
Interfaces and Free Boundaries 12 (2010), 293–310
DOI 10.4171/IFB/236

Nonlinear stability analysis of a two-dimensional diffusive free boundary
problem

MICAH WEBSTER

Mathematics and Computer Science Department, Goucher College,
1021 Dulaney Valley Road, Baltimore, MD 21286, USA

E-mail: micah.webster@goucher.edu

PATRICK GUIDOTTI

Department of Mathematics, University of California, Irvine,
340 Rowland Hall, Irvine, CA 92697, USA

E-mail: gpatrick@math.uci.edu

[Received 23 February 2009 and in revised form 25 January 2010]

We explore global existence and stability of planar solutions to a multi-dimensional Case II polymer
diffusion model which takes the form of a one-phase free boundary problem with phase onset. Due to
a particular boundary condition, convergence cannot be expected on the whole domain. A boundary
integral formulation derived in [13] is shown to remain valid in the present context and allows us
to circumvent this difficulty by restricting the analysis to the free boundary. The integral operators
arising in the boundary integral formulation are analyzed by methods of pseudodifferential calculus.
This is possible as explicit symbols are available for the relevant kernels. Spectral analysis of the
linearization can then be combined with a known principle of linearized stability [12] to obtain local
exponential stability of planar solutions with respect to two-dimensional perturbations.

1. Introduction

Diffusion in some polymers exhibits anomalous behavior, sometimes called Case II diffusion.
Models for its description go back to [1] and [2] and take the form of one phase free boundary
problems with kinematic condition. The one-dimensional model of [2] has been analyzed in [3, 4, 5]
and has been extended to two dimensions in [10]. These models are characterized by the initial and
instantaneous onset of a phase which, mathematically, leads to a singular (initial) boundary value
problem for the solvent concentration coupled with an evolution equation of parabolic or Hamilton–
Jacobi type for the front evolution. Their well-posedness has been successfully studied in [6, 8]. The
first paper deals with the quasi-stationary approximation while the second treats the full evolutionary
problem via an abstract approach developed in [9].

In one space dimension global existence of solutions has been established in the earlier papers
mentioned above so that the natural question of their stability with respect to two-dimensional
perturbations arises. Formal arguments allowed the authors of [10] to conclude that such solutions
are indeed stable with respect to infinitesimal perturbations, albeit in the presence of an initial
transient instability. In this paper a rigorous proof is given of the stability of one-dimensional, “flat”
for short, solutions for the two-dimensional quasi-stationary approximation. The proof relies on a
version of the principle of linearized stability which is valid in the appropriate functional setting.

The framework developed in [6, 8, 9] is not suited for the global well-posedness and stability
analysis as it views the free boundary problem as a coupled system for the diffusion of the solvent
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and the motion of the front. The reason lies in the fact that truly two-dimensional solutions, i.e.
with nontrivial transversal profiles (see precise formulation in Section 2), even when they converge
to a flat solution, only do so on the moving boundary (which itself becomes flat). As this happens,
a boundary layer develops in proximity of the fixed boundary where a nonhomogeneous Dirichlet
condition is imposed modeling a reservoir kept at constant but nontrivial concentration. This clearly
prevents convergence on the whole domain.

Thus we must reformulate the model so as to consider only the dynamics on the free boundary.
A natural way to obtain an equivalent system for the boundary effects is to employ a boundary
integral formulation. For the equations of interest such a formulation has been derived in [13].
The approach has several advantages for performing nonlinear analysis: Firstly, essentially it turns
the problem into a scalar one. Secondly, the concentration on the free boundary can be expressed
through an operator depending solely on the free boundary itself. Most importantly, the boundary
integral formulation allows us to view the problem as a dynamical system for which we can exploit
maximal regularity to obtain global existence results. The key element of many theorems using
maximal regularity arguments is the spectral analysis of the generator associated to the linearization.
To perform the latter we take the point of view of pseudodifferential operators. This is a viable
approach since it allows us to explicitly compute the resolvent and spectrum of the generator needed
in order to apply stability theorems.

The nonlinear stability results obtained in this paper rely on linear results that extend the linear
ones found in [13]. For the purposes of the latter paper it was sufficient to linearize the integro-
differential equations (18) satisfied by the unknown free boundary in the trivial solution, whereas, in
the current paper, understanding of the linearization in any constant (in space) solution is necessary.
Thus, while the present paper relies on the boundary integral formulation (BIF) derived in [13], the
validity of such BIF still needs to be established in a neighborhood of a more general class of special
solutions for it to be useful in the nonlinear stability analysis.

We organize the paper as follows: in Section 2 we formulate the two-dimensional model and
briefly discuss the planar or flat solutions. The main result, Theorem 3.1, which asserts that flat
solutions are locally exponentially stable with respect to periodic, mean-zero H 2-perturbations is
formulated in Section 3 along with a result about the asymptotic behavior of the free boundary,
generalizing known one-dimensional observations. The proof of the main result stretches over the
remainder of the paper. Section 4 discusses the boundary integral reformulation, Section 5 deals with
its validity close to flat solutions and gives an in-depth analysis of the relevant operators’ symbols
in order to establish the properties required by the stability theorems of [12]. The nonlinear stability
result is then proved in Section 6.

2. Formulation of the 2-D Case II diffusion model

We assume that a polymer half-space is exposed to a reservoir of solute consisting of small
molecules capable of diffusing into it. In the half-space, a sharp interface separates the polymer
in two parts. The first is a swollen rubbery region, Ωt , where we assume the solute is free to
diffuse, and the second is a glassy region with negligible concentration of solute. We skip the
nondimensionalization process and construction of the quasi-stationary approximation and refer
to [10] and [6]. The quasi-stationary model for Case II diffusion is given by

−∆u(t, x, y) = 0 for (x, y) ∈ Ωt , t > 0, (1)
u(t, x, 0) = g(x) > 0 for x ∈ R, (2)
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−∂νtu(t, x, s(t, x)) = ṡ(t, x) for x ∈ R, t > 0, (3)

ṡ(t, x) =

(√
1+ s2

x + δ
sxx

1+ s2
x

)
γtu(t, x, s(t, x)) for x ∈ R, t > 0, (4)

s(0, x) ≡ 0 for x ∈ R. (5)

Equation (1) must hold in an unknown, strip-like domain

Ωt = {(x, y) ∈ R2 : 0 < y < s(t, x)}

with fixed bottom boundary Γ0 = R× {0} and moving boundary

Γt = {(x, s(t, x)) : x ∈ R}

for positive time as depicted in Figure 1. We assumed that Γt can be parametrized by an unknown

s(x, t)

y

Ωt

x

FIG. 1. The setup of the free boundary problem of interest.

smooth function s. In addition, u denotes the concentration of solute, νt is the unit outer normal to
the free boundary, and δ is a nonnegative parameter. As hinted by Figure 1, we will focus on the
x-periodic case.

A consequence of (1)–(5) combined with the well-posedness for smooth solutions established
in [6] is that ṡ(0, x) = g(x), and even though this is clearly not a necessary condition, we will at
times explicitly add it to the formulation of the equations for the sake of clarity.

When the boundary datum is flat (independent of x) the system yields a flat-solution pair denoted
by (uf (t, y), sf (t)) or just (uf , sf ). In this case (1)–(5) reduce to the following system:

−∂yyu(t, y) = 0, 0 < y < s(t), t > 0, (6)
u(t, 0) = gf > 0, t > 0, (7)
ṡ(t) = −∂yu(t, s(t)), t > 0, (8)
ṡ(t) = u(t, s(t)), t > 0, (9)
s(0) = 0. (10)

Using the Ansatz that u is linear in y, it is easy to see that we have a solution pair defined as follows:

u(t, y) =
−gf√

1+ 2gf t
y + gf =: uf (t, y), s(t) = −1+

√
1+ 2gf t =: sf (t).

The pair (uf , sf ) satisfies (1)–(5), and we should point out that with flat boundary datum we can
apply the uniqueness result derived by Guidotti in [6] to justify the simplification made in (6)–(10).
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Observe that, due to condition (2), once we allow x-dependence in the boundary datum it is
impossible for the solution pair of (1)–(5) to converge to a flat solution pair of (6)–(10) on the
whole domain since a boundary layer develops at the bottom boundary. This observation led us to
the idea of using a boundary integral formulation (BIF) to analyze the behavior of solution pairs
restricted to Γt only.

3. Main results

The following main theorem will be proved in Sections 5 and 6. It relies on the compact
reformulation (18) which is indeed shown to be valid in a neighborhood of flat solutions via
pseudodifferential calculus analysis in Section 5. It also relies on a version of the principle of
linearized stability found in [12] which is briefly described at the beginning of Section 6. The latter
section then goes on to prove the validity of the required spectral properties of the linearization by
means of pseudodifferential calculus, symbol analysis, and a perturbation argument.

3.1 Global existence and stability

The notations for the function spaces used in the formulation of Theorem 3.1 and subsequent
Proposition 3.1 are introduced in Subsection 4.1 below.

THEOREM 3.1 (Global existence and stability of flat solutions) Let g ∈ H 2
p ([0, 1]) be such that

g > 0. There exist positive constants δ0, ω, ε,K, t
∗ and a function r∗ such that if δ > δ0 and

‖g − gf ‖H 2
p
< ε then there exists a global solution s to (18) such that

s − sf ∈ C
α([t∗, T ];H 0) ∩ C1+α([t∗, T ];L0),

‖s(T )− sf (T )‖H 2
p

6 Ke−T ω‖r∗‖H 2
p
, ∀T > t∗.

Once the asymptotic flattening of the boundary is obtained, it is immediate to recover the
convergence of the solute concentration restricted to the free boundary to an x-independent one
from the boundary integral formulation. We stress again that this convergence does not, however,
extend to the whole domain since u(t, x, 0) = g(x).

An important ingredient in the stability result is local existence and continuous dependence on
the boundary datum. The result can be found in [13] and is stated here for convenience.

THEOREM 3.2 Let g ∈ H 2
p ([0, 1]) be such that g > 0, and δ be a positive real number. There

exists T = T (s0) > 0 and a strict solution

s ∈ Cα([0, T ];H+) ∩ C1+α([0, T ];L2,p([0, 1]))

to (18). Furthermore, let sg1 and sg2 be solutions to (18) with H 2
p ([0, 1]) boundary data g1 and g2

respectively. Then there exist C, r > 0 such that if ‖g1 − g2‖H 2
p ([0,1]) 6 r , then

‖sg1 − sg1‖Cα([0,T ];H 2
p ([0,1])) + ‖ṡg1 − ṡg2‖Cα([0,T ];L2,p([0,1])) 6 C‖g1 − g2‖H 2

p ([0,1]) (11)

where H+ := {v ∈ H 2
p ([0, 1]) : v > 0}.
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3.2 An asymptotic estimate

Let (u(t, x, y), s(t, x)) be a smooth solution to (1)–(5) for t ∈ [0, T ]. Then from Green’s identity
and the parameterization

Γt = {(x, s(t, x)) : x ∈ [0, 1]}

one computes

0 =
∫
Ωt

y∆u dz =
∫ 1

0
[g(x)− (ṡ(t, x)s(t, x)+ u(x, s(t, x)))] dx, t ∈ [0, T ],

which yields∫ 1

0
g(x) dx =

∫ 1

0
s(t, x)ṡ(x) dx +

∫ 1

0
u(x, s(t, x)) dx, t ∈ [0, T ],

‖s‖2L2
= 2t

∫ 1

0
g(x) dx − 2

∫ t

0

∫ 1

0
u(x, s(τ, x)) dx dτ, t ∈ [0, T ],

(12)

and delivers an estimate for the long time behavior of the front.

PROPOSITION 3.1 Let u ∈ L1([0,∞);C2([0, 1) × [0,∞),R)) and s(·, x) ∈ C1([0,∞)) for all
x ∈ [0, 1). Then there exists a function η(t) such that

(1− η(t))1/2
√

2t
∫ 1

0
g(x) dx 6 ‖s‖L2 6

√
2t
∫ 1

0
g(x) dx, t ∈ [0, T ],

where limt→∞ η(t) = 0.

Proof. The inequality is immediate from (12) with

η(t) =
1

t
∫ 1

0 g(x) dx

∫ t

0

∫ 1

0
u(x, s(τ, x)) dx dτ. 2

Cohen and Erneux [3] noticed that in the Astarita–Sarti model [2] the free boundary initially
grew proportional to t , but then eventually switched to a

√
t-behavior. The estimate in the above

proposition shows that the two-dimensional Case II diffusion model considered here exhibits the
same behavior in the L2-norm provided the solution exists for large enough time. Furthermore,
Proposition 3.1 demonstrates the asymptotic dependence the free boundary has on the average value
of g.

4. Boundary integral formulation

4.1 Notations and conventions

Let Ω be a domain in Rn. We denote by L2(Ω) the usual Hilbert space of square-integrable
functions on Ω . Hm(Ω) will denote the class of all functions defined on Ω whose first m weak
derivatives are in L2(Ω), and with norm

‖f ‖2Hm(Ω) :=
∑

06|α|6m

‖Dαf ‖2L2
.
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Denote the Fourier transform on the circle [0, 1] by

(Fx 7→ku)(k) = û(k) =
∫ 1

0
e−2πikxu(x) dx, k ∈ Z,

and the Fourier inverse by

(F−1
k 7→xu)(x) =

∑
k∈Z

û(k)e2πikx, x ∈ [0, 1].

Let Hm
p = H

m
p ([0, 1]) be the Sobolev spaces on the unit circle, that is,

Hm
p ([0, 1]) =

{
u ∈ L2([0, 1]) :

∑
k∈Z
(1+ |k|)m|û(k)|2 <∞

}
.

We denote H 0
p by L2,p and we set

‖u‖2Hm
p
=

∑
k∈Z
(1+ |k|)m|û(k)|2.

Let L0 and H 0 be the spaces of mean-zero L2,p and H 2
p functions respectively on [0, 1], that is,

L0
= {v ∈ L2,p([0, 1]) : v̂0 = 0}, H 0

= {v ∈ H 2
p ([0, 1]) : v̂0 = 0}.

Due to mathematical conventions, we use δ as a notation in three different ways, all made clear by
the context. The Dirac delta distribution with mass centered at (x, y) is represented by δ(x,y). The
Kronecker delta function is given by δ(k), and lastly a simple δ is fixed as a real parameter given in
the Case II model.

Let X be a real or complex Banach space with norm ‖ · ‖, let J ⊂ R be an interval, and define
B(J ;X) as the collection of all bounded functions f : J → X. We endow B(J ;X) with the sup
norm

‖f ‖B(J ;X) = sup
t∈J

‖f (t)‖.

We also define the spaces of bounded continuous, and of m times continuously differentiable
functions, as follows:

Cb(J ;X) = B(J ;X) ∩ C(J ;X), ‖f ‖Cb(J ;X) = ‖f ‖B(J ;X),

Cmb (J ;X) = {f ∈ C
m(J ;X) : f (k) ∈ Cb(J ;X), k = 0, 1, . . . , m},

‖f ‖Cmb (J ;X)
=

m∑
k=0

‖f (k)‖B(J ;X).

The main reason for introducing the previous spaces is to define the spaces of Hölder continuous
functions and Cα(J ;X), Ck+α(J ;X) for k ∈ N, α ∈ (0, 1) by

Cα(J ;X) =

{
f ∈ Cb(J ;X) : [f ]Cα(J ;X) = sup

t,s∈J, s<t

‖f (t)− f (s)‖

(t − s)α
<∞

}
,

‖f ‖Cα(J ;X) = ‖f ‖B(J ;X) + [f ]Cα ,

Ck+α(J ;X) = {f ∈ Ckb (J ;X) : f (k) ∈ Cα(J ;X)},

‖f ‖Ck+α(J ;X) = ‖f ‖Ckb (J ;X)
+ [f (k)]Cα(J ;X).
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4.2 Reformulation

Boundary integral formulations of (free) boundary value problems rely on classical integral
representations of solutions by means of layer potentials derived from explicit knowledge of
fundamental solutions and Green’s formula. In the two-dimensional x-periodic case considered here
a fundamental solution for

−∆G = δ(x,y), (x, y) ∈ [0, 1)× [0,∞),

can be explicitly computed:

G(x, y) =
1

2π
log |1+ e−4πy

− 2 cos(2πx)e−2πy
| (13)

as pointed out in [7]. We omit the derivation of the BIF and refer to [13] instead.
Let s ∈ H 2

p ([0, 1]), ṡ ∈ L2,p([0, 1]), g ∈ H 2
p ([0, 1]) and consider the boundary integral

equation for Ψ [s](x) := u(x, s(x)) given by

(id+ Is)[Ψ ] = R3(g, s, ṡ)

where

Is[Ψ ](x) =
∫ 1

0
(−sx(x̃), 1)∇G(x − x̃, s(x)− s(x̃))Ψ (x̃) dx̃

−

∫ 1

0
G(x − x̃, s(x))N

[∫ 1

0
(−sx̃(z), 1) · ∇G(x̃ − z,−s(z))Ψ (z) dz

]
dx̃

and

N [h] = F−1[2π |k|]F[h], (14)

R1(g, s, ṡ)(x) =

∫ 1

0
[g(x̃)+ (G(x − x̃,−s(x̃))−G(x − x̃, 0))ṡ(x̃)] dx̃, (15)

R2(g, s, ṡ)(x) =

∫ 1

0
[G(x − x̃, s(x))−G(x − x̃, s(x)− s(x̃))]ṡ(x̃) dx̃,

+

∫ 1

0
g(x̃)

∂G

∂y
(x − x̃, s(x)) dx̃, (16)

R3(g, s, ṡ) =

∫ 1

0
G(· − x̃, s(·))N [R1(g, s, ṡ)(·)](x̃) dx̃ +R2(g, s, ṡ). (17)

Then the equivalent boundary reformulation of (1)–(5) is given by
ṡ(t, x) =

(√
1+ s2

x + δ
sxx

1+ s2
x

)
Ψ [s], (t, x) ∈ (0,∞)× [0, 1],

s(0, x) = 0, x ∈ [0, 1],
Ψ [s(0, ·)](x) = g, x ∈ [0, 1],

(18)

where Ψ [s] = (id + Is)−1R3(g, s, ṡ). The crucial question, on which hinges the validity of the
reformulation, is whether or not the integral operator

Is = id+ Is
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possesses an inverse. In [13] it has been shown that this is the case for small time or, equivalently,
in a neighborhood of s ≡ 0. In this paper we show that (18) is also well-defined when s is close to
being flat so that the nonlinear stability theorem given in [12] can be applied to it.

5. Validity of the boundary integral formulation

In this section, we provide the proper context and relevant definitions to view the operators appearing
in the BIF as pseudodifferential operators with known symbols. This makes it possible to show that
reformulation (18) is well-defined. Knowledge of the symbols will also be essential later in proving
Theorem 3.1.

5.1 Pseudodifferential operators with nonregular symbols

For a function σ : [0, 1]× [0, 1]× Z→ C define

〈k〉 = (1+ |k|2)1/2,
4kσ(x, y, k) = σ(x, y, k + 1)− σ(x, y, k),

4
α
k σ(x, y, k) =

∑
β6α

(−1)|α−β|
(
α

β

)
σ(x, y, k + β).

DEFINITION 5.1 For τ > 0, Sm
ρ,δ;τ

is defined as the set of symbols σ(x, y, k) which have
continuous derivatives satisfying

|4
α
k ∂
β
x ∂

β ′

y σ | 6 C〈k〉m+δ|β+β
′
|−ρ|α| (19)

for any α and |β + β ′| 6 [τ ] and

|4
α
k ∂
β
x ∂

β ′

y σ(x, y, k)−4
α
k ∂
β
x ∂

β ′

y σ(x
′, y′, k)| 6 C(|x − x′|τ̇ + |y − y′|τ̇ )〈k〉m+δτ−ρα (20)

for |β + β ′| = [τ ], τ > 0 and |x − x′| 6 1, |y − y′| 6 1 where C is a constant depending on α, β
and β ′, and τ̇ = τ − [τ ].

For σ(x, y, k) ∈ S0
1,δ′;τ we define

Op(σ )[f ](x) =
∫ 1

0

∑
k∈Z

σ(x, y, k)e2πik(x−y)f (y) dy.

The operator Op(σ ) is a bounded operator from Lq to Lq , provided 0 6 δ′ < 1 and 0 < τ 6 1.
Since we restrict ourselves to the L2,p([0, 1]) context, the conditions (19)–(20) in Definition 5.1
need only hold for |α| = 0, 1, 2 (see [11]). Recall our logarithmic kernel, G, in the boundary
integral formulation is defined by

G(x, y) =
1

2π
log |1+ e−4πy

− 2 cos(2πx)e−2πy
|.

To perform the stability analysis we need to understand the symbol when y varies. In the following
definition we summarize the results proved in [7]
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DEFINITION 5.2 (Theorem 8 in [7]) Let s ∈ H 2
p ([0, 1]).

(a) We have ∫ 1

0
Gy(x − x̃, s(x)− s(x̃))f (x̃) dx̃ = Op(aK)[f ](x)

for any f ∈ H 1
p ([0, 1]), where aK = aK(k, x, x̃) is given by

aK(k, x, x̃) =

{
exp(−2π |k|(s(x)− s(x̃))), k ∈ Z, s(x)− s(x̃) > 0,
−2δ(k)− exp(2π |k|(s(x)− s(x̃))), k ∈ Z, s(x)− s(x̃) < 0.

(b) We have ∫ 1

0
G(x − x̃, s(x)− s(x̃))f (x̃) dx̃ = Op(aG)[f ](x)

for any f ∈ L2,p([0, 1]), where aG = aG(k, x, x̃) is given by

aG(k, x, x̃) =


exp(−2π |k|[s(x)− s(x̃)])

2π |k|
, s(x)− s(x̃) > 0,

exp(2π |k|[s(x)− s(x̃)])
2π |k|

+ e2πikx̃ ĉ(k, x̃), s(x)− s(x̃) < 0,

for k ∈ Z∗ and where the correction term ĉ is given by

ĉ(·, x̃) = Fx 7→k[−2(s(·)− s(x̃))χ[s(·)−s(x̃)<0]].

(c) We have ∫ 1

0
Gx(x − x̃, s(x)− s(x̃))f (x̃) dx̃ = Op(aH )[f ](x)

for any f ∈ H 1
p ([0, 1]), where aH = aH (k, x, x̃) is given by

aH (k, x, x̃) =

{
−i sgn(k) exp(−2π |k|[s(x)− s(x̃)]), k ∈ Z, s(x)− s(x̃) > 0,
−i sgn(k) exp(2π |k|[s(x)− s(x̃)]), k ∈ Z, s(x)− s(x̃) < 0.

Next we define the core operators associated with the Fréchet derivative of the generator used in
the stability result.

DEFINITION 5.3 Let f, s ∈ H 2
p ([0, 1]). We define

DOpf
(s(·)−s(x̃))

(a
+,−
G ) : H 2

p ([0, 1])→ L2,p([0, 1])

by setting

DOpf
(s(·)−s(x̃))

(a+G)[r] =
∫ 1

0

∑
k∈Z∗
−e−2π |k|[s(·)−s(x̃)]e2πik(·−x̃)[r(·)− r(x̃)]f (x̃) dx̃

if s(·)− s(x̃) > 0,
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DOpf
(s(·)−s(x̃))

(a−G)[r] =
∫ 1

0

∑
k∈Z∗

e2π |k|[s(·)−s(x̃)]e2πik(·−x̃)[r(·)− r(x̃)]f (x̃) dx̃,

+

∫ 1

0

∑
k∈Z∗

e2πikx̃F·7→k[−2(r(·)− r(x̃))χ[s(·)−s(x̃)<0]]f (x̃) dx̃

if s(·)− s(x̃) < 0.

Moreover, we define
DOpf

(s(·)−s(x̃))
(aK) : H 2

p ([0, 1])→ L2,p([0, 1])

by

DOpf
(s(·)−s(x̃))

(aK)[r] =
∫ 1

0

∑
k∈Z∗
−2π |k|e−2π |k||s(·)−s(x̃)|e2πik(·−x̃)[r(·)− r(x̃)]f (x̃) dx̃.

Finally, we define
DOpf

(s(·)−s(x̃))
(aH ) : H 2

p ([0, 1])→ L2,p([0, 1])

by

DOpf
(s(·)−s(x̃))

(aH )[r] =
∫ 1

0

∑
k∈Z∗

2πike−2π |k||s(·)−s(x̃)|e2πik(·−x̃)[r(·)− r(x̃)]f (x̃) dx̃.

Using Definitions 5.1–5.3 we can view the operators and their corresponding Fréchet derivatives
in the BIF as nonregular pseudodifferential operators. Furthermore, the linearization of the BIF
about s = s0 satisfies the necessary mapping and Lipschitz continuity properties to apply maximal
regularity existence theorems (see [13]). We continue by focusing on the situation when s is nearly
flat.

5.2 Linearization in flat solutions

Here we compute the Fréchet derivative of the BIF for γtu evaluated at s = sf . We begin our
investigation by introducing the notation

Opf (x,x̃)(aG), Opf (x,x̃)(aK), Opf (x,x̃)(aH )

for the symbols of the integral operators with kernels

G(x − x̃, f (x, x̃)), Gy(x − x̃, f (x, x̃)), Gx(x − x̃, f (x, x̃)),

respectively. Let ε, T > 0, s, r ∈ Cα([0, T ];H 2
p ) ∩ C

1+α([0, T ];L2,p), g ∈ H 2
p ([0, 1]) and

B[s](x̃) = N
[∫ 1

0
(−sz(z), 1) · ∇G(x̃ − z,−s(z))Ψ [s](z) dz

]
,

Is[Ψ ](x) = Ψ [s](x)+
∫ 1

0
(−sx(x̃), 1)∇G(x − x̃, s(x)− s(x̃))Ψ [s](x̃) dx̃

−

∫ 1

0
G(x − x̃, s(x))B[s](x̃) dx̃,
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and
DΨ· = lim

ε→0

Ψ [· + εr]− Ψ [·]
ε

.

Then DΨs must satisfy the following equation (see [13] for the details):

IsDΨs = (DR1
−DIs)[r]+DR2[ṙ] (21)

where

DIs[r](x) = DOpΨ [s]
(s(x)−s(x̃))

(aK)[r](x)+ DOp−sxΨ [s]
(s(x)−s(x̃))

(aH )[r](x)

− DOpB[s]
s(x) (aG)[r](x)+ Ops(x)−s(x̃)(aH )[−rxΨ [s]](x)

− Ops(x)(aG)
[
N [DOpΨ [s]

−s(z)(aK)[r](x̃)+ DOp−sxΨ [s]
−s(z) (aH )[r](x̃)

+ Op−s(z)(aH )[−rzΨ [s]](x̃)]
]
(x)

DR1[r](x) = DOpgs(x)(aK)[r](x)+ DOpN (R1(g,s,ṡ))
s(x) (aG)[r](x)

+ Ops(x)(aG)[N [DOpṡ(z)
−s(z)(aG)[r](x̃)](x)

+ (DOpṡs(x)(aG)− DOpṡs(x)−s(x̃)(aG))[r](x)

DR2[ṙ](x) = (Ops(x)(aG)− Ops(x)−s(x̃)(aG))[ṙ](x)

+ Ops(x)(aG)
[
N
[
(Op−s(z)(aG)− Op0(aG))[ṙ](x̃)

]]
(x)

which gives

DΨs[r, ṙ] = I−1
s [DR1

−DIs][r]+ I−1
s [DR2][ṙ] =: DΨ 1

s [r]+DΨ 2
s [ṙ] (22)

as soon as I−1
s exists. (22) is an explicit representation of the Fréchet derivative of Ψ [s] and is most

useful in computing the spectrum of the linearization of (18) about s = sf .

5.3 Proof of validity for BIF

We are now in a position to prove that the BIF and its Fréchet derivative are well-defined in an
H 2
p -neighborhood of s = sf . We state and prove the theorem based on a small technical lemma that

we postpone until after the proof of the theorem.

THEOREM 5.1 Let T > 0 and define

Y 0
= {f : f (t, ·) ∈ H 0, ḟ (t, ·) ∈ L0, ∀t ∈ [0, T ]}.

If g ≡ gf > 0, s = sf and ṡ = ṡf then

DΨs(sf ) : Y 0
→ L2,p,

DΨs(sf )[r] = ṡfF−1
(
e−4π |k|sf − e−2π |k|sf + 2π |k|e−2π |k|sf − 4π |k|

2+ e−4π |k|

)
F(r)

+ F−1
([
e−2π |k|sf − 1
2+ e−4π |k|sf

][
1+ 2π |k|e−2π |k|sf

2π |k|

])
F(ṙ)

is a linear operator and there exists an η > 0 such that, for all s ∈ BH 0(sf , η),DΨs is given by (22).
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Proof. Let g = gf , s = sf , ṡ = ṡf and r ∈ Y 0. Observe

F
[∫ 1

0
G(ξ − ξ̃ , sf )N [f ] dξ̃

]
= e−2π |k|sfF[f ](k) (23)

and by Lemma 5.1, Ψ [sf ] is flat, or in other words constant in the spatial variable. A straightforward
calculation gives

DOpΨ [s]
s(x)−s(x̃)

(aK)[r](x)|s=sf =
∫ 1

0

∑
k∈Z∗

(−2π |k|)e2πik(x−x̃)(r(x)− r(x̃))Ψ [sf ] dx̃

= Ψ [sf ]N [r](x),

Ops(x)−s(x̃)(aH )[−rxΨ [s]](x)|s=sf = Ψ [sf ](F−1(−2π |k|)F(r))(x),

DOpΨ [s]
−s(z)(aK)[r](x̃)|s=sf = Ψ [sf ](F−1(−2π |k|)e−2π |k|sfF(r))(x̃),

DOpB[s]
s(x) (aG)[r](x)|s=sf = 0,

Op−s(z)(aH )[−rzΨ [s]](x̃)|s=sf = Ψ [sf ](F−1(−2π |k|)e−2π |k|sfF(r))(x̃).

Using (23) along with the definition of DIs[r] produces

DIs[r]|s=sf = Ψ [sf ]F−1(4π |k| − 2π |k|e−2π |k|sf )F(r). (24)

To calculate DR1[r], first noticeR1(gf , sf , ṡf ) is constant so that

N [R1(g, s, ṡ)
∣∣
(g=gf ,s=sf ,ṡ= ˙sf ))

] ≡ 0.

Computing the rest of the terms in the definition of DR1[r] and DR2[ṙ] yields

DR1[r] = ṡfF−1(e−4π |k|sf − e−2π |k|sf )F(r), (25)

DR2[ṙ] = F−1
(
e−2π |k|sf − 1

2π |k|
+ e−4π |k|sf − e−2π |k|sf

)
F(ṙ) (26)

Combining (21), (24), (25) and (26) one computes

IsfDΨsf [r, ṙ] = F−1(ṡf (e
−4π |k|sf − e−2π |k|sf )+ Ψ [sf ](2π |k|e−2π |k|sf − 4π |k|))F(r)

+ F−1
(
e−2π |k|sf − 1

2π |k|
+ e−4π |k|sf − e−2π |k|sf

)
F(ṙ) (27)

where
IsfDΨsf [r, ṙ] = IsDΨs[r, ṙ]|(g=gf ,s=sf ,ṡ=ṡf ).

In Lemma 5.1 we demonstrate that Is is invertible at s = sf and the inverse operator is given by

v 7→ F−1
[
(1− δ(k))

1
2+ e−4π |k|sf

+ δ(k)

]
F[v].

Furthermore, Ψ [sf ] is a smooth solution to the boundary integral formulation and (sf , Ψ [sf ])
satisfies (6)–(10). Thus by the uniqueness result in [6],

Ψ [sf ] = uf = ṡf .
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Putting everything together gives

DΨs[r, ṙ]|s=sf = ṡfF
−1
(
e−4π |k|sf − e−2π |k|sf + 2π |k|e−2π |k|sf − 4π |k|

2+ e−4π |k|

)
F(r)

+ F−1
([
e−2π |k|sf − 1
2+ e−4π |k|sf

][
1+ 2π |k|e−2π |k|sf

2π |k|

])
F(ṙ).

Using Theorems 5.2 and 5.3 in [13] and Lemma 5.1 there exists η > 0 such that I−1
s exists provided

s ∈ BH 0(sf , η), so that DΨs is given by (22) in an η-neighborhood of sf . 2

LEMMA 5.1 Let s = sf , ṡ = ṡf , and g = gf . Then Ψ [sf ] is the smooth, flat solution to the
equation

Isf [Ψ ] = R3(gf , sf , ṡf )

where
Isf : Hm

p → Hm
p , v 7→ (2 id+ F−1[(1− δ(k))e−4π |k|sf − δ(k)]F)[v].

Moreover, Isf is an invertible operator and its inverse is given by

v 7→ F−1
[
(1− δ(k))

1
2+ e−4π |k|sf

+ δ(k)

]
F[v].

Proof. Let s = sf , ṡ = ṡf , and g = gf and evaluate (id + Is)[Ψ ]. A straightforward calculation
using Definition 5.2 and the Fourier transform completes the proof. 2

6. Proof of global existence

In this final section we begin by briefly discussing asymptotic stability and the principle of linearized
stability. We then prove Theorem 3.1 through a series of technical lemmas which verify the
assumptions of Theorem 9.1.2 in [12].

6.1 A principle of linearized stability

Consider the problem

u̇(t) = F(u(t)), t > 0, (28)
u(0) = u0, (29)

where F : D → X, and suppose ū is a stationary solution. The stationary solution is said to be
stable if, for each ε > 0, there is a δ > 0 such that, for ‖u0 − ū‖D 6 δ, the interval of existence for
the solution, u, is [0,∞) and ‖u(t; u0)− ū‖D 6 ε for all t > 0. In addition, the stationary solution
is said to be asymptotically stable if it is stable and

lim
t→∞
‖u(t; u0)− ū‖D = 0

uniformly for u0 in a neighborhood of ū. Under the key assumptions that A = F ′(0) be locally
Lipschitz in a neighborhood of the null solution, that it be a sectorial operator from D(A) to X, and
that

sup{Re(λ) : λ ∈ σ(F ′(0))} = −ω0 < 0,
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Lunardi proved that the trivial solution to (28) is exponentially asymptotically stable in D. That is,
for every ω ∈ [0, ω0) there are r,M > 0 such that if ‖u0‖D 6 r , then the interval of existence is
[0,∞) and

‖u(t; u0)‖D 6 Me−ωt‖u0‖D, t > 0.

The most challenging assumption of the principle of linearized stability is the spectral condition. It
will become evident that defining the operators in terms of the Fourier transform is essential.

LEMMA 6.1 The operator

B : L0
→ L0, v 7→ (id−DΨ (2)

sf
)[v], (30)

is invertible and the inverse is given by

B−1[w] = F−1
(

2π |k|(2+ e−2π |k|sf )

1+ 4π |k| + (2π |k| − 1)e−2π |k|sf

)
F[w]

for every w ∈ L0.

Proof. Let v,w ∈ L0 and consider
B[v] = w.

From Theorem 5.1, taking the Fourier transform of both sides yields(
1−

[
e−2π |k|sf − 1
2+ e−4π |k|sf

][
1+ 2π |k|e−2π |k|sf

2π |k|

])
F[v] = F[w].

Then solving for F[v] yields

F[v] =
2π |k|(2+ e−2π |k|sf )

1+ 4π |k| + (2π |k| − 1)e−2π |k|sf
F[w]

and inversion of the Fourier transform yields the claim. 2

LEMMA 6.2 Consider
ṡ(t, x) = F [s](t, x), (t, x) ∈ (0,∞)× [0, 1],
s(0, x) = 0, x ∈ [0, 1],
Ψ [s(0, ·)](x) = g(x), x ∈ [0, 1],

(31)

where

F [s] =
(√

1+ s2
x + δ

sxx

1+ s2
x

)
Ψ [s]

and g ∈ H 2
p ([0, 1]) is such that g > 0. Let (uf , sf ) be the flat solution pair corresponding to the

boundary datum gf :=
∫
g and define the linear operator, G, from H 0 to L0 as follows:

G[r] = (id−DΨ (2)
sf
)−1[δuf∆[r]+DΨs(sf )(1)[r]].
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Then the linearization about s = sf is given by
ṙ = G[r] in (0,∞)× [0, 1],
r(0, x) = 0 for x ∈ [0, 1],
Ψ [r(0)](x) = g(x)− gf for x ∈ [0, 1].

(32)

Furthermore, G is a sectorial operator fromH 0 to L0 and there exist ω0, δ0 > 0 such that for δ > δ0
we have sup{Re(σ (G))} 6 −ω0 < 0.

Proof. Let T > 0, s − sf ∈ C1+α([0, T ];L0) ∩ Cα([0, T ];H 0), and

r = s − sf .

Then using Theorem 5.1 taking the Fréchet derivative of (31) and bringing all terms with ṙ to the
left hand side yields

ṙ −DΨ (2)
sf

[ṙ] = δuf∆[r]+DΨs(sf )(1)[r].

Finally, by Lemma 6.1,

ṙ = (id−DΨ (2)
sf
)−1[δuf∆[r]]+ (id−DΨ (2)

sf
)−1[DΨs(sf )(1)[r]]

=: G1[r]+ G2[r]. (33)

To compute the spectrum of G we proceed in several steps. First, we compute the resolvent of G1,
in order to show the operator is self-adjoint and the real part of the spectrum is negative. Second,
we use a Neumann series argument to ensure the spectrum of G1 does not shift too much when
perturbed by G2. In this step, we see that for large enough δ the real part of the spectrum will remain
negative.

Let r ∈ H 0 and λ ∈ C and consider

G1[r] = λr.

Using the Fourier transform and Lemma 6.1 we solve for λ, which yields the eigenvalues of the
operator defined as follows:

λk := −δuf (2πk)2
[

2π |k|(2+ e−2π |k|sf )

1+ 4π |k| + (2π |k| − 1)e−2π |k|sf

]
, k ∈ Z∗. (34)

Since sf is positive and uf is nonnegative, (34) is strictly negative for all k ∈ Z∗, and is bounded
above by evaluating (34) at k = 1. Thus,

λk 6 −δuf (2π)2
[

2π(2+ e−2πsf )

1+ 4π + (2π − 1)e−2πsf

]
< 0 ∀k ∈ Z∗.

Let f ∈ L0 and λ 6= λk for k ∈ Z∗. Then the resolvent of G1 is given by

R(λ,G1) : L0
→ H 0

⊂ L0, f 7→ F−1 1
λk − λ

F[f ].
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Since H 0 is dense in L0, and G1 is a closed operator from H 0 into L0, the adjoint, G∗1 , exists and its
resolvent satisfies

R(λ,G∗1 ) = R(λ̄,G1)
∗
∀λ̄ ∈ ρ(G1).

Taking advantage of the fact that we know R(λ,G1) explicitly and the eigenvalues of G1 are all real,
one observes that G1 is self-adjoint and its eigenvalues, λk , completely make up its spectrum. Next
we show there exists a positive constant, c, such that the resolvent of G1 + G2 contains a half-plane
of C of the form {λ ∈ C : Re(λ) > −c}. Observe

R(λ,G1 + G2) = R(λ,G1)(id− R(λ,G1)G2)
−1 (35)

Thus R(λ,G1 + G2) exists as a bounded operator if we can show the inverse in (35) exists and is
bounded. Fix δ positive and λ such that Re(λ) > λ1/2 so that

‖R(λ,G1)G2‖ 6

∥∥∥∥ λk

λk − λ

e−4π |k|sf + (2π |k| − 1)e−2π |k|sf − 4π |k|
−δ(2πk)2(2+ e−2π |k|sf )

∥∥∥∥
l∞

,

yielding

‖R(λ,G1)G2‖ 6
2
δ
M (36)

where

M =

∥∥∥∥ e−4π |k|sf

(2πk)2(2+ e−4π |k|sf )

∥∥∥∥
l∞

+

∥∥∥∥ (2π |k| − 1)e−2π |k|sf

(2πk)2(2+ e−4π |k|sf )

∥∥∥∥
l∞

+

∥∥∥∥ 1
(πk)(2+ e−4π |k|sf )

∥∥∥∥
l∞

6
5

12π2

and
‖σ(k)‖l∞ := sup

k∈Z∗
|σ(k)|.

From (36), if we choose δ > δ0 := 5/(6π2) we can construct the inverse operator in (35) via
Neumann series resulting in R(λ,G1 + G2) as a bounded operator for all λ such that Re(λ) > λ1/2.
In other words, we have shown

sup{Re(λ) : λ ∈ σ(G)} 6 −|λ1|/2 < 0

To see G : H 0
⊂ L0

→ L0 is sectorial it is enough to check the boundedness of λR(λ,G) for all λ
such that Re(λ) > 0:

‖λR(λ,G)‖ 6 ‖λR(λ,G1)‖ ‖(id−R(λ,G1)G2)
−1
‖ 6 C, C ∈ R+,

where the constant C comes from the bound (36) and the definition of R(λ,G1). 2

REMARK 1 Our choice to fix Re(λ) > λ1/2 is clearly somewhat arbitrary and affects the size
of δ0. Had we fixed λ > cλ1 > 0 for c ∈ (0, 1/2) then δ0 would be smaller, entailing a more
gentle exponential decay. In view of the complexity of the linearization, it is not clear how to avoid
a perturbation argument and obtain stability for any δ > 0 as one naturally expects.
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6.2 Proof of Theorem 3.1

From Theorem 3.2 (local existence) we know that there exists a t∗ > 0 and a constant C such that

‖s(t, g)− s(t, gf )‖Cα([0,t∗];H 2
p )

6 C‖g − gf ‖H 2
p

so we define r∗ = s(t∗, g)− s(t∗, gf ) = s(t∗, g)− sf . Next, consider the system

ṙ = Gr + (F [r + sf ]− F [sf ]− Gr), (37)
r(t∗) = r∗, (38)

where G is defined in Lemma 6.2 and r = s − sf . To see that (37) is equivalent to (31), recall
F [sf ] = uf = ṡf and observe

ṡ − ṡf = F [s]− ṡf = F [s]− F [sf ]− G[s − sf ]− ṡf + F [sf ]+ G[s − sf ]
= G[s − sf ]+ (F [s]− F [sf ]− G[s − sf ]).

By Lemma 6.2 all assumptions of Theorem 9.1.2 in [12] are satisfied, and there exist constants
ω, ε̃,K such that if ‖r∗‖H 2 6 ε̃, then the solution to (37)–(38) exists globally and satisfies

‖r(t)‖H 2
p

6 Ke−tω‖r∗‖H 2
p
∀t > t∗

where ω = |λ1|/2. To complete the proof define ε = ε̃/C.
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