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1. Introduction and main results

In this paper we consider a free boundary problem that describes the motion of two viscous
incompressible capillary Newtonian fluids. The fluids are separated by an interface that is unknown
and has to be determined as part of the problem.

Let £21(0) ¢ R"*! (n > 1) be a region occupied by a viscous incompressible fluid, fluid,, and
let £2,(0) be the complement of the closure of £21(0) in R”*!, corresponding to the region occupied
by a second incompressible viscous fluid, fluid,. We assume that the two fluids are immiscible. Let
Iy be the hypersurface that bounds £21(0) (and hence also £2,(0)) and let I"(¢) denote the position
of Iy at time ¢. Thus, I"(¢) is a sharp interface which separates the fluids occupying the regions
21(r) and £25(1), respectively, where £2,(r) := R*t1\ 2,(1).

We denote the normal field on I"(¢), pointing from £2{(¢) into £2,(¢), by v(t, -). Moreover, we
denote by V (¢, -) and « (¢, -) the normal velocity and the mean curvature of I"(¢) with respect to
v(t, -), respectively. Here the curvature « (x, ¢) is assumed to be negative when £21(¢) is convex
in a neighborhood of x € I'(¢). The motion of the fluids is governed by the following system of
equations fori =1, 2:
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pi(Ou + (u | Vu) — piAu+ Vg =0 in £2;(1),
divu =0 in £2; (1),
—[S(u, g)v] = okv on (1),

[u] =0 on I'(t), (1.1)

V=w]|v) onl(t),
u(0) = ug in £2;(0),
r ) = TIy.

Here, S = S(u, q) is the stress tensor defined by
S@.q) = pi(Vu+ (Vu)") —ql  in 2(1),

and
vl = (v\.oz(z) - v\.ol(r))lr(f)

denotes the jump of the quantity v, defined on both domains £2;(¢), across the interface I"(¢).
Given are the initial position Iy of the interface, and the initial velocity

uo: 20 — R™L 20 := £2,0) U §£2,(0).

The unknowns are the velocity field u(¢, -) : £2(t) — R™**1 the pressure field ¢ (z, -) : 2(t) — R,
and the free boundary I"(¢), where $2(t) := §21(¢) U £22(¢).

The constants p; > 0 and u; > 0 denote the densities and the viscosities of the respective
fluids, and the constant o stands for the surface tension. Hence the material parameters p; and pu;
depend on the phase i, but otherwise are assumed to be constant. System (1.1) comprises the two-
phase Navier—Stokes equations with surface tension. The first equation in reflects the balance
of momentum, while the second expresses the fact that both fluids are incompressible. If surface
tension is neglected, the boundary condition on I"(f) would be the equality of stresses on the two
sides of the surface. The effect of surface tension introduces a discontinuity in the normal component
of [S(u, g)] proportional to the mean curvature of I"(z). The fourth equation stipulates that the
velocities are continuous across I7(¢). Finally, the fifth equation, called the kinematic boundary
condition, expresses the fact that fluid particles cannot cross I"(¢).

In order to economize our notation, we set

O =P1X21(t) T P2X2:(1)s M = H1X2,¢t) T H2X2,()>

where xp denotes the indicator function of a set D. With this convention, system (I.T)) can be recast
as

p@u+ u|Vu) —uAu+Vg=0 in 2(1),
divu =0 in §2(¢),
—[Su, g)vll = okv on I'(1),

[u] =0 on I'(t), (1.2)

V=wm|v) onI(t),
u(0) = ug in £2p,
r© = ry.
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In this publication we consider the case where Iy is the graph of a function ¢ on R”. We then set
£21(0) = {(x,y) e R"xR : y < ho(x)}, and consequently £2,(0) = {(x,y) €e R"xR : y > ho(x)}.
Our main result on existence, uniqueness, and regularity of solutions then reads as follows.

THEOREM 1.1 Suppose p > n + 3. Then given 7y > 0, there exists g = €o(fp) > 0 such that for
any initial values

(o, ho) € W™ /P (20, ™1y x Wy /P (R,

satisfying the compatibility conditions
(1D (uo)vo — w(vo | D(uo)vo)voll =0,  divug =0 on 2, [uoll =0,
with D(ug) := Vug + (Vuo)T, and the smallness condition
ol 2210 ) + W0l yy3-20p gy < €0

problem (T.2) admits a classical solution (u, g, I") on (0, fp). The solution is unique in the function
class described in Theorem In addition, I"(¢) is the graph of a function A(¢) on R", M =
U,E(OJO) ({t} x I"(¢)) is a real analytic manifold, and with

O ={t,x,y):t€0,1), x eR", y #h(t,x)},

the function (u, g) : @ — R**? is real analytic.

REMARKS 1.2 (a) Theorem 1.1 shows that solutions immediately regularize and become analytic
in space and time. If one thinks of the situation of oil in contact with water, this result seems
plausible, as capillary forces tend to smooth out corners in the interface separating the two different
fluids.

(b) More precise statements for a transformed version of problem will be given in Section 6.
Due to the restriction p > n + 3, we shall show that

h € C(J; BUC*(R") N C'(J; BUC'(R")), (1.3)

where J = [0, fp]. In particular, the normal of £21(¢), the normal velocity of I"(¢), and the mean
curvature of I"(r) are well-defined and continuous, so that (T.2)) makes sense pointwise. For « and ¢
we obtain

u(t,) € BUCY(LQ@1), R fort e J, ueBUC x R™! Ry

(1.4)
q(t,") € UC(2(t)) fort e J\ {0).

In addition, the solution (u, g, h) depends continuously on the initial values (uq, hp). Also
interesting is the fact that the surface pressure jump will turn out to be real analytic as well.

(c) It is possible to relax the assumption p > n + 3. In fact, p > (n + 3)/2 can be shown to
be sufficient. However, to keep the arguments as simple as possible, here we impose the stronger
condition p > n + 3.

(d) If gravity acts on the fluids then the condition on the free boundary is to be replaced by

—[S@,g)lv=0Hv + yallpllyv onI'(1), (1.5)
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where y denotes the vertical component of a generic point on I"(¢), and where y, > 0 is the
acceleration of gravity. Our approach also covers this situation, yielding a solution having the same
regularity properties as stated in the theorem above. Indeed, an analysis of our proof shows that we
only need to replace the symbol s(A, 7), introduced in (3.9), by

s(h, 1) =A+o0tk(z) — @k(z)
(see [33L134]). It is well-known that the case where the heavy fluid lies above the light one leads to
an instability, the Rayleigh—Taylor instability (see [34] for a proof).

(e) We mention that our results also cover the one-phase Navier—Stokes equations with surface
tension (T.6).

(f) The solutions we obtain exist on an interval (0, f9) with 7y > 0 arbitrary, but fixed, provided
the initial data are sufficiently small. It can be shown that problem also admits unique local
solutions that enjoy the same regularity properties as above, provided sup, g |Vho| is sufficiently
small in relation to the horizontal component of u¢. In this case, no other smallness conditions on the
data are required. The proof of this result is considerably more involved, and the analysis requires
delicate estimates for the nonlinear terms. Additionally, we need a modified version of Theorem
5.1 in order to dominate some of the nonlinear terms by linear ones. The proof of this modification
will involve introducing a countable partition of unity and then establishing commutator estimates
for certain pseudo-differential operators. Since this paper is already rather long, we refrain from
including a proof of this result here. It will be contained in the forthcoming paper [33].

(g) The case where both fluids occupy a bounded domain has recently been considered in [23]],
building on the approach devised here and in [33].

Let us now discuss and contrast our results with results previously obtained by other researchers.
In case £22(¢) = () one obtains the one-phase Navier—Stokes equations with surface tension

p@u~+ (u|Viu) — nAu+Vg =0 in £2(1),
divu =0 in £2(1),
S(u,q)v =okv on I'(1),
V=w]|v) onl(t),
u(0) = ug in £2p,
o) =rp.

(1.6)

Equations (T.6) describe the motion of an isolated liquid which moves due to capillary forces acting
on the free boundary.

Problem (I.6)) has received wide attention in the last two decades or so. Existence and uniqueness
of solutions for o > 0, as well as for ¢ = 0, in the case that £2(0) is bounded (corresponding to
an isolated fluid drop) has been extensively studied in a long series of papers by Solonnikov (see
for instance [41]]-[47] and [28] for the case o > 0). Solonnikov proves existence and uniqueness
results in various function spaces, including anisotropic Holder and Sobolev—Slobodetskii spaces.
Moreover, it is shown in [42]] that if £2¢ is sufficiently close to a ball and the initial velocity ug
is sufficiently small, then the solution exists globally, and converges to a uniform rigid rotation of
the liquid about a certain axis which is moving uniformly with a constant speed (see also [29]).
More recently, local existence and uniqueness of solutions for (in the case that £2 is a bounded
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domain, a perturbed infinite layer, or a perturbed halfspace) in anisotropic Sobolev spaces Wg:; with
2 < p <ooandn < g < oo has been established by Shibata and Shimizu in [39] 40]. For results
concerning (T.6) with o = 0 we refer to the recent contributions [37,38]] and the references therein.

The motion of a layer of viscous, incompressible fluid in an ocean of infinite extent, bounded
below by a solid surface and above by a free surface which includes the effects of surface tension
and gravity (in which case £2 is a strip, bounded above by I and below by a fixed surface I},) is
considered by Allain [1], Beale [[6], Beale and Nishida [[7], Tani [49]], and by Tani and Tanaka [50].
If the initial state and the initial velocity are close to equilibrium, global existence of solutions is
proved in [6] for o > 0, and in [50] for ¢ > 0, and the asymptotic decay rate for ¢ — oo is studied
in [7]].

Results concerning the rtwo-phase problem (I.2)) are more recent. Existence and uniqueness of
local solutions is studied in [[10, (11 [12} 48]. In more detail, Denisova [[11] establishes existence and
uniqueness of solutions (of the transformed problem in Lagrangian coordinates) with v € Wzr’r/ % for
r € (5/2, 3) in the case that one of the domains is bounded. Tanaka [48] considers the two-phase
Navier—Stokes equations with thermo-capillary convection in bounded domains, and he obtains
existence and uniqueness of solutions with (v, 6) € Wzr’r/ 2 for r € (7/2,4), with 6 denoting the
temperature.

The approach used by Solonnikov, and also in [10-12} |37-40} 485501, relies on a formulation
in Lagrangian coordinates. In this formulation one obtains a transformed problem for the velocity
and the pressure on a fixed domain, where the free boundary does not occur explicitly. The free

boundary is then given by

i) = {é +/ v(t,&)dr: & € I"o},
0

where v is the velocity field in Lagrangian coordinates. It is not clear whether this formulation
allows one to obtain smoothing results for the free boundary, as the regularity of I"(¢) seems to be
restricted by the regularity of 1. To the best of our knowledge, the regularity of the free boundary
for the Navier—Stokes equations with surface tension or has not been addressed in the
literature before, with the notable exception of [6]]. Beale considers the ocean problem with £2 () =
{(x,y) € RZxR: —b(x) <y < h(t, x)} and he shows by a boot-strapping argument that solutions
are C for any given fixed k € N, where the size of the initial data must be adjusted in dependence
on k. As in our case, his approach does not rely on a formulation in Lagrangian coordinates.

In order to prove our main result we transform problem into a problem on a fixed
domain. The transformation is expressed in terms of the unknown height function % describing the
free boundary. Our analysis proceeds by studying solvability properties of some associated linear
problems. It is important to point out that we succeed in establishing optimal solvability results (also
referred to as maximal regularity): see Theorem [3.1] Proposition [3.3] Theorem .1} Corollary 4.2
and Theorem [5.1] In other words, we show that the linear problems define isomorphisms between
properly chosen function spaces. This property, in turn, allows us to resort to the implicit function
theorem to establish the analyticity of solutions to the nonlinear problem, as will be pointed
out below. All our results for the associated linear problems mentioned above seem to be new,
as they give sufficient as well as necessary conditions for solvability. Our analysis is greatly
facilitated by studying the Dirichlet-to-Neumann operator for the Stokes equations (see Section 4).
It is interesting, and maybe even surprising, to observe the mapping properties of this operator
(see Theorem 4.1). Our approach to establishing solvability results relies on the powerful theory
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of maximal regularity, in particular on the H°°-calculus for sectorial operators, the Dore—Venni
theorem, and the Kalton—Weis theorem (see for instance [[13,[25] 26, [31]]).

Based on the linear estimates we can solve the nonlinear problem by the contraction mapping
principle. Analyticity of the solution is obtained in a rather short and elegant way by the implicit
function theorem in conjunction with a scaling argument, relying on an idea that goes back to
Angenent [3| 4] and Masuda [27]; see also [[17, 18, 20]. More precisely, by introducing parameters
which represent scaling in time, and translation into space, the implicit function theorem yields
analytic dependence of the solution of a parameter dependent-problem on the parameters, and this
can be translated into a smoothness result in space and time for the original problem.

The plan of this paper is as follows. Section 2 contains the transformation of the problem to a
half-space and the determination of the proper underlying linear problem. In Sections 3, 4 and 5
we study this linearization and prove in particular the crucial maximal regularity results in an L -
setting. Section 6 is then devoted to the nonlinear problem and contains the proof of our main
result.

2. Reduction to a flat interface

In this section we first transform the free boundary problem (1.2) to a fixed domain, and we then
introduce some function spaces that will be used throughout the paper. Suppose that I"(¢) is a graph
over R", parametrized as

@) ={x,h@x): xR, tel,

with £2,(¢) lying “above” I'(t),i.e. 22(t) = {(x,y) e R"*" xR : y > h(t,x)} fort € J := [0, a].
Reduction from deformed into true halfspaces is achieved by means of the transformations

ui(t, x,h(t, x)+y)
v(t,x,y) = ,

un(t, x, h(t,x) +y)
w(t,x,y) = up+1(, x, h(t,x) + y),
m(t,x,y) =qt, x, h(t,x) +y),

wheret € J,x e R", y € R, y # 0. Since for j,k =1, ..., n we have

dju = djux — 9jhdyvy, Ony1Ug = Oyvg,
3th,1+1 = 3jw — 3jh3yw, 8n+1un+1 = 8yw, (2.1)
0jq = 0jr — 0jhdym, Ony1g = 0y,
Oiup = 0y vx — 0rh0yvg, Oiupy1 = 0w — dhdyw,

and
Auy = Agve — 2(VRh | V)dyve + (14 [VRID v — Ahdyug,
Aupyy = Ayw — 2(Vh | V)dyw + (1 + |VA[*)djw — Ahdyw,
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we obtain from (T.2)) the following quasilinear system with initial conditions:
POV — LAV — uagv + Vo = Fy(v,w, 7, h) in (0, 00) x R"*1,
pB,w—quw—u8§w+8yn = Fy,(v,w, h) in (0, 00) x R™H1,
div,v + dyw = Fy(v, h) in (0, 00) x R™H!,

v(0,x,y) = vox,y),  w(0,x,y) = wo(x, ) in R"*1,

2.2)

where R"t1 = {(x, y) € R" x R : y # 0}. Here and in the following, Vi and Ah always denote
the gradient and the Laplacian of & with respect to x € R”. Note that p and p in general have jumps
aty =0,ie. p=pyfory > 0, p = p; for y < 0, and similarly for x. The nonlinearities are given
by
Fy(u,w, 7, h) = p{—2(Vh | V)dyv + |Vh[* 830 — Ahdyv} + 9y Vh
+ o{=WW| Vv + (VA|v)dyv — wdyv} + pdshoyv,
Fy(v,w, h) = u{=2(Vh| V)dyw + |Vh*9;w — Ahdyw} (2.3)
+o{=W|VIw + (VR |v)dyw — wiyw} + pdhdyw,
Fy(v, h) = (Vh|0yv).
Note that these functions are polynomials in the derivatives of (v, w, 7, k), hence analytic, and
linear with respect to second derivatives, with coefficients of first order. This exhibits the quasilinear

character of the problem.
To obtain the transformed interface conditions we observe that the outer normal v of §£2(¢) is

given by
1 [ —Vh(t, x) ]

V14 Vh(, x)? 1

where, as above, VA(t, x) denotes the gradient vector of /# with respect to x € R". The normal

velocity V of I'(-) is
V(t,x) = d:;h(t,x)/4/1+|Vh(, x)|%.

The kinematic condition V = (u | v) on I'(-) now reads

v(t,x) =

oh —yw=HWw,h), H(,h):=—(yv|Vh). 2.4)

Here (yw)(x) := w(x, 0) denotes the trace of the function w : R+ 5 R and, correspondingly, yv
is the trace of v : R"*! — R”. Since u is continuous across I"(¢), yv and yw are unambiguously
defined. It is also noteworthy that the tangential derivatives of v and w are continuous across R".
The curvature of I"(¢) is given by

Vh(t, x)
V14 Vi, x)2

(see for instance equation (24) in [8, Appendix]) with

k(t,x) = divx< ) = Ah — G (h)

|Vh|ZAh (Vh|V2hVh)

Ge(h) = ,
1+ 1+ [VAPVT+ Va2 (1L +|Vh?)3/2

(2.5)
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where V2h denotes the Hessian matrix of all second order derivatives of i. The components of
D(v, w, h), the transformed version of the deformation tensor D (1) = Vu + (Vu)', are given by
D;j(v, w, h) = 0;vj + 9;v; — (3;hdyv; + 0;hdyv;),
Dut1,j(w, w, h) = Dj py1(v, w, h) = dyv; + djw — djhdyw, (2.6)
Dpy1p+1(v, w, h) = 20,w,
fori, j = 1,...,n, where §;; denotes the Kronecker symbol. For the jumps of the components of
the deformation tensor this yields
[uDij (v, w, ] = [ d;vj + 9jvi)ll — 9ihllwdyvill — 9;Allpdyvill,
LD 1, (v, w. W] = [Dj g1 (v, w, )] = [udjwl + Ludyv; | — 8;hludyw],
[1Dny1n41(v, w, K] = 2[pdyw].

Therefore, the jump condition for the normal stress at the interface yields the following boundary
conditions:

—[[woyv]l — [uViwl = Gy (v, w, [ 1, h),

2.7
=2[pdywl + [l — 0 Ah = Gy (v, w, h),
where the nonlinearities (G, G,) have the form
Gy, w, [, h) = — [r(Vev + (Vev) DHIVA + VA [1dy o]l + (VA | [1d,v]) VA
— [pnoywlIVh + {[w ]l — 0 (Ah — G« (h))}Vh, 2.8)

Gy, w, h) = — (Vi | [pndy]) — (VA | [uVewl) + [VAP[udyw] — oG (h).

We note that G = (G, Gy,) is analytic in (v, w, [ ], ). Moreover, G is linear in (v, w, [7]), and
in the second derivatives of 4. Thus the boundary conditions are quasilinear as well.
Summarizing, we arrive at the following problem for u = (v, w), 7, and h:

Ou — wAu +Vr = F(u,, h) in R*H!
divu = Fy(u, h) in R™H!,
—[pdyv]l = [uViwl = Gy(u, [7], h) onR",
—2[[udywl + [ — 0 Ah = Gy (u, h) on R”, (2.9
[u] =0 on R”,
Oh—yw=H(u,h) on R”,
u(0) = ug, h(0) = ho,

for ¢ > 0. This is problem transformed to the halfspaces R := {(x, y) € R" xR : £y > 0}.

Before studying solvability results for problem (2.9) let us first introduce suitable function
spaces. Let £2 C R™ be open and X be an arbitrary Banach space. By L, (£2; X) and Hj(£2; X),
for 1 < p < oo, s € R, we denote the X-valued Lebesgue and Bessel potential spaces of
order s, respectively. We will also frequently make use of the fractional Sobolev—Slobodetskif spaces
W;(Q; X),1 < p<oo,s €R\Z, with norm

10%g(x) — 3%g(y)Il% tp
lgllws2:x) = gl st . vy + </ dx dy , (2.10)
»(82:X) wpl2; x) |a\2=[:s] oo Ix — ymrG—lsDp
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where [s] denotes the largest integer smaller than s. Let a € (0, oo] and J = [0, a]. We set

geW,(J;X):80)=¢g'(0)="---= g® ) =0},
oWS(J; X) = ifk+1/p<s<k+1+1/p, ke NU{0},
Wi X) ifs <1/p.

The spaces g H,, (J; X) are defined analogously Here we remind the reader that H,, k Wk fork e Z
and1<p<oo and that W) = B}, fors € R\ Z.

For 2 C R™ open and 1 < p < 00, the homogeneous Sobolev spaces H,} (£2) of order 1 are
defined as

Hy () := ({8 € L110c(2) : V8l (2) < 00} I - g2y
u 1/p
. . ollP
el == (Zl 107817 e) -
j:

Then H[} (£2) is a Banach space, provided we factor out the constant functions and equip the
resulting space with the corresponding quotient norm (see for instance [21, Lemma II.5.1]). We
will always consider this quotient space topology without change of notation. In the case that £2 is
locally Lipschitz, it is known that H (2)Cc H ! (£2) (see [21l Remark 11.5.1]), and consequently,

any function in H! » (£2) has a well- deﬁned trace on df2.

@2.11)

p,loc

Fors e Rand 1 < p < oo we also consider the homogeneous Bessel potential spaces Hlf ®R")
of order s, defined by

HyR") = ({g € S'R") : I'g € LR}, || - Il s ny)-
. ’ (2.12)
I8l i7p ey = 1182, @)

where S'(R") denotes the space of all tempered distributions, and I* is the Riesz potential given by
PPg:=(-a)Pg:=F '(E'Fg), geS®R.

By factoring out all polynomials, H; (R™) becomes a Banach space with the natural quotient norm.

For s € R\ Z, the homogeneous Sobolev—Slobodetskil spaces W; (R™) of fractional order can be
obtained by real interpolation as

Wy R") = (HyR"), Hy" ' R))s—kp, k<5 <k+1,
where (-, -)g, p is the real interpolation method. It follows that
I’ e Isom(H; ™ (R"), H)(R")) NTsom(W, T (R"), WH(R"), 5.t €R, (2.13)

with Wl’,‘ = HI’,‘ for k € Z. We refer to [5, Section 6.3] and [52, Section 5] for more information
on homogeneous function spaces. In particular, it follows from parts (ii) and (iii) of [52, Theorem
5.2.3.1] that the definitions Z.11)) and (2.12) are consistent if 2 = R", s = 1,and 1 < p < co. We

note in passing that
p dr\/P
—) (2.14)
) t

f / [EHE R (SO /wt(l_w 4
wJre Jx =y ’ 0 dr Ly(R"

P(t)g
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define equivalent norms on W; (R™) for 0 < s < 1, where P(-) denotes the Poisson semigroup (see
[52, Theorem 5.2.3.2 and Remark 5.2.3.4]). Moreover,

ye € LOVIRLE, W, PR, (2.15)

where y+ denotes the trace operators (see for instance [21, Theorem I1.8.2]).

3. The linearized two-phase Stokes problem

In this section we consider the linear two-phase (inhomogeneous) Stokes problem

ou — puAu+Vr = f in R+
divu = f; inR"!
—[udyv] = [uViw] =g, onR",
—2[pudyw] + [7] = g» onR",
[u] =0 onR”",

u@©) =uy inR'L

3.1)

Here the initial value ug as well as the inhomogeneities (f, f4, gv, gw) are given. We want to
establish maximal regularity for this problem in the framework of L ,-spaces. Thus we are interested
in solutions (u, 7r) in the class

w e HI(J; LyR™ R A L, (J; HXR™ R™Y), 7 € L(J; AY@RMY).

We recall that J = [0, a] and R"t! = {(x, y) € R" x R:y # 0}. If (u, 7r) is a solution of li in
this class we necessarily have f € L,(J; L,(R"*1)), and additionally u¢ € W[%_z/p(R"“, R+
by trace theory. Moreover,

fa € Hy(J; Hy'(R"™ D) N L, (5 Hy (R"H),

as the operator div maps L, (R"*+1y onto H; LRy, Taking traces at the interface y = 0 results in
g € W/ V2P (g LR RM) N Ly(J; Wy~ /2P (R", R")), and g, € L,(J; Wy~ /P (R"). If,
in addition, ain i

[l e Wy/> 2P (11 Ly®R™) N Ly (T Wy~ /2P (RY))

then g,, shares this regularity.
Here and in the following, the notation 1/2p means 1/(2p). The main result of this section
states the converse of these assertions, i.e. maximal L ,-regularity for (3.1J).

THEOREM 3.1 Letl < p < oo be fixed, p # 3/2, 3, and assume that p; and u; are positive
constants for j = 1, 2, and set J = [0, a]. Then the Stokes problem @]) admits a unique solution
(u, ) with regularity

uce H;(J; L, R R Y)Y N L,(J; H,%(R"“, R, meL,(J; H;(R"“))

if and only if the data (f, f4, gv, uw, o) satisfy the following regularity and compatibility
conditions:
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@) f€Ly(J; LyR™ R,
(b) fa€ HYJ: HyYR™Y) N Ly(J; HYRMY),
© g€ W> VPP Ly R N Ly Wy /PR R, gu € Lp(J: Wy /PR,
) ug € W,%_z/p(R""'],R”H),
(e) divug = f(0) in R"*! and [uo]] = 0 on R if p > 3/2,
() —[mdyvoll = [uViwoll = gv(0) on R™if p > 3.
In addition, [ ] € W)/*~"* (J; L,(R") N L, (J; Wy~ /P (R")) if and only if
gw e WP (LR N L,(T; Wy PR,
The solution map (f, fa, &v, &w, &h» 40, ho) — (u, , [7r]) is continuous between the correspond-
Ing spaces.

Proof. The basic idea of the proof is to reduce system (3.1)) to the case where (f, f4, uo) = (0, 0, 0)
and g,(0) = 0, and then to solve the resulting problem by means of the Dirichlet-to-Neumann
operator for the Stokes problem. We can achieve this goal in four steps, as follows.

STEP 1 For given data (f, g,, o) subject to the conditions of the theorem we first solve the
parabolic problem without pressure and divergence, i.e. we solve
du—pAu=f inRFL
—[pdyvll — [uViwll = gy onR",
—2[pdyw] = gw onR", (3.2)
[u] =0 onR",
u(0) =up inR™FL,
Here we set g, = —Ze_D"’[[/Laywo]] with D, := —A in L,(R"). The function g, has the
same regularity as g,, and the necessary compatibility conditions are satisfied. By reflection of
the {y < O}-part of this problem to the upper halfplane, we obtain a parabolic system on a halfspace

with boundary conditions satisfying the Lopatinskii—Shapiro conditions. Therefore, the theory of
parabolic boundary value problems yields a unique solution u for (3.2)) with regularity

uy € H)(J; LyR" R™) N L,(J; Hy R R™).
We refer to Denk, Hieber and Priiss [[13} 14/ for this.

STEP 2 In this step we solve the Stokes equations

pou — puAu+Vr =0 in R"H!,
divu = f —divu; in R™!, (3.3)
u(0) =0 in R,

where 1 is the solution obtained in Step 1. It follows from assumption (e) that system (3.3)) satisfies

the compatibility condition div u(0) = f;(0)—divu;(0) = 0. Werecall that p = pp XRTl + 01 Xgn+1

and 0 = paXpet1 + (1 xpe+1. Concentrating on the upper halfplane, we extend the function f; —
v a
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divu; evenly in y to all of R"*! and solve the Stokes problem with coefficients pa, 15 in the whole
space (see [9, Theorem 5.1]). This gives a solution which has the property that the normal velocity w
vanishes at the interface; the latter is due to the symmetries of the equations. We restrict this solution
to R’fl. We then do the same on the lower halfplane. This results in a solution (u2, 72) for system

(3.3) that satisfies
uy € H[l (]’ Lp(Rn+l, Rn+l)) N Lp(.,, sz(Rn+l, RIH»])),
m € Ly(J; Hy@®™™),  wy =0 onR",

where, as before, uy = (v2, w2). We remark that the tangential part of the velocity, i.e. v2, may now
have a jump at the boundary y = 0.

STEP 3 To remove the jump in the tangential velocity, we solve the homogeneous Stokes problem
in the lower halfplane with this jump as Dirichlet datum, that is, we solve

P10 — w1 Au+ Ve =0 inR'!
divu =0 inR"!
v=[un], w=0 onR"

up(0) =0 in R"T!,

3.4)

where uy = (v2, wy) is the solution obtained in Step 2. It follows from Proposition @]below that
system (3.4) has a unique solution with the regularity properties of Theorem Let (u3, m3) be
defined by

(0,0) in R%H,

(u3, m3) == i T

the solution of (3:4) in R™"".
Then (u3, m3) also satisfies the regularity properties stated in Theorem @] and we have [[v3] =
—[v2] and [w3] = 0 on R”.

STEP 4. In this step we consider the problem

pou —puAu+Vr =0 in R™+1
divu =0 in R" !,
—[pdyvll — [uViwll = [rdy(v2 + v3)1 + [ Vi (w2 + w3)]l on R", 35)
—2[[pdywl + (7]l = guw — &w + 2[udy (w2 + w3)|| — [m2 + 73] onR",
[u] =0 on R”,
u(©0) =0 in R™*1,

with (v2, wo, m2) and (v3, w3, w3) the solutions obtained in Steps 2 and 3. Here it should be observed
that the function on the right hand side of line 3 appearing as boundary condition has zero time trace.
Problem @, which is also of independent interest, will be studied in detail in the next section. It
will be shown in Corollary that it admits a unique solution, denoted here by (u4, 74), which
satisfies the regularity properties stated in Theorem (3.1

To finish the proof of Theoremwe set (u, w) = (ZL] u;, Z?:l 7;), where (u;, ;) are the
solutions obtained in Step i, with 1 := 0. Then (u, 7) satisfies the regularity properties stated in

the theorem and it is the unique solution of (3.1). O
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REMARK 3.2 We refer to the recent paper by Bothe and Priiss [9]] for results related to Theorem
3.1 for the more general and involved situation of a generalized Newtonian fluid.

Let us now consider the problem

odqu — pAu+Vr =0 in R
divu =0 inR"H!,
u=u, onR"

u(0) =0 inR"™,

(3.6)

and prove the result that was used in Step 3 above.

PROPOSITION 3.3 Let 1 < p < oo and assume that p; and u; are positive constants, j = 1, 2,
and set J = [0, a]. Then problem (3.6) admits a unique solution (u, 7) with

€ oHy(J; LyR™ R N L, (J HX@R™ R, me Ly(J; HYR"))
if and only if the data up = (vp,, wp) satisfy the following regularity assumptions:
(@) vy € oW, ' (J5 LR, RM) N Ly (S5 W, /PR, R,
-1 2-1
() wy € oH)(J: W, PR N Ly Wy PR,

Proof. (i) Assume for the moment that we have a solution in the proper regularity class even on
the halfline / = R,. Then we may employ the Laplace transform in ¢ and the Fourier transform
in the tangential variables x € R", to obtain the following boundary value problem for a system of
ordinary differential equations on R:

@D —Maﬁﬁ +iEr =0, y#0,
W™ — pdji + A =0,  y#0,
(&) +9yw=0, y#0,

5(0) = B, W(0) = Wp.

Here we have set a)jz = pjr+ /L.,~|:§|2, j=1,2,and

o0
ﬁju,s,w:(zﬂ)—"”f /e‘“e"<x|f>v<r,x,y>dxdr, (=D7y > 0.
O n

This system of equations is easily solved to yield

[0, ] az —i&
iy | = e VIR | Y g ay) |+ ane I | ] 37
| 72 | 0 P2A
for y > 0, and
[ U1 ] ai —ié&
by | = eV S Gig ay) | 4 anell | —g] (3.8)
| 71| 0 P1A
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for y < 0. Here a; € R" and «; have to be determined by the boundary conditions v(0) = 0, and
w(0) = wp. We have
ay —ikay = Vp =a) —ikay,

and

N

Vi Lig |ar) — |l

2 . .
(& lax) + Elax = wp = —
w) w1

where (a | D) := )" a’bJ fora, b € C". This yields

ajzf)b—l—ié'ozj, j=12,

+ R N
r = =L (e 160) - o) (39)
o) = _L VM]E'( w1 (& | Up) + w1 Wp).

Pl

(i1) By parabolic theory, the velocity u has the correct regularity provided the pressure gradient
isin L), and provided

up € oWy PP (I3 LR, R N L,(J; Wy~ PR R

(see for instance Denk, Hieber and Priiss [14]). In particular this regularity of u;, is necessary. Note
that the embedding

oH L W, P R™) N Ly (s Wy PR s oWy, (U5 Ly (RY) (3.10)

is valid. This follows from the fact that W,, Vrrry < W, Vrwmy by a similar argument to the
proof of [30, Lemma 6.3] where we set Au := (1 — A)u.

(iii)) We will now introduce some operators that will play a crucial role in our analysis. We set
G :=0,in X := L,(J; L,(R")) with domain

D(G) = oH ,(J; L,(R")).

Then it is well-known that G is closed, invertible and sectorial with angle /2, and —G is the
generator of a Co-semigroup of contractions in L, (IR"). Moreover, G admits an H *°-calculus in X
with H*-angle /2 as well; see e.g. [24]]. The symbol of G is A, the time covariable.

Next we set D,, := —A, the Laplacian in L, (R") with domain D(D,,) = ng (R™). It is also well-
known that D,, is closed and sectorial with angle 0, and it admits a bounded H °°-calculus which
is even R-bounded with R H*-angle 0; see e.g. [15]]. These results also hold for the canonical

extension of D, to X, and also for the fractional power D,i/ 2 of D,,. Note that the domain of D,%/ 2 is

D(D,/%) = Ly(J: HL(R™).

The symbol of D, is ||, and that of D,,l/ Zis |1, where & is the covariable of x. By the Dore—Venni
theorem for sums of commuting sectorial operators (cf. [16L[35]), we see that the parabolic operators
L; := p;G + u; D, with natural domain

D(Lj) = D(G) ND(Dy,) = oH,,(J; L,(R") N L,(J; Hy(R"))
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are closed, invertible and sectorial with angle /2. Moreover, L; also admits a bounded H oo
calculus in X with H*-angle 7/2; cf. e.g. [31]. The same results are valid for the operators

Fj :LI/Z

i their H*-angle is 7 /4, and their domains are

172 1/2
D(F)) = D(G"?) N DD,/ = oH}*(J; Ly(RM) N L,(J; HY®")).
The symbol of L; is pjA + u; |€|? and that of Fj is given by ,/pj A + ujl&|%.
Let R denote the Riesz operator with symbol ¢ = &/|£|. It follows from the Mikhlin—-Hormander
theorem that R is a bounded linear operator on W[§ (R™), and hence also on L,(J; WIS, (R™)) by

canonical extension.
(iv) Let B2 = poAay. Then the transform of the pressure 7 in R’r’l is given by el B2. The

pressure gradient will be in L, provided the inverse transform of B, isin L, (J; W,ifl/ P(®R™). In
fact, e~ 1§17 is the symbol of the Poisson semigroup P(-) in L p(R™), and the negative generator of

P()is D,ll/z. Then the second part of ([2.14) shows that D,]Z/ZP(-),BZ € L,(Ry; L,(R™)) if and only

B € W;_l/ P(R™). This result extends canonically to L p(JiLp (IR:’_H)).
Therefore, let us look more closely at ;. We easily obtain

A
B = PZEﬁ)b + (Vw2 4+ w2|E ) (W — (i | Dp)),

where ¢ = £/]&|. We recall that D',i/z =FlEIF ) W;(R") — W;_I(R”) is an isomorphism.

With the operators introduced above, by, the inverse transform of S, can be represented by
by = p2G Dy 2wy + (Vi Fa + na Dy ) (wp — i(R | vp)) =2 bay + boo.

Due to (3-10) and oW,/ (J; L,(R") N L,(J; W;~/P(®")) = Dr,(2 — 1/p, p). the second
term by is in

2—1/2 —
Dr,(1=1/p. p) = oW,/ > 2P (I L,R") N Ly (J: W, /P (®)),
which embeds into L, (J; W;fl/ P(R™)). Here we use the notation

Dr, (0, p) = (X,D(F)))o.p»  Dr;(1+6, p) = (D(F}),D(F}))g.p, 0 € (0, 1).

/

Thus it remains to look at the first term by; = poGD,, ! 2wb. Since

GD, ' o HL (s W, PR — Ly (s W, PRY)

is bounded and invertible, we see that the condition wp € oH },(] ; Wp_ 1/p (R™)) is necessary and

sufficient for by € L,(J; VVPl —l/p (R™)). Of course, similar arguments apply for the lower half-
plane. O

4. The Dirichlet-to-Neumann operator for the Stokes equation

The main ingredient in analyzing problem (3.1) with (f, f4, uo) = (0,0, 0) and g,(0) = 0 is the
Dirichlet-to-Neumann operator. It is defined as follows. Let (u, w) be the solution of the Stokes
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problem (3.6) with Dirichlet boundary condition u, on R" (see Proposition[3.3). We then define the
Dirichlet-to-Neumann operator by means of

(DNYup = =[S, m)lens1 = —[u(Vu + (Vi) Ylents + [rlens. 4.1)

For this purpose it is convenient to split # into # = (v, w) as before, and u;, into up, = (vp, wp).
Then we obtain

(DN)up = (=[[pdyvll — [uViwll, —2[pdywl + (7). (4.2)

We will now formulate and prove the main result of this section.

THEOREM 4.1 The Dirichlet-to-Neumann operator DN for the Stokes problem is an isomorphism
from the Dirichlet space of up = (vp, wp) with

vy € oWy PP(J LR, R N L, (J; Wy VPR, R,
wp € oHL(J: W, P (R™) N Ly (I Wy~ /P (R™))

onto the Neumann space of g = (gy, gy) With
gv € oW/ LR R N Ly(J; W, PR, R,
= 1—1
gw € Lpy(J; W, /P (RY)).

Proof. (i) Let (01, w1, 771) and (U2, w2, 72) be as in (3.7)-(3-8). We may now compute the symbol
of the Dirichlet-to-Neumann operator. We have

(DN = [ wi/Iriar + w/pear — (ajuy + oo pu2)|EliE — [ulli&w, }
b 2i(poar — par 1€) + 2(copr — aiw)|€1% + Aazp2 — arp1) |’

where the functions «; and a; are given in (3.9). Simple algebraic manipulations then yield the
following symbol:

(DN, &) = [“*ﬁg@g e } 43)

—iyeT a4+
where ¢ = £/|&| and

o = /i1 + How, B = (1 + w2)lél,
y = (Ve — Vi) — [ull§l. 8= (@] +w))/I§| = B+ (o1 + p2)1/I§].
Next we want to compute the inverse of the Dirichlet-to-Neumann operator. Thus we have to

solve the equation (DN )u, = g. As before we use the decomposition up = (vp, wp) and g =
(gv, g&w)- Then in transformed variables we have the system

4.4)

adp + B | Up) + iy Sy = g,
—iy (¢ | 0p) + (@ + 8)Wp = &y

This yields
0p = a8y — ¢B(E | D) + iyidp)]. 4.5)
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(ii) This last equation shows that it is sufficient to determine (0p | £) and wp. If the inverses of
B0y | ¢) and y Wy belong to the class of gy, then v, is uniquely determined and has the claimed
regularity. Indeed, « is the symbol of

Fi= JuiFi +iaFs.  D(F) =oH,/>(J; Ly(R") N Ly(J: HI(R"),

which is a bounded invertible operator from its domain into L, (J; L,(IR")), and hence also from
Dr(2—1/p, p)into Dr(1 — 1/p, p). Here we note that

2
Dr(6. p) = Dr, (6. p) = oWy 2 (J: Ly(RM) N Ly(J: W R™)
for 6 € (0,2), & # 1. Therefore, F~!g, belongs to Dr(2 — 1/p, p) if and only if g, €

Dr(1 — 1/p, p). Next we note that y is the symbol of /u2F> — \/urFi — [[M]]D,l,/2 which is
bounded from Dp(2 — 1/p, p) to Dp(1 — 1/p, p), and B is the symbol of (111 + 12) Da/* which
has the same mapping properties.
(iii) It remains to show that wp and (R | vp) belong to Dp(2 — 1/p, p). For wp and (¢ | 0p) we
have the equations
(a+ B 1 0p) +iywp = (& |8v),
—iy (¢ | 0p) + (¢ + ) Wp = gu

since |{| = 1. Solving this 2-D system we obtain

Wp =m iy (¢ | 8v) + (@ + B)gul.

. _1 R . (4.6)
& 1vp) =m™ [(@+8)(C]8w) —ivEuwl
where
m=(a+p)a+8—y>
Since § = B + (p1 + p2)1/|&| we obtain the following relation for m:
A 1 1\7!
m = (a+ ﬂ)[(m + ) — +4(— + —) } =: (a + B)n,
&1 noom
where ) = /1o + n2|é| and 2 = /pawr + €] This yields
Loy N
wb—(a+ﬂ)n(§|gv)+n, wn
L (ot p)A/IEl I N '
¢ lvp) = @t ¢ 18w)+ n[((lgu) —a+ﬁgw]

We define the operators 7; by means of their symbols 7;, i.e.

Ti = i Fi + wD)?,  Ti= P +mDy/?,  D(Tj) = D(Fj) = D(F).

Then by the Dore—Venni theorem, the operators 7; with domains D(7;) = D(F;) = D(F) are
invertible, sectorial with angle 7r/4. Moreover, they admit an H®-calculus with H*-angle 7 /4
(see for instance [31]). The harmonic mean T of T} and 75, i.e.

T :=2NTT(T) +T») ' = Z(Tl_l + Tz_l)_l
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enjoys the same properties, as another application of the Dore—Venni theorem shows. The symbol
of T is given by n := 2n1m2/(n1 + n2).
Next we consider the operator GD,:I/ % with domain

D(GD;,'?) = (h e R(DY?) : D1 € D(G))

=oH,(J; Hy'(RM) N Lp(J; Lp(R")
The inclusion from left to right in the last equality is obvious. The converse can be seen as follows.

Leth € oHL(J: Hy'(R") N Ly(J5 Lp(R™) and define g := D, '/*h. Then

g € 0H,(J; Ly(R") N Ly(J; Hy(R") < L,(J; Hy(R")),

and D,/*g = D,/*g = h € L,(J; L,(R")), which implies that » € R(D,’*) and g = D, '*h =
D, 12h ¢ D(G). The operator GD,, 172 4 closed, sectorial and admits a bounded H°°-calculus
with H*-angle n/2 on X = L,(J; L,(R")); see for instance [22, Corollary 2.2]. Its symbol is
given by A/|&].

Finally, we consider the operator

N = (p1 + p2)GD;, \/* + 2T, (4.8)

with domain

1/2

D(N) =D(GD, ") ND(T) = oH,(J; H;'(R") N L,(J; Hy(R"));

recall . By the Dore—Venni theorem N is closed, invertible, and by [31] it admits a bounded
H™-calculus as well, with H*-angle /2. Its symbol is n.

The operator with symbol y is then given by 75 — T7, and the operator with symbol o + 8
by T + T». For the inverse transforms wp and (R |vp) of wp and (¢ | 0p) we then obtain the
representations

wp = N"(T2 = T)(T1 4+ )7V i(R | g0) + gul,
—1/2

(R|vp) = (T1 + T) "' (p1 + p2)GD,; "N (R gy) (4.9)
+ N (R gy) = (Ta = T))(T1 + T) " 'N " igy.
We note that N ! has the following mapping properties:
N~ L, LyRY) — oHp(J; Hy '(RM) N Ly (J; Hy(RY) <> Ly (J; Ly(R™),
N~ ' L,(J; Hy(R") — oH ) (J; Ly(R") N Ly(J; H,%(R")) — L,(J; Ly(R™)).
Therefore by three-fold real interpolation
— = 1—1 £ —1 2—1
N7U L, (W, TP @) = o HL (s W, PR N Ly (s Wy P RY)). (4.10)
Moreover, N~! maps oW,l,/z_l/zp(J; L,(R™)) into

3/2—1/2 o — 1/2—1/2
oWy 2V BT ®Y) N oW PP HERY). (4.11)
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Next we note that the operators T;(T1 + T»)~! are bounded in Dr(1 — 1/p, p), as is the Riesz
transform R, and the assertion for wy, follows now from (@.9)-(@.10) and

oW, T Ly @) N Ly (s W TP ®RY) > Ly (0 Wy TP @),
The assertions for (R | vp) follow readily from (3.10) and @9)-@-TT). O

We can now formulate our second main result of this section concerning the solvability of the
problem
pdu — pAu+Vr =0  in R
divu =0  inR",
—[udyv]l — [uViw] =g, on R",
—2[pndyw] + [7] = g» onR",
[u] =0 onR",
u@©) =0 inRL
COROLLARY 4.2 Let1 < p < oo and assume that p; and u; are positive constants, j = 1,2, and
set J = [0, a]. Then (4.12) admits a unique solution (u, 77) with

(4.12)

ueoH,(J; LR R N L,(J: Hy R R™Y), 7 Ly(J; Hy®R™))
if and only if g = (gy, gw) satisfies the following regularity assumptions:
@ go € oW, PP LR RY) N Ly(J: Wy~ PR R,
() guw € Lp(J: W, PR,
Proof. Let up := (vp, wp) := (DN) "' (gy, guw), and let (u, ) be the solution of (3.6). Thanks to

Theorem [4.1] and Proposition (u, ) satisfies the regularity assertion of the corollary, and it is
the unique solution of (#.12)) due to the definition of DN . O

REMARK 4.3 The representation formulas in (3.7)-(3.8) have also been derived and used by
other authors (see for instance [11}, 36]]). However, the optimal regularity results in Theorem [3.1]
Proposition[3.3] Theorem[4.T] and Corollary[4.2]are new. Moreover, the computations and arguments
leading to these results are shorter than in [[11] (which only deals with the case p = 2) and in [36].
We should mention, however, that these authors consider more general domains.

5. The linearized two-phase Stokes problem with free boundary

In this section we consider the full linearized problem

pdu — pAu+Vr = f  in R
divu = f; inR"™!,
—[udyv]l — [uViwll =gy, on R",
—2[[udyw] + [ —ocAh =g, onR", (5.1
[u] =0 onR",
oh—yw=g, onR"
u(0) =ug, h() = hy.
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We are interested in the same regularity classes for # and 7 as before. Then the equation for the
height function % lives in the trace space W,}fl/zp(J; L,(R") N Ly(J; Wﬁfl/p (R™)), hence the
natural space for & is given by

he W, PP L, @) N HL Wy P@Y) N L Wy P ®RY).
Our next theorem states that problem (5.I) admits maximal regularity, in particular defines an
isomorphism between the solution space and the space of data.

THEOREM 5.1 Let 1 < p < oo be fixed, p # 3/2,3, and assume that p; and u; are positive
constants for j = 1,2, and set J = [0, a]. Then the Stokes problem with free boundary (5.1) admits
a unique solution (u, 7w, h) with regularity

ueHy(J; L, R R*™H) N L,(J: Hy R R™),

m e Ly(J; HyR"),

Ll € Wy 227 (75 Ly (R™) N Ly(J; Wy~ /P (R)),

he W, PP L, @) NHY I Wy P®D)Y N Ly Wy P @R™)

(5.2)

if and only if the data (f, f4, g, gn, uo, ho) satisfy the following regularity and compatibility
conditions:

(@) f € Lp(J; LR R,

(b) fa€ HXJ: HyWR™Y) N Ly(J; HY R,

(©) g = (gv, gw) € Wp* PP (I LyR™, R™ 1) N Ly(J: Wy~ /PR, R,

(d) g€ Wy PP L,R) N L1 Wy /PR,

(e) ug € W[g—2/P(Rn+l’ RnJrl)’ ho € W;—2/P(Rn),

() divug = f2(0) in R"*! and [ug] = 0 on R" if p > 3/2,

(g) —[udyvoll — [ Viwoll = gu(0) on R™if p > 3.

The solution map (f, f4, &, &n, 4o, ho) — (u, 7, [ ], k) is continuous between the corresponding
spaces.

Proof. Similarly to the proof of Thereom we will reduce system (5.1) to the case where
(f, fa, 8 uo, ho) = (0,0,0,0,0) and g;(0) = 0. The Neumann-to-Dirichlet operator will once
again play an essential role in the resulting reduced problem.

(1) Let

_ 172 _ 1/2 _ _ _
hi(t) = 2P — 2P hg 4 (14 D)~ e P! o =20FD01 (6 (0) 4 ywy),

where ug = (vg, wo) and y : ]R’fl — R" is the trace operator. The function % has the following
properties:

hy € W/* V2P (1L HZR™) 0 Ly (1 Wy~ /P (R™))

nwy PP L @) N Hy Wy PR, 5.3)
B =ho,  311(0) = g(0) + ywo
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(see [30, Lemma 6.4] for a proof of a similar result). Let then (u1,7;) be the solution of
problem (3.1I) with g, replaced by g, + o Ahy. It follows from Theorem [3.1] the assumptions
on g = (gy, gw), and from the first line in (3.3)) that (u;, 1) satisfies the regularity properties stated
in Theorem 3,11

(i1) Next we consider the reduced problem

pdqu — pAu+Vr =0 inR",
divu =0  in R,
—[pndyv] = [uViw] =0 onR",
—2[pdywl + [l —0cAh =0 onR", (5.4)
[u] =0 onR",
oh—yw=g, onR"
u(0) =0, k(@) =0,

with g, := g — (0;h1 —ywy), where u; = (v, wy) is the solution obtained in step (i). We conclude
from (5.3)) and the regularity properties of yw that

g e oW, PP LyRY) N Ly (T; Wy P R™Y). (5.5)

Suppose that problem (5.4) admits a solution (uz, 72, h2) with the regularity properties stated in
(5-2). One readily verifies that (u, , h) := (u] +up, w1 + 72, b1 +h2) is a solution of problem (5.1))
in the regularity class of (3.2).

(iii) It thus remains to show that the reduced problem admits a unique solution (u, 7, h) in
the regularity class stated in Theorem 5.1} We note that once / has been determined, Corollary 4.2]
yields the corresponding pair (u, ) in problem (5.4).

To determine i we extract the boundary symbol for this problem as follows. Applying the
Neumann-to-Dirichlet operator (DA)~! to (gy, gw) = (0,0 D,h) yields yu = up, the trace of
u. According to {.7), the transform of the normal component y w = w, of uy, is given by

iy — —olé®
(o1 + p)M/IEl +4nmma/(m +m2)

S

Let us now consider the equation ;2 — yw = gp. Inserting this expression for W into the
transformed equation Ah— wp = gj results in s(A, |€ |)}Az = gj, where the boundary symbol s(A, |£])
is given by

ol§l?
s, 15D = A+ ) (5.6)
(p1 + p2)A/1E1 4+ 4mma/ (i + n2)
The operator corresponding to this symbol is
S=G+oD,N7', (5.7)

where the meaning of the operators G, D, and N is as in Section 4. The operator S has the following
mapping properties:

S oHN (T Ky (R™) NoHy (13 Ky T (R™) — oH' (J; K (R™)), (5.8)
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where K € {H, W}. In order to find & we need to solve the equation Sh = gj, that is, we need to
show that S is invertible in appropriate function spaces.

All operators in the definition of S commute, and admit an H*°-calculus. The H*°-angle of D,,
is zero, that of N is /2, and that of G is m/2 as well. Thus we cannot a priori guarantee that the
sum of the power-angles of the single operators in S is strictly less than 7, and the Dore—Venni
approach is therefore not directly applicable. We will instead apply a result of Kalton and Weis [25]
Theorem 4.4].

For this purpose note that for complex numbers w; with argw; € [0,7/2), we have
arg (wiwy)/(w; + wy) = arg (1/wy + l/wz)_1 € [0, w/2) as well. This implies that s(X, |£]) has
strictly positive real part for each A in the closed right halfplane and for each & € R", (A, &) # (0, 0),
hence s (A, |£]) does not vanish for such A and &.

We write s(A, |£]) in the following way:

s(h, 1) =A+01k(z), z=xr/t2, AeC, T C\{0}, (5.9)
where
1 1 —17-1
k(z) = +p2)z+4 + .
© [(m P2) <«/M1«/,012 +ur+p2 U222+ (2 +M1) ]

The asymptotics of k(z) are given by

k(0) = zk(z) —

2(u1 + p2)’ p1+ P2
This shows that for any ¢ € [0, 7r) there is a constant C = C(¢) > 0 such that

for z € C\ R_ with |z] — o0.

lk(z)] < ., z€Xy.

1+ |z]

Hence we see that
Is(A, [EDI < CA[+ 1D, Rer >0, & eR",

for some constant C > 0. Next we are going to prove that for each Ay > 0 there are 1, ¢ > 0 such
that
[s(h, D) Z cllA + 7]l forall X € Xy /o4y, [A = o, T € Xy (5.10)

This can be seen as follows: since Rek(z) > 0 for Rez > 0, by continuity of the modulus and
argument we obtain an estimate of the form

Is(A, D) = collAl + It 1k@I] = c[IAl +Tl], A € Zrjaqy, T € Xy,

provided |z| < M, with some 7, ¢ > 0 depending on M, but not on A and 7. On the other hand, for
m > 0 fixed we consider the case with |A| > m|t], |z] = M. We then have

1
s, D 2 M = olt] k)] = SlA +mit]]l = o Clel/( + M) = cl|A] + [7]]

provided m > 20 C/(1 + M), and then by extension

|S()"a T)' 2 C[|)\'| + |T|]7 )‘- € 2ﬂ/2+7)7 T € 27)7 |)"| 2 m|'L’|, |Z| 2 Ma
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provided 71, ¢ > 0 are sufficiently small. One easily sees that the intersection point of the curves
y = Mx? and y = mx in R? has distance d = (m/M)~/1 + m? from the origin. By choosing M
large enough so that d < %o, (5.10) follows by combining the two estimates.
By means of the R-boundedness of the functional calculus for D, in K ;, (R™) (cf. Desch, Hieber
and Priiss [[15]) we see that
O+ D™ 0, D)

is of class H* and R-bounded on X />4, \ By, (0). The operator-valued H*°-calculus for G = 9;
onoH ;(J i K [S) (R™)) (cf. Hieber and Priiss [24]) implies boundedness of

(G +Dy/*)s7HG. D,/*)  inoH!(J; K5(RM).

This shows that s~ ! (G, D,i/ 2) has the following mapping properties:

sTHG. D) 1 oHY (T3 KS@R™) — oHyH N (J KSR™) NoHL (U KSH@®RY).  (5.11)

We conclude that S is invertible and that S~! = s~1(G, D,ll/z). Choosingr =0ands =2 —1/p
and K = W in (5.11)) yields
STV L, (3 Wy P @) — o HL (s W PR N Ly (s Wy TP R™). (5.12)
Moreover, we also deduce from (5.11)) that
S Ly(J5 Ly(R™) — oH ), (J; Ly(R™Y)),
SV 0Hp(J: Ly(R") — oHy(J; Lp(R™).
Interpolating with the real method (-, -)1—1/p, p then yields
ST oWy TP LYY — oWh VP (T Ly(RY). (5.13)

(53.12)-(G.13) shows that the equation Sh = gj has for each g, satisfying (5.3) a unique solution %
in the regularity class (5.2)).

(iv) Since the function £ is now known we can use Corollaryto determine the pair (u, ) in
problem (5.4). For this we note that

2-1 3-1 1-1
oH (T Wy P@Y) N Ly Wy P RY) s oWy, P HERY)) (5.14)
(see [30, Lemma 6.2] for a proof). This shows that the function / determined in step (iii) satisfies
Ah € oW V2P (1 LR N L,(J; Wy~ /P (R"))

and Corollary .2 yields a solution (u, 1) in the regularity class (3.2).

(v) Steps (i)—(iv) render a solution (u, w, h) for problem that satisfies the regularity
properties asserted in the theorem. It follows from step (iv) and from Theorem|3.1|that problem (3.4)
with (f, fa, &, &, uo, ho) = (0, 0,0, 0, 0, 0) has only the trivial solution, and this gives uniqueness.
The proof of Theorem 5.1 is now complete. O

REMARK 5.2 Further mapping properties of the symbol s (A, 7) and the associated operator S have
been derived in [32]. In particular, we have investigated the singularities and zeros of the boundary
symbol s, and we have studied the mapping properties of S in the case of low and high frequencies,
respectively.



334 J. PRUSS AND G. SIMONETT

6. The nonlinear problem

In this section we derive estimates for the nonlinear mappings occurring on the right hand side of
(2.9). In order to facilitate this task, we first introduce some notation, and then study the mapping
properties of the nonlinear functions appearing on the right hand side of (2.9). In the following we set

Ei(@) := {u € Hy(J; L,(R""  R"™™) N L, (J; Hy R"T R"™) : [u] = 0},
Ea(a) := L,(J; Hy(R")),
Es(a@) := W,/* 2P (U5 LyR™) N Ly(J: Wy~ P (R,
Es(@) := Wy 2P (I LyRD) N HI (s Wy~ /P @R™)
N w212 HXR) N Ly (s Wy PR,
E(a) := {(u. 7. q. h) € Ei(a) x Ex(a) x E3(a) x Eq(a) : [] = q}.

6.1)

The space E(a) is given the natural norm

I, 7w, q, DEw = lullg, @ + 1TIE @ + 191E;@ + 1215, @)

which turns it into a Banach space. We recall that E;(a) is equipped with the norm

_oxontl g q P 1/p . Ton+1
I s @ = CFE O] ) nny) P form R R

In addition, we define

Fi(a) := Lp(J; L,(R"T R"1y),
]F2(a) = Hll(], HI;](Rn+1)) N Lp(J, H;(RVH“]))’

Fs(a) := W,/> 7?7 (15 L, R", R"™ 1)) 0 L, (J; W, /PR, R* 1Y), (6.2)

Fa(a) := W, PP(J; L,R") N L,(J; Wy~ /P (R,

F(a) :=Fi(a) x Fa(a) x F3(a) x F4(a).

The generic elements of F(a) are the functions (f, f4, g, gn)-

We list some properties of the function spaces introduced above that will be used below. In the
following we say that a function space is a multiplication algebra if it is a Banach algebra under the
operation of multiplication.

LEMMA 6.1 Suppose p > n 4 3 and let J = [0, a]. Then

(a) E3(a) and F4(a) are multiplication algebras.
() Ei(a) = C(J; BUC'(R*t! R"1y)y N C(J; BUCRM!, R*+1y).
(¢) E3(a) — C(J; BUC(R")).
(d) E4(a) — BC'(J; BC'(R")) N BC(J; BC*(R")).
() Wy PP Ly®™M) NHYI: W, P@®RM) N Ly Wy P @®RY) <> Eala).
Proof. (a) The assertion that [E3(a) and F4(a) are multiplication algebras can be shown as in the
proof of [30, Lemma 6.6(ii)].
(b) Tt follows from [2} Theorem TIT.4.10.2] that E; (a) <> C(J; W5~ /P ("1 R*+1)) and this

implies the first inclusion, thanks to Sobolev’s embedding theorem. The second assertion follows
from the fact that u is continuous across y = 0.
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(c) This follows from [[19, Remark 5.3(d)] and Sobolev’s embedding theorem.
(d) We infer from [2, Theorem II1.4.10.2] that

HY; Wy PR N Ly Wy P RY) > C(: Wy PR,

and the inclusion E4(a) < C(J; BC2(R")) then follows from Sobolev’s embedding theorem. In
addition, we conclude from [30, Remark 5.3(d)] and Sobolev’s embedding theorem that

Wy P (7 L,(RY) N L,(J; Wy~ /P (R")) < BC(J; BC' (R™)),

and this implies that E4(a) < BC'(J; BC'(R")).

(e) This follows from (5.14). |
Let
N, m, q,h) = (F(u,n,h), Fau,h), G, q, h), H(u, h)) (6.3)

for (u, m, q, h) € E(a), where as before u = (v, w), F = (Fy, Fy) and G = (G, Gy). We show
that the mapping N is real analytic.

PROPOSITION 6.2 Suppose p > n + 3. Then
N € C®(E(a),F(@)) and N(@©0) =0, DN(0) =0, (6.4)
where DN denotes the Fréchet derivative of N. In addition we have
DN(u,m,q,h) € L(oE(a), oF(a)) forany (u,m,q,h) € E(a).

Proof. We first note that the mapping (u, 7, g, h) — N(u, 7, g, h) is polynomial. It thus suffices
to verify that N : E(a) — F(a) is well-defined and continuous.

(i) We first consider the term F(u, , h), and observe that it contains the expressions Vi, Ah
and 9;h. Without changing notation we here consider the extension of 4 from R” to R”*! defined
by h(t, x,y) = h(t, x) fort € J and (x, y) € R"” x R. With this interpretation we clearly have

100l oo, s xR+t = 10h oo, sxrn,  h € E(a), 8 € {0;, A, 9}, 6.5
where || - |00,z denotes the sup-norm for the set U C J x R+, Next we note that

BC(J; BC(R"™YY) - L,(J; L,(R"™1Y) < L,(J; L,(R"),

6.6
BC(J; BC(R"*"Y) . BC(J; BCR")) — BC(J; BC(R")), (6.6

that is, multiplication is continuous and bilinear in the indicated function spaces. We can now
conclude from (6.5)—(6.6) and Lemmal6.1] that

F € C?(Ei(a) x Ex(a) x E4(a),Fi(a)), F(0)=0, DF()=0.

(i1) We will now consider the nonlinear function Fy(u, h) = (Vh|dyv). Since i does not depend
on y we have
Fq(u,h) = (Vh|0yu) = 0y(Vh|u). 6.7)
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Observing that

BC'(J; BCR"™)) - Hy(J; L,(R"™) <> H, (J; L,(R"*1),

BC(J; BC'R™N) - Ly(J: HyR'"™) — Ly(J; HyR™),
and

dy € L(H,(J; L,(R"™Y), H)(J; H'(R"™)))
NL(Ly(J; Hy®R"™™), L,(J: L,R" ™)),

we infer from Lemma [6.1](d) that

Fy € C*(E1(a) x E4(a), Fa(a)),  Fa(0) =0, DF4(0) =0.

(ii1) We recall that

[wd; -1 € L(Hy(J: LyR"TH) N L,(J; HY(R")), E3(a)). (6.8)

where [110;u] denotes the jump of the quantity wo;u with u a generic function R"t! > R, and
where 0; = 9y, fori =1,...,nand 9,11 = 0y.
The mapping G (u, g, h) is made up of terms of the form

[udiwddjh,  [ududdhdh,  qdjh,  Ahdjh,  Ge(h),  Gi(h)djh.

where uy denotes the k-th component of a function u € E;(a). From (6.8) and the fact that E3(a) is
a multiplication algebra it follows that the mappings

(u, h) > [poiugllojh, [udiugllojhdh : Ei(a) x Eq(a) — Es(a),
(g, h) — qojh : E3z(a) x E4(a) — E3(a), hvr> Ahdjh:E4(a) — Ez(a)

are multilinear and continuous, and hence real analytic. The fact that E3 (a) is an algebra additionally
implies that the mapping [h — G (h)] : E4(a) — E3z(a) is analytic. In summary we conclude that

G € CY[E(a) x E3(a) x E4(a), E3(a)), G(0)=0, DG(0) =0.

(iv) We infer from y € ﬁ(H,}(J; L,(R"™) N L,(J; H,%(R"H)), Fq(a)) and the fact that
F4(a) is an algebra that the mapping [(u, h) +— (Vh|yu)] : Ei(a) x Eq(a) — Fa(a) is bilinear
and continuous. This immediately yields

H € C®[E(a) x E4(a), F4(a)), H(O) =0, DH(0) =0.

(v) As the terms of N are made up of products of u, 7, ¢, h and derivatives thereof, one easily
verifies that

DN(u,m, q, )i, 7, G, hl € oF(a) whenever (u,7,q,h) € E(a), (i, 7,3, h) € oEa).

Combining the results obtained in steps (i)—(v) yields the assertions of the proposition. O

We are now ready to prove our main result of this section, yielding existence and uniqueness of
solutions for the nonlinear problem (2.9).
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THEOREM 6.3 (Existence of solutions for the nonlinear problem (Z.9)) (a) For every fo > 0 there
exists a number &€ = £(ty) > 0 such that for all initial values

(o, ho) € Wy /P @R 5 Wy PR, [uoll = O,
satisfying the compatibility conditions
(Do, ho)vo — 1(vo | D(ug, ho)vo)voll =0,  divug = Fy(uo, ho), [uol =0 (6.9)

and the smallness condition
”M()” WPZ*Z/P(Rn-H) + ||h0 ” ngz/P(Rn) g g, (610)

where D(u, h) is defined in (2.6), the nonlinear problem (2.9) admits a unique solution
(u, 7, [7]l, h) € E(to).
(b) The solution has the additional regularity properties

(u, ) € C0, to) x R" R™2) [x], h € C®(O, to) x R").

In particular, M = (J, (g, ({t} X I'(?)) is a real analytic manifold.

Proof. In order to economize our notation we set z := (u, w, g, h) for (u, w, g, h) € E(a). With
this notation, the nonlinear problem (2.9) can be restated as

Lz=N(), (u(0),h(0) = (uo, ho), (6.11)

where L denotes the linear operator on the left hand side of (2.9), and where N is defined in (6.3)).

It is convenient to first introduce an auxiliary function z* € I[E(a) which resolves the
compatibility conditions and the initial conditions in (6.11)), and then to solve the resulting
reduced problem

Lz=N@E+z") —Lz* = Ko(z), ze€oE(a), (6.12)

by means of a fixed point argument.
(i) Suppose that the initial values (u, ko) satisfy the (first) compatibility condition in (6.9}, and
set

7ol := L (vo | D(uo, ho)vo)ll + o (Ahg — Gic (ho)).

It is then clear that the following compatibility conditions hold:

—[[mdyvoll — [uViwoll = Gy(uo, [7oll, ho) on R",

6.13
—=2[[ndywoll + [woll — 0 Aho = Gy (uo, ho) onR", (©.13)

where ug = (vo, wo). Next we introduce special functions (0, £, g*, g;) € F(a) which resolve the
necessary compatibility conditions. First we set

Rye Pri1€ (vg| Vho) in RL,

c*@) =
R_e 'Prtig_(vy| Vhy) in R,

(6.14)
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where £1 € E(Wg_z/ P (Ri‘“), sz —2/p (R"*+1Y) is an appropriate extension operator and R+ is the
restriction operator. Since (vg | Vo) € Wg —2/p (R”H) we obtain

c* € Hy(J; LyR"™) N L,(J: Hy R"™).

Consequently,
fi =09yc* €Fa(a) and [f;(0) = Fy(vo, ho). (6.15)

Next we set
g5 () = e P Gug, [moll, ho), g (1) := e~ P H(uo, ho). (6.16)

It then follows from (6.135) and [19, Lemma 8.2] that (0, £, g*, g;) € F(a). (6.13) and the second
and third conditions in (6.9) show that the necessary compatibility conditions of Theorem [5.1] are
satisfied and we can conclude that the linear problem

Lz" =0, f7.8% 8, @ (0),h*(0)) = (uo, ho), (6.17)

has a unique solution z* € E(a). With the auxiliary function z* now determined, we can focus on
the reduced equation (6.12), which can be converted into the fixed point equation

z=Ly'Ko(x), zeoE(a), (6.18)

where L denotes the restriction of L to o[E(a). Due to the choice of (f, g%, gj;) we have Ko(z) €
oFF(a) for any z € ¢E(a), and it follows from Proposition [6.2] that

Ko € C®(©E(a), oF(a)).

Consequently, L, IKO :0E(a) — oE(a) is well-defined and smooth.
(i) In the following, fo > 0 is a fixed number. We set

Ey = {(uo, ho) € Wy /P @ R s Wy TP @) : ] = 0},

and observe that Ej is a Banach space. Given (uo, ho) € Ej let (f], g*, g;) be defined as in
(6-13)—(6.16). It is not difficult to see that the mapping

F*: E1 — F(to),  F*(uo, ho) := (0, f7. 8%, 84)

is C! (in fact real analytic), and that F*(0) = 0 and DF*(0) = 0. Hence given § € (0, 1) there
exists € = €(8) > 0 such that

IF* (o, ho)lFay) < 8ll(mo. ho)ll,»  (wo. ho) € eBg,. (6.19)

Let G(fp) denote the closed subspace of F(#y) x E| consisting of all functions (f, f4, &, &n, 4o, ho)
satisfying the compatibility conditions of Theorem [5.1]

Suppose that (g, ho) € eBg, satisfies the compatibility conditions (6.9). Then, due to (6.13)
and the definition of F*, the mapping

G* 1 E1 — G(to), G*(uo, ho) := (F*(uo, ho), uo, ho),
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is well-defined and ||G*(uo, ho)llGy) < 2l(uo, ko)l g, - It then follows from Theorem that
(6-17) has a unique solution z* = z*(ug, ho) which satisfies

2" @y < Collwo, ho)llg,,  (uo, ho) € eBE,, (6.20)

where the constant Cy does not depend on (ug, ho).
(iii) Theorem@ also implies that Lg : oE(#9) — oF(#p) is an isomorphism. Let then

M =1Ly £6oF ) oEro)) - (6.21)

We can assume that the number § in step (ii) was already chosen so small that

. 1

satisfying (6.9)—(6.10) a unique fixed point Z = Z(uo, o) € eB k(). It follows from Proposition

and (6.20) that

(iv) We shall show that the fixed point equation (6.18)) has for each initial value (uo,
6.2

IDN(z 4+ 2 £Eto) Fio))» 1PKo@ N £(oEt0),0F () < 8 (6.23)

for all (u, ho) satisfying (6:9)~(6-10) and all z € B f,), provided ¢ is chosen small enough. From
(6-19)—(6-23) it follows for z, z; € eB g, that

||L51(K0(Z1) — Ko(22) lgE@e) < Méllz1 — 22l By < %Ilm — 22|l
and
IILEIKO(Z)IIOJE(IO) S MAIN @+ 2N F @) + 1F* o, ho) llry) < MSQ2 + Coe < &.

This shows that the mapping L, Ko : EEOE(,O) — é@OE(zO) is a contraction for any initial value
(1o, ho) satisfying (6-9)—(6.10).

(v) By the contraction mapping principle L, 'Kohas a unique fixed point Z € SEO]E(,O) C oE(to)
and it follows from (6.11)—(6.12)) that Z 4 z* is the (unique) solution of the nonlinear problem (2.9)
in E(#9), proving the assertion in part (a) of the theorem.

(vi) In order to show that (u, 7, g, h) is analytic in space and time we can use the same strategy
as in [19] Section 8]. Since the proof is similar we will refrain from giving all the details, and will
rather point out the underlying ideas.

Let (u, 7, q,h) € E(ty) be the solution of (2.9) with initial value (ug, ho). Let a € (0, 1p) be
fixed and choose § > 0 so that (1 + 8)a < ty9. Moreover, let ¢ be a smooth cut-off function with
¢ = 1 on [—R, R] for some R > 0 and suppose that § > 0 is chosen small enough so that

14+ott>0, 14+ Oe()tt>0, tel0,al, te (=638, yecR.
For given parameters (A, v, ) € (1 —§, 1 4+8) x R" x (=4, §) we set

(u)»,l),r’ ”A,v,r)(t’ X, Y) = (M, 7'[)()\1, x +tv, )7(1 + 90()’)751))7
(Grvs ha ) (@, %) := (g, h)(At, x + 1v), (6.24)

r vt = (“A,v,r» TTav,t9r,vs h}»,\))v
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where (¢, x, y) € [0,a] x R" x R. Suppose we know that
[(A, v, ) = zo0,c] € C¥(A, E(a)) (6.25)

with A C (1 =6,1+9) x R" x (=4, &) a neighborhood of (A, v, 7) = (1, 0, 0). Pick (sg, xo, Y0) €
(0, 19) x R"*! and choose a € (s, fo). Without loss of generality we can assume that yo € [—R, R].
Thanks to the embeddings

Ei(a) < C(I; BCR"™, R"™)),  E3(a), Ea(a) — C(I; BC(R")),
(see Lemma[6.1)) we conclude that
[(A, v, T) > up 0] € C¥(A, C(I; BCR"™ R™Y)),
(A, v, T) = (o, haw)] € C(A, C(I; BC(R™))) x C(I; BC(R"))
for I = [0, a]. Thus
[(A, v, T) > u(Aso, X0 + sov, yo(1 + T50)] € C“(A, R,
[(x, v, T) > (g, h)(Aso, X0 + sov)] € C(A, R?),
and this implies that
u e C?0, 1) x R' R g h e C?0, 1) x R"). (6.26)

This in turn together with (2.2)—(2.3) shows that Vor € C®((0, tg) x R+l R+ as well, and we
can now conclude that
7 € C?(0, tg) x R, (6.27)

where the pressure 7 is normalized by 7 (¢, 0,0—) =0, i.e.

1
q(r,0>+f [(Ver(t, s, 59) | 3) + By (1, s, sy)ylds, y > 0,
Ttx =1 0
/ [(Vim(z,sx,5y) | x) + 3y (¢, sx,sy)ylds, y < 0.
0

(vii) We will now explain the steps needed to establish the crucial property (6.23). First we note
that there exists a neighborhood A C (1 — 48,14 §) x R" x (=4, §) of (1, 0, 0) such that

[, v, T) = O, f7 50,00 85,00 8ha)] € C¥(A,F(a)), (6.28)

where the functions (f;,g*, g;) are defined in (6.15)—(6.16). In fact, the assertion follows
immediately from [[19] Lemma 8.2] for the functions (g*, g;‘l). Let us then consider the function

c* defined in (6.14). Let w(t) := e 'Prt1y for some function wy € ngz/ P (Rn*1y and define
wy v (t, x,y) for (¢, x,y) e I x R+ as above, with I = [0, a]. Then one verifies as in the proof
of [19, Lemma 8.2] that

Wi, € Hy(I; Ly(R") N Ly (I HyR") =: X (1)
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for (A, v,7) € (1 —48,1+68) x R" x (=4, 8), and that w,_,  solves the parameter-dependent
parabolic equation
ou— Ay v-u=0, u0)=wo,

in R"*!, where A;, , ; is a parameter-dependent differential operator given by

» ( a(y) ra ()t
T

A
Ay =AA+ —————07 B
AV, T x T+ (1 + a/(y)n)z Yy 1+ a/(y)l't (1 + Ol,(y)'”)3

>3y+(VIVx)

fort € [0,a]and y € R, where o (y) := y(y). Here we observe that
Aroo =4, [ v, 1) Ayl e C%A, LX), Xo(]))),

with Xo(I) := L,(I, L, (R™*1)). As in the proof of [19, Lemma 8.2] it follows from the implicit
function theorem that there exists a neighborhood A C (1 —§,1 4+ 8) x R" x (=4, §) of (1,0, 0)
such that

[, T) > wy ] € CPA, X (D). (6.29)

Applying (6:29) separately to wo = E+(voVho), and then applying R4 yields
[(hv. 1) > cf 1 € C¥(A Hy(I; L,(R") N Ly (I Hy(R"T)).

It then follows from the definition of f that [(A, v, T) — f;,A,u,r] € C%(A,Fy(a)). In a next step
one verifies that the function z;w solves the linear parameter-dependent problem

poru — Ay yru+ By =0 in R*H!

* - mn+l
Coe =[5 0z in R"*1,

14+t [pdyv]l = [uViw] = gﬁ,x,u on R",

(6.30)

1+Tt[[/1,3yw]]+|[7'[]]—O'Ah =gy OnR",

[u] =0 on R",
dh —Ayw+Dyh =g}, , onR",
u(0) = up, h(0) =ho

where
Al 2 pa(y) Apa ()t
AV, T A + (1 + a/(y)rt)z y (l —|— a/(y)'[t (1 + Ol/(y)”)3 Y + IO(U | X)
) 1
Bk,rn = A(Vxn, Ha—,(y)nayﬂ), Cru = divyv + —1 i Ol/(y)‘l,'tayw

Dyh i= —(v| Vh).

We note that
Aioo=n4, Bip=V, Ci=div, Dy=0.

It is easy to see that the differential operators A, ¢, B ¢, C; and D, depend analytically on the
parameters (%, v, 7) in the appropriate function spaces. Using Thereom[5.1]and the implicit function
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theorem one shows similarly to [19, Lemma 8.3] that there is a neighborhood A C (1 — 48,14 §) x
R" x (=4, 8) of (1, 0, 0) such that

(A, v, T) ~ z;w] € C?(A, E(a)). (6.31)

Let Z be the solution of (6.12) obtained in step (v) above. Then one verifies that 2, ; € 2B g,
for (A, v, T) € A, with A a sufficiently small neighborhood of (1, 0, 0). Moreover, 2, ,, r solves the
nonlinear parameter-dependent problem

Livz=Kv:(2), z¢€ok(a), (6.32)
for (A, v, T) € A, where L, , ;z is defined by the left hand side of (6.30) and where

AFe(u + MK,U,T’ T+ N)T,v,r’ h + hiv)
Fdaf(“ + u;k\,u,r’ h+ h;iv) - f;,)\,v,r
Geu+ui, . q+qf, h+hi)—gf,
AH (u + u;t,v,t’ h + h;,v) - g;,x,u

K}»,V,I(Z) = (6.33)

The functions Fr, Fyr and G are obtained from F, Fy; and G, respectively, by replacing terms
containing partial derivatives d, and 8y2 in the following way:

1 1 ) a" ()t

> —————— 0y, 2w — w — dyw
1 +a(y)rt Y (A +a'(y)r)?” (A +a'(y)rr)?

Oyw

for w € {v, w, }. Equation (6.32) can be reformulated as
V(@ (v 1) =2 = (L) Kawr @) =0, 2 € 0E(@). (6.34)

Here we observe that ¥ (Z, (1,0, 0)) = 0 for the solution Z of the fixed point equation (6.18). It

follows from (6:28), (6-3T) and Proposition [6.2] that
[z, A, v, 7)) = ¥(z, (A, v, 7))] € C®(E(a) x A, E(a)).
Moreover, it follows from (6.21)—(6.23) that
D1¥ (2, (1,0,0) =1 — D(L™'Ko)(2) € Isom(oE(a), oE(a)).

By the implicit function theorem there exists a neighborhood A C (1 —§, 1 +§) x R” x (-4, §) of
(A, v, 1) = (1,0, 0) such that

[(A, v, T) > Zovr] € CO(A, oE(a)). (6.35)

Combining (6.3T) and (6.33) yields (6.23)). This completes the proof of Theorem|[6.3] O
Proof of Theorem 1.1. We first observe that the compatibility conditions of Theorem 1.1 are
satisfied if and only if (6.9) is satisfied. Next we note that the mapping @y, given by Oy (x, y) 1=
(x, y+ho(x)) defines for each hg € W,? ~2/P(R"y a C2-diffeomorphism from R onto £2;(0) with

det[D®y,(x, y)] = 1. Its inverse is given by @,jol (x,y) ;= (x,y — ho(x)). It then follows from the
chain rule and the transformation rule for integrals that

1
—_— = < —2/p < ~2/p
Clho) ol y2-2p gy < 10 Wl 2210 gusry < CCROutolly 2210



TWO-PHASE NAVIER—STOKES EQUATIONS 343

where C (ho) := M[1+ ||[Vhol g (R")]’ with M an appropriate constant. Consequently, there exists
g0 > 0 such that ||ug],,2-2/p + Aol 3-2/p < g implies the smallness condition (6.10).
W, P (20) w, “ERY

Theorem then yields a unique solution (v, w, &, [7], k) € E(f9) which satisfies the additional
regularity properties listed in part (b) of the theorem. Setting

(u,CI)(t’x, )’) = (vvwvn)(tvxvy_h(t7x))7 (tvxv y) S Ov

we then conclude that (u,q) € C®(O,R"*?) and [¢]] € C®(M). The regularity properties
listed in (1.3)—(1.4) are implied by Lemma @b)—(c). Finally, since g (t, x, y) is defined for every
(t,x,y) € O, we can conclude that g (¢, -) € Hli (82(t)) C UC(£2()) forevery t € (0, tp). O

Acknowledgments

The research of GS was partially supported by NSF, Grant DMS-0600870.

REFERENCES

1. ALLAIN, G. Small-time existence for the Navier—Stokes equations with a free surface. Appl. Math. Optim.
16 (1987), 37-50. Zbl 0655.76021| MR 0883473
2. AMANN, H. Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory. Monogr. Math.
89, Birkhauser, Boston (1995). Zbl 0819.35001) MR 1345385
3. ANGENENT, S. Nonlinear analytic semiflows. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91-107.
Zbl1 0723.34047 MR 1059647
4. ANGENENT, S. Parabolic equations for curves on surfaces, Part I. Curves with p-integrable curvature.
Ann. of Math. 132 (1990), 451-483. |Zbl 0789.58070| MR 1078266
5. BERGH, J., & LOFSTROM, J. Interpolation Spaces. An Introduction. Grundlehren Math. Wiss. 223,
Springer, Berlin (1976). Zbl 0344.46071 MR 0482275
6. BEALE, J. T. Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal. 84 (1983/84),
307-352. [Zbl 0545.76029 MR 0721189
7. BEALE, J. T., & NISHIDA, T. Large-time behavior of viscous surface waves. In: Recent Topics in
Nonlinear PDE, II (Sendai, 1984), North-Holland Math. Stud. 128, North-Holland, Amsterdam (1985),
1-14. Zbl 0642.76048/ MR 0882925
8. BOTHE, D., PRUSS, J., & SIMONETT, G. Well-posedness of a two-phase flow with soluble surfactant. In:
Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl. 64, Birkhduser,
Basel (2005), 37-61. Zbl 1095.35022 MR 2185209
9. BOTHE, D. & PRrRUSS, J. L p-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39 (2007),
379-421. [Zbl 1172.35052 MR 2338412
10. DENISOVA, I. V. A priori estimates for the solution of a linear nonstationary problem connected with
the motion of a drop in a liquid medium. Trudy Mat. Inst. Steklov. 188 (1990), 3-21 (in Russian); English
transl.: Proc. Steklov Inst. Math. 188 (1991), 1-24. Zbl 0737.35063 MR 1100535
11. DENISOVA, I. V. Problem of the motion of two viscous incompressible fluids separated by a closed free
interface. In: Mathematical Problems for Navier-Stokes Equations (Centro, 1993), Acta Appl. Math. 37
(1994), 31-40. Zbl 0814.35093| MR 1308743
12. DENISOVA, I. V., & SOLONNIKOV, V. A. Classical solvability of the problem of the motion of two
viscous incompressible fluids. Algebra i Analiz 7 (1995), no. 5, 101-142 (in Russian); English transl.: Sz.
Petersburg Math. J. 7 (1996), no. 5, 755-786. Zbl 0859.35093 MR 1365814
13. DENK, R., HIEBER, M., & PRUSS, J. R-boundedness, Fourier multipliers, and problems of elliptic and
parabolic type. Mem. Amer. Math. Soc. 166 (2003), no. 788. |Zbl pre02021354, MR 2006641


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0655.76021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0883473
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0819.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1345385
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0723.34047&format=complete
http://www.ams.org/mathscinet-getitem?mr=1059647
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0789.58070&format=complete
http://www.ams.org/mathscinet-getitem?mr=1078266
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0344.46071&format=complete
http://www.ams.org/mathscinet-getitem?mr=0482275
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0545.76029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0721189
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0642.76048&format=complete
http://www.ams.org/mathscinet-getitem?mr=0882925
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1095.35022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2185209
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1172.35052&format=complete
http://www.ams.org/mathscinet-getitem?mr=2338412
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0737.35063&format=complete
http://www.ams.org/mathscinet-getitem?mr=1100535
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0814.35093&format=complete
http://www.ams.org/mathscinet-getitem?mr=1308743
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0859.35093&format=complete
http://www.ams.org/mathscinet-getitem?mr=1365814
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:02021354&format=complete
http://www.ams.org/mathscinet-getitem?mr=2006641

344

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

J. PRUSS AND G. SIMONETT

DENK, R., HIEBER, M., & PRUSS, J. Optimal L?-L9-estimates for parabolic boundary value problems
with inhomogeneous data. Math. Z. 257 (2007), 193-224. [Zbl pre05199467| MR 2318575

DEscH, W., HIEBER, M., & PRrUSS, J. Lp-theory of the Stokes equation in a half space. J. Evol.
Equations 1 (2001), 115-142. [Zbl 0983.35102 MR 1838323

DORE, G., & VENNI, A. On the closedness of the sum of two closed operators. Math. Z. 196 (1987),
189-201. Zbl 0615.47002/ MR 0910825

ESCHER, J., & SIMONETT, G. Analyticity of the interface in a free boundary problem. Math. Ann. 305
(1996), 439-459. |Zbl 0857.76086/ MR 1397432

ESCHER, J., & SIMONETT, G. Analyticity of solutions to fully nonlinear parabolic evolution equations
on symmetric spaces. J. Evol. Equations 3 (2003), 549-576. [Zbl 1064.58011 MR 2058051

ESCHER, J., PRUSS, J., & SIMONETT, G. Analytic solutions for a Stefan problem with Gibbs—Thomson
correction. J. Reine Angew. Math. 563 (2003), 1-52. [Zbl pre02005574, IMR 2009238

ESCHER, J., PRUSS, J., & SIMONETT, G. A new approach to the regularity of solutions for parabolic
equations. In: Evolution Equations, Lecture Notes in Pure Appl. Math. 234, Dekker, New York (2003),
167-190. [Zbl 1070.35009 MR 2073744

GALDI, G. P. An Introduction to the Mathematical Theory of the Navier—Stokes Equations. Vol. I,
Linearized Steady Problems. Springer Tracts in Natural Philosophy 38, Springer, New York (1994).
Zbl 0949.35004 MR 1284205

HALLER-DINTELMANN, R., & HIEBER, M. H®-calculus for products of non-commuting operators.
Math. Z. 251 (2005), 85-100. Zbl 1096.47018 MR 2176465

KOHNE, M., PrUSS, J., & WILKE, M. Qualitative behaviour of solutions for the two-phase Navier—
Stokes equations with surface tension. arXiv:1005.1023.

HIEBER, M., & PRUSS, J. Functional calculi for linear operators in vector-valued LP-spaces via the
transference principle. Adv. Differential Equations 3 (1998), 847-872. [Zbl 0956.47008| MR 1659281
KALTON, N., & WEIs, L. The H®-calculus and sums of closed operators, Math. Ann. 321 (2001),
319-345. [Zb1 0992.47005 MR 1866491

KUNSTMANN, P. C., & WEIS, L. Maximal L p-regularity for parabolic equations, Fourier multiplier
theorems and H °°-functional calculus. In: Functional Analytic Methods for Evolution Equations, Lecture
Notes in Math. 1855, Springer, Berlin (2004), 65-311. [Zbl 1097.47041 MR 2108959

MASuDA, K. On the regularity of solutions of the nonstationary Navier—Stokes equations. In:
Approximation Methods for Navier—Stokes Problems, Lecture Notes in Math. 771, Springer, Berlin (1980),
360-370. [Zbl 0435.35029 MR 0566007

MOGILEVSKII, 1. SH., & SOLONNIKOV, V.A. On the solvability of an evolution free boundary problem
for the Navier—Stokes equations in Holder spaces of functions. In: Mathematical Problems Relating to
the Navier—Stokes Equation, Ser. Adv. Math. Appl. Sci. 11, World Sci., River Edge, NJ (1992), 105-181.
Zbl1 0793.35072' MR 1190731

PADULA, M., & SOLONNIKOV, V. A. On the global existence of nonsteady motions of a fluid drop and
their exponential decay to a uniform rigid rotation. In: Topics in Mathematical Fluid Mechanics, Quad.
Mat. 10, Dept. Mat., Seconda Univ. Napoli, Caserta (2002), 185-218. Zbl pre02079309 MR 2051775
PrRUsS, J., SAAL, J., & SIMONETT, G. Existence of analytic solutions for the classical Stefan problem.
Math. Ann. 338 (2007), 703-755. |[Zbl 1130.35136 MR 2317935

PRUSS, J., & SIMONETT, G. H®°-calculus for the sum of noncommuting operators. Trans. Amer. Math.
Soc. 359 (2007), 3549-3565. |Zbl 1132.47014) MR 2302505

PrRUSS, J., & SIMONETT, G. Analysis of the boundary symbol for the two-phase Navier—Stokes
equations with surface tension. In: Nonlocal and Abstract Parabolic Equations and Applications, Banach
Center Publications 86, Inst. Math., Polish Acad. Sci. (2009), 265-285. Zbl 1167.35555/ MR 2571494
PRUSS, J., & SIMONETT, G. Analytic solutions for the two-phase Navier—Stokes equations with surface
tension. arXiv:0908.3332.


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05199467&format=complete
http://www.ams.org/mathscinet-getitem?mr=2318575
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0983.35102&format=complete
http://www.ams.org/mathscinet-getitem?mr=1838323
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0615.47002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0910825
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0857.76086&format=complete
http://www.ams.org/mathscinet-getitem?mr=1397432
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1064.58011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2058051
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:02005574&format=complete
http://www.ams.org/mathscinet-getitem?mr=2009238
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1070.35009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2073744
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0949.35004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1284205
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1096.47018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2176465
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0956.47008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1659281
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0992.47005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1866491
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1097.47041&format=complete
http://www.ams.org/mathscinet-getitem?mr=2108959
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0435.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0566007
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0793.35072&format=complete
http://www.ams.org/mathscinet-getitem?mr=1190731
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:02079309&format=complete
http://www.ams.org/mathscinet-getitem?mr=2051775
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.35136&format=complete
http://www.ams.org/mathscinet-getitem?mr=2317935
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1132.47014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2302505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1167.35555&format=complete
http://www.ams.org/mathscinet-getitem?mr=2571494

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

TWO-PHASE NAVIER—STOKES EQUATIONS 345

PRUSS, J., & SIMONETT, G. On the Rayleigh-Taylor instability for the two-phase Navier—Stokes
equations. Indiana Univ. Math. J., to appear; arXiv:0908.3334.

PRUSS, J., & SOHR, H. On operators with bounded imaginary powers in Banach spaces. Math. Z. 203
(1990), 429-452. |Zbl 0665.47015/ MR 1038710

SHIBATA, Y., & SHIMIZU, S. On aresolvent estimate of the interface problem for the Stokes system in a
bounded domain. J. Differential Equations 191 (2003), 408-444. |Zbl 1030.35134| MR 1978384
SHIBATA, Y., & SHIMIZU, S. On a free boundary problem for the Navier—Stokes equations. Differential
Integral Equations 20 (2007), 241-276. MR 2293985

SHIBATA, Y., & SHIMIZU, S. On the Lp-L, maximal regularity of the Neumann problem for the
Stokes equations in a bounded domain. J. Reine Angew. Math. 615 (2008), 157-209. Zbl 1145.35053
MR 2384339

SHIBATA, Y., & SHIMIZU, S. Local solvability of free boundary problems for the Navier-Stokes
equations with surface tension. Preprint.

SHIBATA, Y., & SHIMIZU, S. Report on a local in time solvability of free surface problems for the
Navier—Stokes equations with surface tension. Preprint.

SOLONNIKOV, V. A. Solvability of the problem of evolution of an isolated amount of a viscous
incompressible capillary fluid. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 140
(1984), 179-186 (in Russian); English transl.: J. Soviet Math. 37 (1987). |Zbl 0551.76022, MR 0765724
SOLONNIKOV, V. A. Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), 137-157 (in Russian); English transl.:
J. Soviet Math. 40 (1988), 672—-686. Zbl 0639.76035| MR 0869248

SOLONNIKOV, V. A. Unsteady motions of a finite isolated mass of a self-gravitating fluid. Algebra i
Analiz 1 (1989), no. 1, 207-249 (in Russian); English transl.: Leningrad Math. J. 1 (1990), no. 1, 227-276.
Zbl 0713.76044 MR 1015340

SOLONNIKOV, V.A. Solvability of a problem on the evolution of a viscous incompressible fluid, bounded
by a free surface, on a finite time interval. Algebra i Analiz 3 (1991), no. 1, 222-257 (in Russian); English
transl.: St. Petersburg Math. J. 3 (1992), no. 1, 189-220. [Zbl 0850.76132) MR 1120848

SOLONNIKOV, V. A. On quasistationary approximation in the problem of motion of a capillary drop. In:
Topics in Nonlinear Analysis. The Herbert Amann Anniversary Volume, J. Escher and G. Simonett (eds.),
Birkhiuser, Basel (1999), 643-671. Zbl 0919.35103| MR 1725589

SOLONNIKOV, V. A., Lg-estimates for a solution to the problem about the evolution of an isolated
amount of a fluid. J. Math. Sci. (N.Y.) 117 (2003), 4237-4259. |Zbl 1054.35070 MR 2027457
SOLONNIKOV, V. A., Lectures on evolution free boundary problems: classical solutions. In: Mathemati-
cal Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math. 1812, Springer, Berlin (2003),
123-175. Zbl 1038.35063 MR 2011035

TANAKA, N. Two-phase free boundary problem for viscous incompressible thermo-capillary convection.
Japan J. Mech. 21 (1995), 1-42. Zbl 0845.35138] MR 1338355

TANI, A. Small-time existence for the three-dimensional Navier—Stokes equations for an incompressible
fluid with a free surface. Arch. Ration. Mech. Anal. 133 (1996), 299-331. |Zbl 0857.76026 MR 1389902
TANI, A., & TANAKA, N. Large-time existence of surface waves in incompressible viscous fluids with or
without surface tension. Arch. Ration. Mech. Anal. 130 (1995), 303-304. Zbl 0844.76025 MR 1346360
TERAMATO, Y. On the Navier—Stokes flow down an inclined plane. J. Math. Kyoto Univ. 32 (1992),
593-619.

TRIEBEL, H. Theory of Function Spaces. Monogr. Math. 78, Birkhduser, Basel (1983). Zbl 0546.46027
MR 0781540


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0665.47015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1038710
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1030.35134&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978384
http://www.ams.org/mathscinet-getitem?mr=2293985
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1145.35053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2384339
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0551.76022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0765724
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0639.76035&format=complete
http://www.ams.org/mathscinet-getitem?mr=0869248
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0713.76044&format=complete
http://www.ams.org/mathscinet-getitem?mr=1015340
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0850.76132&format=complete
http://www.ams.org/mathscinet-getitem?mr=1120848
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0919.35103&format=complete
http://www.ams.org/mathscinet-getitem?mr=1725589
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1054.35070&format=complete
http://www.ams.org/mathscinet-getitem?mr=2027457
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.35063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2011035
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0845.35138&format=complete
http://www.ams.org/mathscinet-getitem?mr=1338355
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0857.76026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1389902
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0844.76025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1346360
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0546.46027&format=complete
http://www.ams.org/mathscinet-getitem?mr=0781540

	Introduction and main results
	Reduction to a flat interface
	The linearized two-phase Stokes problem
	The Dirichlet-to-Neumann operator for the Stokes equation
	The linearized two-phase Stokes problem with free boundary
	The nonlinear problem

