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We study the regularity of the free boundary, near contact points with the fixed boundary, for a
parabolic free boundary problem

∆u− ∂u/∂t = χ{u 6=0} in Q+r = {(x, t) ∈ Br × (−r2, 0); x1 > 0},
u = f (x, t) on {x1 = 0} ∩Qr .

We will show that under certain regularity assumptions on the boundary data f the free boundary is
a C1 manifold up to the fixed boundary. We also show that the C1 modulus of continuity is uniform
for a certain, and specified, subclass of solutions.

1. Introduction

In this paper we will investigate the free boundary (see below for definitions) for a parabolic
obstacle-like problem near contact points with the fixed boundary. Mathematically the problem
can be formulated in the following way:{

∆u− ∂tu = χΩu in Q+1 where Ωu = Q+r \ {u = |∇u| = 0},
u|Π = f (x2, . . . , xn, t) on Π = {x1 = 0}.

(1)

All the relevant notation will be defined at the end of the introduction.
Before we state our main results we will briefly describe the mathematical and applicational

context of our problem.

Applications: Under the assumption that u, ut > 0 this is the well known Stefan problem
describing the melting process of ice. For further details on the Stefan problem see [F].

Mathematical background: The regularity of free boundaries has been extensively studied over
the last thirty years and the literature on the Stefan problem is vast. This problem however (that
is, the Stefan problem without sign restriction) was, to the author’s knowledge, first studied by
L. A. Caffarelli, A. Petrosyan and H. Shahgholian in [CPS]. The authors of [CPS] showed that a
solution is C1,1 in space and Lipschitz in time, and that the free boundary is locally analytic under
an assumption on the density of {u = 0} backward in time (see Definition 4 and Theorem 4).

The regularity of the free boundary near contact points with the fixed boundary was investigated
by D. E. Apushkinskaya, N. N. Uraltseva and H. Shahgholian in [ASU1]. The authors of [ASU1]
consider the free boundary close to a fixed boundary with zero Dirichlet condition. They also assume
that u > 0. Under these conditions they prove that the free boundary is uniformly C1,α away from
the fixed boundary and Lipschitz as a graph over the fixed boundary near a contact point.

Recently D. E. Apushkinskaya, N. Matevosyan and N. N. Uraltseva [AMU] extended the results
of [ASU1] to solutions without sign restriction.
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Our main objective in this paper is to extend the results of [ASU1] to non-vanishing boundary
data. In a sense this is a twin paper to [A] where the same problem is investigated for a corresponding
elliptic problem.

Plan of the paper: In the next section, after this short introduction, we will state our main results in
Theorems 1–3. Before we are able to prove these theorems we must introduce some technical tools,
the so-called monotonicity formulas. The monotonicity formulas are well known in this context, but
we include them for completeness in section 3.

With these tools at hand we will prove the main theorems in Sections 4–6.

Notation.

• Rn+1 will denote n+ 1-dimensional real space with coordinates (x1, . . . , xn, t).
• Br(x

0) will denote the n-dimensional ball in the x variables with radius r and center x0.
• Qr(x

0, t0) will denote Br(x0)× (−r2, 0), the parabolic cylinder.
• Rn+, B+r (x

0) and Q+r (x
0, t0) will denote the corresponding sets intersected with {x1 > 0}.

• Π will be the plane {x1 = 0}.
• Hn(Ω) is the n-dimensional Hausdorff measure of Ω .
• |Ω| will denote the Lebesgue measure ofΩ , |x| will also denote the euclidean norm of the vector
x ∈ Rn. With a slight abuse of notation we will use |(x, t)| =

√
|x|2 + |t |, the parabolic distance.

• dist((x0, t0),Ω) will denote the euclidean distance from x0 to the setΩ∩{t = t0}, the t0-section
of Ω .
• pardist((x0, t0),Ω) will denote the parabolic distance between (x0, t0) and Ω , that is,

inf(x,t)∈Ω
√
|x − x0|2 + |t − t0|.

• χΩ will denote the characteristic function of the set Ω .
• u± will denote the positive and negative parts of the function u, that is, u± = max(±u, 0).
• f |Ω will denote the restriction of f to the set Ω .
• ∂i for i = 1, . . . , n and ∂t will denote ∂/∂xi and ∂/∂t respectively.
• ui and ut will be used for ∂iu and ∂tu respectively.
• ∆ is the spatial laplacian, ∆ =

∑n
i=1 ∂

2
i .

• ∇u is the spatial gradient of u, ∇u = (∂1u, . . . , ∂nu).
• Λu is the set where u = |∇u| = 0. We will also use the notation Λu(−r2) for Λu ∩ {t = −r2

}.
• Ωu is the complement of Λu with respect to the domain of u.
• Γu, the free boundary of u, is the intersection of the closures of Λu and Ωu.
• C1+α,β(Ω) is the parabolic Hölder space of functions C1+α in the spatial variables and Cβ in the

time variable.
• Wa(r, u) is defined in Lemma 1.
• Pr(M, f ) is defined in Definition 1.
• cap(A) will denote the parabolic capacity of the set A (see [Wa]).
• The limit limr→0 u(rx, r

2t)/r2, at times normalized differently (e.g. limr→0 u(rx, r
2t) ×

(supQr |u|)
−1), through some subsequence will be called the blow-up of u.

2. Main results

Before we state our main results we need some definitions to simplify our statements. First, we will
always assume that f ∈ C1,1(Π).
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DEFINITION 1 Pr(M, f ) is the set of all functions solving equation (1) in the sense of distributions
and whose L∞-norm is bounded by M .

By P∞(f ) we will mean the set of quadratically bounded functions solving equation (1) in
the sense of distributions in the entire space x1 > 0, t < 0. Here “quadratically bounded” means
supQ+r |u| < Cr2, where C may depend on u but not on r .

THEOREM 1 Let u ∈ P1(M, f ) and

lim inf
r→0

cap(Λu ∩Qr)

cap(Qr)
> ε > 0 and sup

Qr∩Π

|f | 6 C1r
2. (2)

Then
sup
Q+r

|u| 6 C2Mr
2.

The assumption on the density of the capacity is necessary in Theorem 1. In general we do
not get quadratic bounds for solutions to parabolic problems with C1,1 data. The free boundary
introduces some extra freedom in the problem that improves the regularity of the solution.

Next we classify the solutions with homogeneous boundary data.

THEOREM 2 Let u ∈ P∞(f ) be a homogeneous function. Then if f = 1
2 (e·x)

2
+|Π for a unit vector

e = (e1, . . . , en) ∈ Rn, then u = 1
2 (e · x)

2
+ or u = 1

2 (ê · x)
2
+ in Q+∞. Here ê = (−e1, e2, . . . , en) is

the reflection of e in Π.

REMARK An interesting question is whether the same result is true without the homogeneity
assumption. This is not the case; for a proof see [AS].

Because of the importance of the two half polynomial solutions introduced in the above theorem
we will make the following definition.

DEFINITION 2 Let f be a given function on Π satisfying

lim
r→0

f (rx)

r2 = (e · x)2+|Π

for some e with |e| = 1. By Uf1 we mean 1
2 ((−|e1|, e2, . . . , en) · x)

2
+ and by Uf2 we mean

1
2 ((|e1|, e2, . . . , en) · x)

2
+.

We will often write U1 and U2 when the f -dependence is given by context.

For the use of the monotonicity formula in Lemma 1 we will also need another assumption on f .

CONDITION 1 Let fr(x, t) = f (rx, r2t)/r2. Then f satisfies Condition 1 if limr→0 fr = λ(x2)
2
+

for some 0 < λ 6 1/2 and ∣∣∣∣∫ −1

−4

∫
Π∩Ba/r

|f ′r |G(x,−t) dx dt
∣∣∣∣ 6 Ch(r)

for some Dini modulus of continuity Ch:
∫ 1/2

0 r−1Ch(r) dr <∞.

In particular if Condition 1 is satisfied for some Ch then the blow-up is unique (see Lemma 3).
The final main result in this paper regards the local behavior of the free boundary near a contact

point with the fixed boundary. As in [A] this result depends on the blow-up of u at the contact point.
We will need the following definition.
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DEFINITION 3 P̂r(M, f )will denote the subset of Pr(M, f ) of functions whose blow-up is unique
at the origin and equals U2.

Here we tacitly assume that the blow-up of f is a half polynomial.

THEOREM 3 Let u ∈ P̂1(M, f ), let Γu satisfy the capacity condition

lim inf
r→0

cap(Λu ∩Qr)

cap(Qr)
> ε > 0

for some ε > 0, and assume furthermore that f satisfies Condition 1. Then for each γ > 0:

1. There exists a modulus of continuity σγ and a universal constant r0 = r0(n,M, γ, Ch, ε) such
that

Γu ∩ C
γ
r0 ⊂ {x; pardist((x, t), ∂ΩU2) 6 σγ (|(x, t)|)|(x, t)|},

where Cγr0 = Q
+
r0
∩ {x1 > γ |(x, t)|} is a parabolic nontangential cone.

2. Γu is a C1 manifold with uniform modulus of continuity (depending on n, γ , ε and Ch from
Condition 1) in Cγr0 .

REMARK The same is not true if the blow-up of u equals U1: Γu will be a C1 manifold, but it is
not true that Γu is uniformly C1. The proof of this is somewhat simpler and very similar to the proof
of Theorem 3. See [A] for details in the time independent case.

REMARK The theorem gives a pointwise regularity condition. It is easy, under some assumptions
on f , to extend the theorem to a regularity result in Q+δ (0). In particular if ∂spt(f ) ∈ C1,α(Q

′

δ(0))
and e = e(x′, t) (from Definition 2) is a Cα function living on ∂spt(f ) and the conditions in
Theorem 3 are satisfied pointwise on ∂spt(f) then Γ ∈ C1,α(Q+δ/2(0)).

3. Technical tools and known results

An essential role in the theory of free boundaries is played by the so-called monotonicity formulas.
We will use a monotonicity formula due to G. S. Weiss.

LEMMA 1 Let u be a solution to (1). Then

Wa(r, u) =
1
r4

∫
−r2

−4r2

∫
B+a

(
1
2
|∇u|2 + u+

u2

2t

)
G(x, t) dx dt

satisfies

dWa(r, u)

dr

=
1
2r

∫
−1

−4

∫
B+a/r

|u′r |
2

−t
G(x,−t) dx dt + Ja(r, u)−

∫
−1

−4

∫
Π∩Ba/r

f ′r

(
∂ur

∂x1

)
G(x,−t) dx dt (3)
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for 0 < r 6 a 6 1. Here

ur(x, t) =
u(rx, r2t)

r2 ,

u′r(x, t) = x · ∇ur(x, t)+ 2t∂tur(x, t)− 2ur(x, t),

G(x, t) =
exp(−|x|2/4t)
(4πt)n/2

for t > 0 and G(x, t) = 0 for t 6 0,

Ja(r, u) =

∫
−1

−4

∫
(∂Br/a)+

u′r

r
(η · ∇ur)G(x,−t) dx dt

−
a

2r2

∫
−1

−4

∫
(∂Ba/r )+

(
|∇ur |

2
+ 2ur +

(ur)
2

t

)
G(x,−t) dx dt,

and η is the outward unit normal of ∂B+a/r .

Proof. The proof follows the same lines as in [ASU]. By a change of variables we see that

Wa(r, u) = Wa/r(1, ur),

where ur = u(rx, r2t)/r2. From this we get

d
dr
Wa/r =

∫
−1

−4

∫
B+a/r

(
∇u′r · ∇ur + u

′
r +

uru
′
r

t

)
G(x,−t) dx dt

−
a

r2

∫
−1

−4

∫
∂Ba/r∩Rn+

(
1
2
|∇ur |

2
+ ur +

u2
r

2t

)
G(x,−t) dx dt = I1 + I2.

Integrating I1 by parts leads to

I1 =

∫
−1

−4

∫
B+a/r

u′r

(
−∆ur −

xi

2t
∂iur + 1+

ur

t

)
G(x,−t) dx dt

+

∫
−1

−4

∫
∂B+a/r∩Rn+

u′r
∂ur

∂η
G(x,−t) dx dr −

∫
−1

−4

∫
Π∩Ba/r

f ′r

(
∂ur

∂x1

)
G(x,−t) dx dt, (4)

where η is the outward unit normal. Here we are using that u = f on the boundary {x1 = 0}.
Using the definition of u′r together with the equality

du
dr
=
u′r

r

leads to

−∆ur −
xi

2t
∂iur + 1+

ur

t
= −∆ur + ∂tur + 1−

u′r

2t
.

Using this in equation (3) gives the desired result. 2
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COROLLARY 1 Let u be a solution to (1) and assume that supQ+s |u| 6 Cs2 for all s < 1 and some
constant C independent of s. Then, in the notation of Lemma 1:

1. We have

|Ja(r, u)| 6
C

p(r/a)
e
−
a2

4r2

where p > 0 and goes to 0 as r → 0 with polynomial speed.
2. If f satisfies Condition 1 then the limit limr→0Wa(r, u) exists.

Proof. Since u is a solution and supQ+s |u| 6 Cs2 it follows that |∇ur | 6 Ca/r , |u′r | 6 C(a/r)2

and |ur | 6 C(a/r)2 on ∂Ba/r×(−1,−4). Substituting these estimates in the expression for Ja(r, u)
directly implies the first part of the corollary.

As for the second part we notice that by standard C1,α estimates,

sup
Qs∩{x1=0}

∣∣∣∣∂ur∂x1

∣∣∣∣ 6
C

s
sup
Q+2s

|ur | 6 Cs,

where we have used the assumption that supQ+s |u| 6 Cs2. It follows that∣∣∣∣ ∫ −1

−4

∫
Π∩Ba/r

f ′r

(
∂ur

∂x1

)
G(x,−t) dx dt

∣∣∣∣ 6 C

∫
−1

−4

∫
Π∩Ba/r

|f ′r |(1+ |x|)G(x,−t) dx dt

6 C

∫
−1

−4

∫
Π∩Ba/r

|f ′r |
a

r
G(x,−t) dx dt.

From Lemma 1 it follows that for 0 < s, t < 1 we have

Wa(t, u)−Wa(st, u) =

∫ t

st

dWa(r, u)

dr
dr

>
∫ t

st

[
1
2r

∫
−1

−4

∫
B+a/r

|u′r |
2

−t
G(x,−t) dx dt + Ja(r, u)

−

∫
−1

−4

∫
Π∩Ba/r

f ′r

(
∂ur

∂x1

)
G(x,−t) dx dt

]
dr

> − C

∣∣∣∣ ∫ t

st

C

p(r/a)
e
−
a2

4r2 dr
∣∣∣∣− C ∫ t

st

a

r

∣∣∣∣ ∫ −1

−4

∫
Π∩Ba/r

|f ′r |G(x,−t) dx dt
∣∣∣∣ dr = I1 + I2.

The first claim in the corollary implies that I1 → 0 as t → 0 uniformly in s; and using that f
satisfies Condition 1 implies that I2 → 0 as t → 0 uniformly in s.

In particular it follows that

Wa(t, u)−Wa(st, u) > −σ(t),

where σ(t) is some modulus of continuity. This implies that

lim sup
r→0

Wa(r, u) = lim
t→0

sup
s∈(0,1)

Wa(st, u) = lim inf
t→0

sup
s∈(0,1)

Wa(st, u)

6 lim inf
t→0

(Wa(t, u)+ σ(t)) = lim inf
t→0

Wa(t, u). 2



A PARABOLIC OBSTACLE TYPE PROBLEM 285

It is also known that we have the following non-degeneracy of the solutions (for a proof see [CPS]).

LEMMA 2 Let u be a solution to

∆u−
∂u

∂t
= χ{u6=0} in Q2r ,

and assume that (0, 0) ∈ Γu. Then
sup
Qr

|u| > cr2.

4. Proof of Theorem 1

The proof follows the lines of the proof of Lemma 3.1 in [ASU2]; we will sketch some details.
Denote

Mk(u) = sup
Q+

2−k

|u| for k ∈ N.

It is sufficient to show that there exists C2 such that

4k+1Mk+1(u) 6 max(4M1(u), . . . , 4kMk(u),MC2) ∀k ∈ N.

Suppose, in order to get a contradiction, that this fails. That is, for every j ∈ N there exist uj ∈
P+1 (M) and kj ∈ N such that

4kj+1Mk+1(uj ) > max(4M1(uj ), . . . , 4kjMk(uj ), j).

We now make the blow-up

ũj =
uj (2−kj x, 2−2kj t)

Mkj+1(uj )
.

By C1,α regularity it follows that kj →∞ as j →∞.
We will also need a growth estimate of ũj :

sup
Q+

2k

|ũj | = sup
Q+

2k

uj (2−kj x, 2−2kj t)

Mkj+1(uj )
=
Mkj−k(uj )

Mkj+1(uj )
6 22k+2,

that is, supQ+R |ũj | 6 CR2 for R > 1. We also get∣∣∣∣∆ũj − ∂ũj∂t
∣∣∣∣ 6

2−2kj

Mkj+1

∣∣∣∣∆uj − ∂uj∂t
∣∣∣∣ 6

4
j
→ 0. (5)

It follows from the definition of ũj that supQ+1/2 |ũj | = supQ+
2
−kj−1

uj/Mkj+1 = 1 so that

sup
Q′R

ũj (0, x′, t) = sup
Q′R

f (2−kj x′, s−2kj t)

Mkj+1
6

4CR2

j
→ 0.

So ũj → 0 locally uniformly on Π .
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Standard regularity theory for parabolic equations implies that the C1,α and W 2,p norms of ũj
are uniformly locally bounded. This implies that a subsequence of ũj will converge to, say, u0 in
C

1,α
loc and W 2,p

loc . Moreover u0 will be a caloric, non-zero (since supQ′1/2 |ũj | = 1), quadratically

bounded (since ũj is) function in Q+∞ with zero boundary values on Π .
Now we can use the Liuoville Theorem (Lemma 2.1 in [ASU1]) to deduce that u0 is a quadratic

polynomial in x and linear in t . Using that u0 = 0 on Π we deduce that u0(x, t) = x1
∑n
i=1 bixi =

x1b · x for some non-zero vector b = (b1, . . . , bn). Since, by (5), ∆u0 − ∂u0/∂t = 0 we can
conclude that b1 = 0.

By rotating the coordinate system we may assume that b = ce2 for some constant c > 0. Since
supQ+1 |u| = 1 it follows that c = 2 and therefore u0(x) = 2x1x2. In particular cap({x; u0(x) =

|∇u0(x)| = 0} ∩Q1) = 0. From that we will deduce a contradiction.
By C1,α convergence we have lim supj→∞Λuj ⊂ Λu0 , that is, if xj ∈ Λuj and xj → x0 then

x0
∈ Λu0 . Also by continuityΛu0 is closed and thus (see [Wa]) cap(Λu0∩Q1) = infS cap(S)where

the inf is taken over all open sets S such that Λu0 ∩Q1 ⊂ S. We can thus find an open set A such
thatΛu0 ∩Q1 ⊂ A and cap(A)−δ 6 cap(Λu0 ∩Q1). Also if j is large enough thenΛuj ∩Q1 ⊂ A,
so cap(A) > cap(Λuj ∩Q1). Thus if δ is chosen small enough then cap(Λu0 ∩Q1) > 0 and we get
a contradiction.

5. Proof of Theorem 2

We will reduce the theorem to the time independent case and then refer the reader to the proof
in [A]. To this end let us denote

v(x, t) =

(
∂u(x, t)

∂t

)+
,

where we extend v by zero to the lower half-space. The proof follows a number of simple steps:

1. v is subcaloric in {t < 0},
2. v 6 C,
3. v = 0.

Proof of Step 1. Since∆u−ut = 1 inΩ it follows that v is caloric inΩ . So we only need to show
that v is continuous across the free boundary; then it follows that v is a non-negative continuous
function that is caloric everywhere where it is positive, and hence which implies subcaloric.

By homogeneity it is enough to show that v(x,−1) is continuous across the free boundary. Let
(x0,−1) ∈ Γ . We need to show that lim sup(x,t)→(x0,−1) ut (x, t) = 0.

Let limj→∞ ut (xj + hjyj , tj + h2
j sj ) = lim sup(x,t)→(x0,−1) ut (x, t), where (xj , tj ) ∈ Γ is the

closest free boundary point to (xj + hjyj , tj + h2
j sj ).

We make the blow-up

uj (x, t) =
u(xj + hjx, tj + h

2
j t)

h2
j

.

We may assume that uj → u0: if not we can change to a subsequence. Moreover, we have
limj→∞ u

j
t (y

j , sj ) = lim sup(x,t)→(x0,−1) ut (xj , tj ), since uj is caloric inQ1(y
j , sj ). We will show

that, for any λ, u0(x, 0) = u0(x, λ), which in particular implies that u0
t = 0.
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First notice that

u0(x, λ) = lim
j→∞

u(xj + hjx, tj + h
2
j λ)

h2
j

.

By assumption u(rx, r2t) = r2u(x, t); using this with r =
√
−tj/

√
|tj + h

2
j λ| we may deduce that

u0(x, λ) = lim
j→∞

tju
((
√
−tj/

√
|tj + h

2
j λ|

)
(xj + hjx), tj

)
|tj + h

2
j λ|h

2
j

.

Using
√
|tj |/

√
|tj + λh

2
j | − 1 ≈ λh2

j together with the fundamental theorem of calculus we find
a point

zj = sxj + (1− s)
(√
−tj/

√
|tj + h

2
j λ|

)
(xj + hjx)

for some 0 < s < 1 such that

|uj (x, λ)− uj (x, 0)| 6 Cλxj · ∇uj (zj , tj )+O(hj ). (6)

Now |xj −zj | 6 Chj and |∇u(xj , tj )| = 0 (this follows from (xj , tj ) ∈ Γ ); this together with C1,1

estimates implies that |∇uj (zj , tj )| 6 Chj . So (6) implies that

|uj (x, λ)− uj (x, 0)| 6 Cλ|xj | · hj +O(hj )→ 0.

This finishes the first step of the proof.

Proof of Step 2. In [E] it is shown that subcaloric functions are locally bounded from above. In
particular supQ1

v 6 C‖v‖L1(Q2)
. By homogeneity it follows that ‖v‖L∞ 6 C‖v‖L1(Q2)

.

Proof of Step 3. v is subcaloric and 0 6 v 6 C in {x1 > 0} and v = 0 in {x1 < 0}. Thus by the
comparison principle, v 6 wT where

∆wT − wTt = 0 in Rn × (−T , 0),
wT (x,−T ) = ‖v‖L∞ when x1 > 0,
wT (x,−T ) = 0 when x1 < 0.

Letting T → ∞ it is easy to see that wT → ‖v‖L∞/2. Thus ‖v‖L∞ 6 ‖v‖L∞/2, which clearly
implies that v = 0.

Similarly we can show that (
∂u(x, t)

∂t

)−
= 0.

So far we have proved that ut = 0, but that implies that ∆u = χ{u>0}, so u is a solution to the
corresponding elliptic problem and the conclusion follows from [A].

6. Proof of Theorem 3

The proof is the most technically difficult in this paper. We start by proving a lemma which will
help us to use Theorem 2.
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LEMMA 3 Let u ∈ Pr(m, f ), and assume that supQ+s |u| 6 Cs2 for all s < 1 and some constant C
independent of s, and that f satisfies Condition 1. Then the blow-up u0

= limrj→0 urj exists, is
homogeneous, u0(rx, r2t) = r2u0(x, t), and unique.

Proof. Let rj → 0 be a sequence such that

lim
j→∞

u(rjx, r
2
j t)

r2
j

= u0(x, t) locally in Q+∞.

Then for arbitrary α and β we have, by Corollary 1,

W1(αrj , u)−W1(βrj , u)→ 0 as j →∞.

But this is equivalent to

0 = lim
j→∞

W1/rj (α, urj )−W1/rj (β, urj ) = lim
j→∞

∫ α

β

dW1/rj (θ, urj )

dθ
dθ.

It follows that

0 = lim
j→∞

∫ α

β

1
2θ

∫
−1

−4

∫
B+1/(θrj )

|u′θrj |
2

−t
G(x,−t) dx dt dθ

= lim
j→∞

∫ α

β

1
2θ5

∫ θ2

−4θ2

∫
B+1/rj

|u′rj |
2

−t
G(x,−t) dx dt dθ.

This implies that

1
2θ5

∫ θ2

−4θ2

∫
Rn+

|u′0|
2

−t
G(x,−t) dx dt = 0

for almost all θ ∈ (β, α). This is only true if u′0 = 0 a.e., which is equivalent to u0 being
homogeneous: u0(rx, r

2t) = r2u0(x, t). So by Theorem 2 we conclude that u0 = U1 or u0 = U2.
To prove the uniqueness of the blow-up we argue by contradiction. Assume that there exist

two subsequences rj , sj → 0 such that limj→∞ urj = U1 and limj→∞ usj = U2. In particular
limj→∞Wa(rj , u) = Wa(1, U1) and limj→∞Wa(sj , u) = Wa(1, U2). Also by Corollary 1 the
limit limr→0Wa(r, u) exists and thus Wa(1, U1) = Wa(1, U2).

We claim that this can only happen if λ = 1/2, in which caseU1 = U2. In polar coordinates x1 =

r sin(φ), x2 = r cos(φ) we have Ui = r2

2 (sin(φ + φi))2+ where φi = arctan((−1)i
√

1/(2λ)− 1) ∈
[0, π]. Therefore

Wa(1, Ui) =
∫
−1

−4

∫
B+a

(
1
2
|∇Ui |

2
+ Ui +

U2
i

2t

)
G(x, t) dx dt

=

∫
−1

−4

∫
B+a

(
1
2
|∇U |2 + U +

U2

2t

)
χ{φ∈(0,φi )}G(x, t) dx dt
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where U(φ, t) = r2

2 sin2(φ). But for λ ∈ [0, 1/2] we have φ1 6 φ2 with inequality only if λ = 1/2.
Since we integrate only in the region φ ∈ (0, φi) and the integrand is strictly positive it follows that
Wa(1, U1) 6 Wa(1, U2) with equality only if λ = 1/2.

It follows that Wa(1, U1) 6= Wa(1, U2) unless λ = 1/2 in which case U1 = U2. The lemma
follows. 2

We will also need another lemma before we start the proof of the main theorem, but first let us recall
a definition from [CPS].

DEFINITION 4 The minimal diameter of a setE in Rn, denoted md(E), is the infimum of distances
between two parallel hyperplanes such that E is contained in the strip between these planes.

The importance of this definition is due to the following theorem from [CKS].

THEOREM 4 Let∆u−ut = χ{u6=0} inQ1 and |u| 6 M . Then there exists a modulus of continuity
µ such that if md(Λu(−r2

0 ) ∩ Br0)/r0 > µ(r0) then Γu is a C1,α graph in Qar0 for some fixed
constant a > 0.

LEMMA 4 Let u be as in Theorem 3. Then there exists a ρκ,s for each 1 > κ, s > 0 such that if
(x0, t0) ∈ Q+ρκ,s ∩ Γu ∩ C

γ
r0 then

md(Λũ(−(sr)2) ∩ Bsr(x0, t0 − (sr)2))

sr
> κ,

where ũ = u(x + x0, t + t0) and r = x0
1 .

We will prove the first part of Theorem 3 before we prove this lemma.

Proof of the first part of Theorem 3. Assume that this is not true. That is, we assume that
there exists a sequence uj ∈ P1(M, f ) such that Γuj ∩ C

γ
3 (xj , tj ) → 0 and (xj , tj ) /∈

{(x, t); pardist((x, t), ∂ΩU2) < ε|(x, t)|}. We make the blow-up

uj (x, t) =
u(rjx, r

2
j t)

r2
j

→ u0 for a subsequence in C1,α.

By assumption u0 will be the half-space solution U2. Also we have (xj/rj , tj/r2
j )→ (x0, t0) and

pardist((x0, t0), ΓU2) > ε. Since uj (xj , tj ) = 0 it follows that (x0, t0) /∈ spt(U2) and thus u0 = 0
inQε(x

0, t0). But this contradicts the non-degeneracy Lemma 2 andC1,β convergence, in particular

0 = sup
Qε(x0,t0)

|u0| = lim
j→∞

sup
Qε(xj /rj ,t

j /r2
j )

|uj | > cε2. (7)

This finishes the proof. 2

Proof of Lemma 4. Again we argue by contradiction and blow-up. Assume that there exist 0 <
s, κ0 < 1, a sequence uj ∈ P̂1(M, f ) and points (xj , tj ) ∈ Γuj ∩Q

+

1/j (0) such that

md(Λuj (x+xj ,t+tj ) ∩ Bsrj (x
j , tj − (srj )

2))

srj
6 κ0 < 1 (8)
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for rj = x
j

1 . Upon scaling uj ,

ũj =
uj (rjx + x

j , r2
j t + t

j )

r2
j

,

we will have, for a subsequence, ũj → u0. By part 1 of Theorem 3 we may conclude that in Qγ

R ,
for each R > 0,

pardist(Γũj , ΓU2(x+xj /rj )
) 6 σγ (Rrj )→ 0.

Also ũj (−1, x2, . . . , xn, t) = f (rjx2 + x
j

2 , . . . , rjxn + x
j
n , r

2
j t + tj )/r

2
j → λ(x2 + x

0
2)

2
+ where

x0
= limj→∞ xj/rj . It follows that u0 = U2(x+x

0).Using non-degeneracy as in (7) and inequality
(8) we have

lim
j→∞

md(Λũj (−s
2) ∩ B1) = md(Λu0(−s

2) ∩ B1) 6 κ0.

But also
md(Λu0(−s

2) ∩ B1) = md(ΛU2(−s
2) ∩ B1) = 1,

which contradicts the previous inequality and finishes the proof. 2

Proof of the second part of Theorem 3. Lemma 4 implies that if (x0, t0) ∈ Γu ∩ C
γ
r0 and (x0, t0)

is close enough to the origin then

md(Λur (−s
2) ∩ B1(0,−s2))

1
> κ where ur =

u(r(x − x0), r2(t − t0))

r2 .

Choosing s = r0 and κ = 2µ(r0) we see that ur satisfies the assumptions in Theorem 4. It follows
that Γur is a C1,α manifold in Qar0 . Scaling back we conclude that the normal of Γu is well defined
close to the origin. We need to show that the oscillations of the normal of Γu are small close to the
origin.

It is enough to exclude that there exists uj and 0← (xj , tj ) ∈ Γuj ∩ C
γ such that the angle of

the normal of Γuj at (xj , tj ), which we denote by ηj (xj , tj ), and the normal of the free boundary
of U2 goes to zero. To do that we blow up by

ũj =
uj (rjx − x

j , r2
j t − t

j )

r2
j

,

where rj = |x
j

1 |. Notice that the normal of Γũj at the origin equals ηj (xj , tj ). It is therefore enough
to show that the normal of Γũj at the origin converges to the normal of ΓU2 .

By the quadratic bound on uj there is a subsequence of ũj that converges, in C1,α , to some u0.
By our classification of global solutions, u0 = U2. But by Lemma 4 we have, for j large enough,

md(Λũj (−r
2
0 ), Br0) > r0µ(r0),

and thus by Theorem 4 the free boundary Γũj is a C1,α graph in Qa . Therefore there exist a
subsequence of j ’s such that Γũj → ΓU2 in C1,α . This implies that the normal of Γũj converges to
the normal of ΓU2 and the second part of the theorem follows.
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