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1. Introduction and main results

In this paper we consider a free boundary problem that describes the motion of two viscous
incompressible capillary Newtonian fluids. The fluids are separated by an interface that is unknown
and has to be determined as part of the problem.

Let Ω1(0) ⊂ Rn+1 (n > 1) be a region occupied by a viscous incompressible fluid, fluid1, and
letΩ2(0) be the complement of the closure ofΩ1(0) in Rn+1, corresponding to the region occupied
by a second incompressible viscous fluid, fluid2. We assume that the two fluids are immiscible. Let
Γ0 be the hypersurface that bounds Ω1(0) (and hence also Ω2(0)) and let Γ (t) denote the position
of Γ0 at time t . Thus, Γ (t) is a sharp interface which separates the fluids occupying the regions
Ω1(t) and Ω2(t), respectively, where Ω2(t) := Rn+1

\Ω1(t).
We denote the normal field on Γ (t), pointing from Ω1(t) into Ω2(t), by ν(t, ·). Moreover, we

denote by V (t, ·) and κ(t, ·) the normal velocity and the mean curvature of Γ (t) with respect to
ν(t, ·), respectively. Here the curvature κ(x, t) is assumed to be negative when Ω1(t) is convex
in a neighborhood of x ∈ Γ (t). The motion of the fluids is governed by the following system of
equations for i = 1, 2:
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ρi(∂tu+ (u | ∇)u)− µi∆u+∇q = 0 in Ωi(t),
div u = 0 in Ωi(t),

−[[S(u, q)ν]] = σκν on Γ (t),
[[u]] = 0 on Γ (t),
V = (u | ν) on Γ (t),

u(0) = u0 in Ωi(0),
Γ (0) = Γ0.

(1.1)

Here, S = S(u, q) is the stress tensor defined by

S(u, q) = µi(∇u+ (∇u)
T)− qI in Ωi(t),

and
[[v]] = (v|Ω2(t)

− v|Ω1(t)
)|Γ (t)

denotes the jump of the quantity v, defined on both domains Ωi(t), across the interface Γ (t).
Given are the initial position Γ0 of the interface, and the initial velocity

u0 : Ω0 → Rn+1, Ω0 := Ω1(0) ∪Ω2(0).

The unknowns are the velocity field u(t, ·) : Ω(t)→ Rn+1, the pressure field q(t, ·) : Ω(t)→ R,
and the free boundary Γ (t), where Ω(t) := Ω1(t) ∪Ω2(t).

The constants ρi > 0 and µi > 0 denote the densities and the viscosities of the respective
fluids, and the constant σ stands for the surface tension. Hence the material parameters ρi and µi
depend on the phase i, but otherwise are assumed to be constant. System (1.1) comprises the two-
phase Navier–Stokes equations with surface tension. The first equation in (1.1) reflects the balance
of momentum, while the second expresses the fact that both fluids are incompressible. If surface
tension is neglected, the boundary condition on Γ (t) would be the equality of stresses on the two
sides of the surface. The effect of surface tension introduces a discontinuity in the normal component
of [[S(u, q)]] proportional to the mean curvature of Γ (t). The fourth equation stipulates that the
velocities are continuous across Γ (t). Finally, the fifth equation, called the kinematic boundary
condition, expresses the fact that fluid particles cannot cross Γ (t).

In order to economize our notation, we set

ρ = ρ1χΩ1(t) + ρ2χΩ2(t), µ = µ1χΩ1(t) + µ2χΩ2(t),

where χD denotes the indicator function of a setD. With this convention, system (1.1) can be recast
as 

ρ(∂tu+ (u | ∇)u)− µ∆u+∇q = 0 in Ω(t),
div u = 0 in Ω(t),

−[[S(u, q)ν]] = σκν on Γ (t),
[[u]] = 0 on Γ (t),
V = (u | ν) on Γ (t),

u(0) = u0 in Ω0,

Γ (0) = Γ0.

(1.2)
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In this publication we consider the case where Γ0 is the graph of a function h0 on Rn. We then set
Ω1(0) = {(x, y) ∈ Rn×R : y < h0(x)}, and consequentlyΩ2(0) = {(x, y) ∈ Rn×R : y > h0(x)}.
Our main result on existence, uniqueness, and regularity of solutions then reads as follows.

THEOREM 1.1 Suppose p > n+ 3. Then given t0 > 0, there exists ε0 = ε0(t0) > 0 such that for
any initial values

(u0, h0) ∈ W
2−2/p
p (Ω0,Rn+1)×W

3−2/p
p (Rn),

satisfying the compatibility conditions

[[µD(u0)ν0 − µ(ν0 |D(u0)ν0)ν0]] = 0, div u0 = 0 on Ω0, [[u0]] = 0,

with D(u0) := ∇u0 + (∇u0)
T, and the smallness condition

‖u0‖W 2−2/p
p (Ω0)

+ ‖h0‖W 3−2/p
p (Rn) 6 ε0,

problem (1.2) admits a classical solution (u, q, Γ ) on (0, t0). The solution is unique in the function
class described in Theorem 6.3. In addition, Γ (t) is the graph of a function h(t) on Rn, M =⋃
t∈(0,t0)({t} × Γ (t)) is a real analytic manifold, and with

O = {(t, x, y) : t ∈ (0, t0), x ∈ Rn, y 6= h(t, x)},

the function (u, q) : O→ Rn+2 is real analytic.

REMARKS 1.2 (a) Theorem 1.1 shows that solutions immediately regularize and become analytic
in space and time. If one thinks of the situation of oil in contact with water, this result seems
plausible, as capillary forces tend to smooth out corners in the interface separating the two different
fluids.

(b) More precise statements for a transformed version of problem (1.2) will be given in Section 6.
Due to the restriction p > n+ 3, we shall show that

h ∈ C(J ;BUC2(Rn)) ∩ C1(J ;BUC1(Rn)), (1.3)

where J = [0, t0]. In particular, the normal of Ω1(t), the normal velocity of Γ (t), and the mean
curvature of Γ (t) are well-defined and continuous, so that (1.2) makes sense pointwise. For u and q
we obtain

u(t, ·) ∈ BUC1(Ω(t),Rn+1) for t ∈ J, u ∈ BUC(J × Rn+1,Rn+1),

q(t, ·) ∈ UC(Ω(t)) for t ∈ J \ {0}.
(1.4)

In addition, the solution (u, q, h) depends continuously on the initial values (u0, h0). Also
interesting is the fact that the surface pressure jump will turn out to be real analytic as well.

(c) It is possible to relax the assumption p > n + 3. In fact, p > (n + 3)/2 can be shown to
be sufficient. However, to keep the arguments as simple as possible, here we impose the stronger
condition p > n+ 3.

(d) If gravity acts on the fluids then the condition on the free boundary is to be replaced by

−[[S(u, q)]]ν = σHν + γa[[ρ]]yν on Γ (t), (1.5)
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where y denotes the vertical component of a generic point on Γ (t), and where γa > 0 is the
acceleration of gravity. Our approach also covers this situation, yielding a solution having the same
regularity properties as stated in the theorem above. Indeed, an analysis of our proof shows that we
only need to replace the symbol s(λ, τ ), introduced in (5.9), by

s(λ, τ ) = λ+ στk(z)−
γa[[ρ]]
τ

k(z)

(see [33, 34]). It is well-known that the case where the heavy fluid lies above the light one leads to
an instability, the Rayleigh–Taylor instability (see [34] for a proof).

(e) We mention that our results also cover the one-phase Navier–Stokes equations with surface
tension (1.6).

(f) The solutions we obtain exist on an interval (0, t0) with t0 > 0 arbitrary, but fixed, provided
the initial data are sufficiently small. It can be shown that problem (1.2) also admits unique local
solutions that enjoy the same regularity properties as above, provided supx∈R |∇h0| is sufficiently
small in relation to the horizontal component of u0. In this case, no other smallness conditions on the
data are required. The proof of this result is considerably more involved, and the analysis requires
delicate estimates for the nonlinear terms. Additionally, we need a modified version of Theorem
5.1 in order to dominate some of the nonlinear terms by linear ones. The proof of this modification
will involve introducing a countable partition of unity and then establishing commutator estimates
for certain pseudo-differential operators. Since this paper is already rather long, we refrain from
including a proof of this result here. It will be contained in the forthcoming paper [33].

(g) The case where both fluids occupy a bounded domain has recently been considered in [23],
building on the approach devised here and in [33].

Let us now discuss and contrast our results with results previously obtained by other researchers.
In case Ω2(t) = ∅ one obtains the one-phase Navier–Stokes equations with surface tension

ρ(∂tu+ (u | ∇)u)− µ∆u+∇q = 0 in Ω(t),
div u = 0 in Ω(t),

S(u, q)ν = σκν on Γ (t),
V = (u | ν) on Γ (t),

u(0) = u0 in Ω0,

Γ (0) = Γ0.

(1.6)

Equations (1.6) describe the motion of an isolated liquid which moves due to capillary forces acting
on the free boundary.

Problem (1.6) has received wide attention in the last two decades or so. Existence and uniqueness
of solutions for σ > 0, as well as for σ = 0, in the case that Ω(0) is bounded (corresponding to
an isolated fluid drop) has been extensively studied in a long series of papers by Solonnikov (see
for instance [41]–[47] and [28] for the case σ > 0). Solonnikov proves existence and uniqueness
results in various function spaces, including anisotropic Hölder and Sobolev–Slobodetskiı̆ spaces.
Moreover, it is shown in [42] that if Ω0 is sufficiently close to a ball and the initial velocity u0
is sufficiently small, then the solution exists globally, and converges to a uniform rigid rotation of
the liquid about a certain axis which is moving uniformly with a constant speed (see also [29]).
More recently, local existence and uniqueness of solutions for (1.6) (in the case thatΩ is a bounded
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domain, a perturbed infinite layer, or a perturbed halfspace) in anisotropic Sobolev spacesW 2,1
p,q with

2 < p < ∞ and n < q < ∞ has been established by Shibata and Shimizu in [39, 40]. For results
concerning (1.6) with σ = 0 we refer to the recent contributions [37, 38] and the references therein.

The motion of a layer of viscous, incompressible fluid in an ocean of infinite extent, bounded
below by a solid surface and above by a free surface which includes the effects of surface tension
and gravity (in which case Ω0 is a strip, bounded above by Γ0 and below by a fixed surface Γb) is
considered by Allain [1], Beale [6], Beale and Nishida [7], Tani [49], and by Tani and Tanaka [50].
If the initial state and the initial velocity are close to equilibrium, global existence of solutions is
proved in [6] for σ > 0, and in [50] for σ > 0, and the asymptotic decay rate for t →∞ is studied
in [7].

Results concerning the two-phase problem (1.2) are more recent. Existence and uniqueness of
local solutions is studied in [10, 11, 12, 48]. In more detail, Denisova [11] establishes existence and
uniqueness of solutions (of the transformed problem in Lagrangian coordinates) with v ∈ W r,r/2

2 for
r ∈ (5/2, 3) in the case that one of the domains is bounded. Tanaka [48] considers the two-phase
Navier–Stokes equations with thermo-capillary convection in bounded domains, and he obtains
existence and uniqueness of solutions with (v, θ) ∈ W r,r/2

2 for r ∈ (7/2, 4), with θ denoting the
temperature.

The approach used by Solonnikov, and also in [10–12, 37–40, 48–50], relies on a formulation
in Lagrangian coordinates. In this formulation one obtains a transformed problem for the velocity
and the pressure on a fixed domain, where the free boundary does not occur explicitly. The free
boundary is then given by

Γ (t) =

{
ξ +

∫ t

0
v(τ, ξ) dτ : ξ ∈ Γ0

}
,

where v is the velocity field in Lagrangian coordinates. It is not clear whether this formulation
allows one to obtain smoothing results for the free boundary, as the regularity of Γ (t) seems to be
restricted by the regularity of Γ0. To the best of our knowledge, the regularity of the free boundary
for the Navier–Stokes equations with surface tension (1.1) or (1.6) has not been addressed in the
literature before, with the notable exception of [6]. Beale considers the ocean problem withΩ(t) =
{(x, y) ∈ R2

×R : −b(x) < y < h(t, x)} and he shows by a boot-strapping argument that solutions
are Ck for any given fixed k ∈ N, where the size of the initial data must be adjusted in dependence
on k. As in our case, his approach does not rely on a formulation in Lagrangian coordinates.

In order to prove our main result we transform problem (1.2) into a problem on a fixed
domain. The transformation is expressed in terms of the unknown height function h describing the
free boundary. Our analysis proceeds by studying solvability properties of some associated linear
problems. It is important to point out that we succeed in establishing optimal solvability results (also
referred to as maximal regularity): see Theorem 3.1, Proposition 3.3, Theorem 4.1, Corollary 4.2
and Theorem 5.1. In other words, we show that the linear problems define isomorphisms between
properly chosen function spaces. This property, in turn, allows us to resort to the implicit function
theorem to establish the analyticity of solutions to the nonlinear problem, as will be pointed
out below. All our results for the associated linear problems mentioned above seem to be new,
as they give sufficient as well as necessary conditions for solvability. Our analysis is greatly
facilitated by studying the Dirichlet-to-Neumann operator for the Stokes equations (see Section 4).
It is interesting, and maybe even surprising, to observe the mapping properties of this operator
(see Theorem 4.1). Our approach to establishing solvability results relies on the powerful theory
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of maximal regularity, in particular on the H∞-calculus for sectorial operators, the Dore–Venni
theorem, and the Kalton–Weis theorem (see for instance [13, 25, 26, 31]).

Based on the linear estimates we can solve the nonlinear problem by the contraction mapping
principle. Analyticity of the solution is obtained in a rather short and elegant way by the implicit
function theorem in conjunction with a scaling argument, relying on an idea that goes back to
Angenent [3, 4] and Masuda [27]; see also [17, 18, 20]. More precisely, by introducing parameters
which represent scaling in time, and translation into space, the implicit function theorem yields
analytic dependence of the solution of a parameter dependent-problem on the parameters, and this
can be translated into a smoothness result in space and time for the original problem.

The plan of this paper is as follows. Section 2 contains the transformation of the problem to a
half-space and the determination of the proper underlying linear problem. In Sections 3, 4 and 5
we study this linearization and prove in particular the crucial maximal regularity results in an Lp-
setting. Section 6 is then devoted to the nonlinear problem and contains the proof of our main
result.

2. Reduction to a flat interface

In this section we first transform the free boundary problem (1.2) to a fixed domain, and we then
introduce some function spaces that will be used throughout the paper. Suppose that Γ (t) is a graph
over Rn, parametrized as

Γ (t) = {(x, h(t, x)) : x ∈ Rn}, t ∈ J,

with Ω2(t) lying “above” Γ (t), i.e. Ω2(t) = {(x, y) ∈ Rn × R : y > h(t, x)} for t ∈ J := [0, a].
Reduction from deformed into true halfspaces is achieved by means of the transformations

v(t, x, y) =

 u1(t, x, h(t, x)+ y)
...

un(t, x, h(t, x)+ y)

 ,
w(t, x, y) = un+1(t, x, h(t, x)+ y),

π(t, x, y) = q(t, x, h(t, x)+ y),

where t ∈ J , x ∈ Rn, y ∈ R, y 6= 0. Since for j, k = 1, . . . , n we have

∂juk = ∂jvk − ∂jh∂yvk, ∂n+1uk = ∂yvk,

∂jun+1 = ∂jw − ∂jh∂yw, ∂n+1un+1 = ∂yw,

∂jq = ∂jπ − ∂jh∂yπ, ∂n+1q = ∂yπ,

∂tuk = ∂tvk − ∂th∂yvk, ∂tun+1 = ∂tw − ∂th∂yw,

(2.1)

and

∆uk = ∆xvk − 2(∇h | ∇x)∂yvk + (1+ |∇h|2)∂2
yvk −∆h∂yvk,

∆un+1 = ∆xw − 2(∇h | ∇x)∂yw + (1+ |∇h|2)∂2
yw −∆h∂yw,
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we obtain from (1.2) the following quasilinear system with initial conditions:
ρ∂tv − µ∆xv − µ∂

2
yv +∇xπ = Fv(v,w, π, h) in (0,∞)× Ṙn+1,

ρ∂tw − µ∆xw − µ∂
2
yw + ∂yπ = Fw(v,w, h) in (0,∞)× Ṙn+1,

divxv + ∂yw = Fd(v, h) in (0,∞)× Ṙn+1,

v(0, x, y) = v0(x, y), w(0, x, y) = w0(x, y) in Ṙn+1,

(2.2)

where Ṙn+1
= {(x, y) ∈ Rn × R : y 6= 0}. Here and in the following, ∇h and ∆h always denote

the gradient and the Laplacian of h with respect to x ∈ Rn. Note that ρ and µ in general have jumps
at y = 0, i.e. ρ = ρ2 for y > 0, ρ = ρ1 for y < 0, and similarly for µ. The nonlinearities are given
by

Fv(v,w, π, h) = µ{−2(∇h | ∇x)∂yv + |∇h|2∂2
yv −∆h∂yv} + ∂yπ∇h

+ ρ{−(v | ∇x)v + (∇h | v)∂yv − w∂yv} + ρ∂th∂yv,

Fw(v,w, h) = µ{−2(∇h | ∇x)∂yw + |∇h|2∂2
yw −∆h∂yw}

+ ρ{−(v | ∇x)w + (∇h | v)∂yw − w∂yw} + ρ∂th∂yw,

Fd(v, h) = (∇h | ∂yv).

(2.3)

Note that these functions are polynomials in the derivatives of (v,w, π, h), hence analytic, and
linear with respect to second derivatives, with coefficients of first order. This exhibits the quasilinear
character of the problem.

To obtain the transformed interface conditions we observe that the outer normal ν of Ω1(t) is
given by

ν(t, x) =
1√

1+ |∇h(t, x)|2

[
−∇h(t, x)

1

]
,

where, as above, ∇h(t, x) denotes the gradient vector of h with respect to x ∈ Rn. The normal
velocity V of Γ (·) is

V (t, x) = ∂th(t, x)/

√
1+ |∇h(t, x)|2.

The kinematic condition V = (u | ν) on Γ (·) now reads

∂th− γw = H(v, h), H(v, h) := −(γ v | ∇h). (2.4)

Here (γw)(x) := w(x, 0) denotes the trace of the functionw : Ṙn+1
→ R and, correspondingly, γ v

is the trace of v : Ṙn+1
→ Rn. Since u is continuous across Γ (t), γ v and γw are unambiguously

defined. It is also noteworthy that the tangential derivatives of v and w are continuous across Rn.
The curvature of Γ (t) is given by

κ(t, x) = divx

(
∇h(t, x)√

1+ |∇h(t, x)|2

)
= ∆h−Gκ(h)

(see for instance equation (24) in [8, Appendix]) with

Gκ(h) =
|∇h|2∆h

(1+
√

1+ |∇h|2)
√

1+ |∇h|2
+
(∇h | ∇2h∇h)

(1+ |∇h|2)3/2
, (2.5)
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where ∇2h denotes the Hessian matrix of all second order derivatives of h. The components of
D(v,w, h), the transformed version of the deformation tensor D(u) = ∇u+ (∇u)T, are given by

Dij (v,w, h) = ∂ivj + ∂jvi − (∂ih∂yvj + ∂jh∂yvi),
Dn+1,j (v,w, h) = Dj,n+1(v,w, h) = ∂yvj + ∂jw − ∂jh∂yw,

Dn+1,n+1(v,w, h) = 2∂yw,
(2.6)

for i, j = 1, . . . , n, where δij denotes the Kronecker symbol. For the jumps of the components of
the deformation tensor this yields

[[µDij (v,w, h)]] = [[µ(∂ivj + ∂jvi)]]− ∂ih[[µ∂yvj ]]− ∂jh[[µ∂yvi]],
[[µDn+1,j (v,w, h)]] = [[µDj,n+1(v,w, h)]] = [[µ∂jw]]+ [[µ∂yvj ]]− ∂jh[[µ∂yw]],

[[µDn+1,n+1(v,w, h)]] = 2[[µ∂yw]].

Therefore, the jump condition for the normal stress at the interface yields the following boundary
conditions:

−[[µ∂yv]]− [[µ∇xw]] = Gv(v,w, [[π ]], h),
−2[[µ∂yw]]+ [[π ]]− σ∆h = Gw(v,w, h),

(2.7)

where the nonlinearities (Gv,Gw) have the form

Gv(v,w, [[π ]], h) = − [[µ(∇xv + (∇xv)T)]]∇h+ |∇h|2[[µ∂yv]]+ (∇h | [[µ∂yv]])∇h
− [[µ∂yw]]∇h+ {[[π ]]− σ(∆h−Gκ(h))}∇h,

Gw(v,w, h) = − (∇h | [[µ∂yv]])− (∇h | [[µ∇xw]])+ |∇h|2[[µ∂yw]]− σGκ(h).

(2.8)

We note thatG = (Gv,Gw) is analytic in (v,w, [[π ]], h). Moreover,G is linear in (v,w, [[π ]]), and
in the second derivatives of h. Thus the boundary conditions are quasilinear as well.

Summarizing, we arrive at the following problem for u = (v,w), π , and h:

∂tu− µ∆u+∇π = F(u, π, h) in Ṙn+1,

div u = Fd(u, h) in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = Gv(u, [[π ]], h) on Rn,
−2[[µ∂yw]]+ [[π ]]− σ∆h = Gw(u, h) on Rn,

[[u]] = 0 on Rn,
∂th− γw = H(u, h) on Rn,

u(0) = u0, h(0) = h0,

(2.9)

for t > 0. This is problem (1.2) transformed to the halfspaces Rn+1
± := {(x, y) ∈ Rn×R : ±y > 0}.

Before studying solvability results for problem (2.9) let us first introduce suitable function
spaces. Let Ω ⊆ Rm be open and X be an arbitrary Banach space. By Lp(Ω;X) and H s

p(Ω;X),
for 1 6 p 6 ∞, s ∈ R, we denote the X-valued Lebesgue and Bessel potential spaces of
order s, respectively. We will also frequently make use of the fractional Sobolev–Slobodetskiı̆ spaces
W s
p(Ω;X), 1 6 p <∞, s ∈ R \ Z, with norm

‖g‖W s
p(Ω;X)

= ‖g‖
W

[s]
p (Ω;X)

+

∑
|α|=[s]

(∫
Ω

∫
Ω

‖∂αg(x)− ∂αg(y)‖
p
X

|x − y|m+(s−[s])p dx dy
)1/p

, (2.10)
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where [s] denotes the largest integer smaller than s. Let a ∈ (0,∞] and J = [0, a]. We set

0W
s
p(J ;X) :=


{g ∈ W s

p(J ;X) : g(0) = g′(0) = · · · = g(k)(0) = 0},
if k + 1/p < s < k + 1+ 1/p, k ∈ N ∪ {0},

W s
p(J ;X) if s < 1/p.

The spaces 0H
s
p(J ;X) are defined analogously. Here we remind the reader thatH k

p = W
k
p for k ∈ Z

and 1 < p <∞, and that W s
p = B

s
pp for s ∈ R \ Z.

For Ω ⊂ Rm open and 1 6 p < ∞, the homogeneous Sobolev spaces Ḣ 1
p (Ω) of order 1 are

defined as

Ḣ 1
p (Ω) := ({g ∈ L1,loc(Ω) : ‖∇g‖Lp(Ω) <∞}, ‖ · ‖Ḣ 1

p (Ω)
),

‖g‖Ḣ 1
p (Ω)

:=
( m∑
j=1

‖∂jg‖
p

Lp(Ω)

)1/p
.

(2.11)

Then Ḣ 1
p (Ω) is a Banach space, provided we factor out the constant functions and equip the

resulting space with the corresponding quotient norm (see for instance [21, Lemma II.5.1]). We
will always consider this quotient space topology without change of notation. In the case that Ω is
locally Lipschitz, it is known that Ḣ 1

p (Ω) ⊂ H
1
p,loc(Ω) (see [21, Remark II.5.1]), and consequently,

any function in Ḣ 1
p (Ω) has a well-defined trace on ∂Ω .

For s ∈ R and 1 < p <∞ we also consider the homogeneous Bessel potential spaces Ḣ s
p(Rn)

of order s, defined by

Ḣ s
p(R

n) := ({g ∈ S ′(Rn) : İ sg ∈ Lp(Rn)}, ‖ · ‖Ḣ s
p(Rn)),

‖g‖Ḣ s
p(Rn) := ‖İ sg‖Lp(Rn),

(2.12)

where S ′(Rn) denotes the space of all tempered distributions, and İ s is the Riesz potential given by

İ sg := (−∆)s/2g := F−1(|ξ |sFg), g ∈ S ′(Rn).

By factoring out all polynomials, Ḣ s
p(Rn) becomes a Banach space with the natural quotient norm.

For s ∈ R \ Z, the homogeneous Sobolev–Slobodetskiı̆ spaces Ẇ s
p(Rn) of fractional order can be

obtained by real interpolation as

Ẇ s
p(R

n) := (Ḣ k
p (R

n), Ḣ k+1
p (Rn))s−k,p, k < s < k + 1,

where (·, ·)θ,p is the real interpolation method. It follows that

İ s ∈ Isom(Ḣ t+s
p (Rn), Ḣ t

p(R
n)) ∩ Isom(Ẇ t+s

p (Rn), Ẇ t
p(R

n)), s, t ∈ R, (2.13)

with Ẇ k
p = Ḣ k

p for k ∈ Z. We refer to [5, Section 6.3] and [52, Section 5] for more information
on homogeneous function spaces. In particular, it follows from parts (ii) and (iii) of [52, Theorem
5.2.3.1] that the definitions (2.11) and (2.12) are consistent if Ω = Rn, s = 1, and 1 < p <∞. We
note in passing that(∫

Rn

∫
Rn

|g(x)− g(y)|p

|x − y|n+sp
dx dy

)1/p

,

(∫
∞

0
t (1−s)p

∥∥∥∥ d
dt
P (t)g

∥∥∥∥p
Lp(Rn)

dt
t

)1/p

(2.14)
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define equivalent norms on Ẇ s
p(Rn) for 0 < s < 1, where P(·) denotes the Poisson semigroup (see

[52, Theorem 5.2.3.2 and Remark 5.2.3.4]). Moreover,

γ± ∈ L(Ẇ 1
p (R

n+1
± ), Ẇ

1−1/p
p (Rn)), (2.15)

where γ± denotes the trace operators (see for instance [21, Theorem II.8.2]).

3. The linearized two-phase Stokes problem

In this section we consider the linear two-phase (inhomogeneous) Stokes problem

∂tu− µ∆u+∇π = f in Ṙn+1,

div u = fd in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = gv on Rn,
−2[[µ∂yw]]+ [[π ]] = gw on Rn,

[[u]] = 0 on Rn,

u(0) = u0 in Ṙn+1.

(3.1)

Here the initial value u0 as well as the inhomogeneities (f, fd , gv, gw) are given. We want to
establish maximal regularity for this problem in the framework of Lp-spaces. Thus we are interested
in solutions (u, π) in the class

u ∈ H 1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)), π ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1)).

We recall that J = [0, a] and Ṙn+1
= {(x, y) ∈ Rn × R : y 6= 0}. If (u, π) is a solution of (3.1) in

this class we necessarily have f ∈ Lp(J ;Lp(Rn+1)), and additionally u0 ∈ W
2−2/p
p (Ṙn+1,Rn+1)

by trace theory. Moreover,

fd ∈ H
1
p (J ; Ḣ

−1
p (Rn+1)) ∩ Lp(J ;H

1
p (Ṙ

n+1)),

as the operator div maps Lp(Rn+1) onto Ḣ−1
p (Rn+1). Taking traces at the interface y = 0 results in

gv ∈ W
1/2−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

1−1/2p
p (Rn,Rn)), and gw ∈ Lp(J ; Ẇ

1−1/p
p (Rn)). If,

in addition,
[[π ]] ∈ W 1/2−1/2p

p (J ;Lp(Rn)) ∩ Lp(J ;W
1−1/2p
p (Rn))

then gw shares this regularity.
Here and in the following, the notation 1/2p means 1/(2p). The main result of this section

states the converse of these assertions, i.e. maximal Lp-regularity for (3.1).

THEOREM 3.1 Let 1 < p < ∞ be fixed, p 6= 3/2, 3, and assume that ρj and µj are positive
constants for j = 1, 2, and set J = [0, a]. Then the Stokes problem (3.1) admits a unique solution
(u, π) with regularity

u ∈ H 1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)), π ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1))

if and only if the data (f, fd , gv, gw, u0) satisfy the following regularity and compatibility
conditions:
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(a) f ∈ Lp(J ;Lp(Rn+1,Rn+1)),
(b) fd ∈ H 1

p (J ; Ḣ
−1
p (Rn+1)) ∩ Lp(J ;H

1
p (Ṙn+1)),

(c) gv ∈ W
1/2−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

1−1/p
p (Rn,Rn)), gw ∈ Lp(J ; Ẇ

1−1/p
p (Rn)),

(d) u0 ∈ W
2−2/p
p (Ṙn+1,Rn+1),

(e) div u0 = fd(0) in Ṙn+1 and [[u0]] = 0 on Rn if p > 3/2,
(f) −[[µ∂yv0]]− [[µ∇xw0]] = gv(0) on Rn if p > 3.

In addition, [[π ]] ∈ W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)) if and only if

gw ∈ W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)).

The solution map (f, fd , gv, gw, gh, u0, h0) 7→ (u, π, [[π ]]) is continuous between the correspond-
ing spaces.

Proof. The basic idea of the proof is to reduce system (3.1) to the case where (f, fd , u0) = (0, 0, 0)
and gv(0) = 0, and then to solve the resulting problem by means of the Dirichlet-to-Neumann
operator for the Stokes problem. We can achieve this goal in four steps, as follows.

STEP 1 For given data (f, gv, u0) subject to the conditions of the theorem we first solve the
parabolic problem without pressure and divergence, i.e. we solve

∂tu− µ∆u = f in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = gv on Rn,
−2[[µ∂yw]] = g̃w on Rn,

[[u]] = 0 on Rn,

u(0) = u0 in Ṙn+1.

(3.2)

Here we set g̃w = −2e−Dnt [[µ∂yw0]] with Dn := −∆ in Lp(Rn). The function g̃w has the
same regularity as gv , and the necessary compatibility conditions are satisfied. By reflection of
the {y < 0}-part of this problem to the upper halfplane, we obtain a parabolic system on a halfspace
with boundary conditions satisfying the Lopatinskiı̆–Shapiro conditions. Therefore, the theory of
parabolic boundary value problems yields a unique solution u1 for (3.2) with regularity

u1 ∈ H
1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)).

We refer to Denk, Hieber and Prüss [13, 14] for this.

STEP 2 In this step we solve the Stokes equations
ρ∂tu− µ∆u+∇π = 0 in Ṙn+1,

div u = fd − div u1 in Ṙn+1,

u(0) = 0 in Ṙn+1,

(3.3)

where u1 is the solution obtained in Step 1. It follows from assumption (e) that system (3.3) satisfies
the compatibility condition div u(0) = fd(0)−div u1(0) = 0. We recall that ρ = ρ2χRn+1

+

+ρ1χRn+1
−

and µ = µ2χRn+1
+

+ µ1χRn+1
−

. Concentrating on the upper halfplane, we extend the function fd −
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div u1 evenly in y to all of Rn+1 and solve the Stokes problem with coefficients ρ2, µ2 in the whole
space (see [9, Theorem 5.1]). This gives a solution which has the property that the normal velocityw
vanishes at the interface; the latter is due to the symmetries of the equations. We restrict this solution
to Rn+1

+ . We then do the same on the lower halfplane. This results in a solution (u2, π2) for system
(3.3) that satisfies

u2 ∈ H
1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)),

π2 ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1)), w2 = 0 on Rn,

where, as before, u2 = (v2, w2). We remark that the tangential part of the velocity, i.e. v2, may now
have a jump at the boundary y = 0.

STEP 3 To remove the jump in the tangential velocity, we solve the homogeneous Stokes problem
in the lower halfplane with this jump as Dirichlet datum, that is, we solve

ρ1∂tu− µ1∆u+∇π = 0 in Ṙn+1
− ,

div u = 0 in Ṙn+1
− ,

v = [[v2]], w = 0 on Rn,

u0(0) = 0 in Ṙn+1
− ,

(3.4)

where u2 = (v2, w2) is the solution obtained in Step 2. It follows from Proposition 3.3 below that
system (3.4) has a unique solution with the regularity properties of Theorem 3.1. Let (u3, π3) be
defined by

(u3, π3) :=

{
(0, 0) in Ṙn+1

+ ,

the solution of (3.4) in Ṙn+1
− .

Then (u3, π3) also satisfies the regularity properties stated in Theorem 3.1 and we have [[v3]] =
−[[v2]] and [[w3]] = 0 on Rn.

STEP 4. In this step we consider the problem

ρ∂tu− µ∆u+∇π = 0 in Ṙn+1,

div u = 0 in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = [[µ∂y(v2 + v3)]]+ [[µ∇x(w2 + w3)]] on Rn,
−2[[µ∂yw]]+ [[π ]] = gw − g̃w + 2[[µ∂y(w2 + w3)]]− [[π2 + π3]] on Rn,

[[u]] = 0 on Rn,

u(0) = 0 in Ṙn+1,

(3.5)

with (v2, w2, π2) and (v3, w3, π3) the solutions obtained in Steps 2 and 3. Here it should be observed
that the function on the right hand side of line 3 appearing as boundary condition has zero time trace.
Problem (3.5), which is also of independent interest, will be studied in detail in the next section. It
will be shown in Corollary 4.2 that it admits a unique solution, denoted here by (u4, π4), which
satisfies the regularity properties stated in Theorem 3.1.

To finish the proof of Theorem 3.1 we set (u, π) = (
∑4
i=1 ui,

∑4
i=1 πi), where (ui, πi) are the

solutions obtained in Step i, with π1 := 0. Then (u, π) satisfies the regularity properties stated in
the theorem and it is the unique solution of (3.1). 2
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REMARK 3.2 We refer to the recent paper by Bothe and Prüss [9] for results related to Theorem
3.1 for the more general and involved situation of a generalized Newtonian fluid.

Let us now consider the problem
ρ∂tu− µ∆u+∇π = 0 in Ṙn+1,

div u = 0 in Ṙn+1,

u = ub on Rn,

u(0) = 0 in Ṙn+1,

(3.6)

and prove the result that was used in Step 3 above.

PROPOSITION 3.3 Let 1 < p < ∞ and assume that ρj and µj are positive constants, j = 1, 2,
and set J = [0, a]. Then problem (3.6) admits a unique solution (u, π) with

u ∈ 0H
1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)), π ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1))

if and only if the data ub = (vb, wb) satisfy the following regularity assumptions:

(a) vb ∈ 0W
1−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

2−1/p
p (Rn,Rn)),

(b) wb ∈ 0H
1
p (J ; Ẇ

−1/p
p (Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)).

Proof. (i) Assume for the moment that we have a solution in the proper regularity class even on
the halfline J = R+. Then we may employ the Laplace transform in t and the Fourier transform
in the tangential variables x ∈ Rn, to obtain the following boundary value problem for a system of
ordinary differential equations on Ṙ:

ω2v̂ − µ∂2
y v̂ + iξ π̂ = 0, y 6= 0,

ω2ŵ − µ∂2
y ŵ + ∂y π̂ = 0, y 6= 0,

(iξ | v̂)+ ∂yŵ = 0, y 6= 0,
v̂(0) = v̂b, ŵ(0) = ŵb.

Here we have set ω2
j = ρjλ+ µj |ξ |

2, j = 1, 2, and

v̂j (λ, ξ, y) = (2π)−n/2
∫
∞

0

∫
Rn
e−λte−i(x | ξ)v(t, x, y) dx dt, (−1)jy > 0.

This system of equations is easily solved to yield v̂2
ŵ2
π̂2

 = e−ω2y/
√
µ2

 a2
√
µ2
ω2
(iξ | a2)

0

+ α2e
−|ξ |y

−iξ|ξ |
ρ2λ

 (3.7)

for y > 0, and  v̂1
ŵ1
π̂1

 = eω1y/
√
µ1

 a1

−

√
µ1
ω1
(iξ | a1)

0

+ α1e
|ξ |y

 −iξ−|ξ |
ρ1λ

 (3.8)
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for y < 0. Here ai ∈ Rn and αi have to be determined by the boundary conditions v̂(0) = v̂b and
ŵ(0) = ŵb. We have

a2 − iξα2 = v̂b = a1 − iξα1,

and √
µ2

ω2
(iξ | a2)+ |ξ |α2 = ŵb = −

√
µ1

ω1
(iξ | a1)− |ξ |α1

where (a | b) :=
∑
ajbj for a, b ∈ Cn. This yields

aj = v̂b + iξαj , j = 1, 2,

α2 = −
ω2 +

√
µ2|ξ |

ρ2λ|ξ |
(
√
µ2(iξ | v̂b)− ω2ŵb),

α1 = −
ω1 +

√
µ1|ξ |

ρ1λ|ξ |
(
√
µ1(iξ | v̂b)+ ω1ŵb).

(3.9)

(ii) By parabolic theory, the velocity u has the correct regularity provided the pressure gradient
is in Lp, and provided

ub ∈ 0W
1−1/2p
p (J ;Lp(Rn,Rn+1)) ∩ Lp(J ;W

2−1/p
p (Rn,Rn+1))

(see for instance Denk, Hieber and Prüss [14]). In particular this regularity of ub is necessary. Note
that the embedding

0H
1
p(J ; Ẇ

−1/p
p (Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)) ↪→ 0W

1−1/2p
p (J ;Lp(Rn)) (3.10)

is valid. This follows from the fact that Ẇ−1/p
p (Rn) ↪→ W

−1/p
p (Rn) by a similar argument to the

proof of [30, Lemma 6.3] where we set Au := (1−∆)u.
(iii) We will now introduce some operators that will play a crucial role in our analysis. We set

G := ∂t in X := Lp(J ;Lp(Rn)) with domain

D(G) = 0H
1
p(J ;Lp(R

n)).

Then it is well-known that G is closed, invertible and sectorial with angle π/2, and −G is the
generator of a C0-semigroup of contractions in Lp(Rn). Moreover, G admits an H∞-calculus in X
with H∞-angle π/2 as well; see e.g. [24]. The symbol of G is λ, the time covariable.

Next we setDn := −∆, the Laplacian inLp(Rn)with domain D(Dn) = H
2
p (Rn). It is also well-

known that Dn is closed and sectorial with angle 0, and it admits a bounded H∞-calculus which
is even R-bounded with RH∞-angle 0; see e.g. [15]. These results also hold for the canonical
extension ofDn to X, and also for the fractional powerD1/2

n ofDn. Note that the domain ofD1/2
n is

D(D
1/2
n ) = Lp(J ;H

1
p (R

n)).

The symbol ofDn is |ξ |2, and that ofD1/2
n is |ξ |, where ξ is the covariable of x. By the Dore–Venni

theorem for sums of commuting sectorial operators (cf. [16, 35]), we see that the parabolic operators
Lj := ρjG+ µjDn with natural domain

D(Lj ) = D(G) ∩ D(Dn) = 0H
1
p(J ;Lp(R

n)) ∩ Lp(J ;H
2
p (R

n))
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are closed, invertible and sectorial with angle π/2. Moreover, Lj also admits a bounded H∞-
calculus in X with H∞-angle π/2; cf. e.g. [31]. The same results are valid for the operators
Fj = L

1/2
j , their H∞-angle is π/4, and their domains are

D(Fj ) = D(G1/2) ∩ D(D
1/2
n ) = 0H

1/2
p (J ;Lp(Rn)) ∩ Lp(J ;H 1

p (R
n)).

The symbol of Lj is ρjλ+ µj |ξ |2 and that of Fj is given by
√
ρjλ+ µj |ξ |2.

LetR denote the Riesz operator with symbol ζ = ξ/|ξ |. It follows from the Mikhlin–Hörmander
theorem that R is a bounded linear operator on W s

p(Rn), and hence also on Lp(J ;W s
p(Rn)) by

canonical extension.
(iv) Let β2 = ρ2λα2. Then the transform of the pressure π2 in Rn+1

+ is given by e−|ξ |yβ2. The
pressure gradient will be in Lp provided the inverse transform of β2 is in Lp(J ; Ẇ

1−1/p
p (Rn)). In

fact, e−|ξ |y is the symbol of the Poisson semigroup P(·) in Lp(Rn), and the negative generator of
P(·) isD1/2

n . Then the second part of (2.14) shows thatD1/2
n P(·)β2 ∈ Lp(R+;Lp(Rn)) if and only

β2 ∈ Ẇ
1−1/p
p (Rn). This result extends canonically to Lp(J ;Lp(Rn+1

+ )).
Therefore, let us look more closely at β2. We easily obtain

β2 = ρ2
λ

|ξ |
ŵb + (

√
µ2ω2 + µ2|ξ |)(ŵb − (iζ | v̂b)),

where ζ = ξ/|ξ |. We recall that Ḋ1/2
n := F−1(|ξ |F ·) : Ẇ s

p(Rn)→ Ẇ s−1
p (Rn) is an isomorphism.

With the operators introduced above, b2, the inverse transform of β2, can be represented by

b2 = ρ2GḊ
−1/2
n wb + (

√
µ2F2 + µ2D

1/2
n )(wb − i(R | vb)) =: b21 + b22.

Due to (3.10) and 0W
1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)) = DFj (2 − 1/p, p), the second

term b22 is in

DFj (1− 1/p, p) = 0W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)),

which embeds into Lp(J ; Ẇ
1−1/p
p (Rn)). Here we use the notation

DFj (θ, p) = (X,D(Fj ))θ,p, DFj (1+ θ, p) = (D(Fj ),D(F
2
j ))θ,p, θ ∈ (0, 1).

Thus it remains to look at the first term b21 = ρ2GD
−1/2
n wb. Since

GḊ
−1/2
n : 0H

1
p(J ; Ẇ

−1/p
p (Rn))→ Lp(J ; Ẇ

1−1/p
p (Rn))

is bounded and invertible, we see that the condition wb ∈ 0H
1
p(J ; Ẇ

−1/p
p (Rn)) is necessary and

sufficient for b21 ∈ Lp(J ; Ẇ
1−1/p
p (Rn)). Of course, similar arguments apply for the lower half-

plane. 2

4. The Dirichlet-to-Neumann operator for the Stokes equation

The main ingredient in analyzing problem (3.1) with (f, fd , u0) = (0, 0, 0) and gv(0) = 0 is the
Dirichlet-to-Neumann operator. It is defined as follows. Let (u, π) be the solution of the Stokes
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problem (3.6) with Dirichlet boundary condition ub on Rn (see Proposition 3.3). We then define the
Dirichlet-to-Neumann operator by means of

(DN )ub = −[[S(u, π)]]en+1 = −[[µ(∇u+ (∇u)T)]]en+1 + [[π ]]en+1. (4.1)

For this purpose it is convenient to split u into u = (v,w) as before, and ub into ub = (vb, wb).
Then we obtain

(DN )ub = (−[[µ∂yv]]− [[µ∇xw]],−2[[µ∂yw]]+ [[π ]]). (4.2)

We will now formulate and prove the main result of this section.

THEOREM 4.1 The Dirichlet-to-Neumann operatorDN for the Stokes problem is an isomorphism
from the Dirichlet space of ub = (vb, wb) with

vb ∈ 0W
1−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

2−1/p
p (Rn,Rn)),

wb ∈ 0H
1
p(J ; Ẇ

−1/p
p (Rn)) ∩ Lp(J ;W

2−1/p
p (Rn))

onto the Neumann space of g = (gv, gw) with

gv ∈ 0W
1/2−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

1−1/p
p (Rn,Rn)),

gw ∈ Lp(J ; Ẇ
1−1/p
p (Rn)).

Proof. (i) Let (v̂1, ŵ1, π̂1) and (v̂2, ŵ2, π̂2) be as in (3.7)–(3.8). We may now compute the symbol
of the Dirichlet-to-Neumann operator. We have

(DN )ûb =
[

ω1
√
µ1a1 + ω2

√
µ2a2 − (α1µ1 + α2µ2)|ξ |iξ − [[µ]]iξŵb

2i(µ2a2 − µ1a1 | ξ)+ 2(α2µ2 − α1µ1)|ξ |
2
+ λ(α2ρ2 − α1ρ1)

]
,

where the functions αj and aj are given in (3.9). Simple algebraic manipulations then yield the
following symbol:

(DN )(λ, ξ) =
[
α + βζ ⊗ ζ iγ ζ

−iγ ζ T α + δ

]
, (4.3)

where ζ = ξ/|ξ | and

α =
√
µ1ω1 +

√
µ2ω2, β = (µ1 + µ2)|ξ |,

γ = (
√
µ2ω2 −

√
µ1ω1)− [[µ]]|ξ |, δ = (ω2

1 + ω
2
2)/|ξ | = β + (ρ1 + ρ2)λ/|ξ |.

(4.4)

Next we want to compute the inverse of the Dirichlet-to-Neumann operator. Thus we have to
solve the equation (DN )ub = g. As before we use the decomposition ub = (vb, wb) and g =
(gv, gw). Then in transformed variables we have the system

αv̂b + βζ(ζ | v̂b)+ iγ ζ ŵb = ĝv,

−iγ (ζ | v̂b)+ (α + δ)ŵb = ĝw.

This yields
v̂b = α

−1[ĝv − ζβ(ζ | v̂b)+ iγ ŵb)]. (4.5)



TWO-PHASE NAVIER–STOKES EQUATIONS 327

(ii) This last equation shows that it is sufficient to determine (v̂b | ζ ) and ŵb. If the inverses of
β(v̂b | ζ ) and γ ŵb belong to the class of gv , then vb is uniquely determined and has the claimed
regularity. Indeed, α is the symbol of

F :=
√
µ1F1 +

√
µ2F2, D(F ) = 0H

1/2
p (J ;Lp(Rn)) ∩ Lp(J ;H 1

p (R
n)),

which is a bounded invertible operator from its domain into Lp(J ;Lp(Rn)), and hence also from
DF (2− 1/p, p) into DF (1− 1/p, p). Here we note that

DF (θ, p) = DFj (θ, p) = 0W
θ/2
p (J ;Lp(Rn)) ∩ Lp(J ;W θ

p (R
n))

for θ ∈ (0, 2), θ 6= 1. Therefore, F−1gv belongs to DF (2 − 1/p, p) if and only if gv ∈
DF (1 − 1/p, p). Next we note that γ is the symbol of

√
µ2F2 −

√
µ1F1 − [[µ]]D1/2

n which is
bounded from DF (2 − 1/p, p) to DF (1 − 1/p, p), and β is the symbol of (µ1 + µ2)D

1/2
n which

has the same mapping properties.
(iii) It remains to show that wb and (R | vb) belong to DF (2 − 1/p, p). For ŵb and (ζ | v̂b) we

have the equations

(α + β)(ζ | v̂b)+ iγ ŵb = (ζ | ĝv),

−iγ (ζ | v̂b)+ (α + δ)ŵb = ĝw

since |ζ | = 1. Solving this 2-D system we obtain

ŵb = m
−1[iγ (ζ | ĝv)+ (α + β)ĝw],

(ζ | v̂b) = m
−1[(α + δ)(ζ | ĝv)− iγ ĝw],

(4.6)

where
m = (α + β)(α + δ)− γ 2.

Since δ = β + (ρ1 + ρ2)λ/|ξ | we obtain the following relation for m:

m = (α + β)

[
(ρ1 + ρ2)

λ

|ξ |
+ 4

(
1
η1
+

1
η2

)−1]
=: (α + β)n,

where η1 =
√
µ1ω1 + µ2|ξ | and η2 =

√
µ2ω2 + µ1|ξ |. This yields

ŵb =
iγ

(α + β)n
(ζ | ĝv)+

ĝw

n
,

(ζ | v̂b) =
(ρ1 + ρ2)λ/|ξ |

(α + β)n
(ζ | ĝv)+

1
n

[
(ζ | ĝv)−

iγ

α + β
ĝw

]
.

(4.7)

We define the operators Tj by means of their symbols ηj , i.e.

T1 :=
√
µ1F1 + µ2D

1/2
n , T2 :=

√
µ2F2 + µ1D

1/2
n , D(Tj ) = D(Fj ) = D(F ).

Then by the Dore–Venni theorem, the operators Tj with domains D(Tj ) = D(Fj ) = D(F ) are
invertible, sectorial with angle π/4. Moreover, they admit an H∞-calculus with H∞-angle π/4
(see for instance [31]). The harmonic mean T of T1 and T2, i.e.

T := 2T1T2(T1 + T2)
−1
= 2(T −1

1 + T −1
2 )−1
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enjoys the same properties, as another application of the Dore–Venni theorem shows. The symbol
of T is given by η := 2η1η2/(η1 + η2).

Next we consider the operator GD−1/2
n with domain

D(GD
−1/2
n ) = {h ∈ R(D1/2

n ) : D−1/2
n h ∈ D(G)}

= 0H
1
p(J ; Ḣ

−1
p (Rn)) ∩ Lp(J ;Lp(Rn))

The inclusion from left to right in the last equality is obvious. The converse can be seen as follows.
Let h ∈ 0H

1
p(J ; Ḣ

−1
p (Rn)) ∩ Lp(J ;Lp(Rn)) and define g := Ḋ−1/2

n h. Then

g ∈ 0H
1
p(J ;Lp(R

n)) ∩ Lp(J ; Ḣ
1
p (R

n)) ↪→ Lp(J ;H
1
p (R

n)),

and D1/2
n g = Ḋ

1/2
n g = h ∈ Lp(J ;Lp(Rn)), which implies that h ∈ R(D1/2

n ) and g = Ḋ−1/2
n h =

D
−1/2
n h ∈ D(G). The operator GD−1/2

n is closed, sectorial and admits a bounded H∞-calculus
with H∞-angle π/2 on X = Lp(J ;Lp(Rn)); see for instance [22, Corollary 2.2]. Its symbol is
given by λ/|ξ |.

Finally, we consider the operator

N := (ρ1 + ρ2)GD
−1/2
n + 2T , (4.8)

with domain

D(N) = D(GD
−1/2
n ) ∩ D(T ) = 0H

1
p(J ; Ḣ

−1
p (Rn)) ∩ Lp(J ;H 1

p (R
n));

recall (3.10). By the Dore–Venni theorem N is closed, invertible, and by [31] it admits a bounded
H∞-calculus as well, with H∞-angle π/2. Its symbol is n.

The operator with symbol γ is then given by T2 − T1, and the operator with symbol α + β
by T1 + T2. For the inverse transforms wb and (R | vb) of ŵb and (ζ | v̂b) we then obtain the
representations

wb = N
−1[(T2 − T1)(T1 + T2)

−1i(R | gv)+ gw],

(R | vb) = (T1 + T2)
−1(ρ1 + ρ2)GD

−1/2
n N−1(R | gv)

+N−1(R | gv)− (T2 − T1)(T1 + T2)
−1N−1igw.

(4.9)

We note that N−1 has the following mapping properties:

N−1 : Lp(J ;Lp(Rn))→ 0H
1
p(J ; Ḣ

−1
p (Rn)) ∩ Lp(J ;H 1

p (R
n)) ↪→ Lp(J ;Lp(Rn)),

N−1 : Lp(J ; Ḣ 1
p (R

n))→ 0H
1
p(J ;Lp(R

n)) ∩ Lp(J ; Ḣ
2
p (R

n)) ↪→ Lp(J ;Lp(Rn)).

Therefore by three-fold real interpolation

N−1 : Lp(J ; Ẇ
1−1/p
p (Rn))→ 0H

1
p(J ; Ẇ

−1/p
p (Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)). (4.10)

Moreover, N−1 maps 0W
1/2−1/2p
p (J ;Lp(Rn)) into

0W
3/2−1/2p
p (J ; Ḣ−1

p (Rn)) ∩ 0W
1/2−1/2p
p (J ;H 1

p (R
n)). (4.11)
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Next we note that the operators Tj (T1 + T2)
−1 are bounded in DF (1 − 1/p, p), as is the Riesz

transform R, and the assertion for wb follows now from (4.9)–(4.10) and

0W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)) ↪→ Lp(J ; Ẇ

1−1/p
p (Rn)).

The assertions for (R | vb) follow readily from (3.10) and (4.9)–(4.11). 2

We can now formulate our second main result of this section concerning the solvability of the
problem 

ρ∂tu− µ∆u+∇π = 0 in Ṙn+1,

div u = 0 in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = gv on Rn,
−2[[µ∂yw]]+ [[π ]] = gw on Rn,

[[u]] = 0 on Rn,

u(0) = 0 in Ṙn+1.

(4.12)

COROLLARY 4.2 Let 1 < p <∞ and assume that ρj and µj are positive constants, j = 1, 2, and
set J = [0, a]. Then (4.12) admits a unique solution (u, π) with

u ∈ 0H
1
p(J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)), π ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1))

if and only if g = (gv, gw) satisfies the following regularity assumptions:

(a) gv ∈ 0W
1/2−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W

1−1/p
p (Rn,Rn)),

(b) gw ∈ Lp(J ; Ẇ
1−1/p
p (Rn)).

Proof. Let ub := (vb, wb) := (DN )−1(gv, gw), and let (u, π) be the solution of (3.6). Thanks to
Theorem 4.1 and Proposition 3.3, (u, π) satisfies the regularity assertion of the corollary, and it is
the unique solution of (4.12) due to the definition of DN . 2

REMARK 4.3 The representation formulas in (3.7)–(3.8) have also been derived and used by
other authors (see for instance [11, 36]). However, the optimal regularity results in Theorem 3.1,
Proposition 3.3, Theorem 4.1, and Corollary 4.2 are new. Moreover, the computations and arguments
leading to these results are shorter than in [11] (which only deals with the case p = 2) and in [36].
We should mention, however, that these authors consider more general domains.

5. The linearized two-phase Stokes problem with free boundary

In this section we consider the full linearized problem

ρ∂tu− µ∆u+∇π = f in Ṙn+1,

div u = fd in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = gv on Rn,
−2[[µ∂yw]]+ [[π ]]− σ∆h = gw on Rn,

[[u]] = 0 on Rn,
∂th− γw = gh on Rn,

u(0) = u0, h(0) = h0.

(5.1)
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We are interested in the same regularity classes for u and π as before. Then the equation for the
height function h lives in the trace space W 1−1/2p

p (J ;Lp(Rn)) ∩ Lp(J ;W
2−1/p
p (Rn)), hence the

natural space for h is given by

h ∈ W
2−1/2p
p (J ;Lp(Rn)) ∩H 1

p (J ;W
2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn)).

Our next theorem states that problem (5.1) admits maximal regularity, in particular defines an
isomorphism between the solution space and the space of data.

THEOREM 5.1 Let 1 < p < ∞ be fixed, p 6= 3/2, 3, and assume that ρj and µj are positive
constants for j = 1, 2, and set J = [0, a]. Then the Stokes problem with free boundary (5.1) admits
a unique solution (u, π, h) with regularity

u ∈ H 1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)),

π ∈ Lp(J ; Ḣ
1
p (Ṙ

n+1)),

[[π ]] ∈ W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)),

h ∈ W
2−1/2p
p (J ;Lp(Rn)) ∩H 1

p (J ;W
2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn))

(5.2)

if and only if the data (f, fd , g, gh, u0, h0) satisfy the following regularity and compatibility
conditions:

(a) f ∈ Lp(J ;Lp(Rn+1,Rn+1)),
(b) fd ∈ H 1

p (J ; Ḣ
−1
p (Rn+1)) ∩ Lp(J ;H

1
p (Ṙn+1)),

(c) g = (gv, gw) ∈ W
1/2−1/2p
p (J ;Lp(Rn,Rn+1)) ∩ Lp(J ;W

1−1/p
p (Rn,Rn+1)),

(d) gh ∈ W
1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)),

(e) u0 ∈ W
2−2/p
p (Ṙn+1,Rn+1), h0 ∈ W

3−2/p
p (Rn),

(f) div u0 = fd(0) in Ṙn+1 and [[u0]] = 0 on Rn if p > 3/2,
(g) −[[µ∂yv0]]− [[µ∇xw0]] = gv(0) on Rn if p > 3.

The solution map (f, fd , g, gh, u0, h0) 7→ (u, π, [[π ]], h) is continuous between the corresponding
spaces.

Proof. Similarly to the proof of Thereom 3.1 we will reduce system (5.1) to the case where
(f, fd , g, u0, h0) = (0, 0, 0, 0, 0) and gh(0) = 0. The Neumann-to-Dirichlet operator will once
again play an essential role in the resulting reduced problem.

(i) Let

h1(t) := [2e−D
1/2
n t
− e−2D1/2

n t ]h0 + (1+Dn)−1[e−(1+Dn)t − e−2(1+Dn)t ](gh(0)+ γw0),

where u0 = (v0, w0) and γ : Rn+1
± → Rn is the trace operator. The function h1 has the following

properties:

h1 ∈ W
1/2−1/2p
p (J ;H 2

p (R
n)) ∩ Lp(J ;W

3−1/p
p (Rn))

∩W
2−1/2p
p (J ;Lp(Rn)) ∩H 1

p (J ;W
2−1/p
p (Rn)),

h1(0) = h0, ∂th1(0) = gh(0)+ γw0

(5.3)
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(see [30, Lemma 6.4] for a proof of a similar result). Let then (u1, π1) be the solution of
problem (3.1) with gw replaced by gw + σ∆h1. It follows from Theorem 3.1, the assumptions
on g = (gv, gw), and from the first line in (5.3) that (u1, π1) satisfies the regularity properties stated
in Theorem 5.1.

(ii) Next we consider the reduced problem

ρ∂tu− µ∆u+∇π = 0 in Ṙn+1,

div u = 0 in Ṙn+1,

−[[µ∂yv]]− [[µ∇xw]] = 0 on Rn,
−2[[µ∂yw]]+ [[π ]]− σ∆h = 0 on Rn,

[[u]] = 0 on Rn,
∂th− γw = g̃h on Rn,

u(0) = 0, h(0) = 0,

(5.4)

with g̃h := gh−(∂th1−γw1), where u1 = (v1, w1) is the solution obtained in step (i). We conclude
from (5.3) and the regularity properties of γw1 that

g̃h ∈ 0W
1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)). (5.5)

Suppose that problem (5.4) admits a solution (u2, π2, h2) with the regularity properties stated in
(5.2). One readily verifies that (u, π, h) := (u1+u2, π1+π2, h1+h2) is a solution of problem (5.1)
in the regularity class of (5.2).

(iii) It thus remains to show that the reduced problem (5.4) admits a unique solution (u, π, h) in
the regularity class stated in Theorem 5.1. We note that once h has been determined, Corollary 4.2
yields the corresponding pair (u, π) in problem (5.4).

To determine h we extract the boundary symbol for this problem as follows. Applying the
Neumann-to-Dirichlet operator (DN )−1 to (gv, gw) = (0, σDnh) yields γ u = ub, the trace of
u. According to (4.7), the transform of the normal component γw = wb of ub is given by

ŵb =
−σ |ξ |2

(ρ1 + ρ2)λ/|ξ | + 4η1η2/(η1 + η2)
ĥ.

Let us now consider the equation ∂th − γw = g̃h. Inserting this expression for ŵb into the
transformed equation λĥ− ŵb = ˆ̃gh results in s(λ, |ξ |)ĥ = ˆ̃gh where the boundary symbol s(λ, |ξ |)
is given by

s(λ, |ξ |) = λ+
σ |ξ |2

(ρ1 + ρ2)λ/|ξ | + 4η1η2/(η1 + η2)
. (5.6)

The operator corresponding to this symbol is

S = G+ σDnN
−1, (5.7)

where the meaning of the operatorsG,Dn andN is as in Section 4. The operator S has the following
mapping properties:

S : 0H
r+1
p (J ;Ks

p(R
n)) ∩ 0H

r
p(J ;K

s+1
p (Rn))→ 0H

r(J ;Ks
p(R

n)), (5.8)
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where K ∈ {H,W }. In order to find h we need to solve the equation Sh = g̃h, that is, we need to
show that S is invertible in appropriate function spaces.

All operators in the definition of S commute, and admit an H∞-calculus. The H∞-angle of Dn
is zero, that of N is π/2, and that of G is π/2 as well. Thus we cannot a priori guarantee that the
sum of the power-angles of the single operators in S is strictly less than π , and the Dore–Venni
approach is therefore not directly applicable. We will instead apply a result of Kalton and Weis [25,
Theorem 4.4].

For this purpose note that for complex numbers wj with argwj ∈ [0, π/2), we have
arg (w1w2)/(w1 + w2) = arg (1/w1 + 1/w2)

−1
∈ [0, π/2) as well. This implies that s(λ, |ξ |) has

strictly positive real part for each λ in the closed right halfplane and for each ξ ∈ Rn, (λ, ξ) 6= (0, 0),
hence s(λ, |ξ |) does not vanish for such λ and ξ .

We write s(λ, |ξ |) in the following way:

s(λ, τ ) = λ+ στk(z), z = λ/τ 2, λ ∈ C, τ ∈ C \ {0}, (5.9)

where

k(z) =

[
(ρ1 + ρ2)z+ 4

(
1

√
µ1
√
ρ1z+ µ1 + µ2

+
1

√
µ2
√
ρ2z+ µ2 + µ1

)−1]−1

.

The asymptotics of k(z) are given by

k(0) =
1

2(µ1 + µ2)
, zk(z)→

1
ρ1 + ρ2

for z ∈ C \ R− with |z| → ∞.

This shows that for any ϑ ∈ [0, π) there is a constant C = C(ϑ) > 0 such that

|k(z)| 6
C

1+ |z|
, z ∈ Σ̄ϑ .

Hence we see that
|s(λ, |ξ |)| 6 C(|λ| + |ξ |), Re λ > 0, ξ ∈ Rn,

for some constant C > 0. Next we are going to prove that for each λ0 > 0 there are η, c > 0 such
that

|s(λ, τ )| > c[|λ| + |τ |] for all λ ∈ Σπ/2+η, |λ| > λ0, τ ∈ Ση. (5.10)

This can be seen as follows: since Re k(z) > 0 for Re z > 0, by continuity of the modulus and
argument we obtain an estimate of the form

|s(λ, τ )| > c0[|λ| + |τ | |k(z)|] > c[|λ| + |τ |], λ ∈ Σπ/2+η, τ ∈ Ση,

provided |z| 6 M , with some η, c > 0 depending on M , but not on λ and τ . On the other hand, for
m > 0 fixed we consider the case with |λ| > m|τ |, |z| > M . We then have

|s(λ, τ )| > |λ| − σ |τ | |k(z)| >
1
2

[|λ| +m|τ |]− σC|τ |/(1+M) > c[|λ| + |τ |]

provided m > 2σC/(1+M), and then by extension

|s(λ, τ )| > c[|λ| + |τ |], λ ∈ Σπ/2+η, τ ∈ Ση, |λ| > m|τ |, |z| > M,
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provided η, c > 0 are sufficiently small. One easily sees that the intersection point of the curves
y = Mx2 and y = mx in R2 has distance d = (m/M)

√
1+m2 from the origin. By choosing M

large enough so that d 6 λ0, (5.10) follows by combining the two estimates.
By means of theR-boundedness of the functional calculus forDn inKs

p(Rn) (cf. Desch, Hieber
and Prüss [15]) we see that

(λ+D
1/2
n )s−1(λ,D

1/2
n )

is of class H∞ and R-bounded on Σπ/2+η \ Bλ0(0). The operator-valued H∞-calculus for G = ∂t
on 0H

r
p(J ;K

s
p(Rn)) (cf. Hieber and Prüss [24]) implies boundedness of

(G+D
1/2
n )s−1(G,D

1/2
n ) in 0H

r
p(J ;K

s
p(R

n)).

This shows that s−1(G,D
1/2
n ) has the following mapping properties:

s−1(G,D
1/2
n ) : 0H

r
p(J ;K

s
p(R

n))→ 0H
r+1
p (J ;Ks

p(R
n)) ∩ 0H

r
p(J ;K

s+1
p (Rn)). (5.11)

We conclude that S is invertible and that S−1
= s−1(G,D

1/2
n ). Choosing r = 0 and s = 2 − 1/p

and K = W in (5.11) yields

S−1 : Lp(J ;W
2−1/p
p (Rn))→ 0H

1
p(J ;W

2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn)). (5.12)

Moreover, we also deduce from (5.11) that

S−1 : Lp(J ;Lp(Rn))→ 0H
1
p(J ;Lp(R

n)),

S−1 : 0H
1
p(J ;Lp(R

n))→ 0H
2
p(J ;Lp(R

n)).

Interpolating with the real method (·, ·)1−1/p,p then yields

S−1 : 0W
1−1/p
p (J ;Lp(Rn))→ 0W

2−1/p
p (J ;Lp(Rn)). (5.13)

(5.12)–(5.13) shows that the equation Sh = g̃h has for each g̃h satisfying (5.5) a unique solution h
in the regularity class (5.2).

(iv) Since the function h is now known we can use Corollary 4.2 to determine the pair (u, π) in
problem (5.4). For this we note that

0H
1
p (J ;W

2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn)) ↪→ 0W

1−1/p
p (J ;H 2

p (R
n)) (5.14)

(see [30, Lemma 6.2] for a proof). This shows that the function h determined in step (iii) satisfies

∆h ∈ 0W
1/2−1/2p(J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn))

and Corollary 4.2 yields a solution (u, π) in the regularity class (5.2).
(v) Steps (i)–(iv) render a solution (u, π, h) for problem (5.1) that satisfies the regularity

properties asserted in the theorem. It follows from step (iv) and from Theorem 3.1 that problem (5.4)
with (f, fd , g, gh, u0, h0) = (0, 0, 0, 0, 0, 0) has only the trivial solution, and this gives uniqueness.
The proof of Theorem 5.1 is now complete. 2

REMARK 5.2 Further mapping properties of the symbol s(λ, τ ) and the associated operator S have
been derived in [32]. In particular, we have investigated the singularities and zeros of the boundary
symbol s, and we have studied the mapping properties of S in the case of low and high frequencies,
respectively.
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6. The nonlinear problem

In this section we derive estimates for the nonlinear mappings occurring on the right hand side of
(2.9). In order to facilitate this task, we first introduce some notation, and then study the mapping
properties of the nonlinear functions appearing on the right hand side of (2.9). In the following we set

E1(a) := {u ∈ H 1
p (J ;Lp(R

n+1,Rn+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1,Rn+1)) : [[u]] = 0},

E2(a) := Lp(J ; Ḣ 1
p (Ṙ

n+1)),

E3(a) := W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

1−1/p
p (Rn)),

E4(a) := W 2−1/2p
p (J ;Lp(Rn)) ∩H 1

p (J ;W
2−1/p
p (Rn))

∩W
1/2−1/2p
p (J ;H 2

p (R
n)) ∩ Lp(J ;W

3−1/p
p (Rn)),

E(a) := {(u, π, q, h) ∈ E1(a)× E2(a)× E3(a)× E4(a) : [[π ]] = q}.

(6.1)

The space E(a) is given the natural norm

‖(u, π, q, h)‖E(a) = ‖u‖E1(a) + ‖π‖E2(a) + ‖q‖E3(a) + ‖h‖E4(a),

which turns it into a Banach space. We recall that E2(a) is equipped with the norm
‖π‖E2(a) = (

∑n+1
j=1 ‖∂jπ‖

p

Lp(J ;Lp(Ṙn+1))
)1/p for π : Ṙn+1

→ R.

In addition, we define

F1(a) := Lp(J ;Lp(Rn+1,Rn+1)),

F2(a) := H 1
p (J ; Ḣ

−1
p (Rn+1)) ∩ Lp(J ;H

1
p (Ṙ

n+1)),

F3(a) := W 1/2−1/2p
p (J ;Lp(Rn,Rn+1)) ∩ Lp(J ;W

1−1/p
p (Rn,Rn+1)),

F4(a) := W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)),

F(a) := F1(a)× F2(a)× F3(a)× F4(a).

(6.2)

The generic elements of F(a) are the functions (f, fd , g, gh).
We list some properties of the function spaces introduced above that will be used below. In the

following we say that a function space is a multiplication algebra if it is a Banach algebra under the
operation of multiplication.

LEMMA 6.1 Suppose p > n+ 3 and let J = [0, a]. Then

(a) E3(a) and F4(a) are multiplication algebras.
(b) E1(a) ↪→ C(J ;BUC1(Ṙn+1,Rn+1)) ∩ C(J ;BUC(Rn+1,Rn+1)).
(c) E3(a) ↪→ C(J ;BUC(Rn)).
(d) E4(a) ↪→ BC1(J ;BC1(Rn)) ∩ BC(J ;BC2(Rn)).
(e) W 2−1/2p

p (J ;Lp(Rn)) ∩H 1
p (J ;W

2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn)) ↪→ E4(a).

Proof. (a) The assertion that E3(a) and F4(a) are multiplication algebras can be shown as in the
proof of [30, Lemma 6.6(ii)].

(b) It follows from [2, Theorem III.4.10.2] that E1(a) ↪→ C(J ;W
2−2/p
p (Ṙn+1,Rn+1)) and this

implies the first inclusion, thanks to Sobolev’s embedding theorem. The second assertion follows
from the fact that u is continuous across y = 0.
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(c) This follows from [19, Remark 5.3(d)] and Sobolev’s embedding theorem.
(d) We infer from [2, Theorem III.4.10.2] that

H 1
p (J ;W

2−1/p
p (Rn)) ∩ Lp(J ;W

3−1/p
p (Rn)) ↪→ C(J ;W

3−2/p
p (Rn)),

and the inclusion E4(a) ↪→ C(J ;BC2(Rn)) then follows from Sobolev’s embedding theorem. In
addition, we conclude from [30, Remark 5.3(d)] and Sobolev’s embedding theorem that

W
1−2/p
p (J ;Lp(Rn)) ∩ Lp(J ;W

2−1/p
p (Rn)) ↪→ BC(J ;BC1(Rn)),

and this implies that E4(a) ↪→ BC1(J ;BC1(Rn)).
(e) This follows from (5.14). 2

Let
N(u, π, q, h) := (F (u, π, h), Fd(u, h),G(u, q, h),H(u, h)) (6.3)

for (u, π, q, h) ∈ E(a), where as before u = (v,w), F = (Fv, Fw) and G = (Gv,Gw). We show
that the mapping N is real analytic.

PROPOSITION 6.2 Suppose p > n+ 3. Then

N ∈ Cω(E(a),F(a)) and N(0) = 0, DN(0) = 0, (6.4)

where DN denotes the Fréchet derivative of N . In addition we have

DN(u, π, q, h) ∈ L(0E(a), 0F(a)) for any (u, π, q, h) ∈ E(a).

Proof. We first note that the mapping (u, π, q, h) 7→ N(u, π, q, h) is polynomial. It thus suffices
to verify that N : E(a)→ F(a) is well-defined and continuous.

(i) We first consider the term F(u, π, h), and observe that it contains the expressions ∇h,∆h
and ∂th. Without changing notation we here consider the extension of h from Rn to Rn+1 defined
by h(t, x, y) = h(t, x) for t ∈ J and (x, y) ∈ Rn × R. With this interpretation we clearly have

‖∂h‖∞,J×Rn+1 = ‖∂h‖∞,J×Rn , h ∈ E(a), ∂ ∈ {∂j ,∆, ∂t }, (6.5)

where ‖ · ‖∞,U denotes the sup-norm for the set U ⊂ J × Rn+1. Next we note that

BC(J ;BC(Rn+1)) · Lp(J ;Lp(Rn+1)) ↪→ Lp(J ;Lp(Rn+1)),

BC(J ;BC(Rn+1)) · BC(J ;BC(Rn+1)) ↪→ BC(J ;BC(Rn+1)),
(6.6)

that is, multiplication is continuous and bilinear in the indicated function spaces. We can now
conclude from (6.5)–(6.6) and Lemma 6.1 that

F ∈ Cω(E1(a)× E2(a)× E4(a),F1(a)), F (0) = 0, DF(0) = 0.

(ii) We will now consider the nonlinear function Fd(u, h) = (∇h|∂yv). Since h does not depend
on y we have

Fd(u, h) = (∇h | ∂yu) = ∂y(∇h | u). (6.7)
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Observing that

BC1(J ;BC(Rn+1)) ·H 1
p (J ;Lp(R

n+1)) ↪→ H 1
p (J ;Lp(R

n+1)),

BC(J ;BC1(Ṙn+1)) · Lp(J ;H
1
p (Ṙ

n+1)) ↪→ Lp(J ;H
1
p (Ṙ

n+1)),

and

∂y ∈ L
(
H 1
p (J ;Lp(R

n+1)),H 1
p (J ;H

−1
p (Rn+1))

)
∩ L

(
Lp(J ;H

1
p (Ṙ

n+1)), Lp(J ;Lp(Rn+1))
)
,

we infer from Lemma 6.1(d) that

Fd ∈ C
ω(E1(a)× E4(a),F2(a)), Fd(0) = 0, DFd(0) = 0.

(iii) We recall that

[[µ∂i ·]] ∈ L
(
H 1
p (J ;Lp(R

n+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1)),E3(a)
)
, (6.8)

where [[µ∂iu]] denotes the jump of the quantity µ∂iu with u a generic function Ṙn+1
→ R, and

where ∂i = ∂xi for i = 1, . . . , n and ∂n+1 = ∂y .
The mapping G(u, q, h) is made up of terms of the form

[[µ∂iuk]]∂jh, [[µ∂iuk]]∂jh∂lh, q∂jh, ∆h∂jh, Gκ(h), Gκ(h)∂jh,

where uk denotes the k-th component of a function u ∈ E1(a). From (6.8) and the fact that E3(a) is
a multiplication algebra it follows that the mappings

(u, h) 7→ [[µ∂iuk]]∂jh, [[µ∂iuk]]∂jh∂lh : E1(a)× E4(a)→ E3(a),

(q, h) 7→ q∂jh : E3(a)× E4(a)→ E3(a), h 7→ ∆h∂jh : E4(a)→ E3(a)

are multilinear and continuous, and hence real analytic. The fact that E3(a) is an algebra additionally
implies that the mapping [h 7→ Gκ(h)] : E4(a)→ E3(a) is analytic. In summary we conclude that

G ∈ Cω(E1(a)× E3(a)× E4(a),E3(a)), G(0) = 0, DG(0) = 0.

(iv) We infer from γ ∈ L
(
H 1
p (J ;Lp(Rn+1)) ∩ Lp(J ;H

2
p (Ṙn+1)),Fa(a)

)
and the fact that

F4(a) is an algebra that the mapping [(u, h) 7→ (∇h | γ u)] : E1(a) × E4(a) → F4(a) is bilinear
and continuous. This immediately yields

H ∈ Cω(E1(a)× E4(a),F4(a)), H(0) = 0, DH(0) = 0.

(v) As the terms of N are made up of products of u, π, q, h and derivatives thereof, one easily
verifies that

DN(u, π, q, h)[ū, π̄ , q̄, h̄] ∈ 0F(a) whenever (u, π, q, h) ∈ E(a), (ū, π̄ , q̄, h̄) ∈ 0E(a).

Combining the results obtained in steps (i)–(v) yields the assertions of the proposition. 2

We are now ready to prove our main result of this section, yielding existence and uniqueness of
solutions for the nonlinear problem (2.9).
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THEOREM 6.3 (Existence of solutions for the nonlinear problem (2.9)) (a) For every t0 > 0 there
exists a number ε = ε(t0) > 0 such that for all initial values

(u0, h0) ∈ W
2−2/p
p (Ṙn+1,Rn+1)×W

3−2/p
p (Rn), [[u0]] = 0,

satisfying the compatibility conditions

[[µD(u0, h0)ν0 − µ(ν0 |D(u0, h0)ν0)ν0]] = 0, div u0 = Fd(u0, h0), [[u0]] = 0 (6.9)

and the smallness condition

‖u0‖W 2−2/p
p (Ṙn+1)

+ ‖h0‖W 3−2/p
p (Rn) 6 ε, (6.10)

where D(u, h) is defined in (2.6), the nonlinear problem (2.9) admits a unique solution
(u, π, [[π ]], h) ∈ E(t0).

(b) The solution has the additional regularity properties

(u, π) ∈ Cω((0, t0)× Ṙn+1,Rn+2), [[π ]], h ∈ Cω((0, t0)× Rn).

In particular, M =
⋃
t∈(0,t0)({t} × Γ (t)) is a real analytic manifold.

Proof. In order to economize our notation we set z := (u, π, q, h) for (u, π, q, h) ∈ E(a). With
this notation, the nonlinear problem (2.9) can be restated as

Lz = N(z), (u(0), h(0)) = (u0, h0), (6.11)

where L denotes the linear operator on the left hand side of (2.9), and where N is defined in (6.3).
It is convenient to first introduce an auxiliary function z∗ ∈ E(a) which resolves the

compatibility conditions (6.9) and the initial conditions in (6.11), and then to solve the resulting
reduced problem

Lz = N(z+ z∗)− Lz∗ =: K0(z), z ∈ 0E(a), (6.12)

by means of a fixed point argument.
(i) Suppose that the initial values (u0, h0) satisfy the (first) compatibility condition in (6.9), and

set
[[π0]] := [[µ(ν0 |D(u0, h0)ν0)]]+ σ(∆h0 −Gκ(h0)).

It is then clear that the following compatibility conditions hold:

−[[µ∂yv0]]− [[µ∇xw0]] = Gv(u0, [[π0]], h0) on Rn,
−2[[µ∂yw0]]+ [[π0]]− σ∆h0 = Gw(u0, h0) on Rn,

(6.13)

where u0 = (v0, w0). Next we introduce special functions (0, f ∗d , g
∗, g∗h) ∈ F(a) which resolve the

necessary compatibility conditions. First we set

c∗(t) :=

{
R+e−tDn+1E+(v0 | ∇h0) in Rn+1

+ ,

R−e−tDn+1E−(v0 | ∇h0) in Rn+1
− ,

(6.14)
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where E± ∈ L(W 2−2/p
p (Rn+1

± ),W
2−2/p
p (Rn+1)) is an appropriate extension operator andR± is the

restriction operator. Since (v0 | ∇h0) ∈ W
2−2/p
p (Ṙn+1) we obtain

c∗ ∈ H 1
p (J ;Lp(R

n+1)) ∩ Lp(J ;H
2
p (Ṙ

n+1)).

Consequently,
f ∗d := ∂yc∗ ∈ F2(a) and f ∗d (0) = Fd(v0, h0). (6.15)

Next we set

g∗(t) := e−DntG(u0, [[π0]], h0), g∗h(t) := e−DntH(u0, h0). (6.16)

It then follows from (6.15) and [19, Lemma 8.2] that (0, f ∗d , g
∗, g∗h) ∈ F(a). (6.13) and the second

and third conditions in (6.9) show that the necessary compatibility conditions of Theorem 5.1 are
satisfied and we can conclude that the linear problem

Lz∗ = (0, f ∗d , g
∗, g∗h), (u∗(0), h∗(0)) = (u0, h0), (6.17)

has a unique solution z∗ ∈ E(a). With the auxiliary function z∗ now determined, we can focus on
the reduced equation (6.12), which can be converted into the fixed point equation

z = L−1
0 K0(z), z ∈ 0E(a), (6.18)

where L0 denotes the restriction of L to 0E(a). Due to the choice of (f ∗d , g
∗, g∗h) we have K0(z) ∈

0F(a) for any z ∈ 0E(a), and it follows from Proposition 6.2 that

K0 ∈ C
ω(0E(a), 0F(a)).

Consequently, L−1
0 K0 : 0E(a)→ 0E(a) is well-defined and smooth.

(ii) In the following, t0 > 0 is a fixed number. We set

E1 := {(u0, h0) ∈ W
2−2/p
p (Ṙn+1,Rn+1)×W

3−2/p
p (Rn) : [[u]] = 0},

and observe that E1 is a Banach space. Given (u0, h0) ∈ E1 let (f ∗d , g
∗, g∗h) be defined as in

(6.15)–(6.16). It is not difficult to see that the mapping

F ∗ : E1 → F(t0), F ∗(u0, h0) := (0, f ∗d , g
∗, g∗h),

is C1 (in fact real analytic), and that F ∗(0) = 0 and DF ∗(0) = 0. Hence given δ ∈ (0, 1) there
exists ε = ε(δ) > 0 such that

‖F ∗(u0, h0)‖F(t0) 6 δ‖(u0, h0)‖E1 , (u0, h0) ∈ εBE1 . (6.19)

Let G(t0) denote the closed subspace of F(t0)×E1 consisting of all functions (f, fd , g, gh, u0, h0)

satisfying the compatibility conditions of Theorem 5.1.
Suppose that (u0, h0) ∈ εBE1 satisfies the compatibility conditions (6.9). Then, due to (6.13)

and the definition of F ∗, the mapping

G∗ : E1 → G(t0), G∗(u0, h0) := (F ∗(u0, h0), u0, h0),
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is well-defined and ‖G∗(u0, h0)‖G(t0) 6 2‖(u0, h0)‖E1 . It then follows from Theorem 5.1 that
(6.17) has a unique solution z∗ = z∗(u0, h0) which satisfies

‖z∗‖E(t0) 6 C0‖(u0, h0)‖E1 , (u0, h0) ∈ εBE1 , (6.20)

where the constant C0 does not depend on (u0, h0).
(iii) Theorem 5.1 also implies that L0 : 0E(t0)→ 0F(t0) is an isomorphism. Let then

M := ‖L−1
0 ‖L(0F(t0),0E(t0)). (6.21)

We can assume that the number δ in step (ii) was already chosen so small that

δ < min
(

1,
1

M(2+ C0)

)
. (6.22)

(iv) We shall show that the fixed point equation (6.18) has for each initial value (u0, h0)

satisfying (6.9)–(6.10) a unique fixed point ẑ = ẑ(u0, h0) ∈ εB0E(t0). It follows from Proposition 6.2
and (6.20) that

‖DN(z+ z∗)‖L(E(t0),F(t0)), ‖DK0(z)‖L(0E(t0),0F(t0)) 6 δ (6.23)

for all (u0, h0) satisfying (6.9)–(6.10) and all z ∈ εB0E(t0), provided ε is chosen small enough. From
(6.19)–(6.23) it follows for z, zj ∈ εB0E(t0) that

‖L−1
0 (K0(z1)−K0(z2))‖0E(t0) 6 Mδ‖z1 − z2‖0E(t0) 6

1
2‖z1 − z2‖0E(t0)

and

‖L−1
0 K0(z)‖0E(t0) 6 M(‖N(z+ z

∗)‖F(t0) + ‖F
∗(u0, h0)‖F(t0)) 6 Mδ(2+ C0)ε 6 ε.

This shows that the mapping L−1
0 K0 : εB0E(t0) → εB0E(t0) is a contraction for any initial value

(u0, h0) satisfying (6.9)–(6.10).
(v) By the contraction mapping principle L−1

0 K0 has a unique fixed point ẑ ∈ εB0E(t0) ⊂ 0E(t0)
and it follows from (6.11)–(6.12) that ẑ+ z∗ is the (unique) solution of the nonlinear problem (2.9)
in E(t0), proving the assertion in part (a) of the theorem.

(vi) In order to show that (u, π, q, h) is analytic in space and time we can use the same strategy
as in [19, Section 8]. Since the proof is similar we will refrain from giving all the details, and will
rather point out the underlying ideas.

Let (u, π, q, h) ∈ E(t0) be the solution of (2.9) with initial value (u0, h0). Let a ∈ (0, t0) be
fixed and choose δ > 0 so that (1 + δ)a 6 t0. Moreover, let ϕ be a smooth cut-off function with
ϕ ≡ 1 on [−R,R] for some R > 0 and suppose that δ > 0 is chosen small enough so that

1+ ϕ(y)τ t > 0, 1+ (yϕ(y))′τ t > 0, t ∈ [0, a], τ ∈ (−δ, δ), y ∈ R.

For given parameters (λ, ν, τ ) ∈ (1− δ, 1+ δ)× Rn × (−δ, δ) we set

(uλ,ν,τ , πλ,ν,τ )(t, x, y) := (u, π)(λt, x + tν, y(1+ ϕ(y)τ t)),
(qλ,ν, hλ,ν)(t, x) := (q, h)(λt, x + tν),

zλ,ν,τ := (uλ,ν,τ , πλ,ν,τ , qλ,ν, hλ,ν),
(6.24)
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where (t, x, y) ∈ [0, a]× Rn × Ṙ. Suppose we know that

[(λ, ν, τ ) 7→ zλ,ν,τ ] ∈ Cω(Λ,E(a)) (6.25)

withΛ ⊂ (1− δ, 1+ δ)×Rn× (−δ, δ) a neighborhood of (λ, ν, τ ) = (1, 0, 0). Pick (s0, x0, y0) ∈

(0, t0)×Ṙn+1 and choose a ∈ (s0, t0). Without loss of generality we can assume that y0 ∈ [−R,R].
Thanks to the embeddings

E1(a) ↪→ C(I ;BC(Rn+1,Rn+1)), E3(a),E4(a) ↪→ C(I ;BC(Rn)),

(see Lemma 6.1) we conclude that

[(λ, ν, τ ) 7→ uλ,ν,τ ] ∈ Cω
(
Λ,C(I ;BC(Rn+1,Rn+1))

)
,

[(λ, ν, τ ) 7→ (qλ,ν, hλ,ν)] ∈ Cω(Λ,C(I ;BC(Rn)))× C(I ;BC(Rn))

for I = [0, a]. Thus

[(λ, ν, τ ) 7→ u(λs0, x0 + s0ν, y0(1+ τs0)] ∈ Cω(Λ,Rn+1),

[(λ, ν, τ ) 7→ (q, h)(λs0, x0 + s0ν)] ∈ Cω(Λ,R2),

and this implies that

u ∈ Cω((0, t0)× Ṙn+1,Rn+1), q, h ∈ Cω((0, t0)× Rn). (6.26)

This in turn together with (2.2)–(2.3) shows that ∇π ∈ Cω((0, t0) × Ṙn+1,Rn+1) as well, and we
can now conclude that

π ∈ Cω((0, t0)× Ṙn+1), (6.27)

where the pressure π is normalized by π(t, 0, 0−) ≡ 0, i.e.

π(t, x, y) =


q(t, 0)+

∫ 1

0
[(∇xπ(t, sx, sy) | x)+ ∂yπ(t, sx, sy)y] ds, y > 0,∫ 1

0
[(∇xπ(t, sx, sy) | x)+ ∂yπ(t, sx, sy)y] ds, y < 0.

(vii) We will now explain the steps needed to establish the crucial property (6.25). First we note
that there exists a neighborhood Λ ⊂ (1− δ, 1+ δ)× Rn × (−δ, δ) of (1, 0, 0) such that

[(λ, ν, τ ) 7→ (0, f ∗d,λ,ν,τ , g
∗
λ,ν, g

∗

h,λ,ν)] ∈ C
ω(Λ,F(a)), (6.28)

where the functions (f ∗d , g
∗, g∗h) are defined in (6.15)–(6.16). In fact, the assertion follows

immediately from [19, Lemma 8.2] for the functions (g∗, g∗h). Let us then consider the function
c∗ defined in (6.14). Let w(t) := e−tDn+1w0 for some function w0 ∈ W

2−2/p
p (Rn+1) and define

wλ,ν,τ (t, x, y) for (t, x, y) ∈ I × Rn+1 as above, with I = [0, a]. Then one verifies as in the proof
of [19, Lemma 8.2] that

wλ,ν,τ ∈ H
1
p (I ;Lp(R

n+1)) ∩ Lp(I ;H
2
p (R

n+1)) =: X1(I )
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for (λ, ν, τ ) ∈ (1 − δ, 1 + δ) × Rn × (−δ, δ), and that wλ,ν,τ solves the parameter-dependent
parabolic equation

∂tu−Aλ,ν,τu = 0, u(0) = w0,

in Rn+1, where Aλ,ν,τ is a parameter-dependent differential operator given by

Aλ,ν,τ = λ∆x +
λ

(1+ α′(y)τ t)2
∂2
y + τ

(
α(y)

1+ α′(y)τ t
−

λα′′(y)t

(1+ α′(y)τ t)3

)
∂y + (ν | ∇x)

for t ∈ [0, a] and y ∈ Ṙ, where α(y) := yϕ(y). Here we observe that

A1,0,0 = ∆, [(λ, ν, τ ) 7→ Aλ,ν,τ ] ∈ Cω(Λ,L(X1(I ),X0(I ))),

with X0(I ) := Lp(I, Lp(Rn+1)). As in the proof of [19, Lemma 8.2] it follows from the implicit
function theorem that there exists a neighborhood Λ ⊂ (1 − δ, 1 + δ) × Rn × (−δ, δ) of (1, 0, 0)
such that

[(λ, ν, τ ) 7→ wλ,ν,τ ] ∈ Cω(Λ,X1(I )). (6.29)

Applying (6.29) separately to w0 = E±(v0∇h0), and then applying R± yields

[(λ, ν, τ ) 7→ c∗λ,ν,τ ] ∈ Cω
(
Λ,H 1

p (I ;Lp(R
n+1)) ∩ Lp(I ;H

2
p (Ṙ

n+1))
)
.

It then follows from the definition of f ∗d that [(λ, ν, τ ) 7→ f ∗d,λ,ν,τ ] ∈ Cω(Λ,F2(a)). In a next step
one verifies that the function z∗λ,ν,τ solves the linear parameter-dependent problem

ρ∂tu−Aλ,ν,τu+ Bλ,τπ = 0 in Ṙn+1,

Cτu = f ∗d,λ,ν,τ in Ṙn+1,

−
1

1+ τ t
[[µ∂yv]]− [[µ∇xw]] = g∗v,λ,ν on Rn,

−
2

1+ τ t
[[µ∂yw]]+ [[π ]]− σ∆h = g∗w,λ,ν on Rn,

[[u]] = 0 on Rn,
∂th− λγw +Dνh = λg∗h,λ,ν on Rn,
u(0) = u0, h(0) = h0

(6.30)

where

Aλ,ν,τ := λµ∆x +
λµ

(1+ α′(y)τ t)2
∂2
y + τ

(
ρα(y)

1+ α′(y)τ t
−

λµα′′(y)t

(1+ α′(y)τ t)3

)
∂y + ρ(ν | ∇x),

Bλ,τπ := λ
(
∇xπ,

1
1+ α′(y)τ t

∂yπ

)
, Cτu := divxv +

1
1+ α′(y)τ t

∂yw,

Dνh := −(ν | ∇h).

We note that
A1,0,0 = µ∆, B1,0 = ∇, C1 = div, D0 = 0.

It is easy to see that the differential operators Aλ,ν,τ , Bλ,τ , Cτ and Dν depend analytically on the
parameters (λ, ν, τ ) in the appropriate function spaces. Using Thereom 5.1 and the implicit function



342 J. PRÜSS AND G. SIMONETT

theorem one shows similarly to [19, Lemma 8.3] that there is a neighborhood Λ ⊂ (1− δ, 1+ δ)×
Rn × (−δ, δ) of (1, 0, 0) such that

[(λ, ν, τ ) 7→ z∗λ,ν,τ ] ∈ Cω(Λ,E(a)). (6.31)

Let ẑ be the solution of (6.12) obtained in step (v) above. Then one verifies that ẑλ,ν,τ ∈ 2εB0E(t0)
for (λ, ν, τ ) ∈ Λ, with Λ a sufficiently small neighborhood of (1, 0, 0). Moreover, ẑλ,ν,τ solves the
nonlinear parameter-dependent problem

Lλ,ν,τ z = Kλ,ν,τ (z), z ∈ 0E(a), (6.32)

for (λ, ν, τ ) ∈ Λ, where Lλ,ν,τ z is defined by the left hand side of (6.30) and where

Kλ,ν,τ (z) :=


λFτ (u+ u

∗
λ,ν,τ , π + π

∗
λ,ν,τ , h+ h

∗
λ,ν)

Fd,τ (u+ u
∗
λ,ν,τ , h+ h

∗
λ,ν)− f

∗

d,λ,ν,τ

Gτ (u+ u
∗
λ,ν,τ , q + q

∗
λ,ν, h+ h

∗
λ,ν)− g

∗
λ,ν

λH(u+ u∗λ,ν,τ , h+ h
∗
λ,ν)− g

∗

h,λ,ν

 . (6.33)

The functions Fτ , Fd,τ and Gτ are obtained from F , Fd and G, respectively, by replacing terms
containing partial derivatives ∂y and ∂2

y in the following way:

∂yω 7→
1

1+ α′(y)τ t
∂yω, ∂2

yω 7→
1

(1+ α′(y)τ t)2
∂2
yω −

α′′(y)τ t

(1+ α′(y)τ t)3
∂yω

for ω ∈ {v,w, π}. Equation (6.32) can be reformulated as

Ψ (z, (λ, ν, τ )) := z− (Lλ,ν,τ )−1Kλ,ν,τ (z) = 0, z ∈ 0E(a). (6.34)

Here we observe that Ψ (ẑ, (1, 0, 0)) = 0 for the solution ẑ of the fixed point equation (6.18). It
follows from (6.28), (6.31) and Proposition 6.2 that

[(z, (λ, ν, τ )) 7→ Ψ (z, (λ, ν, τ ))] ∈ Cω(0E(a)×Λ, 0E(a)).

Moreover, it follows from (6.21)–(6.23) that

D1Ψ (ẑ, (1, 0, 0)) = I −D(L−1K0)(ẑ) ∈ Isom(0E(a), 0E(a)).

By the implicit function theorem there exists a neighborhoodΛ ⊂ (1− δ, 1+ δ)×Rn× (−δ, δ) of
(λ, ν, τ ) = (1, 0, 0) such that

[(λ, ν, τ ) 7→ ẑλ,ν,τ ] ∈ Cω(Λ, 0E(a)). (6.35)

Combining (6.31) and (6.35) yields (6.25). This completes the proof of Theorem 6.3. 2

Proof of Theorem 1.1. We first observe that the compatibility conditions of Theorem 1.1 are
satisfied if and only if (6.9) is satisfied. Next we note that the mapping Θh0 given by Θh0(x, y) :=
(x, y+h0(x)) defines for each h0 ∈ W

3−2/p
p (Rn) a C2-diffeomorphism from Rn+1

± ontoΩi(0)with
det[DΘh0(x, y)] = 1. Its inverse is given by Θ−1

h0
(x, y) := (x, y − h0(x)). It then follows from the

chain rule and the transformation rule for integrals that

1
C(h0)

‖u0‖W 2−2/p
p (Ω0)

6 ‖(v0, w0)‖W 2−2/p
p (Ṙn+1)

6 C(h0)‖u0‖W 2−2/p
p (Ω0)

,
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where C(h0) := M[1+‖∇h0‖BC1(Rn)], withM an appropriate constant. Consequently, there exists
ε0 > 0 such that ‖u0‖W 2−2/p

p (Ω0)
+ ‖h0‖W 3−2/p

p (Rn) 6 ε0 implies the smallness condition (6.10).
Theorem 6.3 then yields a unique solution (v,w, π, [π ], h) ∈ E(t0) which satisfies the additional
regularity properties listed in part (b) of the theorem. Setting

(u, q)(t, x, y) = (v,w, π)(t, x, y − h(t, x)), (t, x, y) ∈ O,

we then conclude that (u, q) ∈ Cω(O,Rn+2) and [[q]] ∈ Cω(M). The regularity properties
listed in (1.3)–(1.4) are implied by Lemma 6.1(b)–(c). Finally, since q(t, x, y) is defined for every
(t, x, y) ∈ O, we can conclude that q(t, ·) ∈ Ḣ 1

p (Ω(t)) ⊂ UC(Ω(t)) for every t ∈ (0, t0). �
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