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Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy

E-mail: m.bertsch@iac.cnr.it

R. DAL PASSO†

Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy

M. MIMURA

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University,
1-1-1, Higashimita, Tamaku, Kawasaki, 214-8571, Japan

[Received 1 October 2009 and in revised form 4 April 2010]

It is observed in vitro and in vivo that when two populations of different types of cells come near to
each other, the rate of proliferation of most cells decreases. This phenomenon is often called contact
inhibition of growth between two cells. In this paper, we consider a simplified 1-dimensional PDE-
model for normal and abnormal cells, motivated by the paper by Chaplain, Graziano and Preziosi
([5]). We show that if the two populations are initially segregated, then they remain segregated due
to the contact inhibition mechanism. In this case the system of PDE’s can be formulated as a free
boundary problem.

1. Introduction

It is observed in vitro and in vivo that when two different types of cells approach closely, the rate
of proliferation of most cells decreases [1]. This phenomenon is often called contact inhibition
of growth between two cells and is observed in many types of cells. For a better theoretical
understanding of the mechanism of contact inhibition arising in normal and abnormal (tumour)
tissue growth, several mathematical models have been proposed so far. Among them, we mention
the model proposed by Chaplain, Graziano and Preziosi ([5]) which describes normal and abnormal
tissue growth. Here the “abnormal cells” denote cells which respond to compression in a different
way from the normal cells. According to the phenomenological description given by biologists, it
is believed that these cells change to be a tumour at some later stage in the process. The feature of
their model includes the effect of pushing cells away from the overcrowded region where they feel
pressed. In other words, the cells move in the direction of lower overall density of cells.

Here we introduce a simplified version of the model proposed in [5]. Let n and a be the densities
of normal and abnormal cells and N be the overall density of cells, N = n+ a. Then the model for
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the two types of cells is given by{
nt = ∇(n∇V (N))+Gn(N)n,

at = ∇(a∇V (N))+Ga(N)a,
(1)

where V (N) is an increasing function in N . A possible choice for V (N) is V (N) = N , which
is proposed in [5]. Gn(N) is a nonincreasing function satisfying Gn(Nn) = 0 for some constant
Nn > 0. Similarly Ga(N) depends on some constant Na > 0. As a simple example, we take
Gn(N) = gn(1−N/Nn) andGa(N) = ga(1−N/Na) for some constants gn > 0 and ga > 0, which
are ecologically regarded as a Lotka–Volterra competition type. For (1), the following questions
arise naturally:

(Q1) Let the two types of cells be initially segregated. When they meet, do they form a barrier for
each other, i.e. do they never overlap?

(Q2) Suppose that, as a result of a mutation, the abnormal cells may be generated in a small region
of the domain of normal cells. How do the abnormal cells n invade the state of normal cells
in their evolution?

Motivated by these questions, we consider system (1) in one spatial dimension. First, we choose
V (N) = N and study the following system for n and a numerically:{

nt = (nNx)x + (1−N)n for −L < x < L, t > 0,
at = (aNx)x + (1−N/k)a for −L < x < L, t > 0.

(2)

Here k is a positive constant satisfying k > 1. At x = −L and x = L we impose zero-flux boundary
conditions.

In the first example we consider question (Q1): n(0, x) and a(0, x) are completely separated.
Fig.1 suggests that when n and a come into contact, they do not overlap for later times. This indicates
that the dynamics of n and a can be described by a free boundary problem with a contact point, say
x = ζ(t).

In the second example question (Q2) is considered: the initial conditions satisfy n(0, x) +
a(0, x) = 1 for −L 6 x 6 L, a(0, x) ≡ 0 (x 6 −π/m and π/m 6 x) and a(0, x) =
a(1 + cos(mx)) (−π/m 6 x 6 π/m). As shown in Fig. 2, the abnormal cells press and invade
the state of the normal cells, which qualitatively seems to be in agreement with the biological
observations. In addition, Fig. 2 suggests that for large times the solutions behave as (almost)
segregated solutions.

These two numerical experiments lead naturally to quite a few questions. In this paper we begin
considering basic questions concerning the correct formulation and wellposedness of both the free
boundary problem and a more general system (when solutions do not have separated supports).
For this purpose, we shall consider a 1-dimensional system which is more general than (2). More
precisely, our goal is to find bounded and nonnegative functions u(x, t) and v(x, t) (x ∈ [−L,L],
t > 0) which satisfy, in a sense to be defined,

ut = (u(χ(u+ v))x)x + u(1− u− αv) for −L < x < L, t > 0,
vt = d(v(χ(u+ v))x)x + γ v(1− βu− v/k) for −L < x < L, t > 0,
(u+ v)x(±L, t) = 0 for t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x) for −L < x < L.

(3)
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Fig. 1. Contact inhibition of a (           ) and n (          ) of (2) where L = 30, k = 2 
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Figure captions (Bertsch‐DalPasso‐Mimura)

FIG. 1. Contact inhibition of a (- - -) and n (—) of (2) where L = 30, k = 2

Fig. 2. Invasion of a (            ) in the field of n (        

 
) of (2) where L = 30, k = 2, m = 3 
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Figure captions (Bertsch‐DalPasso‐Mimura)

FIG. 2. Invasion of a (- - -) in the field of n (—) of (2) where L = 30, k = 2, m = 3
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Here χ : R+ → R is a smooth function such that χ ′ > 0 in R+, L, d , k, α, β and γ are positive
constants and u0 and v0 are the initial functions, u0, v0 ∈ L

∞(−L,L), satisfying

u0, v0 > 0 and 0 < A0 6 u0 + v0 6 B0 a.e. in (−L,L). (4)

We can regard (3) as a competition system with inter-specific competition rates α and β. When
χ(s) = s for s > 0, d = α = γ = 1 and β = 1/k, (3) obviously reduces to (2).

The strict positivity of u0+v0 in (4) has been assumed for the sake of simplicity, and it explains
why we do not require anything about the behaviour of χ(s) near s = 0. Possible choices of χ are:
χ(s) = sm or χ(s) = −s−m (m > 0), and χ(s) = log s [9]. In terms of question (Q1) the strict
positivity of u0 + v0 means that we study the system after the two types of cells have already met.

So we begin by considering the case that u and v are initially segregated: let x0 ∈ (−L,L) be
such that

v0 = 0 a.e. in (−L, x0) and u0 = 0 a.e. in (x0, L). (5)

We shall show that there exists a solution (u, v) of problem (3) such that u(t) and v(t) remain
segregated for all later times: there exists a continuous function ζ : [0,∞)→ (−L,L) such that{

v(x, t) = 0 for t > 0 and a.e. x ∈ (−L, ζ(t)),
u(x, t) = 0 for t > 0 and a.e. x ∈ (ζ(t), L).

(6)

More precisely, we shall prove the following result.

THEOREM 1.1 Let χ : R+ → R be a smooth function such that χ ′ > 0 in R+. Let d, L, k, α, β
and γ be positive constants. Let u0, v0 ∈ L

∞(−L,L) and x0 ∈ (−L,L) satisfy (4) and (5). Then
there exists a pair of functions (u, v) ∈ (L∞((−L,L)×(0,∞)))2 which is a solution of problem (3)
in the following sense: there exists a function ζ : [0,∞)→ (−L,L) which is continuous in [0,∞)
and of class C1 in (0,∞) such that, if we set

Pu = {(x, t) ∈ [−L,L]× R+; x < ζ(t)}, Pv = {(x, t) ∈ [−L,L]× R+; x > ζ(t)},

then:

(i) u, v ∈ C2,1(Pu ∪ Pv), u > 0 and v = 0 in Pu, u = 0 and v > 0 in Pv;
(ii) ut = (u(χ(u))x)x + u(1− u) in Pu, vt = d(v(χ(v))x)x + γ v(1− v/k) in Pv;

(iii) u ∈ C1,0(Pu ∪ {(ζ(t), t); t > 0}), v ∈ C1,0(Pv ∪ {(ζ(t), t); t > 0});
(iv) limx→ζ(t)− u(x, t) = limx→ζ(t)+ v(x, t) > 0 if t > 0;
(v) ζ ′(t) = − limx→ζ(t)−(χ(u))x(x, t) = − limx→ζ(t)+ d(χ(v))x(x, t) if t > 0;

(vi) ζ(0) = x0, and u(t)→ u0 and v(t)→ v0 in L1(−L,L) as t → 0+;
(vii) ux(−L, t) = 0 and vx(L, t) = 0 for t > 0.

In other words, setting

w(x, t) = u(x, t)+ v(x, t) =

{
u(x, t) if −L 6 x < ζ(t),

v(x, t) if ζ(t) < x 6 L,
(7)

and

w0(x) = u0(x)+ v0(x) =

{
u0(x) if −L 6 x < x0,

v0(x) if x0 < x 6 L,
(8)
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the pair (w, ζ ) is a solution of the following free boundary problem:

wt = (w(χ(w))x)x + w(1− w) if −L < x < ζ(t), t > 0,
wt = d(w(χ(w))x)x + γw(1− w/k) if ζ(t) < x < L, t > 0,
wx(±L, t) = 0 for t > 0,
w(x, 0) = w0(x) for a.e. x ∈ (−L,L),
w(ζ(t)−, t) = w(ζ(t)+, t) for t > 0,
ζ ′(t) = −(χ(w))x(ζ(t)

−, t) = −d(χ(w))x(ζ(t)
+, t) for t > 0,

ζ(0) = x0.

(9)

Observe that it is natural to refer to the pair (u,v) as a solution of problem (3). For example, it is
easy to check that for any T > 0 and test function ϕ ∈ C∞([−L,L]× [0, T ]) the functions u and v
defined by Theorem 1.1 satisfy the integral identities∫ T

0

∫ L

−L

uϕt dx dt =
∫ T

0

∫ L

−L

u(χ(u+ v))xϕx dx dt −
∫ T

0

∫ L

−L

u(1− u− αv)ϕ dx dt

+

∫ L

−L

u(x, T )ϕ(x, T ) dx −
∫ L

−L

u0(x)ϕ(x, 0) dx (10)

and∫ T

0

∫ L

−L

vϕt dx dt =
∫ T

0

∫ L

−L

dv(χ(u+ v))xϕx dx dt −
∫ T

0

∫ L

−L

γ v

(
1− βu−

v

k

)
ϕ dx dt

+

∫ L

−L

v(x, T )ϕ(x, T ) dx −
∫ L

−L

v0(x)ϕ(x, 0) dx. (11)

In particular we used here property (iv) of Theorem 1.1. Note that in [5], (iv) is a consequence of a
constitutive assumption for the stress (expressing the stress continuity).

Although we are primarily interested in the existence of segregated solutions, the numerical
results in Fig. 2 suggest a particularly challenging problem: are there parameter values for which
the solutions of the free boundary problem are asymptotically stable in the class of non-segregated
solutions? A preliminary question is whether problem (3) has a solution if initially u and v are not
segregated. In general we are not able to answer this question, but in the case of equal dispersal
velocities (d = 1) such a solution does exist:

THEOREM 1.2 Let χ : R+ → R be a smooth function such that χ ′ > 0 in R+. Let L, k, α, β
and γ be positive constants and let

d = 1.

Let u0, v0 ∈ BV (−L,L) be such that u0 + v0 ∈ C
1([−L,L]), (u0 + v0)x is Hölder continuous in

[−L,L], u0 > 0 and v0 > 0 a.e. in (−L,L), and u0 + v0 > 0 in [−L,L]. Then there exists a pair
of functions (u, v) ∈ (L∞((−L,L)× (0,∞)))2 which is a solution of problem (3) in the following
sense: setting

w := u+ v a.e. in (−L,L)× (0,∞),

we have, for any T > 0,
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(i) u, v ∈ L∞(0, T ;BV (−L,L)) ∩ BV ((−L,L)× (0, T )) ∩ C(0, T ;L1(−L,L)) and u, v > 0
a.e. in (−L,L)× (0, T );

(ii) w ∈ C([−L,L] × [0, T ]), wx is Hölder continuous in [−L,L] × (0, T ] and wt , wxx ∈
L2((−L,L)× (0, T ));

(iii) for any test function ϕ ∈ C∞([−L,L]× [0, T ]), u and v satisfy (10) and (11).

Both theorems were already known in the special case where χ(s) = s and the equations
for u and v do not contain reaction terms, but the proofs ([2], [3], [4]) heavily rely on the fact
that without reaction terms the equations reduce to conservation laws. Indeed the main step in the
proof of Theorem 1.1 is to find the structure (cf. problem (12) below) which makes it possible to use
mass variables even though the equations are not conservation laws. The proof of Theorem 1.2 is
mainly based on BV-estimates. The natural generalization of our results to the case of higher spatial
dimensions is completely open.

The present paper is a first attempt to understand the mathematical structure of problem (3). In
future papers we shall focus on the qualitative behaviour of solutions: existence of travelling wave
solutions, their stability, and the special role of segregated solutions.

2. Existence of segregated solutions

In this section we prove Theorem 1.1. Suppose that u, v and ζ have the properties listed in
Theorem 1.1. If we set

D(x, t) =

{
1 if −L 6 x < ζ(t),

d if ζ(t) < x 6 L,
h(x, t, w) =

{
1− w if −L 6 x < ζ(t),

γ (1− w/k) if ζ(t) < x 6 L,

then the function w := u+ v has the following properties for t > 0:

• wt = (D(x, t)wχ
′(w)wx)x + wh(x, t, w) if x 6= ζ(t),

• w and Dχ ′(w)wx are continuous functions across the free boundary x = ζ(t)

(more precisely, they can be considered as continuous functions by properly (re)defining them at
the interface x = ζ(t)).

The free boundary x = ζ(t) can be considered as a characteristic of the equation for w: ζ ′(t) =
−Dχ ′(w(ζ(t), t))wx(ζ(t), t) for t > 0 (where Dχ ′(w)wx is the continuous function mentioned
before). Therefore it is convenient to introduce a Lagrangian variable y, defining the change of
variables (x, t) 7→ (y, t) by the following family of characteristics x = X(y, t): X is the solution
of {

Xt (y, t) = −D(X(y, t), t)χ
′(w(X(y, t), t))wx(X(y, t), t) if −L 6 y 6 L, t > 0,

X(y, 0) = y if −L 6 y 6 L.

This change of variables transforms the interface x = ζ(t) into the vertical line y = x0, andD and h
become functions depending on y but not on t :

D(y) =

{
1 if −L 6 y < x0,

d if x0 < y 6 L,
h(y,w) =

{
1− w if −L 6 y < x0,

γ (1− w/k) if x0 < y 6 L.

Setting
z := wXy,
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we can reformulate problem (3) in terms of w and z, considered as functions of y and t :
wt =

w2

z

(
D(y)wχ ′(w)wy

z

)
y

+ wh(y,w) in (−L,L)× R+,

zt = zh(y,w) in (−L,L)× R+,
wy(±L, t) = 0 if t > 0,
w(y, 0) = z(y, 0) = w0(y) if −L < y < L.

(12)

Indeed, denoting for the moment the variables (y, t) by (y, τ ), we have

wτ = wxXτ + wt = −Dwxχ
′(w)wx + (Dwχ

′(w)wx)x + wh

= w(Dχ ′(w)wx)x + wh

= w

(
Dχ ′(w)wy

Xy

)
y

1
Xy
+ wh =

w2

z

(
Dwχ ′(w)wy

z

)
y

+ wh, (13)

and

zτ = wτXy + wXτy = w

(
Dwχ ′(w)wy

z

)
y

+ zh− w

(
Dwχ ′(w)wy

z

)
y

= zh.

To prove Theorem 1.1 we proceed in two steps. First we solve problem (12) assuming that D,
h and w0 are smooth functions of y. Then we return to the original variables and eliminate the
smoothness conditions on the data.

STEP 1: Solve problem (12) in case of smooth data. We suppose that D(y), h(y,w) and w0(y)

are of class C∞. We shall always assume that h(y,w) 6 0 if w > α0 for some α0 > 0, 0 < D0 6
D(y) 6 D1 and 0 < A0 6 w0(y) 6 B0 for some constants D0, D1, A0 and B0. Then problem (12)
has a smooth local (with respect to t) solution, which can be continued to a global solution (for all
t > 0) since the maximum principle implies that for all T > 0 there exist constants A(T ), B (which
does not depend on T ), a(T ) and b(T ) such that

0 < A(T ) 6 w 6 B and 0 < a(T ) 6 z 6 b(T ) in [−L,L]× [0, T ] (14)

(in Step 1 we shall use the convention that bounds and quantitative estimates do not depend on the
smoothness of D, h and w0, unless specified differently).

Multiplying the equation for w by z and using the equation for z we obtain∫ L

−L

wz

∣∣∣∣t=T
t=0
= 2

∫∫
(−L,L)×(0,T )

(
−
Dw2

z
χ ′(w)w2

y + wzh

)
.

In view of (14), this yields a bound for wy in L2((−L,L)× (0, T )).
Set

p(y, t) :=
D(y)wχ ′(w)wy

z
= −Xt (y, t).

The bound on wy and (14) imply a bound on p in L2((−L,L) × (0, T )). Hence for any t0 > 0
there exists τ ∈ (0, t0) such that p(·, τ ) is bounded in L2(−L,L) by a constant depending on t0
(but again, not on the smoothness of the data). Multiplying the equation for p,

pt =
D

z

(
χ ′(w)

(
w3

z
py + w

2h

))
y

− ph,



242 M. BERTSCH, R. DAL PASSO AND M. MIMURA

by z
D
p and using again the equation for z, we obtain

1
2

∫ L

−L

z

D
p2
∣∣∣∣t=T
t=τ

= −

∫∫
(−L,L)×(τ,T )

(
χ ′(w)

(
w3

z
p2
y + w

2hpy

)
+
zh

2D
p2
)
.

By Hölder’s and Young’s inequalities,∣∣∣∣∫∫
(−L,L)×(τ,T )

χ ′(w)w2hpy

∣∣∣∣ 6
1
2

∫∫
(−L,L)×(τ,T )

χ ′(w)

(
w3

z
p2
y + wzh

2
)
,

and hence (using (14) and the arbitrariness of t0 > 0) we obtain bounds of wy
in L∞loc((0, T ];L2(−L,L)) and of p = Dwχ ′(w)wy/z in L2

loc((0, T ];H 1(−L,L)) ⊂

L2
loc((0, T ];C([−L,L])). In particular wy is bounded in L∞loc([−L,L]× (0, T ]).

Differentiating the equation for p with respect to y and multiplying by py/z + h/w, we find
(using the equations for w and z and the boundary condition p(±L, t) = pt (±L, t) = 0) that, for
all 0 < τ < T ,

1
2

∫ L

−L

p2
y

z

∣∣∣∣t=T
t=τ

+

∫ L

−L

hpy

w

∣∣∣∣t=T
t=τ

+

∫∫
(−L,L)×(τ,T )

(
h

2z
p2
y −

∂

∂w

(
h

w

)(
w2

z
p2
y + whpy

))
= −

∫∫
(−L,L)×(τ,T )

(
D

z

(
χ ′(w)

(
w3

z
py + w

2h

))
y

− ph

)(
py

z
+
h

w

)
y

= −

∫∫
(−L,L)×(τ,T )

(
Dχ ′(w)w3

z

(
py

z
+
h

w

)2

y

+K(y, t)

(
py

z
+
h

w

)
y

)
,

where

K(y, t) =
D(w3χ ′(w))′wypy

z2 +
D(w3χ ′(w))′hwy

wz
− ph.

In view of the bounds obtained before, py and K are bounded in L2
loc((0, T ];L2(−L,L)).

Choosing, for fixed t0 > 0, τ ∈ ( 1
2 t0, t0) such that py(·, τ ) is bounded in L2(−L,L) by a constant

depending on t0, we deduce from Hölder’s and Young’s inequalities that

1
4

∫ L

−L

p2
y(·, T )

z(·, T )
+

1
2

∫∫
(−L,L)×(τ,T )

Dχ ′(w)w3

z

(
py

z
+
h

w

)2

y

6 C(t0)

for some constant C(t0). So we have found bounds for py in L∞loc((0, T ];L2(−L,L)),
py/z + h/w in L2

loc((0, T ];H 1(−L,L)), and hence, using the equations for w and p, for wt in
L∞loc((0, T ];L2(−L,L)) and pt in L2

loc([−L,L]× (0, T ]).
Summarizing, in case of smooth data and with the assumptions listed at the beginning of

Step 1, problem (12) has a smooth and globally defined solution which satisfies a priori estimates
for wy (in L∞loc([−L,L] × (0, T ])), p = Dwχ ′(w)wy/z (in L∞loc((0, T ];H 1(−L,L))), wt (in
L∞loc((0, T ];L2(−L,L))), pt (in L2

loc([−L,L]×(0, T ])), and zt (in L∞((−L,L)×(0, T ))), which
do not depend on the smoothness of the data. The same holds for the estimates in (14).

Finally we observe (although we shall not use it in what follows) that w and z satisfy(
z

w

)
t

+

(
Dwχ ′(w)wy

z

)
y

= 0.
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Indeed, (
z

w

)
t

=
zt

w
−

z

w2wt = −

(
Dwχ ′(w)wy

z

)
y

.

Alternatively, this equation can be obtained from differentiating the equalityXt+p = 0 with respect
to y.

STEP 2: Back to the original variables. We approximate D(y), h(y,w) and w0(y) by smooth
functions Dε, hε and w0ε. We shall assume that

Dε(y) =

{
1 if −L 6 y 6 x0 − ε,

d if x0 + ε 6 y 6 L,

hε(y,w) =

{
1− w if −L 6 y 6 x0 − ε,

γ (1− w/k) if x0 + ε 6 y 6 L.

(15)

We apply the bounds obtained in Step 1 to the solutions (wε(y, t), zε(y, t)) of the approximating
problems. All bounds are uniform in ε. In particular the uniform bounds on wε and pε imply that
these functions are precompact in C([−L,L] × [t0, T ]) for all 0 < t0 < T . Hence it follows
from a standard diagonal procedure that there exist a sequence εn → 0 as n → ∞ and functions
w,p ∈ C([−L,L]× (0,∞)) such that for all 0 < t0 < T ,

wn := wεn → w and pn := pεn → p in C([−L,L]× [t0, T ]).

Define Xn in [−L,L] × [0,∞) by Xnt = −pn and Xn(y, 0) = y. Then there exists a function
X ∈ C0,1([−L,L] × (0,∞)) such that Xn → X in C0,1([−L,L] × [t0, T ]) for all 0 < t0 < T .
Obviously Xt = −p in [−L,L] × R+. Since 0 < δ1 6 Xny 6 δ2 for some constants δ1, δ2
which do not depend on n, the transformations x = Xn(y, t) and x = X(y, t) are invertible for all
fixed t > 0, and the inverse function X−1

n (x, t) satisfies 0 < δ−1
2 6 (X−1

n )x(x, t) 6 δ−1
1 for all

x ∈ [−L,L] and t > 0.
Setting

ζ(t) = X(x0, t) for t > 0,

we define the sets Pu and Pv as in Theorem 1.1 and set

un(x, t) =

{
wn(X

−1
n (x, t), t) if (x, t) ∈ Pu,

0 if (x, t) ∈ Pv,

u(x, t) =

{
w(X−1(x, t), t) if (x, t) ∈ Pu,
0 if (x, t) ∈ Pv,

vn(x, t) =

{
0 if (x, t) ∈ Pu,
wn(X

−1
n (x, t), t) if (x, t) ∈ Pv,

v(x, t) =

{
0 if (x, t) ∈ Pu,
w(X−1(x, t), t) if (x, t) ∈ Pv.

Arguing similarly to (13) and using (15), in any compact subset Ku (resp. Kv) of Pu (resp. Pv) we
find that for large enough values of n, un and vn satisfy the uniformly parabolic equations

unt = (unχ
′(un)unx)x + un(1− un) in Ku

and

vnt = d(vnχ
′(vn)vnx)x + γ vn

(
1−

vn

k

)
in Kv.
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Hence it follows from standard theory that u ∈ C2,1(Pu), v ∈ C2,1(Pv),

ut = (uχ
′(u)ux)x + u(1− u) in Pu,

vt = d(vχ
′(v)vx)x + γ v(1− v/k) in Pv.

In addition u(·, t)→ w0 in L1(−L, x0) and v(·, t)→ w0 in L1(x0, L) as t → 0+.
In order to complete the proof of Theorem 1.1, it remains to show that u, v and ζ have all

required properties concerning the interface x = ζ(t). These properties follow almost at once from
the continuity of the functions w(y, t) and p(y, t) across the vertical line y = x0. We omit the
details.

3. Equal dispersal velocities

In this section we prove Theorem 1.2, i.e. the existence of a solution of problem (3) if d = 1, without
assuming initial segregation of u and v.

If d = 1 the equation for w = u+ v is particularly simple: adding the equations for u and v and
defining

r(x, t) = u(x, t)/w(x, t),

we obtain
wt = (wχ

′(w)wx)x + F(w, r), rt = rxχ
′(w)wx +G(w, r),

where we have set

f (u, v) := u(1− u− αv), g(u, v) := γ v(1− βu− v/k) for u, v > 0,
F (w, r) := f (rw, (1− r)w)+ g(rw, (1− r)w) for w > 0, 0 6 r 6 1,

G(w, r) := r(1− r)
(
f (rw, (1− r)w)

rw
−
g(rw, (1− r)w)

(1− r)w

)
for w > 0, 0 6 r 6 1.

The equations for w and r are completed by a boundary condition for w and initial conditions for
w and r:

wx(±L, t) = 0 for t > 0,

w(x, 0) = w0(x) := u0(x)+ v0(x) and r(x, 0) = r0(x) :=
u0(x)

w0(x)
for −L < x < L.

Let ε > 0. We consider the approximating problem
wt = (wχ

′(w)wx)x + F(w, r) for −L < x < L, t > 0,
rt = rxχ

′(w)wx +G(r,w)+ εrxx for −L < x < L, t > 0,
wx(±L, t) = rx(±L, t) = 0 for t > 0,
w(x, 0) = w0ε(x), r(x, 0) = r0ε(x) for −L < x < L.

(16)

Here

w0ε, r0ε ∈ C
∞([−L,L]), w0ε → w0 in C1([−L,L]) as ε→ 0,

w′0ε is uniformly Hölder continuous in [−L,L],
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w0ε > δ0 := min
[−L,L]

w0 > 0, w0ε 6 δ1 := max
[−L,L]

w0 > 0,
∫ L

−L

w0ε =

∫ L

−L

w0,

r0ε → r0 in L2(−L,L) and a.e. in (−L,L) as ε→ 0,

0 6 r0ε 6 1 in [−L,L],
∫ L

−L

|r ′0ε| → TV(r0) as ε→ 0, ε

∫ L

−L

(r ′0ε)
2 6 C,

where TV indicates total variation.

LEMMA 3.1 Letw0ε and r0ε satisfy the hypotheses listed above and let, for all 0 < ε 6 1, (wε, rε)
be a classical solution of problem (16) for 0 6 t 6 T . Then

(i) 0 6 rε 6 1 in [−L,L] × [0, T ] and there exist constants 0 < C1 6 C2 which do not depend
on ε and T such that C1 6 wε 6 C2 in [−L,L]× [0, T ];

(ii) χ(wε)xx and wεt are equibounded in L2((−L,L)× (0, T ));
(iii) wε and wεx are uniformly Hölder continuous in [−L,L]× [0, T ];
(iv) rε is equibounded in L∞(0, T ;BV (−L,L));
(v) rε is equibounded in BV ((−L,L)× (0, T )).

Proof. (i) Applying the comparison principle to the equation for rε, it follows at once that 0 6
rε 6 1 in [−L,L] × [0,∞). Since f (rw, (1 − r)w) < 0 (> 0) for all 0 6 r 6 1 if w >

1/min{1, α} (respectively w < 1/max{1, α}), and g(rw, (1− r)w) < 0 (> 0) for all 0 6 r 6 1 if
w > 1/min{1/k, β} (respectively w < 1/max{1/k, β}), it follows from the comparison principle
applied to the equation for wε that C1 6 wε 6 C2 in [−L,L]× [0,∞), where

C1 = min
{
δ0,

1
max{1, α}

,
1

max{1/k, β}

}
,

C2 = max
{
δ1,

1
min{1, α}

,
1

min{1/k, β}

}
.

(ii)–(iii) Multiplying the equation forwε by χ ′(wε)χ(wε)xx , integrating by parts, using Hölder’s
and Young’s inequalities and omitting the subscripts ε, we obtain

1
2

∫ L

−L

χ(w)2x

∣∣∣∣T
0
= −

∫ T

0

∫ L

−L

(wχ ′(w)χ(w)2xx + χ(w)
2
xχ(w)xx + χ

′(w)F (w, r)χ(w)xx)

6 C3

∫ T

0

∫ L

−L

|χ(w)xx | − C1

∫ T

0

∫ L

−L

χ(w)2xx

6 −
1
2
C1

∫ T

0

∫ L

−L

χ(w)2xx + C4T ,

where C3 and C4 are positive constants which do not depend on ε and T . Hence χ(wε)xx is
equibounded in L2((−L,L) × (0, T )) and wε is equibounded in L∞([0, T ];H 1(−L,L)). In
particular wε is uniformly Hölder continuous with respect to x, and hence, by standard results
([6], [7]), also with respect to t .

Set

sε(x, t) :=
∫ wε(x,t)

1
wχ ′(w) dw.
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Then sε satisfies the equation st = wεχ
′(wε)sxx + wεχ

′(wε)F (wε, rε). It follows from the
techniques used in [8, Chapter IV, Corollary of Theorem 9.1] that sεx , and thus alsowεx , is uniformly
Hölder continuous in [−L,L]×[0, T ]. Finally, the equiboundedness ofwεt inL2((−L,L)×(0, T ))
follows from the equation for wε and the estimates for χ(wε)xx and wεx .

(iv) Omitting the subscripts ε, we observe that rx satisfies the equation

(rx)t = (rxχ(w)x)x +Gwwx +Grrx + ε(rx)xx,

whereGw andGr are bounded in bounded subsets of [0,∞)× [0, 1]. Multiplying the equation, for
fixed δ > 0, by rx/

√
δ + r2

x and integrating by parts we obtain∫ L

−L

√
δ + r2

x

∣∣∣∣T
0

6 −
∫ T

0

∫ L

−L

δ
rxx

(δ + r2
x )

3/2 rxχ(w)x

+

∫ T

0

∫ L

−L

(
|Gwwx | + |Grrx | − εδ

r2
xx

(δ + r2
x )

3/2

)
6 C

∫ T

0

∫ L

−L

(|wx | + |rx |)+

∫ T

0

∫ L

−L

δχ(w)x

(
1√
δ + r2

x

)
x

,

where the constant C does not depend on ε and δ. Integration by parts implies that the latter term
can be estimated by ∫ T

0

∫ L

−L

δ|χ(w)xx |√
δ + r2

x

6
√
δ

∫ T

0

∫ L

−L

|χ(w)xx |,

which vanishes as δ → 0. It follows from Gronwall’s lemma that, in the limit for vanishing δ,
sup[0,T ]

∫ L
−L
|rεx(x, t)| dx is uniformly bounded.

(v) In view of (iv) we must prove that rεt is equibounded in L1((−L,L)× (0, T )). Omitting the
subscripts ε, it follows from the equation for r that there exists a constant C which does not depend
on ε and T such that∫ T

0

∫ L

−L

|rt | 6 I1 + I2 + C :=
∫ T

0

∫ L

−L

|χ(w)x | · |rx | + ε

∫ T

0

∫ L

−L

|rxx | + C.

Since wx is equibounded in [−L,L] × [0, T ], (iv) implies that I1 is equibounded. It remains to
prove that also I2 is equibounded.

We multiply the equation for r by εrxx and integrate by parts:

−
1
2

∫ L

−L

εr2
x

∣∣∣∣T
0
= J1 + J2 + J3

:= −
1
2

∫ T

0

∫ L

−L

εr2
xχ(w)xx +

∫ T

0

∫ L

−L

εrxxG+ ε
2
∫ T

0

∫ L

−L

r2
xx .

We observe that ε
∫ L
−L
(r ′ε0)

2 is equibounded and that, by Hölder’s and Young’s inequalities, |J2| 6
1
2J3 + C for some constant C which does not depend on ε. It remains to prove that

|J1| 6
1
4
J3 + C (17)
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for some constant C which does not depend on ε. Indeed, (17) implies the equiboundedness of J3,
i.e. the equiboundedness of εrεxx in L2((−L,L)× (0, T )) and hence in L1((−L,L)× (0, T )).

Let µ > 0 to be determined below. Then

|J1| 6 µ

∫ T

0

∫ L

−L

ε2r4
x +

1
16µ

∫ T

0

∫ L

−L

χ(w)2xx 6 µ

∫ T

0

∫ L

−L

ε2r4
x +

C

µ

for some constant C which does not depend on ε. Integration by parts yields

µ

∫ T

0

∫ L

−L

ε2r4
x = µ

∫ T

0

∫ L

−L

ε2rxr
3
x = −3µ

∫ T

0

∫ L

−L

ε2rxxr
2
x r

6
3µ
4

∫ T

0

∫ L

−L

ε2r4
x + 3µ

∫ T

0

∫ L

−L

ε2r2
xx,

whence

µ

∫ T

0

∫ L

−L

ε2r4
x 6 12µ

∫ T

0

∫ L

−L

ε2r2
xx = 12µJ3 6

1
4
J3

if we choose 48µ 6 1. Hence we have obtained (17) and the proof of Lemma 3.1 is complete. 2

The following result follows from standard PDE theory:

LEMMA 3.2 Letw0ε and r0ε satisfy the conditions of Lemma 3.1. Then for all T > 0 problem (16)
has a unique classical solution, (wε, rε), defined for all t > 0.

Before passing to the limit ε→ 0 we study the “characteristics” of the approximating problems:
let Xε(y, t) be defined by{

Xεt (y, t) = −χ
′(wε)wεx if −L 6 y 6 L, t > 0,

Xε(y, 0) = y if −L 6 y 6 L.
(18)

Observe that for all t > 0,

−L 6 Xε(y1, t) < Xε(y2, t) 6 L if −L 6 y1 < y2 6 L (19)

and

d
dt

∫ Xε(y2,t)

Xε(y1,t)
wε(x, t) dx =

∫ Xε(y2,t)

Xε(y1,t)
F(wε(x, t), rε(x, t)) dx if −L 6 y1 < y2 6 L. (20)

Hence there exists a constant C > 0 which does not depend on ε, y1 and y2 (−L 6 y1 < y2 6 L)
such that for all t > 0, ∣∣∣∣ d

dt

∫ Xε(y2,t)

Xε(y1,t)
wε(x, t) dx

∣∣∣∣ 6 C

∫ Xε(y2,t)

Xε(y1,t)
wε(x, t) dx. (21)

Since Xε(y2, 0) − Xε(y1, 0) = y2 − y1, it follows from Lemma 3.1(i) and (21) that for all T > 0
there exist constants 0 < kT 6 KT such that

kT (y2 − y1) 6 Xε(y2, t)−Xε(y1, t) 6 KT (y2 − y1) if −L 6 y1 < y2 6 L, 0 6 t 6 T .

So we have proved the following result:
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LEMMA 3.3 Let T > 0 and let Xε be the solution of 18). Then there exist constants 0 < kT 6 KT
such that

0 < kT 6 Xεy 6 KT in [−L,L]× [0, T ]

and
Xε is uniformly bounded in C1([−L,L]× [0, T ]). (22)

In addition Xεt is uniformly Hölder continuous in [−L,L]× [0, T ].

The latter estimate follows from the equation for Xε, the Hölder continuity of wεx(x, t) and
(22).

Now we are ready to pass to the limit for vanishing ε: by Lemmas 3.1–3.3, there exist a sequence
εn→ 0 and functionsw(x, t), r(x, t) andX(y, t) such thatwεn , rεn andXεn , which we shall denote
by wn, rn and Xn, satisfy, for all T > 0,

X is defined and Lipschitz continuous in [−L,L]× [0, T ], (23)
Xt is Hölder continuous in [−L,L]× [0, T ], (24)
Xn→ X uniformly in [−L,L]× [0, T ] as n→∞, (25)
w and wx are defined and Hölder continuous in [−L,L]× [0, T ], (26)

wt , χ(w)xx ∈ L
2((−L,L)× (0, T )), (27)

wn→ w and wnx → wx uniformly in [−L,L]× [0, T ] as n→∞, (28)
Xt = −χ(w)x(X, t) in [−L,L]× [0, T ], (29)
r ∈ BV ((−L,L)× (0, T )) ∩ L∞(0, T ;BV (−L,L)), (30)
rn→ r a.e. in (−L,L)× (0, T ) as n→∞, (31)
rn→ r in Lq((−L,L)× (0, T )) (1 6 q <∞) as n→∞, (32)

wt = (wχ
′(w)wx)x + F(w, r) in L2((−L,L)× (0, T )) (33)

rt = (rχ
′(w)wx)x − rχ(w)xx +G(w, r) weakly, (34)

i.e., for any smooth function ψ(x, t),∫ L

−L

r0(x)ψ(x, 0)−
∫ L

−L

r(x, T )ψ(x, T )+

∫ T

0

∫ L

−L

rψt

=

∫ T

0

∫ L

−L

(rχ(w)xψx + rχ(w)xxψ −G(w, r)ψ). (35)

To obtain the latter formula we have used that

rn→ r ∈ C([0, T ];L1(L,L)) as n→∞, (36)

which follows easily from the equiboundedness of rnx in L∞([0, T ];L1(−L,L)) and the equi-
Hölder continuity of wnx : for 0 < h < 1,∫ L

−L

|rn(x, t + h)− rn(x, t)| 6
∫ t+h

t

∫ L

−L

|rnxχ
′(wn)wnx + F(wn, rn)| 6 Kh,

where K is a constant which does not depend on n and h.
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Setting
u := rw and v := w − u,

we claim that u and v have all properties listed in Theorem 1.2. Indeed, having in mind the properties
(23)–(35) of w and r , it remains to prove (10) and (11). Here we shall only prove (10).

Let ϕ ∈ C∞([−L,L]× [0, T ]). Clearly (35) holds also for ψ := ϕw and we obtain∫ L

−L

u0(x)ϕ(x, 0)−
∫ L

−L

u(x, T )ϕ(x, T )+

∫ T

0

∫ L

−L

uϕt

+

∫ T

0

∫ L

−L

uϕ

w

(
wχ(w)xx + χ

′(w)w2
x + F

(
u

w
,w

))
=

∫ T

0

∫ L

−L

(
uχ(w)x

w
(ϕxw + ϕwx)+ uχ(w)xxϕ − wG

(
u

w
,w

)
ϕ

)
.

Hence∫ L

−L

u0(x)ϕ(x, 0)−
∫ L

−L

u(x, T )ϕ(x, T )+

∫ T

0

∫ L

−L

uϕt

=

∫ T

0

∫ L

−L

uχ(w)xϕx −

∫ T

0

∫ L

−L

(
u

w
F

(
u

w
,w

)
+ wG

(
u

w
,w

))
ϕ

=

∫ T

0

∫ L

−L

(uχ(w)xϕx − f (u, v)ϕ),

and we have found (10).
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