if the surface Γi is
curved in the direction of the normal Eνi . In this paper, we will investigate the motion of the surface
cluster by mean curvature flow

V i = ~i, i = 1→ IS, (2.2)

where Vi := [Exi]t .Eνi is the normal velocity of the surface Γi ; and the motion by surface diffusion

Vi = −∆s~i, i = 1→ IS . (2.3)

In addition to the above differential equations, certain boundary conditions have to be prescribed at
the boundaries of the surfaces Γi , i = 1 → IS , and this will be outlined below. We remark that it
is also possible to consider a setup, where motion by mean curvature is only prescribed for a subset
of the surfaces making up the cluster, while the remaining surfaces move by motion by surface
diffusion. This is of relevance e.g. in thermal grooving ([57]), in interface motion in polycrystalline
two-phase materials ([21]), in sintering processes ([60]), and in the evolution of boundaries in the
electromigration of intergranular voids (see [8]). A parametric finite element approximation of such
flows for curve networks in the plane has been considered in [6], while its extension to surface
clusters is the subject of the forthcoming article [13]. However, in this paper we will only consider
the purely second and fourth order flows (2.2) and (2.3), respectively, as well as their anisotropic
counterparts.

In order to describe the necessary conditions that need to hold at triple junction lines, where three
surfaces meet, and at quadruple junction points, where four triple junction lines meet, we introduce
the following notation. Assume that ∂Ωi , the boundary of Ωi , is partitioned into connected pieces
∂jΩi , j = 1→ I iP , I iP > 1. Then the triple junction lines Tk , k = 1→ IT , are parameterized with
the help of the partitioned boundaries ∂jΩi , j = 1→ I iP , i = 1→ IS . We assume that for each Tk ,
there exist pairs (sk1 , p

k
1), (s

k
2 , p

k
2) and (sk3 , p

k
3) with sk1 < sk2 < sk3 such that

Tk(t) := Exsk1 (∂pk1Ωsk1 , t) = Exsk2 (∂pk2Ωsk2 , t) = Exsk3 (∂pk3Ωsk3 , t), k = 1→ IT . (2.4a)

Note that for a standard double bubble, as in e.g. Figure 5, we simply have IT = I iP = 1, i = 1→ 3,
and T1 is defined via ((s1

j , p
1
j ))

3
j=1 = ((1, 1), (2, 1), (3, 1)). For a standard triple bubble, as in e.g.

Figure 14, on the other hand, we have IT = 4 and I iP = 2, i = 1 → 6, meaning that there are
four triple junction lines and that the boundary of each surface Γi , i = 1 → 6, partitions into two
parts, each meeting a different triple junction line. As the flows (2.2) and (2.3) are of second and
fourth order, respectively, additional boundary conditions have to be prescribed on the triple junction
lines. Throughout this paper we will prescribe equilibrium or force balance conditions at triple
junction lines, that have previously been derived in the literature. Physically meaningful conditions
for mean curvature flow and surface diffusion of curve networks in the plane can be found in [20]
and [36], respectively. Extending these conditions to the present case of surface clusters in R3 is
straightforward, and we obtain the following conditions. In the case of mean curvature flow with
isotropic and equal surface energies we require, in addition to the attachment conditions (2.4a), that
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FIG. 1. Sketch of the local orientation of (Γ
sk1
, Γ
sk2
, Γ
sk3
) at the triple junction line Tk (blue in the pdf file). Depicted above

is a plane Tk that is perpendicular to Tk . In the example on the left, ok := (ok1, o
k
2, o

k
3) can be chosen as ok = (1, 1, 1).

However, in the example on the right we require ok = ±(1, 1,−1).

Young’s law
3∑

j=1

Eµskj = E0 on Tk, k = 1→ IT , (2.4b)

is fulfilled, where Eµi denotes the conormal, i.e. the intrinsic outer unit normal to ∂Γi , the boundary
of Γi , that lies within the tangent plane of Γi . The identities (2.4b) are force balance conditions on
the triple junction lines Tk ⊂ R3, k = 1→ IT . In the case of equal isotropic energies, as considered
here, the conditions (2.4b) lead to the well known 120◦ angle condition at triple junction lines. As
mentioned above, we need additional boundary conditions for surface diffusion. To formulate these
conditions we need to choose an appropriate orientation of the normals along the triple junction
lines. Let Eνi be a global normal field on Γi . Then we choose at a triple junction point on Tk , k =
1→ IT , an orientation ok := (ok1, ok2, ok3), where okj ∈ {−1, 1}, such that (okj Eνskj , Eµskj ), j = 1→ 3,
all have the same orientation in the plane orthogonal to Tk at that point; see Figure 1. Then the
additional boundary conditions are

ok1 Eµsk1 .∇s~sk1 = o
k
2 Eµsk2 .∇s~sk2 = o

k
3 Eµsk3 .∇s~sk3 on Tk, k = 1→ IT , (2.4c)

3∑
j=1

okj ~skj
= 0 on Tk, k = 1→ IT ; (2.4d)

here (2.4c) are flux balance conditions and (2.4d) are chemical potential continuity conditions that
need to hold on triple junction lines. The conditions (2.4c,d) are the natural three-dimensional
analogues of the junction conditions derived in [36].

We remark that at quadruple junction points no extra conditions need to be prescribed, since
the behaviour at quadruple junction points is completely determined by the triple junction line
conditions; see [68] or [19] for details. In particular, as a consequence of the 120◦ angle conditions
on the triple junction lines, at a quadruple junction the four triple junction curves meet at equal
arccos(−1/3) angles, where arccos(−1/3) ≈ 109◦.

In conclusion, motion by mean curvature is given by (2.2) together with (2.4a,b), and surface
diffusion is given by (2.3) with (2.4a–d). In Section 3 we show that both of these geometric evolution
equations decrease the total surface area

E(Γ ) = |Γ | :=
IS∑
i=1

∫
Γi

1 dH2, (2.5)
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where Hd is the d-dimensional Hausdorff measure in R3. In addition, the surface diffusion flow is
volume preserving, i.e. the volume of each enclosed bubble is preserved; see Remark 3.1 below.

We now introduce weak formulations of these evolution equations. These weak formulations
will form the basis of our finite element approximations, which we introduce in Section 4. Let
Ŵ (Γ ) := ×ISi=1H

1(Γi,R) = {(χ1, . . . , χIS ) : χi ∈ H 1(Γi,R), i = 1→ IS} and

V (Γ ) :=
{
( Eχ1, . . . , EχIS ) ∈

IS×
i=1

H 1(Γi,R3) : Eχsk1 = Eχsk2 = Eχsk3 on Tk, k = 1→ IT

}
, (2.6a)

W(Γ ) :=
{
(χ1, . . . , χIS ) ∈ Ŵ (Γ ) :

3∑
j=1

okj χskj
= 0 on Tk, k = 1→ IT

}
. (2.6b)

Here and throughout, Γ = (Γ1, . . . , ΓIS ) with Γi = Γi(t) = Exi(Ωi, t), i = 1 → IS ; moreover
Ex(·, t) ∈ V (Ω), where

V (Ω) :=
{
( Eχ1, . . . , EχIS ) ∈

IS×
i=1

H 1(Ωi,R3) : Eχsk1 (∂pk1Ωsk1 ) = Eχsk2 (∂pk2Ωsk2 ) = Eχsk3 (∂pk3Ωsk3 ),

k = 1→ IT

}
.

From now on, we will use the shorthand notation η ∈ W(Γ ) to mean η = (η1, . . . , ηIS ) ∈ W(Γ ),
and similarly for other functions and quantities defined on all surfaces Γi , i = 1→ IS . In addition,
for scalar, vector and tensor valued functions η, χ ∈ ×ISi=1 L

2(Γi, Y ), with Y = R, R3 or R3×3, we
define the L2 inner product 〈·, ·〉 over Γ as follows

〈η, χ〉 :=
IS∑
i=1

∫
Γi

ηi .χi dH2. (2.7)

Following [6, 10], we reformulate (2.2) and (2.3) as

[Exi]t . Eνi = ~i, ~i Eνi = ∆s Exi, i = 1→ IS, (2.8)
[Exi]t . Eνi = −∆s~i, ~i Eνi = ∆s Exi, i = 1→ IS, (2.9)

respectively. Then multiplying the first equation in (2.8) with a test function η ∈ Ŵ (Γ ) and the
second equation with a test function Eχ ∈ V (Γ ), integrating over Γ and using Green’s formula for
surfaces, we obtain the following weak formulation for mean curvature flow: Find Ex ∈ V (Ω) and
~ ∈ Ŵ (Γ ) such that

〈Ext , χ Eν〉 − 〈~, χ〉 = 0 ∀χ ∈ Ŵ (Γ ), (2.10a)
〈~Eν, Eη〉 + 〈∇s Ex,∇s Eη〉 = 0 ∀Eη ∈ V (Γ ). (2.10b)

Similarly, for the surface diffusion flow we obtain: Find Ex ∈ V (Ω) and ~ ∈ W(Γ ) such that

〈Ext , χ Eν〉 − 〈∇s~,∇sχ〉 = 0 ∀χ ∈ W(Γ ), (2.11a)
〈~Eν, Eη〉 + 〈∇s Ex,∇s Eη〉 = 0 ∀Eη ∈ V (Γ ). (2.11b)
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We observe that in the above the conditions (2.4b), and where applicable (2.4c), are formulated
weakly, while the remaining conditions are enforced strongly through the trial spaces; recall
(2.6a,b).

In the remainder of this section, we outline the generalizations of (2.10a,b) and (2.11a,b) to the
case of fully anisotropic surface energies. In this case the isotropic free energy (2.5) is replaced by
the anisotropic energy

Eγ (Γ ) = |Γ |γ :=
IS∑
i=1

|Γi |γi :=
IS∑
i=1

∫
Γi

γi(Eνi) dH2, (2.12)

where γ := (γ1, . . . , γIS ) with γi , i = 1 → IS , being positive and absolutely homogeneous
functions of degree one; i.e. in particular γi : R3 → R>0 with γi( Ep) > 0 if Ep 6= E0 and

γi(λ Ep) = |λ|γi( Ep) ∀ Ep ∈ R3, ∀λ ∈ R ⇒ γ ′i ( Ep) . Ep = γi( Ep) ∀ Ep ∈ R3 \ {E0}, (2.13)

where γ ′i is the gradient of γi . In the isotropic case we have

γi( Ep) = ςi | Ep| with ςi > 0, i = 1→ IS, (2.14)

which implies that γi(Eνi) = ςi ; and so |Γi |γi in (2.12) reduces to ςi |Γi |, the scaled surface area
of Γi . In the isotropic equal energy density case we have, in addition, ςi = 1, i = 1→ IS ; and so
Eγ (Γ ) reduces to E(Γ ), the surface area of Γ .

Following our recent work in [9, 12], we will restrict ourselves to anisotropic surface energy
densities of the form

γi( Ep) =
( Li∑
`=1

[γ (`)i ( Ep)]ri
)1/ri

, where γ
(`)
i ( Ep) :=

√
Ep .G(`)i Ep, (2.15)

so that

γ ′i ( Ep) = [γi( Ep)]1−ri
Li∑
`=1

[γ (`)i ( Ep)]ri−1[γ (`)i ]′( Ep),

where ri ∈ [1,∞) and G(`)i ∈ R3×3, ` = 1 → Li , are symmetric and positive definite; i =
1 → IS . This class of convex anisotropies (2.15) will lead to unconditionally stable numerical
approximations; see Section 4 below.

In order to visualize some anisotropies of the form (2.15), we briefly recall the definition of the
Wulff shape. For a given anisotropy function γi one defines its Frank diagram

Fi := { Ep ∈ R3 : γi( Ep) 6 1}
and the corresponding Wulff shape, [76],

Wi := {Eq ∈ R3 : γ ∗i (Eq) 6 1}, where γ ∗i (Eq) := sup
Ep∈R3\{E0}

Ep . Eq
γi( Ep) . (2.16)

As the Wulff shape Wi is known to be the solution of an isoperimetric problem, i.e. the boundary
of Wi is the minimizer of | · |γi in the class of all (closed) surfaces enclosing the same volume (see



PARAMETRIC APPROXIMATION OF EVOLVING SURFACE CLUSTERS 195

FIG. 2. Frank diagrams and Wulff shapes for different choices of (2.15) with Li = 3, 4, ri = 1.

FIG. 3. Frank diagrams and Wulff shapes for different choices of (2.15) with Li = 3, 6 and ri = 30.

e.g. [76, 30]), it can be used to visualize the given anisotropy. In Figures 2 and 3 we give the Frank
diagrams and Wulff shapes for some anisotropies γi of the form (2.15); most of them have already
been considered in [12]. Here we briefly state their definitions. Let

G
(`)
i := R(Eθ (`)i )T diag(1, ε2

i , ε
2
i )R(
Eθ (`)i ), (2.17)

where diag(a, b, c) denotes a diagonal matrix with diagonal entries a, b, c and R(Eθ) :=
R1(θ1)R2(θ2)R3(θ3) with

R1(θ) :=
(

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

)
, R2(θ) :=

(
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

)
and R3(θ) :=

(
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

)

being rotation matrices through the given angle θ . For the anisotropies in Figure 2 we have
used ri = 1 and εi = 10−2 with (Eθ (1)i , . . . , Eθ (Li )i ) = (E0, (π/2, 0, 0), (0, π/2, 0)) and
(E0, (0, π/3, 0), (0, 2π/3, 0), (π/2, 0, 0)), respectively. Using the former example but now setting
ri = 30 yields the Frank diagram and Wulff shape as on the left of Figure 3. The final displayed
anisotropy in Figure 3 can be obtained by choosing ri = 30 and, for (2.17), setting εi = 10−2 and
(Eθ (1)i , . . . , Eθ (Li )i ) = (E0, (0, π/2, 0), (π/4, 0, 0), (−π/4, 0, 0), (0, π/2, π/4), (0, π/2,−π/4)).

In order to define anisotropic mean curvature flow and anisotropic surface diffusion, we
introduce the Cahn–Hoffman vectors (see [47])

Eνγ,i := γ ′i (Eνi), i = 1→ IS; (2.18a)

and define the weighted mean curvatures as

~γ,i := −∇s . Eνγ,i i = 1→ IS . (2.18b)



196 J. W. BARRETT, H. GARCKE AND R. NÜRNBERG

Then the anisotropic versions of mean curvature flow, (2.2), and surface diffusion, (2.3), are given
by

Vi = βi(Eνi)~γ,i, i = 1→ IS, (2.19)
and

Vi = −∇s . (βi(Eνi)∇s~γ,i), i = 1→ IS; (2.20)

here βi : S2 → R>0, i = 1→ IS , are kinetic coefficients, and are assumed to be smooth, even and
positive functions defined on the unit sphere S2 ⊂ R3. For a derivation of these laws in the case of
a single closed hypersurface we refer to [4, 38, 72, 71].

Naturally, the triple junction line conditions (2.4a–d) need to be generalized to the anisotropic
setting. Here equilibrium conditions in the context of thermodynamics have been derived in e.g.
[44, 47], and corresponding boundary conditions for evolution equations have been considered in
e.g. [34, 70, 36]. Of course, the attachment conditions (2.4a) still need to hold. In addition, we
prescribe the following conditions on the triple junction lines:

3∑
j=1

[γskj (Eνskj ) Eµskj − (γ
′
skj
(Eνskj ) . Eµskj )Eνskj ] = E0 on Tk, k = 1→ IT , (2.21a)

ok1 Eµsk1 . βsk1 (Eνsk1 )∇s~γ,sk1 = o
k
2 Eµsk2 . βsk2 (Eνsk2 )∇s~γ,sk2 = o

k
3 Eµsk3 . βsk3 (Eνsk3 )∇s~γ,sk3 on Tk,

k = 1→ IT , (2.21b)
3∑

j=1

okj ~γ,skj
= 0 on Tk, k = 1→ IT . (2.21c)

We note that in the isotropic case, (2.14), we have Eνγ,i = ςi Eνi with ~γ,i = ςi~i , and hence (2.21a–c)
with β = (1, . . . , 1), on recalling that Eνi . Eµi = 0, simplify to

∑3
j=1 ςskj

Eµskj = E0, ok1ςsk1 Eµsk1 .∇s~sk1 =
ok2ςsk2

Eµsk2 .∇s~sk2 = o
k
3ςsk3
Eµsk3 .∇s~sk3 and

∑3
j=1 o

k
j ςskj

~skj
= 0 on Tk for k = 1 → IT , respectively.

Hence we observe that (2.21a–c) collapse to (2.4b–d) in the isotropic equal energy density case.
As in the isotropic case, (2.10a,b) and (2.11a,b), we are able to obtain the following weak

formulations; see Section 3 for details. For anisotropic mean curvature flow we obtain: Find
Ex ∈ V (Ω) and ~γ ∈ Ŵ (Γ ) such that

〈Ext , χ Eν〉 − 〈β(Eν)~γ , χ〉 = 0 ∀χ ∈ Ŵ (Γ ), (2.22a)

〈~γ Eν, Eη〉 + 〈∇G̃s Ex,∇G̃s Eη〉γ = 0 ∀Eη ∈ V (Γ ). (2.22b)

For anisotropic surface diffusion flow we obtain: Find Ex ∈ V (Ω) and ~γ ∈ W(Γ ) such that

〈Ext , χ Eν〉 − 〈β(Eν)∇s~γ ,∇sχ〉 = 0 ∀χ ∈ W(Γ ), (2.23a)

〈~γ Eν, Eη〉 + 〈∇G̃s Ex,∇G̃s Eη〉γ = 0 ∀Eη ∈ V (Γ ). (2.23b)

Here we have introduced the shorthand notation 〈∇G̃s ·,∇G̃s ·〉γ for the natural cluster analogue of the
inner product defined in [12]. This is defined as follows. First, we introduce the symmetric positive
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definite matrices G̃(`)i with the associated inner products (·, ·)
G̃
(`)
i

on R3 by

G̃
(`)
i := [detG(`)i ]1/2[G(`)i ]−1 and (Ea, Eb)

G̃
(`)
i

= Ea . G̃(`)i Eb ∀Ea, Eb ∈ R3,

` = 1→ Li, i = 1→ IS .

With { Ep, Eτ1, Eτ2} an orthonormal basis for R3, it follows, on recalling (2.15), that

γ
(`)
i ( Ep) = [detB(`)i ]1/2, where B(`)i ∈ R2×2 with [B(`)i ]jk = (Eτj , Eτk)G̃(`)i , j, k = 1→ 2;

see [12, Lemma 2.1]. Secondly, we set

H
(`)
i := [DExi]T G̃(`)i DExi and [h(`)i ]jk := [(H (`)

i )−1]jk, j, k = 1→ 2,

where DExi denotes the Jacobian matrix. Then

〈∇G̃s Eη,∇G̃s Eχ〉γ :=
IS∑
i=1

Li∑
`=1

∫
Γi

[
γ
(`)
i (Eνi)
γi(Eνi)

]ri−1

(∇G̃
(`)
i

s Eηi,∇G̃
(`)
i

s Eχi)G̃(`)i γ
(`)
i (Eνi) dH2, (2.24a)

where for all smooth Eηi, Eχi : Γi → R3,

(∇G̃
(`)
i

s Eηi,∇G̃
(`)
i

s Eχi)G̃(`)i :=
2∑

j=1

(∂Et (`)i,j
Eηi, ∂Et (`)i,j Eχi)G̃(`)i

=
2∑

j=1

2∑
k=1

[h(`)i ]jk(∂k[Eηi ◦ Exi], ∂j [ Eχi ◦ Exi])G̃(`)i (2.24b)

with {Et (`)i,1 , Et (`)i,2 } being an orthonormal basis with respect to the G̃(`)i inner product for the tangent
plane of Γi ; see [12, (2.8), (2.11), (2.20)] for further details.

We remark that for equal isotropic energies γi(·) = | · |, i = 1 → IS , with constant
mobilities β = (1, . . . , 1), the formulations (2.22a,b) and (2.23a,b) collapse to their isotropic
counterparts (2.10a,b) and (2.11a,b), respectively. We recall that the novel variational formulation
in [12] has yielded the first unconditionally stable parametric approximations of anisotropic
geometric evolution equations in higher dimensions. Recently, an alternative stable finite element
approximation for anisotropic mean curvature flow for closed hypersurfaces in R3 has been
introduced in [61]. For convex anisotropies, on employing a stabilizing term that slightly changes
the approximated flow, stability was shown for a fully discrete approximation. However, we stress
that this approximation cannot be generalized to the case of surface clusters considered in this paper.

Finally, we will also consider situations in which parts of the boundaries of the surfaces Γi ,
i = 1 → IS , are constrained to lie on the boundary ∂D of a domain D. In this case, boundary
conditions have to hold on these IB , IB > 0, boundary lines. Physically meaningful conditions
for curves attached to the boundary of a domain in the plane have been derived in [20] and [36],
and here we extend these conditions to the three-dimensional case. To this end, we introduce the
following notation. Let the boundary line Bk be given by the pair (sk, pk) such that, similarly to
(2.4a),

Bk(t) := Exsk (∂pkΩsk , t) ⊂ ∂D, k = 1→ IB . (2.25)
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We note that throughout this paper, we assume for simplicity that

IB⋃
k=1

{(sk, pk)} ∩
IT⋃
k=1

3⋃
j=1

{(skj , pkj )} = ∅, (2.26)

i.e. that no triple junction line Tk is constrained to lie on the boundary ∂D. This still leaves the
possibility open that a triple junction line meets the boundary ∂D at e.g. a single point. In such a
case, no extra conditions are needed at these points. In addition, we assume that

(i, p) ∈
IB⋃
k=1

{(sk, pk)} ∪
IT⋃
k=1

3⋃
j=1

{(skj , pkj )}, p = 1→ I iP , i = 1→ IS;

i.e. that each part of the partitioned boundaries ∂Ωi is mapped by Ex either to a triple junction line, or
to a boundary line. Let En be the outer unit normal to ∂D. Then (2.25) can be equivalently formulated
as Exsk (∂pkΩsk ) ⊂ ∂D at time t = 0 together with

En . Exsk,t = 0 on Bk, k = 1→ IB . (2.27a)

In the case of anisotropic curvature flow we require in addition that

En . γ ′sk (Eνsk ) = 0 on Bk, k = 1→ IB , (2.27b)

which collapses to a 90◦ angle condition, En . Eνsk = 0, in the case of isotropic γsk . In the case of
anisotropic surface diffusion we require, in addition to (2.27b), the no-flux boundary condition

Eµsk .∇s~γ,sk = 0 on Bk, k = 1→ IB . (2.27c)

This condition has been introduced for curves in the plane in [36] in the isotropic case, and was
generalized in [9] to the anisotropic case. The condition (2.27c) is the natural generalization of
these conditions in the plane to the case of surfaces in R3.

3. Gradient flow structure and weak formulations

In this section, we will discuss the variational structure of the governing equations for anisotropic
mean curvature flow and anisotropic surface diffusion for surface clusters in R3. In particular, we
will show that the former is a weighted L2-gradient flow of (2.12), while the latter is a weighted
H−1-gradient flow of (2.12). We will only consider the general anisotropic situation, and so the
isotropic case will just be a specific example of this. First we state a transport theorem for anisotropic
energies.

LEMMA 3.1 Let Ui ⊂ R2 be open and let Ωi ⊂ Ui be a domain with a piecewise smooth
boundary. Let Exi : Ui × (−δ0, δ0) → R3 be a smooth function that parameterizes the evolving
hypersurface (Γ δi )|δ|<δ0 over Ωi , i.e. Γ δi = Exi(Ωi, δ) for |δ| < δ0. Let Eνδi be a unit normal field
to Γ δi , and let Eµδi be the conormal to ∂Γ δi . In addition, let γi : R3 → R>0 be a given anisotropy
function satisfying (2.13). Then

d
dδ

∫
Γ δi

γi(Eνδi ) dH2 =
∫
Γ δi

Vδi ∇s . γ ′i (Eνδi ) dH2 +
∫
∂Γ δi

Exi,δ . (γi(Eνδi ) Eµδi − (γ ′i (Eνδi ) . Eµδi )Eνδi ) dH1,

where Exi,δ := d
dδ Exi and Vδi := Exi,δ . Eνδi is the normal velocity of Γ δi .
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Proof. Using a transport theorem, which can be found for example in [39, (15-31)] and [37, (2.9)],
we obtain

d
dδ

∫
Γ δi

γi(Eνδi ) dH2 =
∫
Γ δi

(∂0γi(Eνδi )− γi(Eνδi )Vδi ~δi ) dH2 +
∫
∂Γ δi

γi(Eνδi )Exi,δ . Eµδi dH1,

where ∂0 is the time derivative following Γ δi (see [39, (15-21)]) and ~δi is the sum of the principal
curvatures of Γ δi . Since ∂0Eνδi = −∇sVδi (see [39, (15–24)]), we obtain the desired result by using
integration by parts on manifolds (see e.g. [16, Corollary 4]) and the identity γ ′i ( Ep) . Ep = γi( Ep).
Finally we note that the results in [39, 16, 37] remain true for surfaces with piecewise smooth
boundaries. 2

Applying the above lemma locally in a situation where the three surfaces Γsk1 , Γsk2 , Γsk3 , with surface
energy densities γsk1 , γsk2 , γsk3 , meet at a triple junction line Tk , we see that the condition

3∑
j=1

[γskj (Eνskj ) Eµskj − (γ
′
skj
(Eνskj ) . Eµskj )Eνskj ] = E0 on Tk, (3.1)

i.e. (2.21a), makes the boundary term on Tk vanish. It is possible to derive a geometrical
interpretation of (3.1). To this end, we remark that the vectors Eνskj , Eµskj , j = 1 → 3, all lie
in the plane Tk perpendicular to the triple junction line Tk; see Figure 1. We recall also the
choice of (ok1, o

k
2, o

k
3) so that (okj Eνskj , Eµskj ), j = 1 → 3, have the same orientation. Noting that

γ ′i ( Epi) . Ep = γi( Ep) = γi(− Ep) = −γ ′i (− Epi) . Ep, it follows that (3.1) is equivalent to

3∑
j=1

[(γ ′
skj
(okj Eνskj ) . (o

k
j Eνskj )) Eµskj − (γ

′
skj
(okj Eνskj ) . Eµskj )(o

k
j Eνskj )] = E0 on Tk. (3.2)

Hence on rotating the left hand side of (3.2) by 90◦ in the plane Tk , we deduce that (3.2), and hence
(3.1), are equivalent to

Π|Tk
3∑

j=1

γ ′
skj
(okj Eνskj ) = E0 on Tk, (3.3)

where Π|Tk is the orthogonal projection onto the plane Tk . The identity (3.1) can be interpreted as
a force balance on the triple junction line Tk; see [44, 47, 31]. It simplifies in the isotropic case,
(2.14), to

∑3
j=1 ςskj

Eµskj = E0, which for equal isotropic surface energies is (2.4b).
Therefore using Lemma 3.1 and recalling (2.18a,b), we deduce that surface clusters, with triple

junctions lines, evolving by the anisotropic mean curvature law (2.19) together with the attachment
conditions (2.4a) and the boundary conditions (2.21a) fulfill the energy inequality

d
dt
Eγ (Γ ) = d

dt

( IS∑
i=1

∫
Γi

γi(Eνi) dH2
)
= −

IS∑
i=1

∫
Γi

Vi~γ,i dH2

= −
IS∑
i=1

∫
Γi

βi(Eνi)(~γ,i)2 dH2 = −
IS∑
i=1

∫
Γi

1
βi(Eνi)V

2
i dH2 6 0. (3.4)
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This, together with Lemma 3.1, shows that (2.19) with (2.4a), (2.21a) is a (weighted) L2-gradient
flow of Eγ (Γ ).

If we require that parts of the boundaries of Γ remain on ∂D, we need to impose additional
conditions. With En the outer unit normal to ∂D, we first of all require that En . Exsk,t = 0 on Bk ⊂
∂Γsk ∩ ∂D, i.e. (2.27a), in order to deduce that this part of ∂Γsk remains on ∂D, for k = 1→ IB . In
addition, for k = 1→ IB , we require that

Exsk,t . (γsk (Eνsk ) Eµsk − (γ ′sk (Eνsk ) . Eµsk )Eνsk ) = 0 on Bk (3.5)

for all En . Exsk,t = 0 on Bk in order for the boundary term, arising from applying Lemma 3.1 locally,
to vanish. We note that Eνsk , Eµsk , En all lie in the plane Bk perpendicular to Bk . In addition, we note
that (3.5) is equivalent to the vector γsk (Eνsk ) Eµsk − (γ ′sk (Eνsk ) . Eµsk )Eνsk being a multiple of En, and so a
90◦ rotation in the plane Bk of this vector yields, similarly to (3.3),

En . (Π|Bkγ ′sk (Eνsk )) = 0 on Bk,

where Π|Bk is the orthogonal projection onto the plane Bk . Since En ∈ Bk , we find that the IB
boundary conditions (3.5) are equivalent to (2.27b). Hence, (3.4) remains valid if parts of ∂Γi are
constrained to lie on ∂D, i.e. if the boundary conditions (2.27a,b) are imposed.

Similarly to (3.4), in the case of surface clusters, with triple junctions lines, evolving by the
anisotropic surface diffusion law (2.20), together with the attachment conditions (2.4a) and the
boundary conditions (2.21a–c), we deduce that

d
dt
Eγ (Γ ) =

IS∑
i=1

∫
Γi

Vi∇s . (γ ′(Eνi)) dH2 =
IS∑
i=1

∫
Γi

∇s . (βi(Eνi)∇s~γ,i)~γ,i dH2

= −
IS∑
i=1

∫
Γi

βi(Eνi)|∇s~γ,i |2 dH2 6 0, (3.6)

where the boundary terms which arise from performing integration by parts vanish as (2.21b,c)
imply that for k = 1→ IT ,

3∑
j=1

~γ,skj
βskj
(Eνskj )∇s~γ,skj . Eµskj = 0 on Tk. (3.7)

On noting that ~γ,i is minus the inverse of the weighted surface Laplacian defined in (2.20) acting
on Vi , we see from (3.6) that (2.20) with (2.4a), (2.21a–c) is a (weighted) H−1-gradient flow of
Eγ (Γ ). Once again, it is easily seen that (3.6) remains valid if parts of ∂Γi are constrained to lie
on ∂D if the boundary conditions (2.27a–c) are imposed. Moreover, it is easy to see from (3.6) that
stationary solutions of surface diffusion are clusters containing only constant (anisotropic) mean
curvature surfaces.

In the remainder of this section, we restrict ourselves to the class of anisotropies (2.15) and
derive the weak formulations (2.22a,b) and (2.23a,b). First we compute the first variation of the
anisotropic surface energy (2.12). To this end, let

Γ δ(Eg) := {Ez+ δEg(Ez) : Ez ∈ Γ = Ex(Ω)} (3.8)

for δ > 0 and Eg ∈ V (Γ ).
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LEMMA 3.2 Let Eγ be given by (2.12) with γ = (γ1, . . . , γIS ) as in (2.15). Then, on recalling
(2.24a,b), for a smooth vector field Eg ∈ V (Γ ) we have

d
dδ
Eγ (Γ

δ(Eg))
∣∣∣∣
δ=0
= 〈∇G̃s Ex,∇G̃s Eg〉γ . (3.9)

Proof. We use the same arguments as in the proofs of [12, Lemma 2.5, Theorem 2.1] to compute
the first variation of

∫
Γi
γi(Eνi) dH2. We note that the arguments applied there to closed surfaces

remain true for surfaces Γi , i = 1 → IS , with boundaries ∂Γi . We briefly outline the key steps of
the proof.

First, we consider the case of Γi , where γi is defined by (2.15) with Li = 1. Then combining
[12, Lemma 2.5, Lemma 2.2, (2.19b)] with (2.24b) yields

d
dδ

∫
Γi

γi(Eνi) dH2
∣∣∣∣
δ=0
=
∫
Ωi

2∑
j=1

2∑
k=1

[h(1)i ]jk(∂k Exi, ∂j [Egi ◦ Exi])G̃(1)i [detH (1)
i ]1/2 dL2

=
∫
Γi

(∇G̃
(1)
i

s Exi,∇G̃
(1)
i

s Egi)G̃(1)i γi(Eνi) dH2, (3.10)

where Ld denotes the Lebesgue measure in Rd .
The extension of (3.10) to Li > 1 and ri ∈ [1,∞) follows from combining [12, (2.45), Lemma

2.2, (2.19b)] and (2.24b), and we obtain

d
dδ

∫
Γi

γi(Eνi) dH2
∣∣∣∣
δ=0
=

Li∑
`=1

∫
Γi

[
γ
(`)
i (Eνi)
γi(Eνi)

]ri−1

(∇G̃
(`)
i

s Exi,∇G̃
(`)
i

s Egi)G̃(`)i γ
(`)
i (Eνi) dH2. (3.11)

Summing (3.11) for i = 1 → IS then yields the desired result (3.9), on recalling the definitions
(2.12) and (2.24a). 2

LEMMA 3.3 Let γ be given by (2.15). Then a surface cluster Γ with a parameterization Ex ∈
V (Ω) ∩ ×ISi=1 C

2(Ω i,R3) and a ~γ ∈ Ŵ (Γ ) fulfill

〈~γ Eν, Eη〉 + 〈∇G̃s Ex,∇G̃s Eη〉γ = 0 ∀Eη ∈ V (Γ ) (3.12)

if and only if (2.18a,b) together with the boundary conditions (2.21a) hold.

Proof. We note that combining the results in Lemmas 3.1 and 3.2 for the evolving hypersurfaces
Γ δ(Eg) in (3.8) we obtain, on choosing Exδ = Eg in Lemma 3.1,

〈∇G̃s Ex,∇G̃s Eg〉γ =
IS∑
i=1

∫
Γi

(Eg . Eνi)∇s .γ ′i (Eνi) dH2 +
IS∑
i=1

∫
∂Γi

Eg . (γi(Eνi) Eµi − (γ ′i (Eνi) . Eµi)Eνi) dH1

(3.13)
for all smooth Eg ∈ V (Γ ).

Now assuming that (3.12) holds, it immediately follows from (3.13) that (2.18a,b) hold. In
addition, the integrals on the triple junction lines Tk , k = 1 → IT , have to vanish and hence
the boundary conditions (2.21a) have to hold.

Similarly, if Γ and ~γ fulfill (2.18a,b) and the boundary condition (2.21a), we deduce from
(3.13) that (3.12) holds for all smooth Eg ∈ V (Γ ). The desired result (3.12) then follows from a
density argument. 2
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We now extend the above to the case when external boundaries are present. To this end, let

V∂(Γ ) := { Eχ ∈ V (Γ ) : En . Eχsk = 0 on Bk, k = 1→ IB} .
Moreover, similarly to (3.8), let

Γ δ∂ (Eg) := {Ey(Ez, δ) : Ez ∈ Γ = Ex(Ω), where Eyδ(Ez, δ) = Eg(Ey(Ez, δ)), Ey(Ez, 0) = Ez ∈ Γ } (3.14)

for δ > 0 and Eg ∈ V∂(Γ ), with the latter smoothly extended to all of R3 such that En . Eg = 0 on ∂D.

LEMMA 3.4 Let Eγ be given by (2.12) with γ = (γ1, . . . , γIS ) as in (2.15). In addition, let Eg ∈
V∂(Γ ) be a smooth vector field. Then

d
dδ
Eγ (Γ

δ
∂ (Eg))

∣∣∣∣
δ=0
= 〈∇G̃s Ex,∇G̃s Eg〉γ . (3.15)

Moreover, an evolving family of surface clusters (Γ (t))t>0 with parameterizations Ex(·, t) ∈ V (Ω)∩
×ISi=1 C

2(Ω i,R3) satisfying (2.27a) and a ~γ (·, t) ∈ Ŵ (Γ ) fulfill

〈~γ Eν, Eη〉 + 〈∇G̃s Ex,∇G̃s Eη〉γ = 0 ∀Eη ∈ V∂(Γ ) (3.16)

if and only if (2.18a,b) together with the triple junction line conditions (2.21a), and the boundary
line conditions (2.27b) hold.

Proof. The proof of (3.15) is exactly the same as the one for (3.9), except that the variation is over
Eg ∈ V∂(Γ ) as opposed to Eg ∈ V (Γ ). The equivalence statement follows as in the proof of Lemma
3.3 on recalling the equivalence of the boundary conditions (3.5), k = 1→ IB , and (2.27b). 2

THEOREM 3.1 Let γ be given by (2.15). Then for a family of evolving surface clusters (Γ (t))t>0,
with parameterization Ex(·, t) ∈ V (Ω) ∩ ×ISi=1 C

2(Ω i,R3) and with IB = 0, the weak formulations
(2.22a,b) and (2.23a,b) are equivalent to the strong formulations (2.19) with (2.21a) and (2.20) with
(2.21a–c), respectively. Similarly, if IB > 0 and Ex satisfies (2.27a), then (3.16) together with (2.22a)
or (2.23a) are weak formulations of the corresponding flows when the boundary line conditions
(2.27b) and (2.27b,c) are present, respectively.

Proof. The proof for (2.22a,b) follows immediately from Lemma 3.3 and multiplying (2.19) with
a test function χ ∈ Ŵ (Γ ). Similarly, the proof for (2.23a,b) follows from Lemma 3.3, multiplying
(2.20) with a test function χ ∈ W(Γ ) and integrating by parts on noting (2.21b) and (2.6b), similarly
to (3.6); recall (3.7). The final statement follows from Lemma 3.4 and the above. 2

REMARK 3.1 Based on (2.23a,b), it is now straightforward to show that anisotropic surface
diffusion preserves the enclosed volumes. We illustrate this with an example. Consider a double
bubble cluster as shown in Figure 5 below, with (o1

1, o
1
2, o

1
3) = (1, 1, 1) and Eν1 chosen as the outer

normal to the volume enclosed by Γ1 and Γ2, which implies that Eν2 is the inner normal to this
volume, which we denote by v. Then choosing χ = (1,−1, 0) ∈ W(Γ ) in (2.23a) yields

d
dt
L3(v) =

∫
Γ1

[Ex1]t . Eν1 dH2 −
∫
Γ2

[Ex2]t . Eν2 dH2 = 0,

i.e. the volume of v is preserved.
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REMARK 3.2 One can also consider volume preserving mean curvature flow as a gradient flow.
For the double bubble cluster as shown in Figure 5 below with (o1

1, o
1
2, o

1
3), Eν1 and Eν2 chosen as in

Remark 3.1 above, which implies that Eν3 is the inner normal to the volume enclosed by Γ2 and Γ3,
then such a flow is given by

Vi = ~i − λi on Γi, i = 1→ 3, (3.17)

together with (2.4a,b), where λi(t) ∈ R with
∑3
i=1 λi(t) = 0 are chosen so that

∫
Γ1
V1 dH2 −∫

Γ2
V2 dH2 = 0 and

∫
Γ2
V2 dH2−∫

Γ3
V3 dH2 = 0 for all t > 0. Obviously, this is easily generalized

to more complicated clusters as well as to anisotropic surface energies. It is interesting to note that
while stationary solutions of the conserved mean curvature flow are also stationary solutions of
the surface diffusion flow, the converse is not necessarily true. This is due to the nonlocal nature
of (3.17), and a counterexample involving a nonconnected region is easily constructed. Here the
surface diffusion flow would preserve each enclosed volume locally, while the conserved mean
curvature flow (3.17) only preserves the total volume of each region, though it is straightforward to
adapt (3.17) so that it preserves volumes locally.

4. Parametric finite element approximation

For i → IS , let Ωh
i be a triangulation approximating Ω i ⊂ R2, so that Ωh

i =
⋃Ji
j=1 σ

i
j , where

{σ ij }Jij=1 is a family of mutually disjoint open triangles with vertices {Eqik}Kik=1. In particular, let {Eqik}K ik=1

denote the vertices in the interior of Ωh
i and let {Eqik}Kik=K i+1

denote the vertices on ∂Ωh
i . We set

h := maxi=1→IS maxj=1→Ji diam(σ ij ). We introduce the finite element space V̂ h(Ωh) := { Eχ ∈
×ISi=1 C(Ω

h
i ,R

3) : Eχi |σ ij is linear for j = 1→ Ji, i = 1→ IS}. In order to describe the conditions
that our discretization needs to satisfy at the triple junction lines, we have to make the following
compatibility assumptions. Let ∂jΩh

i be the polygonal curve approximating ∂jΩi , j = 1 → I iP ,
i = 1→ IS . Then we assume that the endpoints of ∂jΩh

i and ∂jΩi coincide and that

Zk := #{{Eqs
k
1
l }

K
sk1

l=1 ∩ ∂pk1Ω
h

sk1
} = #{{Eqs

k
2
l }

K
sk2

l=1 ∩ ∂pk2Ω
h

sk2
} = #{{Eqs

k
3
l }

K
sk3

l=1 ∩ ∂pk3Ω
h

sk3
} (4.1)

for all k = 1 → IT . The condition (4.1) simply says that the triangulations of Ωh need to “match
up” at their boundaries, where they meet at triple junction lines. In addition, let

Eρkj : {1→ Zk} → {{Eq
skj
l }

K
sk
j

l=1 ∩ ∂pkjΩ
h

skj
}, j = 1→ 3, (4.2)

be a bijective map such that ( Eρkj (1), . . . , Eρkj (Zk)) is an ordered sequence of vertices of the polygonal
curve ∂pkjΩ

h

skj
, j = 1→ 3, k = 1→ IT .

Then we define the natural discrete analogue of V (Ω) by V h(Ωh) := { Eχ ∈ V̂ h(Ωh) :
Eχsk1 ( Eρ

k
1 (l)) = Eχsk2 ( Eρ

k
2 (l)) = Eχsk3 ( Eρ

k
3 (l)), l = 1→ Zk, k = 1→ IT }.

Let 0 = t0 < t1 < · · · < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time
steps τm := tm+1 − tm, m = 0→ M − 1.
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FIG. 4. Example triangulation Γ m of a triple bubble with polygonal triple junction line T m1 , where Z1 = 24.

The surfaces Γ mi are now given by their parameterizations EXmi , i = 1 → IS , where
EXm ∈ V h(Ωh). We set Γ m := EXm(Ωh) and observe that, with the above definitions,
the polygonal curves T mk defined by the ordered sequence of vertices ( EXm

sk1
( Eρk1 (1)), . . . ,

EXm
sk1
( Eρk1 (Zk))), k = 1 → IT , are the triple junction lines of the polyhedral surface cluster Γ m;

see Figure 4 for an example. These will now be used to defined the necessary finite element spaces
on Γ m. Let σm,ij := EXmi (σ ij ) and similarly Eqm,ik := EXmi (Eqik). Then we define

V̂ h(Γ m) :=
{
Eχ ∈ IS×

i=1
C(Γ mi ,R

3) : Eχi |σm,ij
is linear for j = 1→ Ji, i = 1→ IS

}
=: [Ŵh(Γ m)]3, (4.3)

where Ŵh(Γ m) ⊂ ×ISi=1H
1(Γ mi ,R) is the space of scalar continuous piecewise linear functions

on Γ m, with {{φm,ik }Kik=1}ISi=1 denoting the standard basis of Ŵh(Γ m), i.e. φm,il (Eqm,ik ) = δkl for all
k, l = 1→ Ki , i = 1→ IS . Then V h(Γ m) and Wh(Γ m), the natural discrete analogues of V (Γ )
and W(Γ ), are defined by

V h(Γ m) := { Eχ ∈ V̂ h(Γ m) : Eχsk1 = Eχsk2 = Eχsk3 on T mk , k = 1→ IT }, (4.4a)

Wh(Γ m) :=
{
χ ∈ Ŵh(Γ m) :

3∑
j=1

okj χskj
= 0 on T mk , k = 1→ IT

}
. (4.4b)

For notational convenience we will often not distinguish whether a surface is parameterized overΩh

or over Γ m. For instance, we will use EXm also to denote the identity Eid |Γ m∈ V h(Γ m) on Γ m and
similarly use the symbol EXm+1 also to denote the parameterization of Γ m+1 over Γ m, i.e. formally
Γ m+1 = EXm+1(Γ m).

Similarly to (2.7), we introduce the L2 inner product 〈·, ·〉m over the current polyhedral surface
cluster Γ m, which is described by the vector function EXm, as follows:

〈u, v〉m :=
IS∑
i=1

∫
Γ mi

ui . vi dH2. (4.5)
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If u, v are piecewise continuous, with possible jumps across the edges of {σm,ij }Jij=1, i = 1 → IS ,
we introduce the mass lumped inner product 〈·, ·〉hm as

〈u, v〉hm :=
IS∑
i=1

1
3

Ji∑
j=1

|σm,ij |
2∑
k=0

lim
σ
m,i
j 3 Ep→Eqm,ijk

(ui . vi)( Ep),

where {Eqm,ijk
}2k=0 are the vertices of σm,ij . Here |σm,ij | = 1

2 |(Eqm,ij1
− Eqm,ij0

) ∧ (Eqm,ij2
− Eqm,ij0

)| is the

measure of σm,ij . In addition, we introduce the unit normal Eνmi to Γ mi :

Eνmi,j := Eνmi |σm,ij
:= (Eqm,ij1

− Eqm,ij0
) ∧ (Eqm,ij2

− Eqm,ij0
)

|(Eqm,ij1
− Eqm,ij0

) ∧ (Eqm,ij2
)− Eqm,ij0

)| ,

where we have assumed that the vertices {Eqm,ijk
}2k=0 are ordered with the same orientation for all

σ
m,i
j , j = 1→ Ji . Finally, we set | · |2m := 〈·, ·〉m and | · |2m,h := 〈·, ·〉hm.

Then we introduce the following parametric finite element approximations of (2.10a,b) and
(2.11a,b): Find EXm+1 ∈ V h(Γ m) and κm+1 ∈ Ŵh(Γ m) such that〈 EXm+1 − EXm

τm
, χ Eνm

〉h
m

− 〈κm+1, χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (4.6a)

〈κm+1Eνm, Eη〉hm + 〈∇s EXm+1,∇s Eη〉m = 0 ∀Eη ∈ V h(Γ m). (4.6b)

Find EXm+1 ∈ V h(Γ m) and κm+1 ∈ Wh(Γ m) such that〈 EXm+1 − EXm
τm

, χ Eνm
〉h
m

− 〈∇sκm+1,∇sχ〉m = 0 ∀χ ∈ Wh(Γ m), (4.7a)

〈κm+1Eνm, Eη〉hm + 〈∇s EXm+1,∇s Eη〉m = 0 ∀Eη ∈ V h(Γ m). (4.7b)

Following the novel approximations introduced in [12], we can generalize the above schemes to
their anisotropic counterparts. On recalling (2.22a,b) and (2.23a,b) we introduce the following fully
practical parametric finite element approximations: Find EXm+1 ∈ V h(Γ m) and κm+1

γ ∈ Ŵh(Γ m)

such that 〈 EXm+1 − EXm
τm

, χ Eνm
〉h
m

− 〈β(Eνm)κm+1
γ , χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (4.8a)

〈κm+1
γ Eνm, Eη〉hm + 〈∇G̃s EXm+1,∇G̃s Eη〉γ,m = 0 ∀Eη ∈ V h(Γ m). (4.8b)

Find EXm+1 ∈ V h(Γ m) and κm+1
γ ∈ Wh(Γ m) such that〈 EXm+1 − EXm

τm
, χ Eνm

〉h
m

− 〈β(Eνm)∇sκm+1
γ ,∇sχ〉m = 0 ∀χ ∈ Wh(Γ m), (4.9a)

〈κm+1
γ Eνm, Eη〉hm + 〈∇G̃s EXm+1,∇G̃s Eη〉γ,m = 0 ∀Eη ∈ V h(Γ m). (4.9b)
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Here 〈∇G̃s ·,∇G̃s ·〉γ,m is the discrete inner product defined by

〈∇G̃s Eη,∇G̃s Eχ〉γ,m :=
IS∑
i=1

Li∑
`=1

∫
Γ mi

[
γ
(`)
i (Eνm+1

i )

γi(Eνm+1
i )

]ri−1

(∇G̃
(`)
i

s Eηi,∇G̃
(`)
i

s Eχi)G̃(`)i γ
(`)
i (Eνmi ) dH2. (4.10)

Note that (4.10) is a natural discrete analogue of (2.24a); see [12] for details. The particular choice
of normals from the old surface cluster, Γ m, and the new cluster, Γ m+1, ensures that the solutions
to (4.8a,b) and (4.9a,b) are unconditionally stable; see Theorem 4.2 below. Note that this particular
choice leads in general to a nonlinear system for ( EXm+1, κm+1

γ ). However, the simpler case r =
(1, . . . , 1) leads to a linear system for ( EXm+1, κm+1

γ ). Finally, observe that in the isotropic case,
γ = (| · |, . . . , | · |), the anisotropic schemes above collapse to their isotropic equivalents (4.6a,b)
and (4.7a,b), respectively.

REMARK 4.1 The schemes (4.6a,b), (4.7a,b) as well as (4.8a,b) and (4.9a,b) are the natural
extensions to surface clusters of the finite element approximations for the isotropic and anisotropic
evolution of curve networks in the plane considered in [7, 6] and [9], respectively. Here it should
be noted that in the formulations in the former two papers, for the case of isotropic surface energies
(2.14) with β = (1, . . . , 1), the analogue of (4.4b) features the constraints

∑3
j=1 ςjo

k
j χskj

= 0,
while in place of (4.5) the inner product 〈·, ·〉m̃ := 〈ς ·, ·〉m is used throughout. It is easy to see that
this yields an equivalent reformulation of the natural two-dimensional analogues of (4.8a,b) and
(4.9a,b), previously introduced in [9], for the isotropic case (2.14) with β = (1, . . . , 1).

Finally, the schemes (4.8a,b) and (4.9a,b) can easily be extended to the case when boundary
intersections are present. Let ∂D be given by a function F ∈ C1(R3) such that

∂D = {Ez ∈ R3 : F(Ez) = 0} and |∇F(Ez)| = 1 ∀Ez ∈ ∂D,
and let the discrete analogue of V∂(Γ ) be defined as

V h∂ (Γ
m) := { Eχ ∈ V h(Γ m) : ∇F(Eq) . Eχsk (Eq) = 0 ∀Eq ∈ Bmk , k = 1→ IB}, (4.11)

where Bmk := {Eqm,skl }Kskl=1 ∩ EXmsk (∂pkΩh
sk
). Then we introduce the following approximations: Find

δ EXm+1 ∈ V h∂ (Γ m) and κm+1
γ ∈ Ŵh(Γ m), where EXm+1 := EXm + δ EXm+1, such that〈

δ EXm+1

τm
, χ Eνm

〉h
m

− 〈β(Eνm)κm+1
γ , χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (4.12a)

〈κm+1
γ Eνm, Eη〉hm + 〈∇G̃s EXm+1,∇G̃s Eη〉γ,m = 0 ∀Eη ∈ V h∂ (Γ m). (4.12b)

Find δ EXm+1 ∈ V h∂ (Γ m) and κm+1
γ ∈ Wh(Γ m), where EXm+1 := EXm + δ EXm+1, such that〈

δ EXm+1

τm
, χ Eνm

〉h
m

− 〈β(Eνm)∇sκm+1
γ ,∇sχ〉m = 0 ∀χ ∈ Wh(Γ m), (4.13a)

〈κm+1
γ Eνm, Eη〉hm + 〈∇G̃s EXm+1,∇G̃s Eη〉γ,m = 0 ∀Eη ∈ V h∂ (Γ m). (4.13b)

We note that the constraint δ EXm+1 ∈ V h∂ (Γ m) weakly approximates (2.25), as it is a linearized
approximation of these constraints. In particular, for curved boundaries ∂D the equations

F( EXm+1
sk

) = 0 on ∂pkΩ
h
sk
, k = 1→ IB , (4.14)



PARAMETRIC APPROXIMATION OF EVOLVING SURFACE CLUSTERS 207

are only approximately satisfied; see e.g. [6] for more details in the planar isotropic case. As a
remedy, one could employ a projection step that orthogonally projects EXm+1 onto ∂D at every time
step, which would have the advantage of satisfying (4.14) exactly throughout the evolution. But
in general this would result in a loss of our stability bound (see Theorem 4.4 below); hence our
preference for the stated approximations.

On noting that V h∂ (Γ
m) ≡ V h(Γ m) if IB = 0, it follows that the schemes (4.12a,b) and (4.13a,b)

collapse to (4.8a,b) and (4.9a,b) in this case.
Before we can proceed to prove existence and uniqueness to these approximations, we have to

make the following very mild assumption on the triangulations at each time level:

(A) We assume for m = 0 → M and i = 1 → IS that |det [D EXmi ]T [D EXmi ]| > 0 almost
everywhere in Ωh

i , so that |σm,ij | = | EXmi (σ ij )| > 0, j = 1→ Ji .

For k = 1→ Ki , let Ξm,i
k := {σm,ij : Eqm,ik ∈ σm,ij } and set

Λ
m,i
k :=

⋃
σ
m,i
j ∈Ξm,i

k

σ
m,i
j and Eωmi,k := 1

|Λm,ik |
∑

σ ij ∈Ξm,i
k

|σm,ij |Eνmi,j .

Then we assume further that for each i = 1 → IS there exists a k ∈ {1, . . . , K i} such
that Eωmi,k 6= E0. Moreover, we require that dimUm = 3, m = 0 → M − 1, where Um :=
span{{ Eωmi,k}K ik=1}ISi=1 ∪ {{∇F(Eq)}Eq∈Bmk }

IB
k=1.

We stress that (A) is a very weak assumption. It merely states that (a) the triangles of the
polyhedral surface cluster Γ m have positive area, (b) on each of the surfaces Γ mi , i = 1 → IS , at
least one inner vertex normal Eωmi,k is nonzero, and (c) among all the inner vertex normals Eωmi,k and
all the boundary constraint vectors ∇F(Eq) there are three linearly independent vectors. The latter
condition is only violated in very pathological cases, e.g. when all the surfaces overlap identically
on a flat external boundary, and it never occurred in practice.

THEOREM 4.1 Let the assumption (A) hold. Then there exist unique solutions ( EXm+1, κm+1) ∈
V h(Γ m)× Ŵh(Γ m) to the system (4.6a,b); and ( EXm+1, κm+1) ∈ V h(Γ m)×Wh(Γ m) to (4.7a,b).

Proof. This follows directly from Theorem 4.3 below. 2

THEOREM 4.2 Let the assumptions (A) hold, and {( EXm, κm)}Mm=1 be the unique solution to
(4.7a,b). Then for k = 1→ M we have

|Γ k| +
k−1∑
m=0

τm|∇sκm+1|2m 6 |Γ 0|. (4.15a)

Similarly, the unique solution to (4.6a,b) satisfies, for k = 1→ M ,

|Γ k| +
k−1∑
m=0

τm|κm+1|2m,h 6 |Γ 0|. (4.15b)

Proof. Clearly, the result directly follows from Theorem 4.4 below. For the benefit of the reader, we
also give a separate proof for the isotropic case. We first consider (4.15a). Choosing χ = κm+1 ∈
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Wh(Γ m) in (4.7a) and Eη = EXm+1− EXm
τm

∈ V h(Γ m) in (4.7b) yields

〈∇s EXm+1,∇s( EXm+1 − EXm)〉m + τm|∇sκm+1|2m = 0. (4.16)

It follows from Lemma 2.1 in [10], on noting that EXm ≡ Eid on Γ m, that

〈∇s EXm+1,∇s( EXm+1 − EXm)〉m = 1
2 [|∇s EXm+1|2m − |∇s EXm|2m + |∇s( EXm+1 − EXm)|2m]

> |Γ m+1| − |Γ m| + 1
2 |∇s( EXm+1 − EXm)|2m. (4.17)

Combining (4.16) and (4.17) yields

|Γ m+1| − |Γ m| + τm|∇sκm+1|2m + 1
2 |∇s( EXm+1 − EXm)|2m 6 0. (4.18)

Summing (4.18) for m = 0→ k − 1 yields the desired result. The steps of the proof of (4.15b) are
exactly the same. 2

THEOREM 4.3 Let the assumption (A) hold and let r = (1, . . . , 1). Then there exist unique
solutions ( EXm+1, κm+1

γ ) ∈ V h(Γ m) × Ŵh(Γ m) to the system (4.8a,b); and ( EXm+1, κm+1
γ ) ∈

V h(Γ m) × Wh(Γ m) to (4.9a,b). Moreover, there exist unique solutions (δ EXm+1, κm+1
γ ) ∈

V h∂ (Γ
m) × Ŵh(Γ m) to the system (4.12a,b); and (δ EXm+1, κm+1

γ ) ∈ V h∂ (Γ
m) × Wh(Γ m) to

(4.13a,b).

Proof. As (4.8a,b) is linear, existence follows from uniqueness. To investigate the latter, we consider
the system: Find { EX, κγ } ∈ V h(Γ m)× Ŵh(Γ m) such that

〈 EX,χ Eνm〉hm − τm〈β(Eνm)κγ , χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (4.19a)

〈κγ Eνm, Eη〉hm +
IS∑
i=1

Li∑
`=1

∫
Γ mi

(∇G̃
(`)
i

s
EXi,∇G̃

(`)
i

s Eηi)G̃(`)i γ
(`)
i (Eνmi ) dH2 = 0 ∀Eη ∈ V h(Γ m). (4.19b)

Choosing χ = κγ ∈ Ŵh(Γ m) in (4.19a) and Eη = EX ∈ V h(Γ m) in (4.19b) yields

IS∑
i=1

Li∑
`=1

∫
Γ mi

(∇G̃
(`)
i

s
EXi,∇G̃

(`)
i

s
EXi)G̃(`)i γ

(`)
i (Eνmi ) dH2 + τm〈β(Eνm)κγ , κγ 〉hm = 0. (4.20)

It follows from (4.20), (2.24b), the positive definiteness of G̃(`)i , ` = 1→ Li , i = 1→ IS , and the
positivity of β that κγ = (0, . . . , 0) and, on noting EX ∈ V h(Γ m) and the connectedness of Γ m, that
EXi ≡ EXc ∈ R3, i = 1→ IS . Hence it follows that

〈 EXc, χ Eνm〉hm = 0 ∀χ ∈ Ŵh(Γ m). (4.21)

Choosing χ = (0, . . . , 0, φm,ik , 0, . . . , 0) in (4.21) yields

EXc . Eωmi,k = 0, k = 1→ K i, i = 1→ IS . (4.22)

It follows from assumption (A) that EXc = E0. Hence we have shown that there exists a unique
solution ( EXm+1, κm+1

γ ) ∈ V h(Γ m)× Ŵh(Γ m) to (4.8a,b).
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The corresponding proof for the system (4.9a,b) is similar with only a minor modification.
In particular, following the same argument we obtain (4.20) with the second term replaced by
τm〈β(Eνm)∇sκγ ,∇sκγ 〉m, which implies that κγ,i ≡ κci ∈ R and EXi ≡ EXc ∈ R3, i = 1 → IS .
Hence

〈κcEνm, Eη〉hm = 0 ∀Eη ∈ V h(Γ m). (4.23)

For a fixed i = 1→ IS , choosing Eη = (0, . . . , 0, Ezφm,ik , 0, . . . , 0), k = 1→ K i , in (4.23) implies,
on assuming κci 6= 0, that for k = 1→ K i

Eωmi,k . Ez = 0 ∀Ez ∈ R3 ⇒ Eωmi,k = E0.

However, this contradicts assumption (A) and hence κci = 0, i = 1 → IS , i.e. κγ = (0, . . . , 0).
Now EX = (E0, . . . , E0) follows as before, and so there exists a unique solution ( EXm+1, κm+1

γ ) ∈
V h(Γ m)×Wh(Γ m) to (4.9a,b).

Finally, the proofs for (4.12a,b) and (4.13a,b) are virtually identical with V h(Γ m) replaced by
V h∂ (Γ

m). Here we note that in addition to (4.22), it follows from EX ∈ V h∂ (Γ m) that EXc .∇F(Eq) = 0
for Eq ∈ Bmk , k = 1 → IB , and so it follows from assumption (A) that EXc = E0. Hence there exist
unique solutions to (4.12a,b) and (4.13a,b). 2

THEOREM 4.4 Let the assumption (A) hold, and let {( EXm, κmγ )}Mm=1 be a solution to (4.9a,b) or
(4.13a,b). Then for k = 1→ M we have

|Γ k|γ +
k−1∑
m=0

τm〈β(Eνm)∇sκm+1
γ ,∇sκm+1

γ 〉m 6 |Γ 0|γ . (4.24a)

Similarly, the solutions to (4.8a,b) and (4.12a,b) satisfy, for k = 1→ M ,

|Γ k|γ +
k−1∑
m=0

τm〈β(Eνm)κm+1
γ , κm+1

γ 〉hm 6 |Γ 0|γ . (4.24b)

Proof. As the four proofs are almost identical, it is sufficient to show (4.24a) for the approximation
(4.9a,b). Choosing χ = κm+1

γ ∈ Wh(Γ m) in (4.9a) and Eη = ( EXm+1− EXm)/τm ∈ V h(Γ m) in (4.9b)
yields

〈∇G̃s EXm+1,∇G̃s ( EXm+1 − EXm)〉γ,m + τm〈β(Eνm)∇sκm+1
γ ,∇sκm+1

γ 〉m = 0. (4.25)

It follows from [12, Lemma 3.1], similarly to the proof of Theorem 3.2 in [12], on noting that
EXm ≡ Eid on Γ m, that

〈∇G̃s EXm+1,∇G̃s ( EXm+1 − EXm)〉γ,m > |Γ m+1|γ − |Γ m|γ . (4.26)

Combining (4.25) and (4.26) yields

|Γ m+1|γ − |Γ m|γ + τm〈β(Eνm)∇sκm+1
γ ,∇sκm+1

γ 〉m 6 0. (4.27)

Summing (4.27) for m = 0→ k − 1 yields the desired result (4.24a). 2
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REMARK 4.2 Similarly to the semidiscrete approximations considered in e.g. [10, 12], it is
possible to derive certain properties for semidiscrete continuous-in-time versions of the finite
element approximations considered in this paper. Firstly, one can show that these semidiscrete
variants of our schemes maintain “good mesh properties”. For instance, assuming that the spatially
discrete cluster Γ h(t) is the solution to the semidiscrete variant of (4.7a,b), each surface Γ hi (t),
i = 1 → IS , is a conformal polyhedral surface; see [10, §4] for details. Such surfaces are
characterized by the fact that the two popular notions of discrete vertex normals, given by the
directions of steepest descent of area and volume, respectively, coincide; which in turn means
that the triangulation cannot be bad. Related properties can be derived for anisotropic surface
energies. Moreover, the semidiscrete versions of (4.7a,b) and (4.9a,b) maintain the enclosed volumes
exactly. To illustrate this, we use the same example as in Remark 3.1 and find, on choosing
χ = (1,−1, 0) ∈ Wh(Γ h(t)) in the semidiscrete version of (4.9a), where all integration is over
the current cluster Γ h(t), parameterized by EX(t) ∈ V h(Ωh), with normals Eνh, that

0 =
∫
Γ h1

[ EX1]t . Eνh1 dH2 −
∫
Γ h2

[ EX2]t . Eνh2 dH2 = d
dt
L3(vh),

where vh denotes the volume enclosed by the two polyhedral surfaces Γ h1 and Γ h2 . We remark that
in practice these properties are (approximately) inherited by our fully discrete schemes. As a result,
no heuristic redistribution of mesh points is necessary in practice. Moreover, in all of our numerical
experiments, the maximum observed relative volume loss for (4.7a,b) and (4.9a,b) was always less
than 1%.

REMARK 4.3 Our fully practical finite element approximation of the volume preserving mean
curvature flow (3.17) for the double bubble in Figure 5 below is: Find EXm+1 ∈ V h(Γ m), κm+1 ∈
Ŵh(Γ m) and λm+1

i ∈ R, i = 1→ 3, with λm+1 ∈ Wh(Γ m), such that〈 EXm+1 − EXm
τm

, χ Eνm
〉h
m

− 〈κm+1 − λm+1, χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (4.28a)

〈κm+1Eνm, Eη〉hm + 〈∇s EXm+1,∇s Eη〉m = 0 ∀Eη ∈ V h(Γ m), (4.28b)

where∫
Γ m1

(κm+1
1 − λm+1

1 ) dH2 =
∫
Γ m2

(κm+1
2 − λm+1

2 ) dH2 =
∫
Γ m3

(κm+1
3 − λm+1

3 ) dH2. (4.28c)

As (4.28a–c) requires a linear system to be solved at each time level, existence and uniqueness
results are easily established. Moreover, on noting that 〈κm+1 − λm+1, λm+1〉hm = 0, the analogue
of (4.15b) holds, i.e. for k = 1→ M ,

|Γ k| +
k−1∑
m=0

τm|κm+1 − λm+1|2m,h 6 |Γ 0|. (4.29)

Here we remark that a simpler linear system, that in practice is as easy to solve as (4.6a,b), can
be obtained by replacing κm+1

i in (4.28c) with κmi . But for this simpler scheme no stability can
be established, i.e. (4.29) does not hold. The corresponding approximation for a single surface
enclosing a single volume was employed and introduced by the authors in [10]. Similarly to
Remark 4.2, it can be shown that a semidiscrete variant of (4.28a–c) conserves volume, while the
fully discrete approximation (4.28a–c) will do so only approximately.
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5. Solution of the discrete systems

Let K := ∑IS
i=1Ki and, for later reference, J := ∑IS

i=1 Ji . In addition, for any number n ∈ N, let
Idn ∈ Rn×n be the identity matrix, and similarly for EIdn ∈ (Rd×d)n×n. We define the orthogonal
projection EP : (R3)K → X onto the Euclidean space associated with V h(Γ m), and similarly
K : RK → X the orthogonal projection onto the Euclidean space associated with Wh(Γ m). In
particular, we have

EP = EIdK − EQ EQT and K = IdK −QQT , (5.1)

where the columns of EQ and Q form an orthonormal basis of the orthogonal complements X⊥ in
(R3)K and X⊥ in RK , respectively. The two projections K and EP will be crucial in the construction
of fully practical solution methods for the finite element approximations introduced in Section 4.
For instance, with the help of these two projections it will be sufficient throughout to work with
the bases of the simple product finite element spaces Ŵh(Γ m) and V̂ h(Γ m) (recall (4.3)), rather
than having to work with the highly nontrivial trial and test spaces Wh(Γ m) and V h(Γ m) directly.
This construction is similar to e.g. the standard technique used for an ODE with periodic boundary
conditions. The analogous approach by the authors for the treatment of the evolution of curve
networks in the plane can be found in e.g. [7].

REMARK 5.1 Before we introduce the linear systems satisfied by the coefficient vectors of our
finite element solutions, where we note that the nonlinear approximations will be iteratively solved
with the help of linear auxiliary problems, we remark on some practical issues related to the crucial
projections K and EP .

A valid strategy for the computation of e.g. EP (recall (5.1)) is to construct the columns of
EQ directly by finding an orthonormal basis of X⊥. This can be achieved for instance by starting

with a set of not necessarily linearly independent vectors that span X⊥ and then performing an
orthogonalization procedure such as Gram–Schmidt. A possible set of such spanning vectors can
be easily found on recalling (4.4a), and one advantage of this strategy is that no explicit a priori
knowledge about the location of possible quadruple junction points is needed.

However, this approach soon becomes very inefficient, as the matrix EQ can be large in practice.
On recalling (4.2) we note that the number of columns in EQ will be close to 6Z, where Z :=∑IT
k=1 Zk . In fact, if IQJ > 0 denotes the number of quadruple junction points, then one can

show that dim(X⊥) = 6Z − 9IQJ . For example, for the experiment in Figure 18 below, we have
6Z = 1584 and dim(X⊥) = 6Z−36 = 1548, while 3K = 21915, meaning that EQ is a 21915×1548
matrix. Clearly, computing and applying the projection EP in this way is computationally expensive,
especially because these projections have to be evaluated many times during the course of the
employed iterative solution methods; see §5.1 below.

A better and far more efficient treatment is the following, where we assume that information
about the IQJ quadruple junction points and their location is available. In particular, we assume that
for each quadruple junction point we are given a quadruple (j1, j2, j3, j4) identifying the four triple
junction lines Tji , i = 1 → 4, that meet there. In addition, for the discretizations we are given for
each line Tji the index lji such that EXm

s
ji
k

( Eρjik (lji )), k = 1 → 3, is the quadruple junction point of

Γ m at which the discretizations T mji of Tji , i = 1→ 4, meet; recall (4.4a). It is not difficult to see

that the action of EP is equivalent to several independent local projections, that each involve only
very few vertices. In particular, a suitable permutation of its rows and columns, which first separates
the coordinates and then groups together indices from different surfaces associated with the same
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point on a triple junction line or with the same quadruple junction point, transforms EP into a block
diagonal form, with only three types of blocks on the diagonal. These blocks are

(1) , 1
3

(
1 1 1
1 1 1
1 1 1

)
, 1

6


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 , (5.2)

for vertices lying in the interior of a surface, vertices on a triple junction line that do not correspond
to quadruple junction points and vertices that correspond to quadruple junction points, respectively.
For the latter case we note that at a quadruple junction point exactly six distinct surfaces meet.
Applying the local projections (5.2) is now straightforward and very efficient.

A similar approach can be applied to the projection K. Once again we note that the constraints
in (4.4b) mean that K is equivalent to several independent local projections. We leave the details to
the interested reader but note that in diagonalized form the blocks of K may be of the form e.g.

(1) , 1
3

(
2 −1 −1
−1 2 −1
−1 −1 2

)
(5.3a)

for vertices lying in the interior of a surface and vertices on a triple junction line, say T mk with
ok = (1, 1, 1), that do not correspond to quadruple junction points, respectively, and of the form
e.g.

1
4


2 1 1 −1 1 0
1 2 1 0 −1 1
1 1 2 1 0 −1
−1 0 1 2 −1 −1

1 −1 0 −1 2 −1
0 1 −1 −1 −1 2

 , 1
8


4 2 2 −2 −2 0
2 3 3 1 1 0
2 3 3 1 1 0
−2 1 1 3 3 0
−2 1 1 3 3 0

0 0 0 0 0 0

 , (5.3b)

for vertices that correspond to quadruple junction points; here similar blocks with slightly different
signs are obtained for different choices of (ok1, o

k
2, o

k
3), k = 1→ IT . In particular, the examples in

(5.3b) are induced by the choices 1 0 −1 1 0 0
−1 1 0 0 1 0

0 −1 1 0 0 1
0 0 0 1 1 1

 and

 1 −1 0 1 0 0
1 0 −1 0 1 0
0 0 0 −1 1 1
0 1 −1 0 0 1

 (5.4)

for the orientation coefficients oji , i = 1 → 4, for the six surfaces meeting at the four triple
junction lines, respectively. That is, the i-th row of the matrices in (5.4) denotes the coefficients
oji ∈ {−1, 1} that the six surfaces have in the description of the triple junction line Tji , or a zero
if the corresponding surface does not touch this triple junction line. Similarly to (5.2), applying the
local projections (5.3a,b) is straightforward.

In order to give a matrix formulation for (4.6a,b) we introduce the matrices M i ∈ RKi×Ki ,
EN i ∈ (R3)Ki×Ki , Ai ∈ RKi×Ki and EAi ∈ (Rd×d)Ki×Ki , i = 1→ IS , defined by

M i
kl :=

∫
Γ mi

πmi [φm,ik φ
m,i
l ] dH2, EN i

kl :=
∫
Γ mi

πmi [φm,ik φ
m,i
l ]Eνmi dH2,

Aikl :=
∫
Γ mi

∇sφm,ik .∇sφm,il dH2, EAikl := Aikl EId1,
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where we recall that {{φm,ik }Kik=1}ISi=1 is the standard basis of Ŵh(Γ m) and πm := (πm1 , . . . , πmIS ) :

C(Γ m,R)→ Ŵh(Γ m) is the standard interpolation operator at the nodes {{Eqm,ik }Kik=1}ISi=1. Then on
introducing the matrices

M := diag(M1, . . . ,MIS ), A := diag(A1, . . . , AIS ),

EA := diag( EA1, . . . , EAIS ), EN := diag( EN1, . . . , EN IS ),

where M,A : RK → RK , EA : (R3)K → (R3)K and EN : RK → (R3)K , the system of equations
(4.6a,b) can be written as: Find (δ EXm+1, κm+1) ∈ X× RK such that(

M − 1
τm
ENT EP

EP EN EP EA EP

)(
κm+1

δ EXm+1

)
=
(

0

− EP EA EP EXm
)
. (5.5)

Here, with the obvious abuse of notation, κm+1 = (κm+1
1 , . . . , κm+1

IS
)T with κm+1

i =
([κm+1

i ]1, . . . , [κm+1
i ]Ki ), i = 1 → IS , and δ EXm+1 = (δ EXm+1

1 , . . . , δ EXm+1
IS

)T with δ EXm+1
i =

([δ EXm+1
i ]1, . . . , [δ EXm+1

i ]Ki ), i = 1→ IS , are the vectors of coefficients with respect to the standard
basis {{φm,ik }Kik=1}ISi=1 of κm+1 and EXm+1 − EXm in (4.6a,b), respectively.

Similarly, the system (4.7a,b) can be written as: Find (δ EXm+1, κm+1) ∈ X× X such that(
KAK − 1

τm
K ENT EP

EP ENK EP EA EP

)(
κm+1

δ EXm+1

)
=
(

0

− EP EA EP EXm
)
. (5.6)

5.1 Schur complement approach

As M is nonsingular, we can reformulate (5.5) as

κm+1 = 1
τm
M−1 ENT EPδ EXm+1, (5.7a)

( EP EA EP + 1
τm
EP ENM−1 ENT EP)δ EXm+1 = − EP EA EP EXm. (5.7b)

Similarly, (5.6) can be solved by applying a Schur complement approach and then solving for
δ EXm+1 ∈ X:

EΠ EP( EA+ 1
τm
ENKSK ENT ) EP EΠδ EXm+1 = − EΠ EP EA EP EXm. (5.8)

Here S is the inverse of KAK on the space (kerKAK)⊥. Also EΠ : (R3)K → R⊥ is the orthogonal
projection onto R⊥, where R := span { EP ENKei : i = 1→ IEV } ≡ { EP ENKv : v ∈ kerKAK} ⊂ X
with {ei}IEVi=1 being a basis of the space E = kerA ∩ X. In practice we always found that IEV =
dim(E) is equal to the number of volumes enclosed by the given surface cluster; e.g. IEV = 2 for a
double bubble, IEV = 3 for a triple bubble and so on. This is the natural generalization to surface
clusters of the result proved for curve networks in the plane; see [7].

The Schur complement systems (5.7b) and (5.8) can be solved with a (preconditioned) conjugate
gradient solver. Here we used a simple diagonal preconditioner as considered in [9, p. 314] for the
two-dimensional case. Where necessary, the solution of KAKy = x in order to compute Sx can be
obtained with an (inner loop) CG solver without a projection, as the right hand side vector x always
satisfies the necessary compatibility condition, i.e. x ∈ (kerKAK)⊥. See [45] for a justification of
using a CG solver for a positive semidefinite system.
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REMARK 5.2 The approximation (4.28a–c) can be solved by the following lagged iteration. Let
λ
m+1,0
i = λmi for m = 0 → M − 1, where we set λ0

i = 0, i = 1 → 3. Then for j > 0 find
EXm+1,j+1 ∈ V h(Γ m) and κm+1,j+1 ∈ Ŵh(Γ m) such that〈 EXm+1,j+1 − EXm

τm
, χ Eνm

〉h
m

− 〈κm+1,j+1 − λm+1,j , χ〉hm = 0 ∀χ ∈ Ŵh(Γ m), (5.9a)

〈κm+1,j+1Eνm, Eη〉hm + 〈∇s EXm+1,j+1,∇s Eη〉m = 0 ∀Eη ∈ V h(Γ m); (5.9b)

and then find λm+1,j+1
i ∈ R, i = 1→ 3, such that λm+1,j+1 ∈ Wh(Γ m) and∫
Γ m1

(κ
m+1,j+1
1 − λm+1,j+1

1 ) dH2 =
∫
Γ m2

(κ
m+1,j+1
2 − λm+1,j+1

2 ) dH2

=
∫
Γ m3

(κ
m+1,j+1
3 − λm+1,j+1

3 ) dH2. (5.9c)

The iteration is stopped once
∑3
i=1 |λm+1,j+1

i − λm+1,j
i | is sufficiently small, upon which we set

( EXm+1, κm+1, λm+1) = ( EXm+1,j+1, κm+1,j+1, λm+1,j+1). Clearly, (5.9a,b) can be written as (5.5)
with a slightly different right hand side, and so it can be solved with the correspondingly adapted
Schur approach (5.7b).

5.2 Anisotropic schemes

In the case r = (1, . . . , 1), when the approximations (4.8a,b) and (4.9a,b) are linear, the anisotropic
equivalents of (5.5) and (5.6) are given by(

Mβ − 1
τm
ENT EP

EP EN EP EAγ EP

)(
κm+1
γ

δ EXm+1

)
=
(

0

− EP EAγ EP EXm
)

(5.10)

and (
KAβK − 1

τm
K ENT EP

EP ENK EP EAγ EP

)(
κm+1
γ

δ EXm+1

)
=
(

0

− EP EAγ EP EXm
)
, (5.11)

with the obvious definitions of Mβ , Aβ and EAγ . Similarly, the schemes (4.12a,b) and (4.13a,b) in
the linear case r = (1, . . . , 1) can be formulated as follows. We define the orthogonal projection
EP∂ : (R3)K → X∂ onto the Euclidean space associated with V h∂ (Γ

m), where, on recalling (2.26) and
(4.11), we note that EP∂ can be decomposed into the projection EP and independent local projections
of the form EId − |∇F(Eq)|−2∇F(Eq)⊗∇F(Eq) for all the vertices Eq ∈ Bmk , where in general Eq 6∈ ∂D.
Then the system (4.13a,b) can be reformulated as: Find (δ EXm+1, κm+1) ∈ X∂ × X such that(

KAβK − 1
τm
K ENT EP∂

EP∂ ENK EP∂ EAγ EP∂

)(
κm+1
γ

δ EXm+1

)
=
(

0

− EP∂ EAγ EXm
)
, (5.12)

and similarly for (4.12a,b). The Schur complement approaches (5.7b) and (5.8) are then easily
generalized to the anisotropic setting.

In the truly nonlinear case, i.e. when ri > 1 for some i = 1 → IS , a lagged fixed point type
iteration can be employed, where linear systems of the form e.g. (5.11) need to be solved at each
iteration step. See [12] for analogous details in the case of a single closed hypersurface.
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6. Numerical results

In this section we present several numerical simulations of evolving surface clusters in R3. We stress
that all of the presented experiments were performed without any remeshing. In fact, in practice the
initial mesh quality is maintained or even improved on by the intrinsically induced tangential motion
of our schemes. A more detailed discussion of this property in the single closed hypersurface case
can be found in [10], while excellent mesh properties for fully anisotropic surface energies in the
closed surface case have been presented in [12].

Throughout this section we use essentially uniform time steps, i.e. τm = τ , m = 0 → M − 2,
and τM−1 = T − tm−1. For later purposes, we define

EX(t) := t − tm−1

τm−1
EXm + tm − t

τm−1
EXm−1, t ∈ [tm−1, tm], m > 1.

Finally, we note that we implemented the approximations within the finite element toolbox
ALBERTA (see [63]), where in particular we made use of new submesh tools recently presented
in [49]. ALBERTA is a freely available library with data structures and functions for adaptive finite
element simulations in one, two, and three space dimension, written in the programming language
ANSI-C. All of the presented computations were run on a standard Linux desktop PC.

6.1 Isotropic flows

First we present numerical simulations for isotropic surface energy densities, i.e. γi( Ep) = ςi | Ep|,
ςi > 0, i = 1→ IS . Hence the free energy (2.12) reduces to

Eγ (Γ ) =
IS∑
i=1

ςi |Γi |. (6.1)

Unless otherwise stated, we set σ = (ς1, . . . , ςIS ) = (1, . . . , 1). For the presented computations we
employ the schemes (4.12a,b) and (4.13a,b) with β ≡ (1, . . . , 1). Here we recall that in the absence
of intersections with an external boundary ∂D these schemes collapse to (4.8a,b) and (4.9a,b),
respectively.

6.1.1 Double bubbles. In the first experiment, we start off with a partition of the unit ball into
two half balls. Under the isotropic equal energy density surface diffusion flow this evolves to a
standard double bubble, as shown in Figure 5. The discretization parameters for this experiment
are K = 3267, J = 6240, τ = 10−3 and T = 1; and the maximum observed relative volume

FIG. 5. Plots of ΓM and (ΓM2 , ΓM3 ).
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loss was eMvol = 0.11%; recall Remark 4.2. For this simple evolution of a partitioned unit ball
to a symmetric standard double bubble, we in addition investigated the effect of refining the
discretization parameters h and τ on the relative volume loss, the error in the discrete energy of
the numerical steady state solution compared to the true surface area of the standard double bubble,
as well as on the observed triple junction angles. To this end, we define the following quantities.
Let eMvol denote the maximum relative volume loss of the two volumes enclosed by ΓM , relative
to the volumes enclosed by Γ 0. Moreover, let eMarea := ∣∣|ΓM | − |Γ ?|∣∣, where Γ ? denotes the
symmetric double bubble enclosing two volumes of 2π/3 each, and so a simple calculation yields
|Γ ?| = 41/33π ≈ 14.96. In addition, let θM := (θM1 , θ

M
2 , θ

M
3 ) denote the average angles that

the elements of the polygonal surfaces of ΓM make along the triple junction line T M1 . That is, for
each element σM,1j1

of ΓM1 that has an edge which lies on T M1 , we find the element σM,2j2
⊂ ΓM2 that

shares this edge with σM,1j1
, and then compute the angle between their two respective normals. This is

repeated for all elements along the triple junction line, and the average is denoted by θM3 . Similarly,
θM1 is the average angle between the surfaces ΓM2 and ΓM3 , and analogously for θM2 . Finally, we
denote by eMangle the maximal deviation from 120◦ for any of the angles between two elements
along the triple junction line T M1 , between any two surfaces. For different values of K , and setting
τ = 10−33267K−1, we report on these error quantities in Table 1. We observe that, similarly to the
two-dimensional results obtained in [7, Tables 4 and 5], the errors in volume, surface area and triple
junction angles become smaller, as the discretization parameters decrease. Here we recall that as
the force balance conditions (2.4b) are approximated weakly in our formulation, true 120◦ contact
angles cannot be expected on the discrete level. But the observed discrete angles approach 120◦
as h → 0. The same behaviour can be observed for our approximation (4.28a–c) for the volume
preserving mean curvature flow. The corresponding numerical results are shown in Table 2, where
we note once again that all of the measured quantities appear to be approximated consistently.

TABLE 1
Quantities eMvol, e

M
area, θM , eMangle for the surface diffusion experiment with T = 1.

K eMvol eMarea θM eMangle

243 0.518% 5.0803e-01 (109.0, 142.0, 109.0) 34.7
867 0.253% 1.4459e-01 (114.3, 131.4, 114.3) 17.6

3267 0.113% 4.1503e-02 (117.1, 125.8, 117.1) 8.8
12675 0.048% 1.2371e-02 (118.5, 122.9, 118.5) 4.4

TABLE 2
Quantities eMvol, e

M
area, θM , eMangle for the conserved mean curvature flow experiment with T = 1.

K eMvol eMarea θM eMangle

243 0.031% 4.5878e-01 (108.4, 143.1, 108.4) 36.7
867 0.014% 1.1955e-01 (114.0, 132.0, 114.0) 18.6

3267 0.004% 2.9544e-02 (117.0, 126.0, 117.0) 9.2
12675 0.001% 6.6432e-03 (118.5, 123.0, 118.5) 4.6
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FIG. 6. Plots of ΓM and (ΓM2 , ΓM3 ) for σ = (1, 1, 1.5) (left) and σ = (1, 1, 1.75) (right).

FIG. 7. Plots of ΓM and (ΓM2 , ΓM3 ) for enclosed volume ratios of 1/2 (left) and 1/4 (right).

In the next experiments, with all other parameters the same as in Figure 5, we choose σ =
(1, 1, 1.5) and σ = (1, 1, 1.75). The results are in Figure 6. As expected, the higher weighting of
the surface area of the surface Γ3 in the free energy (6.1) leads to this surface shrinking relative to
the other two surfaces Γ1 and Γ2. The effect becomes more pronounced for larger choices of ς3.
Moreover, we repeat the experiment in Figure 5 for the equal energy case σ = (1, 1, 1) for a
nonequal volume double bubble setup. Keeping all the discretization parameters as before, we
simulate the surface diffusion flow for two clusters that are given as the union of a half ball and
a half ellipsoid. The relative enclosed volume ratios for the two flows are 1/2 and 1/4, and the
numerical steady state solutions can be seen in Figure 7.

In addition, we show two experiments for unstable double bubbles, also called torus bubbles;
see e.g. [42, Fig. 7] for an illustration. Here IS = 4 and IT = 2. The initial surface cluster is given
by the union of two half spheres and a torus, the latter defined by the equation

(R − [x2
1 + x2

2 ]1/2)2 + x2
3 = r2 (6.2)

with R = 2 and r = 1. Hence the volume relation of the torus/dumbbell volumes is 1.28. The
discretization parameters are K = 4802, J = 9216, τ = 10−3 and T = 1. The maximum relative
volume loss for this experiment was 0.08%. See Figure 8 for the results. We note that the final
solution at time T = 1, which is close to being a numerical steady state, is an approximation of
a so called unstable double bubble, which before the proof of the double bubble conjecture was a
possible theoretical candidate for a surface area minimizing constellation. Here we recall that the
double bubble conjecture states that for two given volumes, the standard double bubble has least
possible surface area among all the surfaces enclosing and separating these two volumes. Here
the standard double bubble is made up of three constant mean curvature surfaces, meeting along a
common circle at an angle of 120 degrees; cf. Figures 5 and 6 for some examples. The conjecture for
volumes in R3 has been proved only relatively recently in [48], while the corresponding conjecture
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FIG. 8. Plots of Γ m and (Γ m1 , Γ
m
2 , Γ

m
4 ) at times tm = 0, 1.

FIG. 9. Plots of (Γ m1 , Γ
m
2 , Γ

m
4 ) at times tm = 1, 25, 26.5, 26.6. Below the corresponding triangulations.

for triple bubbles in R3 still remains open. We refer to the previously mentioned review article [53]
for more details. In fact, if we continue the simulation in Figure 8 for long enough, then the above
mentioned instability becomes evident also in our numerical approximation. As expected, and in
agreement with corresponding phase field computations in e.g. [59, Fig. 13], the inner wall of the
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FIG. 10. A plot of |Γ | over time.
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FIG. 11. Plots of Γ m and (Γ m3 , Γ
m
4 ) at times tm = 0, 0.75, 0.9, 0.91.

FIG. 12. Plots of Γ m and (Γ m3 , Γ
m
4 ) at times tm = 0.5, 0.7, 0.8, 0.815.

torus bubble tries to pinch, which would lead to three separately enclosed volumes. These results
are shown in Figure 9, together with the corresponding triangulations. Of course, this change of
topology goes beyond the parametric formulation employed in this paper and our finite element
approximation can only integrate until just before the rupture, which in this case occurs at around
time t = 26.61. A plot of the free energy |Γ | over time can be seen in Figure 10. In addition, we
show a simulation for a torus bubble that is not rotationally symmetric, and where the torus part of
the double bubble is relatively smaller compared to the previous experiment. Here the initial cluster
was obtained by starting with a torus bubble as before, but now in (6.2) setting R = 2 and r = 0.5,
followed by two slight stretchings of this cluster obtained by applying the transformations

EG1(Ez) :=
{
(z1e

−0.1z1 , z2, z3), z1 < 0,
Ez, z1 > 0,

and EG2(Ez) :=
{
(z1, z2e

−0.05z2 , z3), z2 < 0,
Ez, z2 > 0,

respectively. This resulted in a volume relation of the torus/dumbbell volumes of 0.25. The results
of the surface diffusion flow for this torus bubble are shown in Figure 11, where the discretization
parameters are K = 5314, J = 10240 and τ = 10−3. We observe that in this evolution the
instability leads to a slightly different behaviour. In particular, it results in the thinning of the toroidal
ring at one point. Eventually the thinning would lead to the ring tearing apart, and it appears that
this change of topology would occur at around time t = 0.91.
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A slightly different behaviour can be observed for the volume preserving mean curvature flow.
To demonstrate this, we repeated the last experiment with the same initial data and the same
discretization parameters for our approximation (4.28a–c); see Figure 12 for the numerical results.
Once again, the torus bubble eventually pinches off, but this time the pinching is caused by a uniform
thinning of the ring on one side, while it gains in dimension on the opposite side, in agreement with
corresponding phase field computations in e.g. [33, Fig. 8]. This is in contrast to the very local
behaviour caused by the fourth order flow in Figure 11.

6.1.2 Triple bubbles. We first show an experiment for the mean curvature flow. The initial
surfaces are given by a partitioning of the unit ball into three equal segments, leading to three
curved surfaces and three flat ones, so that IS = 6 and IT = 4. The four triple junction lines meet at
two quadruple junction points. The discretization parameters are K = 6534, J = 12288, τ = 10−4

and T = 0.15. We note that, if continued, the cluster will shrink to a point, as is to be expected for
mean curvature flow. In this numerical experiment this happens at around time 0.178. The results
are shown in Figure 13.

FIG. 13. Plots of Γ m, (Γ m1 , Γ
m
4 , Γ

m
5 ) and (Γ m4 , Γ

m
5 , Γ

m
6 ) for m = 0,M (scaled for m = M).

We also present computations for a surface diffusion flow. With the same initial surface cluster
as before, and the same discretization parameters, we integrate the flow until time T = 1. At this
stage the solution has reached a numerical steady state, which approximates the well known standard
triple bubble. Here we recall that the corresponding conjecture that this is indeed the surface area
minimizing way to separate three given volumes is still an open problem; although a proof for the
planar case has recently been given in [75]. The maximum observed relative volume loss for this
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FIG. 14. Plots of ΓM , (ΓM1 , ΓM4 , ΓM5 ) and (ΓM4 , ΓM5 , ΓM6 ).

computation was 0.03%. See Figure 14 for the results. In order to underline the conjecture that the
standard triple bubble is the unique global minimizer among all triple bubbles, we also present a
numerical simulation for a nonstandard triple bubble that enclosed the same volumes as the bubble
in Figure 14. To this end, we choose a cluster with IS = 5 and IT = 2 that consists of three
adjacent cubes with side length (4π/9)1/3. For the discretization parameters K = 4292, J = 8192,
τ = 10−4 and T = 1 we present the evolution in Figure 15. For the numerical steady state solution
in Figure 15 we observe a discrete energy of |ΓM | ≈ 16.56, while the final solution in Figure 14
has |ΓM | ≈ 16.38, in agreement with the triple bubble conjecture.

FIG. 15. Plots of Γ 0 and ΓM .

In the next experiments, we choose the same initial data as in Figure 14 but let σ =
(1.25, 1, 1, 1, 1, 1) and σ = (1.5, 1, 1, 1, 1, 1). The results are in Figure 16, where the discretization
parameters are the same as before. As expected, and similarly to the results shown in Figure 6,
we observe that for increasing ς1 the relative area of the surface Γ1 shrinks, compared to the
remaining surfaces Γi , i = 2 → 6. A similar behaviour can be observed for the weighting
σ = (1, 1, 1, 1, 1, 1.5) (see Figure 17), where now the area of the surface Γ6 relatively shrinks,
compared to other surfaces. It is interesting to note that for the numerical steady state in Figure 17,
we observe a discrete energy of Eγ (ΓM) ≈ 16.70 (recall (6.1)), which is larger than the value
|ΓM | ≈ 16.56 observed in Figure 15. Of course, the interface Γ6, which would separate the left and
right volumes, is not present in the latter experiment, and so here Eγ (ΓM) = |ΓM | for the given
surface energy weights. Hence we conjecture that for three equal volumes and the given weights,
the unique surface area minimizer is given by a caterpillar triple bubble as shown in Figure 15.
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FIG. 16. Plots of ΓM , (ΓM1 , ΓM4 , ΓM5 ) and (ΓM4 , ΓM5 , ΓM6 ) for ς1 = 1.25 (top) and ς1 = 1.5 (bottom).

FIG. 17. Plots of ΓM , (ΓM1 , ΓM4 , ΓM5 ) and (ΓM4 , ΓM5 , ΓM6 ) for ς6 = 1.5.
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6.1.3 Quadruple bubbles. Here we report on two experiments for quadruple bubbles, when four
volumes are enclosed by the surface cluster. The first cluster consists of IS = 9 surfaces meeting
at IT = 8 triple junction lines, which in turn meet at four different quadruple junction points. Here
we note that two triple junction lines arise from the intersection of Γ2, Γ3 and Γ6; that is, the light
green, the light blue and the brown surface in Figure 18. We start with a configuration made up
of two unit cubes and two cuboids, with each cuboid having twice the volume of a unit cube. The
discretization parameters are K = 7305, J = 13824, τ = 10−4 and T = 1. The results for the
approximation (4.7a,b) can be seen in Figure 18. We conjecture that the numerical steady state
displayed in Figure 18 is an approximation of a stable cluster of constant mean curvature surfaces,
which is a local surface area minimizer for this non-equal volume quadruple bubble constellation.
In fact, the solution in Figure 18 looks very similar to quadruple bubbles observed in real life (see
e.g. [43, Fig. 2e]).

FIG. 18. Plots of Γ m, (Γ m1 , Γ
m
5 , Γ

m
7 ) and (Γ m5 , Γ

m
6 , Γ

m
7 , Γ

m
8 , Γ

m
9 ) for m = 0,M .

Here we recall that the conjectured unique minimizer over all quadruple bubbles is the so-called
standard quadruple bubble, or 4-bubble, as displayed in [28, Fig. 3]. The conjecture can be found in
[66] and more details about the standard 4-bubble are given in [3]. Next we include a simulation for
the surface diffusion flow towards such a standard quadruple bubble, and compare the final surface
area to the value obtained for the solution in Figure 18. To this end, we start the evolution with a
cluster that is topologically equivalent to the standard bubble, i.e. the cluster consists of IS = 10
surfaces meeting at IT = 10 triple junction lines, which in turn meet at five different quadruple
junction points. The initial volumes are given by two unit cubes, by a cuboid of dimension 1×2×1,
and by a cuboid of dimension 2× 2× 1/2. Hence overall the separated volumes are the same as in
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FIG. 19. Plots of Γ m, (Γ m1 , Γ
m
2 , Γ

m
3 , Γ

m
7 ) and (Γ m2 , Γ

m
3 , Γ

m
5 , Γ

m
7 , Γ

m
8 , Γ

m
9 ) for m = 0,M .

Figure 18. The discretization parameters for this simulation are K = 8378, J = 15872, τ = 10−4,
T = 1; and the numerical results can be seen in Figure 19. We note that the numerical steady state
displayed in Figure 19 has a total surface area of |ΓM | ≈ 21.75, which as expected is smaller than
the value |ΓM | ≈ 22.08 for the solution in Figure 18. A plot of the free energy |Γ | over time for
both experiments can be seen in Figure 20.
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FIG. 20. A plot of |Γ | over time for the nonstandard quadruple bubble (left) and for the standard quadruple bubble (right).
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6.1.4 Surfaces attached to an external boundary. The first experiment is for a surface that is
attached to the boundary of D := R2× (0,∞). Starting with an initial surface in the shape of a unit
cube, the surface evolves into a half sphere under flow by surface diffusion, as expected; see the left
of Figure 21. The discretization parameters are K = 5185, J = 10240, τ = 10−3 and T = 1. For
the remaining experiments we consider surfaces attached to the lower and upper boundary of the
slabs D = R2 × (0, %), where either % = 4 or 8. The surface diffusion flow for the surface defined
by

Γ (0) =⋃{r(x3)S1 × {x3} : x3 ∈ [0, %]}, where r(x3) = 1+ α cos(2πx3/%), (6.3)

with % = 4 and α = 0.5, can be seen on the right of Figure 21, where the discretization parameters
are K = 4160, J = 8192, τ = 10−3 and T = 2. This time, we observe that the surface evolves to
a cylinder. We note that all of the experiments in this subsection illustrate surface area minimizers
for a fixed enclosed volume inside the slabs D = R2 × (0, %), with % = 4 or 8. Here we recall
that inside such slab domains the isoperimetric problem is solved, with the surface area minimizing
surfaces being either half spheres or cylinders; see e.g. [5]. Moreover, in the next two experiments
in this subsection we start with two different initial surfaces attached to the boundary of the slab
D = R2 × (0, 8), i.e. % = 8. First we start with a triangulation of a cuboid of dimension 1× 1× 8
inside D, and this evolves to a cylinder. In fact, as this surface is constant in the x3-direction the
flow is essentially one dimensional, i.e. it corresponds to a square evolving to a circle. However, if
we start with a perturbed cylinder inside D, where we choose (6.3) with α = 0.25, then we observe
pinch-off and the flow does not converge to a cylinder, which in this case is unstable; see [5]. Instead,
the flow wants to separate the surface into two surfaces, which would each evolve into a half sphere.
Of course, as mentioned before, such a change of topology is beyond the parametric formulation
and hence, without a heuristically defined reparameterization, our finite element approximation can
only integrate until just before the pinch-off, which in this case occurs at around time t = 1.487.
The discretization parameters are K = 4128, J = 8192, τ = 10−3, and the results can be seen in
Figure 22.

We also consider simulations for surfaces attached to a curved boundary, and here we initially
consider the unit ball with boundary ∂D = S2. As the initial surface Γ (0) we choose a flat
hyperplane at height x3 = α inside the unit ball, so that the ball is partitioned into two volumes. For
the resulting volume ratios we choose the values 1, 1/2, 1/4 and 1/8, which corresponds to α = 0
and α ≈ 0.226, 0.426, 0.585, respectively. We show numerical approximations of the steady state
solutions for the surface diffusion flows starting from these initial conditions in Figure 23, where
the discretization parameters are K = 4225, J = 8192, τ = 10−3 and T = 0.2. As the boundary
∂D is curved, we cannot expect Bm+1

1 ⊂ ∂D in these experiments. The observed maximal distance
of any vertex in BM1 to ∂D for the four experiments was eM∂ = 0, 5.7 × 10−4, 2.8 × 10−3 and

FIG. 21. Plots of Γ 0 and ΓM .
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FIG. 22. Plots of Γ 0 and ΓM (top) and plots of Γ m for tm = 0, 1, 1.45, 1.48 (bottom).

FIG. 23. Plots of ΓM for relative volume ratios 1, 1/2, 1/4 and 1/8.

FIG. 24. Plots of Γ m for tm = 0, 0.1, . . . , 0.4, 0.45, 0.5.
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FIG. 25. Plots of Γ m for tm = 0, 0.1, . . . , 0.7.

8.5× 10−3, respectively. A simulation for the mean curvature flow of the initial configuration with
α ≈ 0.226 can be seen in Figure 24, where we kept all the discretization parameters as before. Here
we observed an extinction time close to t = 0.5.

Finally, we present the evolution of a surface attached to an ellipsoid. The dimensions of the
ellipsoid are 2× 1× 1, and the initial surface Γ (0) is given by a hyperplane that makes an angle of
25◦ with the (x1, x2)-plane. For the discretization parametersK = 8321, J = 16384, τ = 5×10−3

and T = 0.7 we show the numerical results in Figure 25. As expected, under the surface diffusion
flow the surface aligns itself with the (x2, x3)-plane, where it assumes the area minimizing shape
of a unit disk. For this experiment, the maximal distance of a boundary line vertex to ∂D was
eM∂ = 8.9× 10−3.

6.2 Anisotropic flows

In what follows we present numerical results for fully anisotropic evolution equations for surface
clusters. Here we employ our schemes (4.12a,b) and (4.13a,b), where we recall that in the absence
of intersections with an external boundary ∂D these schemes collapse to (4.8a,b) and (4.9a,b),
respectively.

Unless otherwise stated, we choose the constant mobility β = (1, . . . , 1) and set γ =
(γ1, . . . , γ1), where γ1 is chosen of the form (2.15) with (2.17).

6.2.1 Anisotropic mean curvature flow. Similarly to [65], it can be proven that for an anisotropy
that is symmetric with respect to the x3-axis and for the anisotropic mobility β = γ , an exact
solution to (2.19) with IS = 1 for a single hypersurface touching the boundary ofD := R2×(0,∞)
is given by

Γ (t) = {Eq ∈ R3 : γ ∗1 (Eq) =
√

1− 4t} ∩D, (6.4)

i.e. shrinking (upper) halves of boundaries of Wulff shapes; recall (2.16). Using (6.4) we now
perform a convergence test for our approximation (4.12a,b) with β = γ . An exact solution to
(2.19) with IS = 1 and β = γ defined by (2.15) with L1 = 1 and G(1)1 = diag(1, ε2

1, ε
2
1), on noting

(2.16) and (6.4), is given by

Ex1(·, t) = (1− 4t)1/2[G(1)1 ]1/2 EidS2
>0
, t ∈ [0, T ), T = 0.25;

where EidS2
>0

is the identity function on the upper unit sphere Ω ≡ S2
>0 ⊂ R3. For ε1 =
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TABLE 3
Absolute errors ‖ EX − Ex‖L∞ for the test problem, with T = 1

2T = 1
8 and T = T − τ , respectively.

K ε1 = 0.5 ε1 = 0.1

h EX0 T = 1
2T T = T − τ h EX0 T = 1

2T T = T − τ

289 2.7470e-01 7.8899e-03 1.0094e-01 2.7076e-01 4.6355e-03 1.0020e-01
1089 1.3957e-01 2.2296e-03 7.6033e-02 1.3801e-01 1.5169e-03 7.6160e-02
4225 7.0067e-02 5.8183e-04 4.9572e-02 6.9339e-02 4.0686e-04 4.9487e-02

16641 3.5069e-02 1.5238e-04 3.0130e-02 3.4711e-02 1.2193e-04 3.4094e-02

0.5 and ε1 = 0.1 we report on the error ‖ EX − Ex‖L∞ in Table 3. Here we always compute
the error ‖ EX − Ex‖L∞ := maxm=1→M ‖ EX(tm) − Ex(·, tm)‖L∞ , where ‖ EX(tm) − Ex(·, tm)‖L∞ :=
maxk=1→K1{minEy∈Ω | EXm1 (Eq1

k ) − Ex1(Ey, tm)|} between EX and the true solution on the interval [0, T ]
by employing a Newton method. We used τ = 0.125h2

EX0 and either T = 1
2T or T = T − τ ,

where h EX0 := maxi=1→IS maxj=1→Ji diam( EX0
i (σ

i
j )). We note that the experiments indicate that the

convergence rate for the error away from the singularity isO(h2), and up to the singularity at time T
is of order less thanO(h), which corresponds to the results obtained for the closed hypersurface case
in [12]. In Figure 26, we present the evolution for the case K = 4225 and ε1 = 0.5. We note that
for the convergence experiments in Table 3 the condition (4.14) was satisfied exactly throughout.
As noted earlier, in this case this is to be expected since ∂D is flat.

FIG. 26. Plots of EX(t) at times t = 0, 1
2 T̄ , T̄ − τ .

6.2.2 Anisotropic surface diffusion. For the anisotropy as displayed on the left of Figure 2, i.e.
for the regularized l1-norm

γ1( Ep) =
3∑

j=1

[ε2
1| Ep|2 + p2

j (1− ε2
1)]

1/2, (6.5)

we repeat the experiment in Figure 5, now for the anisotropic flow. Here we choose ε1 = 10−1

and ε1 = 10−2 in (6.5). The discretization parameters for the two experiments are K = 3267,
J = 6240 and τ = 10−3, T = 1. See Figure 27 for the results, where we note once again that our
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FIG. 27. Plots of ΓM , (ΓM2 , ΓM3 ) and the triangulations of ΓM for ε1 = 10−1 (top) and ε1 = 10−2 (bottom).

FIG. 28. Plots of ΓM , (ΓM2 , ΓM3 ) and the triangulations of ΓM .

scheme produces good quality meshes throughout. In addition, we observe that our finite element
approximation can easily handle these almost crystalline surface energies, which suggests that it
can be used to numerically study possible energy minimizing configurations of e.g. salt crystals, as
discussed in e.g. [55, 74].

Moreover, we repeated the experiment in Figure 27 but used an isotropic surface energy density
γ2 = γ3 = | · | for the surfaces Γ2 and Γ3, while γ1 is given by (6.5) with ε1 = 10−2. The numerical
results for this simulation are shown in Figure 28.

The next experiment is for the setup as in Figure 14, but now for the anisotropic surface energy
densities γi all chosen as on the right of Figure 2. With the same discretization parameters as in
Figure 14, we obtained the results as displayed in Figure 29.

In the remainder, we present some computations for the anisotropic surface diffusion flow of a
single surface attached to the boundary of D := {Eq ∈ R3 : q3 > 0}. As initial surface we choose a
unit half sphere attached to ∂D. The discretization parameters are K = 4225, J = 8256, τ = 10−3

and T = 1. The results for the choices γ1( Ep) = | Ep|, as well as the two anisotropies displayed in
Figure 3 are shown in Figure 30. As expected, the initial surfaces evolve to upper halves of Wulff
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FIG. 29. Plots of ΓM , (ΓM1 , ΓM4 , ΓM5 ) and (ΓM4 , ΓM5 , ΓM6 ).

FIG. 30. Plots of ΓM for different anisotropies, with the triangulations given below.

shapes. We note that the last example has clear resemblances with shapes observed in the laboratory
for epitaxial thin film growth; see e.g. [73, Fig. 5.12]. We also remark that in epitaxial thin film
growth the equilibrium state is given as a stationary solution of an anisotropic surface energy and
that surface diffusion is the main transport mechanism in this context. Hence the flow (2.20) is
a relevant equation for surface evolution in thin film growth, although more general models take
elastic effects into account, see e.g. [40].

REFERENCES

1. ALMGREN, F., & TAYLOR, J. E. Soap bubble clusters. Forma 11 (1996), 199–207. Zbl 1017.49502
MR 1487207

2. ALMGREN, F. J., Jr. Existence and regularity almost everywhere of solutions to elliptic variational
problems with constraints. Mem. Amer. Math. Soc. 4 (1976). Zbl 0327.49043 MR 0420406

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1017.49502&format=complete
http://www.ams.org/mathscinet-getitem?mr=1487207
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0327.49043&format=complete
http://www.ams.org/mathscinet-getitem?mr=0420406


PARAMETRIC APPROXIMATION OF EVOLVING SURFACE CLUSTERS 231

3. AMILIBIA, A. M. Existence and uniqueness of standard bubble clusters of given volumes in RN . Asian
J. Math. 5 (2001), 25–31. Zbl 1018.53005 MR 1868162

4. ANGENENT, S., & GURTIN, M. E. Multiphase thermomechanics with interfacial structure. 2. Evolution
of an isothermal interface. Arch. Ration. Mech. Anal. 108 (1989), 323–391. Zbl 0723.73017
MR 1013461

5. ATHANASSENAS, M. A variational problem for constant mean curvature surfaces with free boundary.
J. Reine Angew. Math. 377 (1987), 97–107. Zbl 0604.53003 MR 0887402
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7. BARRETT, J. W., GARCKE, H., & NÜRNBERG, R. A parametric finite element method for fourth order
geometric evolution equations. J. Comput. Phys. 222 (2007), 441–462. Zbl 1112.65093 MR 2298053
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23. COX, S. J., & GRANER, F. Three-dimensional bubble clusters: Shape, packing, and growth rate. Phys.
Rev. E 69 (2004), 031409.

24. DECKELNICK, K., DZIUK, G., & ELLIOTT, C. M. Error analysis of a semidiscrete numerical scheme for
diffusion in axially symmetric surfaces. SIAM J. Numer. Anal. 41 (2003), 2161–2179. Zbl 1058.65097
MR 2034610

25. DEPNER, D., GARCKE, H., & KOHSAKA, Y. Mean curvature flow of surface clusters. In preparation.
26. DZIUK, G., An algorithm for evolutionary surfaces. Numer. Math. 58 (1991), 603–611. Zbl 0714.65092

MR 1083523
27. DZIUK, G. Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods

Appl. Sci. 4 (1994), 589–606. Zbl 0811.65112 MR 1291140
28. FISCHER, F. Four-bubble clusters and Menelaus’ theorem. Amer. J. Phys. 70 (2002), 986–991.

MR 1933590
29. FOISY, J., ALFARO, M., BROCK, J., HODGES, N., & ZIMBA, J. The standard double soap bubble in R2

uniquely minimizes perimeter. Pacific J. Math. 159 (1993), 47–59. Zbl 0738.49023 MR 1211384
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