Interfaces and Free Boundaries 12 (2010), 369[–408](#page-39-0) DOI 10.4171/IFB/239

Long-time behaviour of two-phase solutions to a class of forward-backward parabolic equations

FLAVIA SMARRAZZO

Department of Mathematics "G. Castelnuovo", University of Rome "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy E-mail: flavia.smarrazzo@gmail.com

[Received 20 December 2009 and in revised form 18 June 2010]

We consider two-phase solutions to the Neumann initial-boundary value problem for the parabolic equation $u_t = [\phi(u)]_{xx}$, where ϕ is a nonmonotone cubic-like function. First, we prove global existence for a restricted class of initial data u_0 , showing that two-phase solutions can be obtained as limiting points of the family of solutions to the Neumann initial-boundary value problem for the regularized equation $u_t^{\varepsilon} = [\phi(u^{\varepsilon})]_{xx} + \varepsilon u_{txx}^{\varepsilon}$ ($\varepsilon > 0$). Then, assuming global existence, we study the long-time behaviour of two-phase solutions for any initial datum $u₀$.

2010 Mathematics Subject Classification: Primary 35K20, 35K55; Secondary 28A33, 28A50.

Keywords: Forward-backward equations; two-phase solutions; pseudoparabolic regularization; longtime behaviour of solutions; steady states.

1. Introduction

In this paper we consider the Neumann initial-boundary value problem for the equation

$$
u_t = [\phi(u)]_{xx} \quad \text{in } Q := \Omega \times (0, \infty), \tag{1.1}
$$

where $\Omega \subset \mathbb{R}$ is a bounded interval (ω_1, ω_2) and the function $\phi \in C^2(\mathbb{R})$ satisfies the following assumption:

$$
(H_1) \quad\n\begin{cases}\n\phi'(u) > 0 \quad \text{if } u \in (-\infty, b) \cup (c, \infty), \ b < 0 < c, \\
\phi'(u) < 0 \quad \text{if } u \in (b, c), \\
B := \phi(b) > \phi(c) =: A, \quad \phi(u) \to \pm \infty \text{ as } u \to \pm \infty, \\
\phi''(b) \neq 0, \quad \phi''(c) \neq 0.\n\end{cases}\n\tag{1.2}
$$

We also denote by $a \in (-\infty, b)$ and $d \in (c, \infty)$ the roots of the equation $\phi(u) = A$, respectively $\phi(u) = B$ (see Figure [1\)](#page-0-0).

In view of the nonmonotone character of ϕ , [\(1.1\)](#page-0-1) is a *forward-backward* parabolic equation, since it is well-posed forward in time at the points where $\phi' > 0$ and it is ill-posed where $\phi' < 0$. In this connection, we denote by

$$
S_1 := \{(u, \phi(u)) \mid u \in (-\infty, b]\} \equiv \{(s_1(v), v) \mid v \in (-\infty, B]\}
$$
\n(1.3)

and

$$
S_2 := \{(u, \phi(u)) \mid u \in [c, \infty)\} \equiv \{(s_2(v), v) \mid v \in [A, \infty)\}\tag{1.4}
$$

c European Mathematical Society 2010

FIG. 1. Assumption (H_1) .

the *stable branches* of the equation $v = \phi(u)$, whereas

$$
S_0 := \{(u, \phi(u)) \mid u \in (b, c)\} \equiv \{(s_0(v), v)) \mid v \in (A, B)\}\tag{1.5}
$$

is referred to as the *unstable branch*.

Equation [\(1.1\)](#page-0-1) with a function ϕ satisfying assumption (H₁) naturally arises in the theory of phase transitions. In this context, u represents the phase field and equation [\(1.1\)](#page-0-1) describes the evolution between stable phases. With a nonlinearity ϕ of a different shape, whose main feature is *degeneracy at infinity*, equation [\(1.1\)](#page-0-1) describes models in population dynamics ([\[Pa\]](#page-39-1)), oceanography ([\[BBDU\]](#page-38-0)), image processing ([\[PM\]](#page-39-2)) and gradient systems associated with nonconvex functionals ([\[BFG\]](#page-38-1)). In these cases equation [\(1.1\)](#page-0-1) can be obtained by differentiating the one-dimensional *Perona–Malik equation*

$$
z_t = [\phi(z_x)]_x \tag{1.6}
$$

with respect to the space variable x. The transformation $u := z_x$ gives a relation between equations [\(1.6\)](#page-1-0) and [\(1.1\)](#page-0-1). Here typical choices of the function ϕ are either $\phi(s) = s(1 + s^2)^{-1}$ or $\phi(s) = s \exp(-s)$. Observe that in both cases ϕ degenerates to zero as s diverges to infinity.

The initial-boundary value problem for equation [\(1.1\)](#page-0-1) (either under Dirichlet or Neumann boundary conditions) has been widely addressed in the literature. Most techniques consist in *modifying* the (possibly) ill-posed equation (hence the boundary conditions) by some regularization which leads to a well-posed problem. Then a natural question is whether the approximating solutions define a solution (in some suitable sense, depending on the regularization itself) of [\(1.1\)](#page-0-1) as the regularization parameter goes to zero. Many regularizations of equation [\(1.1\)](#page-0-1) have been proposed and investigated ([\[BBDU,](#page-38-0) [NP,](#page-39-3) [Sl\]](#page-39-4)). Among them, let us mention the *pseudoparabolic* regularization, described by the Sobolev equation

$$
u_t = [\phi(u)]_{xx} + \varepsilon [u_t]_{xx}.
$$
\n
$$
(1.7)
$$

In particular, [\(1.7\)](#page-1-1) has been studied in [\[NP\]](#page-39-3) for the corresponding Neumann initial-boundary value problem in $Q_T := \Omega \times (0, T)$ ($T > 0$) and for cubic-like response functions ϕ satisfying assumption (H_1) (analogous results have been given in [\[Pa\]](#page-39-1) in the case of "Perona– Malik" ϕ). Moreover, in [\[Pl1\]](#page-39-5) it is shown that the limiting points of the family of the approximating solutions $(u^{\varepsilon}, \phi(u^{\varepsilon}))$ define a class of solutions (u, v) —precisely the *weak entropy measure-valued solutions*—to the Neumann initial-boundary value problem in O_T for the original unperturbed equation [\(1.1\)](#page-0-1). The main properties of such solutions (u, v) obtained in the limiting process $\varepsilon \to 0$ can be summarized as follows:

• $u \in L^{\infty}(Q_T)$, $v \in L^{\infty}(Q_T) \cap L^2((0,T); H^1(\Omega))$ and there exist $\lambda_i \in L^{\infty}(Q_T)$ $(i = 0, 1, 2)$, $0 \le \lambda_i \le 1$ and $\sum_{i=0}^2 \lambda_i = 1$ such that

$$
u=\sum_{i=0}^2\lambda_i s_i(v);
$$

• the couple (u, v) solves in the weak sense the equation

$$
u_t = v_{xx} \quad \text{ in } \mathcal{D}'(Q_T);
$$

 \bullet the couple (u, v) satisfies the following class of *entropy inequalities*:

$$
\iint_{Q_T} [G^*\psi_t - g(v)v_x\psi_x - g'(v)v_x^2\psi] dx dt + \int_{\Omega} G(u_0)\psi(x,0) dx \geq 0
$$

for any $\psi \in C^1(\overline{Q}_T)$ with $\psi \geq 0$, $\psi(\cdot, T) \equiv 0$. Here, for any $g \in C^1(\mathbb{R})$ with $g' \geq 0$, the function G^* is defined by setting

$$
G^* = \sum_{i=0}^2 \lambda_i G(s_i(v)), \quad \text{where} \quad G(\lambda) := \int_0^{\lambda} g(\phi(s)) \, ds + k \quad (k \in \mathbb{R}).
$$

Let us also mention that both in [\[NP\]](#page-39-3) and [\[Pl1\]](#page-39-5) the general case $\Omega \subseteq \mathbb{R}^N$, $N > 1$, is considered as well.

As already pointed out, the main results in [\[Pl1\]](#page-39-5) show that weak entropy measure-valued solutions to both the Neumann and Dirichlet initial-boundary value problems for equation [\(1.1\)](#page-0-1) exist for any initial datum $u_0 \in L^{\infty}(\Omega)$ and for any regular cubic-like ϕ satisfying assumption (H_1) . As a matter of fact, actually the uniqueness of such solutions is unknown, albeit this class seems a natural candidate in view of the entropy inequalities (see also [\[H,](#page-39-6) [Z\]](#page-39-7) for general nonuniqueness results). On the other hand, a natural question is whether uniqueness can be recovered by introducing some additional constraints. For this purpose, *two-phase solutions* have been introduced in [\[EP\]](#page-39-8) and investigated in [\[MTT1,](#page-39-9) [MTT2,](#page-39-10) [T\]](#page-39-11). Roughly speaking, a two-phase solution to the Neumann initial-boundary value problem associated to equation [\(1.1\)](#page-0-1) in $Q_T = \Omega \times (0, T)$ is a weak entropy measure-valued solution (u, v) (in the sense of [\[Pl1\]](#page-39-5)) which describes transitions only between stable phases. Such solutions exhibit a smooth interface $\xi : [0, T] \rightarrow \overline{\Omega}$ such that

$$
u = s_1(v) \text{ in } \{(x, t) \in Q_T \mid \omega_1 \le x < \xi(t) \},
$$
\n
$$
u = s_2(v) \text{ in } \{(x, t) \in Q_T \mid \xi(t) < x \le \omega_2 \}.
$$

Here s_1 and s_2 are defined in [\(1.3\)](#page-0-2) and [\(1.4\)](#page-0-3) (recall also that $\Omega = (\omega_1, \omega_2)$). It is worth observing that the interface $\xi(t)$ evolves obeying admissibility conditions which follow from the entropy inequalities (see Remark [2.2\)](#page-4-0).

Local existence and *uniqueness* of *smooth* two-phase solutions to the Cauchy problem associated to equation [\(1.1\)](#page-0-1) was studied in [\[MTT2\]](#page-39-10) for *piecewise* response functions φ. Actually, *global* existence of such solutions is proven to hold for initial data functions u_0 satisfying the condition $a \le u_0 \le d$ (see Figure [1\)](#page-0-0), whereas it is still unknown in the general case.

In this paper we obtain global existence of two-phase solutions to the Neumann problem associated to equation [\(1.1\)](#page-0-1) in the case of cubic-like response functions ϕ and initial data functions u_0 subject to the constraint $a \leq u_0 \leq b$ in $(\omega_1, 0)$ and $c \leq u_0 \leq d$ in $(0, \omega_2)$; such a result can be regarded as the counterpart of the one obtained in [\[MTT2\]](#page-39-10) for the Cauchy problem associated to equation [\(1.1\)](#page-0-1) in the case of piecewise nonlinearities ϕ . In particular, we will prove that global two-phase solutions (in the sense of Definition [2.1](#page-3-0) below) can be obtained as limiting points of the solutions $(u^{\varepsilon}, \phi(u^{\varepsilon}))$ to the Neumann initial-boundary value problems associated to the pseudoparabolic regularization [\(1.7\)](#page-1-1) of equation [\(1.1\)](#page-0-1).

We also study the long-time behaviour of two-phase solutions in the general case of arbitrary cubic-like response functions ϕ and for arbitrary initial data u_0 .

The paper is organized as follows. In Section [2](#page-3-1) we describe the mathematical framework and give the main results, while Sections [3](#page-11-0)[–6](#page-31-0) are essentially devoted to the proofs.

2. Mathematical framework and results

2.1 *Basic properties*

Let us consider the initial-boundary value problem

$$
\begin{cases}\n u_t = [\phi(u)]_{xx} & \text{in } \Omega \times (0, \infty) =: Q, \\
 [\phi(u)]_x = 0 & \text{on } \partial \Omega \times (0, \infty), \\
 u = u_0 & \text{in } \Omega \times \{0\},\n\end{cases}
$$
\n(2.1)

where $\phi \in C^2(\mathbb{R})$ satisfies assumption (H_1) . For simplicity, in what follows we will always assume that $0 \in \Omega$. Concerning the initial datum $u_0 \in L^{\infty}(\Omega)$ we formulate the following, quite natural, assumption:

$$
(H_2) \quad \begin{cases} u_0 \leq b & \text{almost everywhere in } (\omega_1, 0), \\ u_0 \geq c & \text{almost everywhere in } (0, \omega_2) \end{cases}
$$

(see Figure [1\)](#page-0-0). Following [\[EP,](#page-39-8) [MTT1,](#page-39-9) [MTT2\]](#page-39-10), we give the definition of two-phase solution to problem [\(2.1\)](#page-3-2).

DEFINITION 2.1 By a *two-phase solution* of problem [\(2.1\)](#page-3-2) we mean any triple (u, v, ξ) such that: (i) $u \in L^{\infty}(Q)$, $v \in L^{\infty}(Q) \cap L^{2}((0, T); H^{1}(\Omega))$ for any $T > 0$, and $\xi : [0, \infty) \to \overline{\Omega}$ is

- Lipschitz continuous, $\xi(0) = 0$;
- (ii) we have

$$
u = s_i(v) \text{ in } V_i \quad (i = 1, 2), \tag{2.2}
$$

where

$$
V_1 := \{ (x, t) \in Q \mid \omega_1 < x < \xi(t), t \in (0, \infty) \},
$$
\n
$$
V_1 := \{ (x, t) \in Q \mid \xi(t) \text{ and } y = t \in (0, \infty) \}.
$$
\n(2.3)

$$
V_2 := \{(x, t) \in Q \mid \xi(t) < x < \omega_2, \ t \in (0, \infty)\},\tag{2.4}
$$

$$
\gamma := \partial V_1 \cap \partial V_2 = \{ (\xi(t), t) \mid t \in [0, \infty) \};\tag{2.5}
$$

(iii) for any $T > 0$ set $Q_T := \Omega \times (0, T)$; then

$$
\iint_{Q_T} [u\psi_t - v_x \psi_x] dx dt + \int_{\Omega} u_0(x)\psi(x,0) dx = 0
$$
\n(2.6)

for any $\psi \in C^1(\overline{Q}_T)$, $\psi(\cdot, T) \equiv 0$ in $\overline{\Omega}$;

(iv) for any $g \in C^1(\mathbb{R})$, set

$$
G(\lambda) := \int_0^{\lambda} g(\phi(s)) ds + k \quad (k \in \mathbb{R}), \tag{2.7}
$$

where k is arbitrary, so that G is *any* primitive of the function $g \circ \phi$; then, for any $T > 0$ and under the assumption $g' \geq 0$, the *entropy inequalities*

$$
\iint_{Q_T} [G(u)\psi_t - g(v)v_x \psi_x - g'(v)v_x^2 \psi] dx dt + \int_{\Omega} G(u_0(x))\psi(x,0) dx \ge 0 \tag{2.8}
$$

hold for any $\psi \in C^1(\overline{Q}_T)$ with $\psi \geq 0$ and $\psi(\cdot, T) \equiv 0$ in $\overline{\Omega}$.

REMARK 2.1 Let us denote by $C^{2,1}(Q)$ the set of functions $f \in C(Q)$ such that $f_t, f_x, f_{xx} \in$ $C(Q)$. Let (u, v, ξ) be any two-phase solution of problem [\(2.1\)](#page-3-2) (in the sense of Definition [2.1\)](#page-3-0). Then u is a weak solution of the equation

$$
u_t = [\phi(u)]_{xx} \quad \text{in } V_i
$$

 $(i = 1, 2)$. This implies that $u \in C(V_i)$ ([\[AdB\]](#page-38-2)). Moreover

$$
u \in C^{2,1}(V_1 \setminus V_b), \quad V_b := \{(x, t) \in V_1 \mid u(x, t) = b\},
$$

$$
u \in C^{2,1}(V_2 \setminus V_c), \quad V_c := \{(x, t) \in V_2 \mid u(x, t) = c\}
$$

([\[LSU,](#page-39-12) [Va\]](#page-39-13)).

REMARK 2.2 Let (u, v, ξ) be any two-phase solution of problem [\(2.1\)](#page-3-2) and *assume* that $\xi \in$ $C^1([0,\infty))$, $u \in C^{2,1}(\overline{V_i})$ $(i = 1, 2)$. Moreover, denote by

$$
[f(\xi(t),t)] := \lim_{h \to 0^+} \{ f(\xi(t) + h, t) - f(\xi(t) - h, t) \} = f(\xi(t)^+, t) - f(\xi(t)^-, t)
$$

the jump across the interface γ of any piecewise continuous function f. Then:

• the Rankine–Hugoniot condition

$$
\xi'(t) = -\frac{[v_x(\xi(t), t)]}{[u(\xi(t), t)]}
$$
\n(2.9)

holds for any $t > 0$ ([\[EP,](#page-39-8) [MTT1\]](#page-39-9));

• by the entropy inequalities (2.8) we obtain

$$
\xi'(t)[G(u)(\xi(t),t)] \geq -g(v(\xi(t),t))[v_x(\xi(t),t)] \tag{2.10}
$$

for any $t > 0$ and for any G defined by [\(2.7\)](#page-4-2) in terms of $g \in C^1(\mathbb{R})$ with $g' \geq 0$. Observe that the above condition implies that for any $t > 0$,

$$
\begin{cases}\n\xi'(t) \geq 0 & \text{if } v(\xi(t), t) = A, \\
\xi'(t) \leq 0 & \text{if } v(\xi(t), t) = B, \\
\xi'(t) = 0 & \text{if } v(\xi(t), t) \neq A, \ v(\xi(t), t) \neq B\n\end{cases}
$$
\n(2.11)

([\[EP,](#page-39-8) [MTT1\]](#page-39-9)). That is, jumps between the stable phases S_1 and S_2 occur only at the points (x, t) where the function $v(x, t)$ takes the value A (jumps from S_2 to S_1) or B (jumps from S_1 to S_2).

Finally, if we weaken the conditions $\xi \in C^1([0,\infty))$, $u \in C^{2,1}(\overline{V}_i)$ $(i = 1, 2)$ to the less restrictive assumptions $\xi \in \text{Lip}([0,\infty))$, $u \in C^{2,1}(V_i)$ and $v_x(\cdot,t) \in BV(\Omega)$ for almost every $t > 0$, then the Rankine–Hugoniot conditions [\(2.9\)](#page-4-3) and the jump conditions [\(2.10\)](#page-4-4)–[\(2.11\)](#page-5-0) continue to hold almost everywhere in t .

Let us conclude the section with the following refinement of the entropy inequalities [\(2.8\)](#page-4-1).

PROPOSITION 2.1 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2). For any $g \in C^1(\mathbb{R})$, let G be the function defined by [\(2.7\)](#page-4-2). Then, for any $0 \le t_1 < t_2$ and for any $\varphi \in C^1(\overline{\Omega})$ with $\varphi \ge 0$,

$$
\int_{\Omega} G(u(x,t_1))\varphi(x) dx - \int_{\Omega} G(u(x,t_2))\varphi(x) dx \geqslant \int_{t_1}^{t_2} \int_{\Omega} [g(v)v_x \varphi_x + g'(v)v_x^2 \varphi] dx dt \quad (2.12)
$$

for any $g \in C^1(\mathbb{R})$ with $g' \geq 0$.

REMARK 2.3 Observe that inequalities [\(2.12\)](#page-5-1) can be regarded as a *pointwise version* of the entropy inequalities [\(2.8\)](#page-4-1).

2.2 *The case* $a \leq u_0 \leq d$: smoothness and uniqueness

This subsection is devoted to the study of problem [\(2.1\)](#page-3-2) in the case of initial data u_0 satisfying the following reinforcement of assumption $(H₂)$:

$$
(H_3) \quad \begin{cases} a \leq u_0 \leq b & \text{almost everywhere in } (\omega_1, 0), \\ c \leq u_0 \leq d & \text{almost everywhere in } (0, \omega_2). \end{cases}
$$

The following proposition shows that the interval [a, d] is *positively invariant* for problem [\(2.1\)](#page-3-2) and that under assumption (H_3) the interface $\gamma = \{(\xi(t), t)\}\$ does not move.

PROPOSITION 2.2 Assume that $u_0 \,\in L^{\infty}(\Omega)$ satisfies assumption (H_3) and let (u, v, ξ) be any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Then

$$
a \leqslant u(x, t) \leqslant d \tag{2.13}
$$

for almost every $(x, t) \in Q$. Moreover,

$$
\xi(t) \equiv 0 \quad \text{ for any } t \ge 0. \tag{2.14}
$$

REMARK 2.4 As a consequence of the above result, for initial data u_0 subject to assumption (H_3) we have $V_1 = (\omega_1, 0) \times (0, \infty)$, $V_2 = (0, \omega_2) \times (0, \infty)$. Therefore, following the terminology in [\[MTT2\]](#page-39-10), problem [\(2.1\)](#page-3-2) can be regarded as a *steady boundary* problem, since $\xi'(t) = 0$ for any $t \geqslant 0$.

The following proposition shows that the set where $\phi'(u) = 0$ is nonincreasing in time.

PROPOSITION 2.3 Let $u_0 \in L^{\infty}(\Omega)$ satisfy assumption (H_3) , assume $\phi(u_0) \in C(\overline{\Omega})$ and let $(u, v, 0)$ be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Then:

- (i) for any $x \in (\omega_1, 0)$ such that $u_0(x) < b$, we have $u(x, t) < b$ for any $t > 0$;
- (ii) for any $x \in (0, \omega_2)$ such that $u_0(x) > c$, we have $u(x, t) > c$ for any $t > 0$.

In view of the above proposition and Remark [2.1](#page-4-5) the following smoothness result holds.

COROLLARY 2.4 Let $u_0 \in L^{\infty}(\Omega)$ satisfy the following assumption:

$$
(A_1) \quad \begin{cases} \phi(u_0) \in C(\overline{\Omega}), \\ u_0 < b \quad \text{in } (\omega_1, 0), \\ u_0 > c \quad \text{in } (0, \omega_2). \end{cases}
$$

Let $(u, v, 0)$ be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Then $u \in C^{2,1}(V_i)$ $(i = 1, 2).$

Let us denote by $BV(\Omega)$ the set of functions with bounded total variation on Ω . The following uniqueness result is the counterpart of the one proven in [\[MTT2\]](#page-39-10).

THEOREM 2.5 Let u_0 satisfy assumption (A_1) and let $(u_1, v_1, 0)$, $(u_2, v_2, 0)$ be two two-phase solutions of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Moreover, assume that $v_{1x}(\cdot, t), v_{2x}(\cdot, t) \in BV(\Omega)$ for almost every $t \in (0, \infty)$. Then $(u_1, v_1) = (u_2, v_2)$.

2.3 *The case* $a \leq u_0 \leq d$ *: global existence*

STEP 1: *The approximating problems.* For any $\varepsilon > 0$ let us consider the pseudoparabolic regularization of [\(2.1\)](#page-3-2), described by the problem

$$
\begin{cases}\n u_t = [\phi(u) + \varepsilon u_t]_{xx} \equiv v_{xx} & \text{in } Q, \\
 [\phi(u) + \varepsilon u_t]_x \equiv v_x = 0 & \text{in } \{\omega_1, \omega_2\} \times (0, \infty), \\
 u = u_0 & \text{in } \Omega \times \{0\},\n\end{cases}
$$
\n(2.15)

where the *chemical potential* v is defined by setting

$$
v := \phi(u) + \varepsilon u_t. \tag{2.16}
$$

DEFINITION 2.2 Let $u_0 \in L^{\infty}(\Omega)$. For any $\varepsilon > 0$ a solution to problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) is a couple $(u^{\varepsilon}, v^{\varepsilon})$, where $u^{\varepsilon} \in C^{1}([0, \infty); L^{\infty}(\Omega))$ and $v^{\varepsilon} \in C([0, \infty); W^{2, \infty}(\Omega))$, which satisfies [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1) in the strong sense.

The following well-posedness result was proven in [\[NP\]](#page-39-3).

THEOREM 2.6 For any $u_0 \in L^{\infty}(\Omega)$ and $\varepsilon > 0$ there exists a unique solution $(u^{\varepsilon}, v^{\varepsilon})$ of [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1). Moreover, for any $t > 0$ the function $v^{\varepsilon}(\cdot, t)$ solves the problem

$$
\begin{cases}\n-\varepsilon v_{xx}^{\varepsilon}(\cdot,t) + v^{\varepsilon}(\cdot,t) = \phi(u^{\varepsilon})(\cdot,t) & \text{in } \Omega, \\
v_x^{\varepsilon}(\cdot,t) = 0 & \text{in } \{\omega_1,\omega_2\}.\n\end{cases}
$$
\n(2.17)

For any $\varepsilon > 0$ the solution $(u^{\varepsilon}, v^{\varepsilon})$ to problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) satisfies a family of *viscous entropy inequalities*, this terminology being suggested by a formal analogy with the entropy inequalities for *viscous conservation laws* ([\[EP,](#page-39-8) [MTT2,](#page-39-10) [NP,](#page-39-3) [Pl1\]](#page-39-5)).

PROPOSITION 2.7 For any $u_0 \in L^{\infty}(\Omega)$ and $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1) given by Theorem [2.6.](#page-6-2) For any $g \in C^1(\mathbb{R})$ let G be the function defined by [\(2.7\)](#page-4-2). Then, for any $g \in C^1(\mathbb{R})$ with $g' \geq 0$, the entropy inequalities

$$
\int_{\Omega} G(u^{\varepsilon}(x, t_2)) \psi(x, t_2) dx - \int_{\Omega} G(u^{\varepsilon}(x, t_1)) \psi(x, t_1) dx
$$
\n
$$
\leqslant \int_{t_1}^{t_2} \int_{\Omega} \{ G(u^{\varepsilon}) \psi_t - g(v^{\varepsilon}) v_x^{\varepsilon} \psi_x - g'(v^{\varepsilon}) (v_x^{\varepsilon})^2 \psi \} dx dt \quad (2.18)
$$

hold for any $\psi \in C^1(\overline{Q})$ with $\psi \geqslant 0$, and for any $0 \leqslant t_1 < t_2$.

One of the main consequences of the viscous entropy inequalities (2.18) is the existence of *positively invariant regions* for the regularized problems [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) ([\[NP\]](#page-39-3)), therefore a priori estimates for both the families $\{u^{\varepsilon}\}, \{v^{\varepsilon}\}.$ In particular, the following theorem holds.

THEOREM 2.8 For any $u_0 \in L^{\infty}(\Omega)$ and $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution to problem [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1). Assume that the initial datum u_0 satisfies assumption (H_3). Then

$$
a \leqslant u^{\varepsilon} \leqslant d \tag{2.19}
$$

almost everywhere in O. Moreover, for any $t > 0$ we have:

- (i) $a \leq u^{\varepsilon}(x, t) \leq b$ for almost every $x \in (\omega_1, 0)$;
- (ii) $c \leq u^{\varepsilon}(x, t) \leq d$ for almost every $x \in (0, \omega_2)$.

In view of Theorem [2.8,](#page-7-1) for any initial datum $u_0 \text{ }\in L^{\infty}(\Omega)$ subject to assumption (H_3) the solution u^{ε} of problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) satisfies

$$
u^{\varepsilon} = \begin{cases} s_1(\phi(u^{\varepsilon})) & \text{almost everywhere in } (\omega_1, 0) \times (0, \infty), \\ s_2(\phi(u^{\varepsilon})) & \text{almost everywhere in } (0, \omega_2) \times (0, \infty), \end{cases}
$$
 (2.20)

where s_1 and s_2 are defined in [\(1.3\)](#page-0-2) and [\(1.4\)](#page-0-3), respectively.

STEP 2: *Vanishing viscosity limit.* Fix any $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem (2.15) – (2.16) with initial datum $u₀$. As already remarked, crucial consequences of the viscous entropy inequalities [\(2.18\)](#page-7-0) are a priori estimates for both the families $\{u^{\varepsilon}\}\$ and $\{v^{\varepsilon}\}\$. In particular in [\[Pl1\]](#page-39-5) (see also [\[EP,](#page-39-8) [MTT1,](#page-39-9) [ST\]](#page-39-14)) the following estimates are proved:

$$
||u^{\varepsilon}||_{L^{\infty}(Q)} \leqslant C,\tag{2.21}
$$

$$
||v^{\varepsilon}||_{L^{\infty}(Q)} \leqslant C,\tag{2.22}
$$

$$
\|v_x^{\varepsilon}\|_{L^2(Q)} + \|\sqrt{\varepsilon}u_t^{\varepsilon}\|_{L^2(Q)} \leq C,
$$
\n(2.23)

for some constant $C > 0$ independent of ε . In view of [\(2.21\)](#page-7-2)–[\(2.23\)](#page-7-3), we obtain the following convergence results.

THEOREM 2.9 Let $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1) with initial datum u_0 . Then:

(i) there exist a sequence $\{\varepsilon_k\}, \varepsilon_k \to 0$, and two functions $u \in L^{\infty}(Q)$, $v \in L^{\infty}(Q) \cap$ $L^2((0, T); H^1(\Omega))$ for any $T > 0$ with $v_x \in L^2(Q)$, such that

$$
u^{\varepsilon_k} \stackrel{*}{\rightharpoonup} u \qquad \text{in } L^{\infty}(Q),\tag{2.24}
$$

$$
\phi(u^{\varepsilon_k}), v^{\varepsilon_k} \stackrel{*}{\rightharpoonup} v \qquad \text{in } L^{\infty}(Q), \tag{2.25}
$$

$$
v_x^{\varepsilon_k} \rightharpoonup v_x \quad \text{in } L^2(Q) \tag{2.26}
$$

as $k \to \infty$;

(ii) for any $T > 0$ let $Q_T = \Omega \times (0, T)$; then for any $T > 0$ the couple (u, v) satisfies the equality

$$
\iint_{Q_T} \{u\psi_t - v_x\psi_x\} dx dt + \int_{\Omega} u_0(x)\psi(x,0) dx = 0
$$
\n(2.27)

for any $\psi \in C^1(\overline{Q}_T)$ with $\psi(\cdot, T) \equiv 0$ in $\overline{\Omega}$.

If we had $v = \phi(u)$, the couple (u, v) given by Theorem [2.9](#page-7-4) would be a weak solution of problem [\(2.1\)](#page-3-2). However, in view of the nonmonotone character of ϕ , we cannot guarantee such a conclusion in the general case of arbitrary initial data $u_0 \in L^{\infty}(\Omega)$. In particular, in [\[Pl1\]](#page-39-5) it is shown that there exist $\lambda_i \in L^{\infty}(Q)$ $(i = 0, 1, 2)$ with $0 \le \lambda_i \le 1$ and $\sum_{i=0}^{2} \lambda_i = 1$ almost everywhere in Q such that

$$
u(x,t) = \sum_{i=0}^{2} \lambda_i(x,t) s_i(v(x,t))
$$
\n(2.28)

for almost every $(x, t) \in Q$, where $s_i(v)$ denote the three roots of the equation $v = \phi(u)$ $(i = 0, 1, 2)$. In other words, for arbitrary initial data $u_0 \in L^{\infty}(\Omega)$, the limiting function u is a *superposition of different phases* and the coefficients λ_i ($i = 0, 1, 2$) can be regarded as *phase fractions* (see also [\[EP,](#page-39-8) [MTT1,](#page-39-9) [Sm,](#page-39-15) [ST\]](#page-39-14)). In the light of the above characterization, a natural question is whether all the coefficients λ_i play a role in [\(2.28\)](#page-8-0) or whether under suitable assumptions on the initial datum u_0 we can arrange that $v = \phi(u)$ almost everywhere in O. Observe that in this last case the couple (u, v) would be a weak solution of problem [\(2.1\)](#page-3-2). In this connection, using an alternative proof of the results given in [\[Pl1\]](#page-39-5), in the following theorem we show that under the more restrictive assumption (H_3) the characterization [\(2.20\)](#page-7-5) carries over to the limiting functions u, v.

THEOREM 2.10 Let $u_0 \in L^{\infty}(\Omega)$ satisfy assumption (H_3) and let (u, v) be the limiting couple given by Theorem [2.9,](#page-7-4) corresponding to u_0 . Then:

(i) the following characterization holds:

$$
u = \begin{cases} s_1(v) & \text{in } (\omega_1, 0) \times (0, \infty), \\ s_2(v) & \text{in } (0, \omega_2) \times (0, \infty); \end{cases}
$$
 (2.29)

(ii) there exists a subsequence $\{\varepsilon_j\} \subseteq \{\varepsilon_k\}$ such that

$$
\phi(u^{\varepsilon_j}), v^{\varepsilon_j} \to v,\tag{2.30}
$$

$$
u^{\varepsilon_j} \to u \tag{2.31}
$$

almost everywhere in Q;

(iii) for any $g \in C^1(\mathbb{R})$ with $g' \ge 0$ let G be the function defined by [\(2.7\)](#page-4-2), corresponding to g; then the entropy inequalities [\(2.8\)](#page-4-1) hold.

In other words, if assumption (H_3) holds, Theorems [2.9–](#page-7-4)[2.10](#page-8-1) give a triple $(u, v, 0)$ that is a *natural candidate* for a two-phase solution to problem (2.1) with initial datum u_0 . Such a *global existence* result is the content of the following corollary.

COROLLARY 2.11 Let $u_0 \in L^{\infty}(\Omega)$ and let assumption (H_3) hold. Then there exists a two-phase solution $(u, v, 0)$ to problem (2.1) .

REMARK 2.5 (i) The *global existence* result of Corollary [2.11](#page-9-0) is analogous to the one obtained— with very different methods—in [\[MTT2\]](#page-39-10) for the Cauchy problem associated to equation [\(1.1\)](#page-0-1).

(ii) As already remarked, when $u_0 \in L^{\infty}(\Omega)$ is an arbitrary initial datum to problem [\(2.1\)](#page-3-2) subject to the only assumption (H_2) , passing to the limit as $\varepsilon \to 0$ in the regularized problems [\(2.15\)](#page-6-0) need not give a two-phase solution to problem [\(2.1\)](#page-3-2) ([\[EP,](#page-39-8) [Pl1,](#page-39-5) [ST\]](#page-39-14)). In other words, *global existence* of two-phase solutions to both the Neumann initial-boundary value problem [\(2.1\)](#page-3-2) and the Cauchy problem for equation [\(1.1\)](#page-0-1) is proven to hold under assumption (H_3) , but if we consider arbitrary initial data u_0 subject to the less restrictive assumption (H_2) , the situation is more complicated and global existence actually remains an open problem. However, under the weaker condition (H_2) , in [\[MTT2\]](#page-39-10) *local existence* of two-phase solutions to the Cauchy problem associated to equation [\(1.1\)](#page-0-1) is established for piecewise response functions ϕ .

2.4 *Long-time behaviour*

In what follows, *assuming global existence*, we investigate the asymptotic behaviour in time of two-phase solutions to problem [\(2.1\)](#page-3-2) for any initial datum $u_0 \in L^{\infty}(\Omega)$ satisfying assumption (H_2) . The techniques and the results we obtain are quite similar to those proven in [\[ST\]](#page-39-14) where the long-time behaviour of general weak entropy measure-valued solutions is studied. However, in this case some specific novel features arise, in particular the characterization of the asymptotic behaviour of the interface $\xi(t)$ (see Theorem [2.16](#page-10-0) below).

STEP 1: *A priori estimates*. Let us begin with some basic properties of two-phase solutions to problem [\(2.1\)](#page-3-2). For any initial datum $u_0 \in L^{\infty}(\Omega)$ set

$$
M_{u_0} := \frac{1}{|\Omega|} \int_{\Omega} u_0(x) \, \mathrm{d}x. \tag{2.32}
$$

By the homogeneous Neumann boundary conditions in [\(2.1\)](#page-3-2), we deduce the following conservation law.

PROPOSITION 2.12 Let $u_0 \,\in L^{\infty}(\Omega)$ and let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Then for any $t \ge 0$,

$$
\frac{1}{|\Omega|} \int_{\Omega} u(x, t) \, \mathrm{d}x = M_{u_0}.\tag{2.33}
$$

Moreover, by the pointwise entropy inequalities [\(2.12\)](#page-5-1) we obtain the following two results, whose role will be crucial below.

PROPOSITION 2.13 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2). For any $g \in C^1(\mathbb{R})$, let G be the function defined by (2.7) . Then for any nondecreasing g the following limit exists:

$$
L_g := \lim_{t \to \infty} \int_{\Omega} G(u)(x, t) \, \mathrm{d}x \quad (L_g \in \mathbb{R}). \tag{2.34}
$$

PROPOSITION 2.14 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2). Then there exists $C > 0$ such that

$$
\int_0^\infty \int_{\Omega} v_x^2(x, t) \, \mathrm{d}x \, \mathrm{d}t \leqslant C. \tag{2.35}
$$

STEP 2: *Convergence results*. Fix any two-phase solution (u, v, ξ) of problem [\(2.1\)](#page-3-2). Here we try to establish existence (or nonexistence), in some suitable topology, of the limit of the families $v(\cdot, t)$, $\xi(t)$, $u(\cdot, t)$ as t diverges to infinity. To this end, let us define *good sequences* to be the diverging sequences $\{t_n\} \subseteq (0, \infty)$ such that

$$
\sup_{n \in \mathbb{N}} \int_{\Omega} v_x^2(x, t_n) \, \mathrm{d}x < \infty,\tag{2.36}
$$

and *bad sequences* to be the diverging sequences $\{t_n\} \subseteq (0, \infty)$ such that

$$
\sup_{n \in \mathbb{N}} \int_{\Omega} v_x^2(x, t_n) \, \mathrm{d}x = \infty. \tag{2.37}
$$

The following theorem describes the long-time behaviour of the function $v(\cdot, t)$ along any diverging sequence $\{t_n\}$.

THEOREM 2.15 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 and let M_{u_0} be defined by [\(2.32\)](#page-9-1). Then there exists a constant $v^* \in \mathbb{R}$ (uniquely determined by the solution (u, v, ξ) itself) such that:

(i) for any diverging *good* sequence $\{t_n\}$ satisfying [\(2.36\)](#page-10-1) we have

$$
v(\cdot, t_n) \to v^* \quad \text{in } C(\overline{\Omega}); \tag{2.38}
$$

(ii) for any diverging bad sequence $\{t_n\}$ satisfying [\(2.37\)](#page-10-2) we have

$$
v(\cdot, t_n) \to v^* \quad \text{in measure}; \tag{2.39}
$$

(iii) $A \leq v^* \leq B$ if and only if $a \leq M_{u_0} \leq d$; finally, if $M_{u_0} < a$ (respectively, $M_{u_0} > d$) then $v^* = \phi(M_{u_0})$ and for any sufficiently small $\varepsilon > 0$ there exists $T > 0$ such that $v(\cdot, t) < A - \varepsilon$ (respectively, $v(\cdot, t) > B + \varepsilon$) in Ω for any $t \geq T$.

The above theorem gives a characterization of the asymptotic behaviour in time of the function $v(\cdot, t)$. The next step is the study of the interface $\xi(t)$ as t diverges. This is the content of the following theorem.

THEOREM 2.16 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 , let M_{u_0} be defined by [\(2.32\)](#page-9-1) and let v^* be the constant given by Theorem [2.15.](#page-10-3) Then the limit

$$
\lim_{t \to \infty} \xi(t) =: \xi^*
$$
\n(2.40)

exists. Moreover:

- (i) if $A < v^* < B$ there exists $T > 0$ such that $\xi(t) = \xi^*$ for any $t \geq T$;
- (ii) if $v^* < A$ (respectively, $v^* > B$) then $\xi^* = \omega_2$ (respectively, $\xi^* = \omega_1$) and there exists $T > 0$ such that $\xi(t) = \omega_2$ (respectively, $\xi(t) = \omega_1$) for any $t \geq T$.

REMARK 2.6 Some remarks concerning Theorems [2.15–](#page-10-3)[2.16](#page-10-0) are in order:

(i) Theorem [2.16](#page-10-0) shows that if $v^* \neq A$, B the interface $\xi(t)$ stabilizes to the value ξ^* in finite time. (ii) In the light of Theorems [2.15](#page-10-3)[–2.16,](#page-10-0) when we consider initial data u_0 of problem [\(2.1\)](#page-3-2) with mass $M_{u_0} < a$ (respectively, $M_{u_0} > d$), there exists $T > 0$ such that for any $t \geq T$ we have $u(\cdot, t) = s_1(v(\cdot, t))$ in Ω (respectively, $u(\cdot, t) = s_2(v(\cdot, t))$ in Ω). Here (u, v, ξ) is any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 .

Finally, let us proceed to give a characterization of the long-time behaviour of the function $u(\cdot, t)$. Since by Definition [2.1\(](#page-3-0)ii) for any $t \ge 0$ we have

$$
u(\cdot,t)=\chi_{(\omega_1,\xi(t))}s_1(v(\cdot,t))+\chi_{(\xi(t),\omega_2)}s_2(v(\cdot,t)) \quad \text{in } \Omega,
$$

we have to take into account the asymptotic behaviour of the interface $\xi(t)$ (here χ_E denotes the characteristic function of any set $E \subseteq \Omega$). Combining Theorems [2.15–](#page-10-3)[2.16](#page-10-0) we will show that, in the limit as $t \to \infty$, $u(\cdot, t)$ approaches the function $u^* \in L^{\infty}(\Omega)$, where

$$
u^* = \begin{cases} \chi_{(\omega_1,\xi^*)} s_1(v^*) + \chi_{(\xi^*,\omega_2)} s_2(v^*) & \text{if } a \le M_{u_0} \le d, \\ M_{u_0} & \text{if } M_{u_0} < a \text{ or } M_{u_0} > d. \end{cases}
$$
 (2.41)

This is the content of the following theorem.

THEOREM 2.17 Let (u, v, ξ) be a two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . Let M_{u_0} be defined by [\(2.32\)](#page-9-1) and let u^* be the function defined by [\(2.41\)](#page-11-1). Then:

(i) for any diverging *good* sequence $\{t_n\}$ satisfying [\(2.36\)](#page-10-1) we have

$$
u(x, t_n) \to u^* \quad \text{for any } x \in \overline{\Omega} \setminus \{\xi^*\} \tag{2.42}
$$

if $a \leq M_{u_0} \leq d$; otherwise,

$$
u(\cdot, t_n) \to u^* \equiv M_{u_0} \quad \text{in } C(\overline{\Omega})
$$
 (2.43)

if either $M_{u_0} < a$ or $M_{u_0} > d$;

(ii) for any diverging *bad* sequence $\{t_n\}$ satisfying [\(2.37\)](#page-10-2) we have

$$
u(\cdot, t_n) \to u^* \quad \text{in measure.} \tag{2.44}
$$

3. Proofs of the results in Section [2.1](#page-3-3)

Proof of Proposition [2.1.](#page-5-2) Consider any $t_1 < t_2$ and for any $n \in \mathbb{N}$ set

$$
h_n(t) = \begin{cases} n(t - t_1 + 1/n) & \text{if } t \in [t_1 - 1/n, t_1], \\ 1 & \text{if } t \in (t_1, t_2), \\ -n(t - t_2 - 1/n) & \text{if } t \in [t_2, t_2 + 1/n]. \end{cases}
$$

Fix any $\varphi \in C^1(\overline{\Omega})$ with $\varphi \geq 0$ and choose

$$
\psi_n(x,t) := h_n(t)\varphi(x)
$$

as test function in the entropy inequalities [\(2.8\)](#page-4-1). We obtain

$$
n \int_{t_1 - 1/n}^{t_1} dt \int_{\Omega} G(u(x, t)) \varphi(x) dx - n \int_{t_2}^{t_2 + 1/n} dt \int_{\Omega} G(u(x, t)) \varphi(x) dx
$$

$$
\geq \int_{t_1 - 1/n}^{t_2 + 1/n} \int_{\Omega} h_n(t) [g(v)v_x \varphi_x + \varphi g'(v)v_x^2](x, t) dx dt \qquad (3.1)
$$

for any $g \in C^1(\mathbb{R})$ with $g' \geq 0$. Let us prove that

$$
n\int_{t_1-1/n}^{t_1} dt \int_{\Omega} G(u(x,t))\varphi(x) dx \to \int_{\Omega} G(u(x,t_1))\varphi(x) dx \tag{3.2}
$$

as $n \to \infty$. Fix any $\varepsilon > 0$ small enough and write the left-hand side of [\(3.2\)](#page-12-0) in the following way:

$$
n \int_{t_1 - 1/n}^{t_1} dt \int_{\Omega} G(u(x, t)) \varphi(x) dx = n \int_{t_1 - 1/n}^{t_1} dt \int_{\omega_1}^{\xi(t_1) - \varepsilon} G(u(x, t)) \varphi(x) dx + n \int_{t_1 - 1/n}^{t_1} dt \int_{\xi(t_1) - \varepsilon}^{\xi(t_1) + \varepsilon} G(u(x, t)) \varphi(x) dx + n \int_{t_1 - 1/n}^{t_1} dt \int_{\xi(t_1) + \varepsilon}^{\omega_2} G(u(x, t)) \varphi(x) dx.
$$
 (3.3)

Since $\xi \in \text{Lip}[0,\infty)$, for every ε there exists $n_{\varepsilon} \in \mathbb{N}$ such that for any $n \geq n_{\varepsilon}$ we have $|\xi(t_1) - \xi(t)|$ $\leq \varepsilon$ for all $t \in (t_1 - 1/n, t_1)$. Therefore

$$
\{(x, t) \in Q \mid \omega_1 < x < \xi(t_1) - \varepsilon, \ t \in (t_1 - 1/n, t_1)\} \subseteq V_1,
$$
\n
$$
\{(x, t) \in Q \mid \xi(t_1) + \varepsilon < x < \omega_2, \ t \in (t_1 - 1/n, t_1)\} \subseteq V_2,
$$

for any $n \geq n_{\varepsilon}$. Thus, by the continuity of u in V_1 and V_2 (see Remark [2.1\)](#page-4-5) we obtain

$$
n \int_{t_1 - 1/n}^{t_1} dt \int_{\omega_1}^{\xi(t_1) - \varepsilon} G(u(x, t)) \varphi(x) dx \to \int_{\omega_1}^{\xi(t_1) - \varepsilon} G(u(x, t_1)) \varphi(x) dx,
$$
 (3.4)

$$
n\int_{t_1-1/n}^{t_1} dt \int_{\xi(t_1)+\varepsilon}^{\omega_2} G(u(x,t))\varphi(x) dx \to \int_{\xi(t_1)+\varepsilon}^{\omega_2} G(u(x,t_1))\varphi(x) dx \tag{3.5}
$$

as $n \to \infty$. Moreover, since $u \in L^{\infty}(Q)$,

$$
\left| n \int_{t_1 - 1/n}^{t_1} dt \int_{\xi(t_1) - \varepsilon}^{\xi(t_1) + \varepsilon} G(u(x, t)) \varphi(x) dx \right| \leq 2\varepsilon \| G(u) \|_{L^\infty(Q)} \|\varphi\|_{L^\infty(\Omega)} \leq \varepsilon C_{g, \varphi}.
$$
 (3.6)

In view of the arbitrariness of $\varepsilon > 0$, [\(3.4\)](#page-12-1)–[\(3.6\)](#page-12-2) imply [\(3.2\)](#page-12-0). Similarly, we can prove that

$$
n\int_{t_2}^{t_2+1/n} dt \int_{\Omega} G(u(x,t))\varphi(x) dx \to \int_{\Omega} G(u(x,t_2))\varphi(x) dx \tag{3.7}
$$

as $n \to \infty$. In view of [\(3.2\)](#page-12-0), [\(3.7\)](#page-12-3), taking the limit as $n \to \infty$ in inequality [\(3.1\)](#page-12-4) gives [\(2.12\)](#page-5-1) and concludes the proof. \Box

4. Proofs of the results in Section [2.2](#page-5-3)

Proof of Proposition [2.2.](#page-5-4) Let us begin by proving [\(2.13\)](#page-5-5). Set

$$
g_{AB}(s) := \begin{cases} (s-A)^3 & \text{if } s < A, \\ 0 & \text{if } s \in [A, B], \\ (s-B)^3 & \text{if } s > B. \end{cases}
$$
 (4.1)

Observe that $g_{AB} \in C^1(\mathbb{R})$, $g'_{AB} \ge 0$, $g_{AB} < 0$ in $(-\infty, A)$, $g_{AB} \equiv 0$ in $[A, B]$ and $g_{AB} > 0$ in (B, ∞) . Let G_{AB} be the function defined by [\(2.7\)](#page-4-2) for $g \equiv g_{AB}$ and $k = 0$. Choosing $g \equiv g_{AB}$, $t_1 = 0$ and $\varphi \equiv 1$ in the pointwise entropy inequalities [\(2.12\)](#page-5-1) gives

$$
\int_{\Omega} G_{AB}(u(x,t)) dx \leqslant \int_{\Omega} G_{AB}(u_0(x)) dx \tag{4.2}
$$

for any $t > 0$. Since in view of assumption (H_3) we have $a \leq u_0 \leq d$, hence $G_{AB}(u_0) \equiv 0$, inequality [\(4.2\)](#page-13-0) reads

$$
\int_{\Omega} G_{AB}(u(x,t)) dx \leq 0.
$$
\n(4.3)

On the other hand, we have

$$
\begin{cases} G_{AB}(\lambda) > 0 & \text{if either } \lambda < a \text{ or } \lambda > d, \\ G_{AB}(\lambda) = 0 & \text{if } \lambda \in [a, d]. \end{cases}
$$
\n(4.4)

Therefore, since $G_{AB} \ge 0$ on \mathbb{R} , inequality [\(4.3\)](#page-13-1) implies that $G_{AB}(u(\cdot, t)) = 0$ almost everywhere in Ω ; thus $G_{AB}(u) = 0$ almost everywhere in Q by the arbitrariness of $t > 0$. This implies $a \leq$ $u \le d$ almost everywhere in Q (see [\(4.4\)](#page-13-2) again) and concludes the proof of [\(2.13\)](#page-5-5).

Let us prove [\(2.14\)](#page-5-6). To do so, we will show that:

- (i) $u(x, t) \leq b$ for any $x \in (\omega_1, 0), t > 0$;
- (ii) $u(x, t) \geq c$ for any $x \in (0, \omega_2), t > 0$.

Let us address (i), the proof of (ii) following by similar arguments. Fix any $t > 0$ and observe that for any $\varphi \in C_c^2((\omega_1, 0))$ with $\varphi \ge 0$ the pointwise entropy inequalities [\(2.12\)](#page-5-1) give

$$
\int_{\Omega} G(u(x,t))\varphi(x) dx - \int_{\Omega} G(u_0(x))\varphi(x) dx \leq - \int_0^t \int_{\Omega} g(v(x,s))v_x(x,s)\varphi_x(x) dx ds \quad (4.5)
$$

for any $g \in C^1(\mathbb{R})$ with $g' \geq 0$ and G defined by [\(2.7\)](#page-4-2). By standard regularization arguments the assumption $g \in C^1(\mathbb{R})$ can be dropped so that inequalities [\(4.5\)](#page-13-3) hold for any *nondecreasing* g. Following [\[Pl1\]](#page-39-5), for any $\rho \geq 0$ we set

$$
g_{\rho}(s) := \begin{cases} \rho^{-1/2} & \text{if } s \geq B - \rho, \\ 0 & \text{if } s < B - \rho. \end{cases} \tag{4.6}
$$

Let G_ρ be the function defined by [\(2.7\)](#page-4-2) for $g \equiv g_\rho$ and $k = 0$. Choosing $g \equiv g_\rho$ in inequalities

[\(4.5\)](#page-13-3) gives

$$
\int_{\Omega} G_{\rho}(u(x,t))\varphi(x) dx - \int_{\Omega} G_{\rho}(u_0(x))\varphi(x) dx
$$
\n
$$
\leq -\int_0^t \int_{\Omega} g_{\rho}(v(x,s))v_x(x,s)\varphi_x(x) dx ds
$$
\n
$$
= \rho^{-1/2} \int_0^t \int_{\{x \in \Omega \; | \; v(x,s) > B - \rho\}} (v(x,s) - B + \rho)\varphi_{xx}(x) dx ds \qquad (4.7)
$$

for any φ as above. Let us study the different terms of the previous inequality in the limit $\rho \to 0$. Since in view of [\(2.13\)](#page-5-5) we have $v \le B$ in Q, taking the limit on the right-hand side of [\(4.7\)](#page-14-0) gives

$$
\lim_{\rho \to 0} \left| \rho^{-1/2} \int_0^t \int_{\{x \in \Omega \, | \, v(x,s) > B - \rho\}} (v(x,s) - B + \rho) \varphi_{xx}(x) \, dx \, ds \right| \leq \lim_{\rho \to 0} \rho^{1/2} \int_0^t \int_{\Omega} |\varphi_{xx}(x)| \, dx \, ds = 0. \tag{4.8}
$$

Next, consider the second term on the left-hand side of [\(4.7\)](#page-14-0). Observe that for almost every $x \in$ $(\omega_1, 0),$

$$
|G_{\rho}(u_0(x))| \leqslant \left| \int_{s_0(B-\rho)}^{s_1(B-\rho)} |g_{\rho}(\phi(s))| \, ds \right| \leqslant \left| \frac{s_1(B-\rho) - s_0(B-\rho)}{\sqrt{\rho}} \right| \tag{4.9}
$$

for any $\rho > 0$. Moreover, for any $x \in (\omega_1, 0)$ such that $u_0(x) < b$ there exists $\rho^* > 0$ (depending on x) such that

$$
G_{\rho}(u_0(x)) = \int_{s_0(B-\rho)}^{s_1(B-\rho)} g_{\rho}(\phi(s)) ds = \frac{s_1(B-\rho) - s_0(B-\rho)}{\sqrt{\rho}}
$$

for any $\rho < \rho^*$. On the other hand, for any $x \in (\omega_1, 0)$ such that $u_0(x) = b$, we have

$$
G_{\rho}(u_0(x)) = \int_{s_0(B-\rho)}^b g_{\rho}(\phi(s)) ds = \frac{b - s_0(B-\rho)}{\sqrt{\rho}}.
$$

In view of assumption (H_1) —in particular $\phi''(b) \neq 0$ —we have:

- $\lim_{\rho \to 0} G_{\rho}(u_0(x)) =$ $\left[-2\sqrt{2/|\phi''(b)|} \text{ if } u_0(x) < b\right]$ $-\sqrt{2/|\phi''(b)|}$ if $u_0(x) < b$ for a.e. $x \in (\omega_1, 0);$
for a.e. $x \in (\omega_1, 0);$
- in view of [\(4.9\)](#page-14-1) and (H_1) , there exists $\bar{\rho} > 0$ such that $|G_{\rho}(u_0(x))| \leq 4\sqrt{2/|\phi''(b)|}$ for almost every $x \in (\omega_1, 0)$ and for any $\rho < \overline{\rho}$.

Hence, by the Lebesgue dominated convergence theorem we obtain

$$
\lim_{\rho \to 0} \int_{\Omega} G_{\rho}(u_0(x)) \varphi(x) dx = -2 \sqrt{\frac{2}{|\phi''(b)|}} \int_{\{x \in (\omega_1, 0) \mid u_0(x) < b\}} \varphi(x) dx - \sqrt{\frac{2}{|\phi''(b)|}} \int_{\{x \in (\omega_1, 0) \mid u_0(x) = b\}} \varphi(x) dx.
$$
\n(4.10)

Finally, let us study the first term on the left-hand side of [\(4.7\)](#page-14-0). We decompose the function $G_{\rho}(u(x, t))\varphi(x)$ in the following way:

$$
G_{\rho}(u(\cdot,t))\varphi(\cdot) = G_{\rho}(u(\cdot,t))\chi_{\{x \in \Omega \mid u(x,t) < b\}}\varphi(\cdot) + G_{\rho}(u(\cdot,t))\chi_{\{x \in \Omega \mid u(x,t) = b\}}\varphi(\cdot) + G_{\rho}(u(\cdot,t))\chi_{\{x \in \Omega \mid c \le u(x,t) \le d\}}\varphi(\cdot)
$$
(4.11)

(recall that in view of [\(2.13\)](#page-5-5) we have $u(\cdot, t) \le d = s_2(B)$ a.e. in Ω). Arguing as above, passing to the limit as $\rho \rightarrow 0$ in the first two terms of the right-hand side of [\(4.11\)](#page-15-0) gives

$$
\lim_{\rho \to 0} \int_{\Omega} G_{\rho}(u(x,t)) \chi_{\{x \in \Omega \mid u(x,t) < b\}} \varphi(x) \, \mathrm{d}x = -2 \sqrt{\frac{2}{|\phi''(b)|}} \int_{\Omega} \chi_{\{x \in \Omega \mid u(x,t) < b\}} \varphi(x) \, \mathrm{d}x \tag{4.12}
$$

and

$$
\lim_{\rho \to 0} \int_{\Omega} G_{\rho}(u(x, t)) \chi_{\{x \in \Omega \; | \; u(x, t) = b\}} \varphi(x) dx = \lim_{\rho \to 0} \int_{\Omega} \frac{b - s_0(B - \rho)}{\rho^{1/2}} \chi_{\{x \in \Omega \; | \; u(x, t) = b\}} \varphi(x) dx
$$
\n
$$
= -\sqrt{\frac{2}{|\phi''(b)|}} \int_{\Omega} \chi_{\{x \in \Omega \; | \; u(x, t) = b\}} \varphi(x) dx. \tag{4.13}
$$

Concerning the third term on the right-hand side of [\(4.11\)](#page-15-0) we have

$$
\int_{\Omega} G_{\rho}(u(x,t)) \chi_{\{x \in \Omega \mid c \le u(x,t) \le d\}} \varphi(x) dx := I_1^{\rho} + I_2^{\rho},\tag{4.14}
$$

where

$$
I_1^{\rho} := \int_{\Omega} G_{\rho}(u(x, t)) \chi_{\{x \in \Omega \; | \; c \le u(x, t) \le s_2(B - \rho)\}} \varphi(x) dx \equiv 0,
$$

\n
$$
I_2^{\rho} := \int_{\Omega} G_{\rho}(u(x, t)) \chi_{\{x \in \Omega \; | \; s_2(B - \rho) < u(x, t) \le s_2(B)\}} \varphi(x) dx
$$

\n
$$
= \int_{\Omega} \frac{s_2(\phi(u(x, t))) - s_2(B - \rho)}{\rho^{1/2}} \chi_{\{x \in \Omega \; | \; s_2(B - \rho) < u(x, t) \le s_2(B)\}} \varphi(x) dx.
$$
\n(4.15)

Taking the limit as $\rho \to 0$ in I_2^{ρ} \int_{2}^{ρ} gives

$$
\lim_{\rho \to 0} |I_2^{\rho}| \le \lim_{\rho \to 0} \|\varphi\|_{L^1(\omega_1, 0)} \frac{s_2(B) - s_2(B - \rho)}{\rho} \rho^{1/2} = 0
$$
\n(4.16)

(here the assumption $s'_2(B) = 1/\phi'(d) < \infty$ has been used). Therefore, in the light of [\(4.15\)](#page-15-1) and [\(4.16\)](#page-15-2), taking the limit as $\rho \to 0$ in [\(4.14\)](#page-15-3) we obtain

$$
\lim_{\rho \to 0} \int_{\Omega} G_{\rho}(u(x, t)) \chi_{x \in \Omega} \, |_{c \le u(x, t) \le d} \varphi(x) \, dx = 0. \tag{4.17}
$$

From [\(4.12\)](#page-15-4), [\(4.13\)](#page-15-5) and [\(4.17\)](#page-15-6) we deduce

$$
\lim_{\rho \to 0} \int_{\Omega} G_{\rho}(u(x, t)) \varphi(x) dx = -2 \sqrt{\frac{2}{|\phi''(b)|}} \int_{\{x \in (\omega_1, 0) | u(x, t) < b\}} \varphi(x) dx - \sqrt{\frac{2}{|\phi''(b)|}} \int_{\{x \in (\omega_1, 0) | u(x, t) = b\}} \varphi(x) dx. \tag{4.18}
$$

Therefore, in view of [\(4.8\)](#page-14-2), [\(4.10\)](#page-14-3) and [\(4.18\)](#page-15-7), taking the limit as $\rho \to 0$ in inequalities [\(4.7\)](#page-14-0) gives

$$
\int_{\{x \in (\omega_1, 0) \mid u_0(x) < b\}} \varphi(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u_0(x) = b\}} \varphi(x) \, dx
$$
\n
$$
\leqslant \int_{\{x \in (\omega_1, 0) \mid u(x, t) < b\}} \varphi(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u(x, t) = b\}} \varphi(x) \, dx \tag{4.19}
$$

for any $\varphi \in C_c^2((\omega_1, 0))$ with $\varphi \ge 0$, and for any $t > 0$. Fix any $t > 0$ and, arguing towards a contradiction, assume that the set $\{x \in (\omega_1, 0) \mid u(x, t) > b\}$ has a nonzero Lebesgue measure. Let $K \subset \{x \in (\omega_1, 0) \mid u(x, t) > b\}$ be any compact set with a strictly positive Lebesgue measure, $|K| > 0$, and let $\{\varphi_n\} \subseteq C_c^{\infty}(\mathbb{R})$ be any sequence of smooth functions such that:

- $0 \le \varphi_n(x) \le 1$ for any $x \in \mathbb{R}$, $n \in \mathbb{N}$;
- $\varphi_n(x) = 1$ for any $x \in K$, $n \in \mathbb{N}$;
- supp $\varphi_n \subset (\omega_1, 0)$ for any $n \in \mathbb{N}$;
- $\varphi_n(x) \to \chi_K(x)$ as $n \to \infty$ for any $x \in \mathbb{R}$.

Write inequality [\(4.19\)](#page-16-0) for $\varphi = \varphi_n$ and observe that the right-hand side converges to zero as $n \to \infty$. Therefore, passing to the limit as $n \to \infty$ gives

$$
0 < \frac{1}{2}|K| = \lim_{n \to \infty} \frac{1}{2} \int_{\omega_1}^0 \varphi_n(x) \, dx = \lim_{n \to \infty} \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u_0(x) \le b\}} \varphi_n(x) \, dx
$$
\n
$$
\leq \lim_{n \to \infty} \left\{ \int_{\{x \in (\omega_1, 0) \mid u_0(x) < b\}} \varphi_n(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u_0(x) = b\}} \varphi_n(x) \, dx \right\}
$$
\n
$$
\leq \lim_{n \to \infty} \left\{ \int_{\{x \in (\omega_1, 0) \mid u(x, t) < b\}} \varphi_n(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u(x, t) = b\}} \varphi_n(x) \, dx \right\} = 0
$$

(here the assumption $u_0(x) \leq b$ in $(\omega_1, 0)$ has been used). This contradiction proves (i).

Proof of Proposition [2.3](#page-6-3). Let us address only claim (i), (ii) following by similar arguments. Fix any $x_0 \in (\omega_1, 0)$ such that $u_0(x_0) < b$. Then by the continuity of u_0 in $(\omega_1, 0)$ —which is ensured by the assumption $\phi(u_0) \in C(\overline{\Omega})$ —there exists $r > 0$ such that $u_0(x) \leq b_r < b$ in $I_r := (x_0 - r, x_0 + r)$. To prove that $u(x_0, t) < b$ for any $t > 0$, it suffices to observe that in the strip $I_r \times (0, \infty)$ the function u is a weak solution of the porous medium type equation

$$
u_t=[\phi(u)]_{xx},
$$

with initial datum u_0 subject to the following conditions:

$$
u_0 \in C(I_r), \quad u_0(\cdot) \leqslant b_r < b \quad \text{in } I_r \tag{4.20}
$$

(recall that $\phi'(b) = 0$, $\phi''(b) \neq 0$, and $\phi'(s) > 0$ for any $s < b$). Moreover, in view of Proposition [2.2](#page-5-4) (see in particular (2.14)), *u* satisfies the boundary conditions

$$
u \leq b \quad \text{on } \partial I_r \times (0, \infty). \tag{4.21}
$$

In the light of (4.20) – (4.21) , by the comparison principle $([DK])$ $([DK])$ $([DK])$ the claim follows (see [\[dPV\]](#page-39-17); see also Section 7 in [\[Va\]](#page-39-13)). \Box

The proof of Theorem [2.5](#page-6-4) needs the following preliminary result.

LEMMA 4.1 Let u_0 satisfy assumption (A_1) and let $(u, v, 0)$ be any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 such that $v_x(\cdot, t) \in BV(\Omega)$ for almost every $t > 0$. Then the limit

$$
\lim_{\eta \to 0^{\pm}} v_x(\eta, t) =: v_x(0^{\pm}, t)
$$
\n(4.22)

exists for almost every $t \in (0, \infty)$. Moreover, for almost every $t \in (0, \infty)$,

$$
v_x(0^-, t) = v_x(0^+, t). \tag{4.23}
$$

Proof. Let u_0 satisfy assumption (A_1) and let $(u, v, 0)$ be any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 . The assumption $v_x(\cdot, t) \in BV(\Omega)$ for almost every $t > 0$ implies the existence of the limits [\(4.22\)](#page-17-0). Moreover, in view of assumption (A_1) , we have $u \in C^{2,1}(V_i)$, where $V_1 =$ $(\omega_1, 0) \times (0, \infty)$ and $V_2 = (0, \omega_2) \times (0, \infty)$ (Corollary [2.4\)](#page-6-5). Therefore, arguing as in [\[EP\]](#page-39-8) gives the Rankine–Hugoniot conditions (2.9) almost everywhere in t (see Remark [2.2\)](#page-4-0). Thus, equality (4.23) follows, since under assumption (A_1) we have $\xi'(t) \equiv 0$.

Proof of Theorem [2.5](#page-6-4). The proof is almost the same as in [\[MTT2\]](#page-39-10). We give it for the convenience of the reader.

Let u_0 satisfy assumption (A_1) and let $(u_1, v_1, 0)$, $(u_2, v_2, 0)$ be two two-phase solutions of problem [\(2.1\)](#page-3-2) with initial datum u_0 such that $v_{i,x}(\cdot, t) \in BV(\Omega)$ for almost every $t > 0$ ($i = 1, 2$). For any $n \in \mathbb{N}$ set

$$
\Omega_1^n := (\omega_1, -1/n), \quad \Omega_2^n := (1/n, \omega_2), \quad V_1^n := \Omega_n^1 \times (0, \infty), \quad V_2^n := \Omega_2^n \times (0, \infty).
$$

Since $u_i \in C(V_1)$ and $u_i < b$ in V_1 (Proposition [2.3\)](#page-6-3), we have $u_i \in C^{2,1}(V_1)$ (Corollary [2.4\)](#page-6-5) and for any $n \in \mathbb{N}$ there exist two constants $b_i^n < b$ such that $u_i \leq b_i^n$ in V_i^n $(i = 1, 2)$. Analogously, since $u_i \in C(V_2)$ and $u_i > c$ in V_2 (Proposition [2.3\)](#page-6-3), we have $u_i \in C^{2,1}(V_2)$ (Corollary [2.4\)](#page-6-5) and for any $n \in \mathbb{N}$ there exist two constants $c_i^n > c$ such that $u_i \geq c_i^n$ in V_2^n $(i = 1, 2)$. This implies that for any $n \in \mathbb{N}$ we can find a constant $C_n > 0$ such that

$$
||u_{ix}(\cdot,t)||_{L^{\infty}(\Omega_1^n)} \leq C_n ||v_{ix}(\cdot,t)||_{L^{\infty}(\Omega_1^n)} \leq C_n ||v_{ix}(\cdot,t)||_{BV(\Omega)},
$$
\n(4.24)

$$
||u_{ix}(\cdot,t)||_{L^{\infty}(\Omega_2^n)} \leq C_n ||v_{ix}(\cdot,t)||_{L^{\infty}(\Omega_2^n)} \leq C_n ||v_{ix}(\cdot,t)||_{BV(\Omega)}
$$
\n(4.25)

 $(i = 1, 2)$. Next, for any $k \in \mathbb{N}$ let $\{\eta_k\} \subseteq C^2(\mathbb{R})$ be a family of functions such that:

- η_k converges to the absolute value $|\cdot|$ in $C(\mathbb{R})$ as $k \to \infty$;
- $\eta'_k(s) \to \text{sgn}(s)$ as $k \to \infty$ for any $s \neq 0$, and $|\eta'_k(s)| \leq 1$ for any $s \in \mathbb{R}$ and $k \in \mathbb{N}$;
- there exists $C > 0$ such that $0 \le \eta''(s) \le Ck$ for any $s \in \mathbb{R}$, and $\eta''(s) = 0$ for any $s \notin$ $(-1/k, 1/k).$

Since $u_{it} = v_{ixx}$ in V_i (i, $j = 1, 2$), for any fixed $t > 0$ we obtain

$$
\int_{\Omega_j^n} [\eta_k(u_1 - u_2)]_t(x, t) dx = \int_{\Omega_j^n} [\eta'_k(u_1 - u_2)(v_1 - v_2)_{xx}](x, t) dx
$$

\n
$$
= \int_{\Omega_j^n} {\{\eta'_k(u_1 - u_2)(v_1 - v_2)_x\}_x(x, t) dx
$$

\n
$$
- \int_{\Omega_j^n} {\{\eta''_k(u_1 - u_2)(u_{1x} - u_{2x})(v_{1x} - v_{2x})\}(x, t) dx \qquad (4.26)
$$

and also

$$
-\int_{\Omega_j^n} \left[\eta_k''(u_1 - u_2)(u_{1x} - u_{2x})(v_{1x} - v_{2x})\right](x, t) dx
$$

\n
$$
= -\int_{\Omega_j^n} \left[\eta_k''(u_1 - u_2)\phi'(u_1)(u_{1x} - u_{2x})^2\right](x, t) dx
$$

\n
$$
-\int_{\Omega_j^n} \left[\eta_k''(u_1 - u_2)(\phi'(u_1) - \phi'(u_2))u_{2x}(u_{1x} - u_{2x})\right](x, t) dx
$$

\n
$$
\leq -\int_{\Omega_j^n} \left[\eta_k''(u_1 - u_2)(\phi'(u_1) - \phi'(u_2))u_{2x}(u_{1x} - u_{2x})\right](x, t) dx
$$
(4.27)

 $(j = 1, 2)$. For almost every $t > 0$, taking the limit as $k \to \infty$ on the right-hand side of the above inequalities gives

$$
\limsup_{k \to \infty} \left\{ -\int_{\Omega_j^n} [\eta_k''(u_1 - u_2)(\phi'(u_1) - \phi'(u_2))u_{2x}(u_{1x} - u_{2x})](x, t) dx \right\}
$$
\n
$$
\leq \lim_{k \to \infty} ||\phi''||_{L^{\infty}(a,d)} C k ||u_{2x}(\cdot, t)||_{L^{\infty}(\Omega_j^n)} \int_{I_k^j(t)} [|u_1 - u_2||u_{1x} - u_{2x}]](x, t) dx
$$
\n
$$
\leq \lim_{k \to \infty} ||\phi''||_{L^{\infty}(a,d)} C ||u_{2x}(\cdot, t)||_{L^{\infty}(\Omega_j^n)} \int_{I_k^j(t)} [|u_{1x} - u_{2x}||(x, t) dx = 0, \tag{4.28}
$$

where for almost every $t > 0$ we have set

$$
I_k^j(t) = \{x \in \Omega_j^n \mid |u_1(x, t) - u_2(x, t)| \leq 1/k\}
$$

 $(j = 1, 2)$. Concerning the left-hand side of [\(4.26\)](#page-17-2), for any fixed $n \in \mathbb{N}$ and for almost every $t > 0$ we obtain

$$
\begin{aligned} \left| \left[\eta_k(u_1(x,t) - u_2(x,t)) \right]_t \right| &= \left| \eta_k'(u_1(x,t) - u_2(x,t)) \right| \left| u_{1t}(x,t) - u_{2t}(x,t) \right| \\ &\leqslant \left| u_{1t}(x,t) - u_{2t}(x,t) \right| \in L^1(\Omega_j^n) \end{aligned}
$$

 $(j = 1, 2)$, and

$$
[\eta_k(u_1(x,t) - u_2(x,t))]_t \to [\text{sgn}(u_1(x,t) - u_2(x,t))] (u_{1t}(x,t) - u_{2t}(x,t))
$$

as $k \to \infty$ for almost every $x \in \Omega_j^n$ $(j = 1, 2)$. Therefore, in view of the Lebesgue Theorem and in view of [\(4.27\)](#page-18-0), [\(4.28\)](#page-18-1), in the limit as $k \to \infty$ in [\(4.26\)](#page-17-2) we obtain

$$
\sum_{j=1,2} \int_{\Omega_j^n} [|u_1(\cdot, t) - u_2(\cdot, t)]|_t(x, t) dx = \lim_{k \to \infty} \sum_{j=1,2} \int_{\Omega_j^n} [\eta_k(u_1 - u_2)]_t(x, t)
$$

\n
$$
\leq \lim_{k \to \infty} \sum_{j=1,2} \int_{\Omega_j^n} [\eta'_k(u_1 - u_2)(v_{1x} - v_{2x})]_x(x, t) dx
$$

\n
$$
= [\text{sgn}(u_1(-1/n, t) - u_2(-1/n, t))] (v_{1x}(-1/n, t) - v_{2x}(-1/n, t))
$$

\n
$$
- [\text{sgn}(u_1(1/n, t) - u_2(1/n, t))] (v_{1x}(1/n, t) - v_{2x}(1/n, t)).
$$

Integrating the above inequality between 0 and t_0 and letting $n \to \infty$ gives

$$
\int_{\Omega} |u_1(x, t_0) - u_2(x, t_0)| dx
$$
\n
$$
\leqslant \int_0^{t_0} [sgn(u_1(0^-, t) - u_2(0^-, t))] (v_{1x}(0^-, t) - v_{2x}(0^-, t)) dt
$$
\n
$$
- \int_0^{t_0} [sgn(u_1(0^+, t) - u_2(0^+, t))] (v_{1x}(0^+, t) - v_{2x}(0^+, t)) dt. \tag{4.29}
$$

Observe that since ϕ is nondecreasing in the interval $(-\infty, b)$ and in (c, ∞) , and since $v(\cdot, t) \in$ $C(\Omega)$ for almost every $t > 0$, we have: $u_1(0^-, t) > u_2(0^-, t) \Rightarrow v_1(0, t) > v_2(0, t) \Rightarrow$ $u_1(0^+, t) > u_2(0^+, t)$. In other words, for almost every $t > 0$,

$$
sgn(u_1(0^-, t) - u_2(0^-, t)) = sgn(u_1(0^+, t) - u_2(0^+, t)).
$$
\n(4.30)

In view of (4.23) and (4.30) , inequality (4.29) reads

$$
\int_{\Omega} |u_1(x, t_0) - u_2(x, t_0)| \, \mathrm{d}x \leq 0
$$

for any $t_0 > 0$, and this concludes the proof. \Box

5. Proofs of the results in Section [2.3](#page-6-6)

5.1 *The approximating problems: proofs*

The proofs of Theorem [2.6](#page-6-2) and Proposition [2.7](#page-7-6) are almost the same as in [\[NP\]](#page-39-3), so we omit them (see also [\[Pl3,](#page-39-18) [Sm,](#page-39-15) [ST\]](#page-39-14)).

Proof of Theorem [2.8](#page-7-1). It is formally analogous to the proof of Proposition [2.2,](#page-5-4) so we only sketch it.

Let $g_{AB} \in C^1(\mathbb{R})$ be the nondecreasing function defined by [\(4.1\)](#page-13-4) and let G_{AB} be the function defined by [\(2.7\)](#page-4-2) for $g \equiv g_{AB}$ and $k = 0$. Choosing $g \equiv g_{AB}$, $t_1 = 0$ and $\psi \equiv 1$ in the viscous entropy inequalities [\(2.18\)](#page-7-0) gives

$$
\int_{\Omega} G_{AB}(u^{\varepsilon}(x,t)) dx \leqslant \int_{\Omega} G_{AB}(u_0(x)) dx = 0
$$

for any $t > 0$ (here assumption (H_3) has been used). Since $G_{AB}(s) > 0$ for $s \in \mathbb{R} \setminus [a, d]$ and $G_{AB}(s) = 0$ for $s \in [a, d]$, estimate [\(2.19\)](#page-7-7) follows.

Next, let us address claim (i), the proof of (ii) following by similar arguments. Firstly, we observe that [\(2.19\)](#page-7-7) implies $A \le \phi(u^{\varepsilon}(x,t)) \le B$ for almost every $(x, t) \in Q$. By standard results on elliptic equations, since for any $t \in (0, \infty)$ the function $v(\cdot, t) \in W^{2,\infty}(\Omega)$ solves problem [\(2.17\)](#page-6-7), it follows that

$$
\operatorname*{ess\,inf}_{x\in\Omega}\phi(u^{\varepsilon}(x,t))\leqslant v^{\varepsilon}(x,t)\leqslant \operatorname*{ess\,sup}_{x\in\Omega}\phi(u^{\varepsilon}(x,t))
$$

for any $x \in \Omega$, that is,

$$
A \leq v^{\varepsilon}(x, t) \leq B \tag{5.1}
$$

for any $(x, t) \in Q$. Next, for any $\rho > 0$ let g_ρ be the nondecreasing function defined by [\(4.6\)](#page-13-5). Let G_ρ be the function defined by [\(2.7\)](#page-4-2) for $g \equiv g_\rho$ and $k = 0$. Choosing $g \equiv g_\rho$ in the viscous entropy inequalities [\(2.18\)](#page-7-0) gives

$$
\int_{\Omega} G_{\rho}(u^{\varepsilon}(x,t))\varphi(x) dx - \int_{\Omega} G_{\rho}(u_{0}(x))\varphi(x) dx
$$
\n
$$
\leq -\int_{0}^{t} \int_{\Omega} g_{\rho}(v^{\varepsilon}(x,s))v_{x}^{\varepsilon}(x,s)\varphi_{x}(x) dx ds
$$
\n
$$
= \rho^{-1/2} \int_{0}^{t} \int_{\{x \in \Omega \, | \, v^{\varepsilon}(x,s) > B - \rho\}} (v^{\varepsilon}(x,s) - B + \rho)\varphi_{xx}(x) dx ds \qquad (5.2)
$$

for any $\varphi \in C_c^2((\omega_1, 0))$ with $\varphi \ge 0$ and for any $t > 0$. Then, arguing as in the proof of Proposition [2.2](#page-5-4) (in particular, see [\(4.8\)](#page-14-2), [\(4.18\)](#page-15-7)), taking the limit as $\rho \to 0$ in inequalities [\(5.2\)](#page-20-0) gives

$$
\int_{\{x \in (\omega_1, 0) \mid u_0(x) < b\}} \varphi(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u_0(x) = b\}} \varphi(x) \, dx
$$
\n
$$
\leqslant \int_{\{x \in (\omega_1, 0) \mid u^\varepsilon(x, t) < b\}} \varphi(x) \, dx + \frac{1}{2} \int_{\{x \in (\omega_1, 0) \mid u^\varepsilon(x, t) = b\}} \varphi(x) \, dx \tag{5.3}
$$

for any $\varphi \in C_c^2((\omega_1, 0))$ with $\varphi \ge 0$, and for any $t > 0$. Fix any $t > 0$ and, arguing towards a contradiction, assume that the set $\{x \in (\omega_1, 0) \mid u^{\varepsilon}(x, t) > b\}$ has a nonzero Lebesgue measure. Fix a compact set $K \subset \{x \in (\omega_1, 0) \mid u^{\varepsilon}(x, t) > b\}$ with $|K| > 0$, and choose a sequence $\{\varphi_n\} \subseteq C_c^{\infty}(\mathbb{R})$ such that:

- $0 \le \varphi_n(x) \le 1$ for any $x \in \mathbb{R}$, $n \in \mathbb{N}$;
- $\varphi_n(x) = 1$ for any $x \in K$, $n \in \mathbb{N}$;
- supp $\varphi_n \subset (\omega_1, 0)$ for any $n \in \mathbb{N}$;
- $\varphi_n(x) \to \chi_K(x)$ as $n \to \infty$ for any $x \in \mathbb{R}$.

Since $u_0 \le b$ almost everywhere in $(\omega_1, 0)$, passing to the limit as $n \to \infty$ in inequality [\(5.3\)](#page-20-1) (for $\varphi = \varphi_n$) gives $0 < \frac{1}{2}|K| \leq 0$. This contradiction proves (i).

5.2 *Vanishing viscosity limit: proofs*

Fix any $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) given by Theorem [2.6.](#page-6-2) In what follows we will study the limiting points of both the families $\{u^{\varepsilon}\}, \{v^{\varepsilon}\}\$ as the regularization parameter ε goes to 0. Let us begin by proving Theorem [2.9.](#page-7-4)

Proof of Theorem [2.9](#page-7-4). (i) In view of estimates (2.21) – (2.23) there exist three subsequences $\{u^{\varepsilon_k}\}\,$ $\{\phi(u^{\varepsilon_k})\}\,$, $\{v^{\varepsilon_k}\}\$ and three functions $u \in L^{\infty}(Q)$, $v \in L^{\infty}(Q)$, $\tilde{v} \in L^{\infty}(Q)$, with $\tilde{v}_x \in L^2(Q)$, such that

$$
u^{\varepsilon_k} \stackrel{*}{\rightharpoonup} u \qquad \text{in } L^{\infty}(Q),\tag{5.4}
$$

$$
\phi(u^{\varepsilon_k}) \stackrel{*}{\rightharpoonup} v \qquad \text{in } L^{\infty}(Q),\tag{5.5}
$$

$$
v^{\varepsilon_k} \stackrel{*}{\rightharpoonup} \tilde{v} \qquad \text{in } L^{\infty}(Q),\tag{5.6}
$$

$$
v_x^{\varepsilon_k} \rightharpoonup \tilde{v}_x \quad \text{ in } L^2(Q). \tag{5.7}
$$

Moreover, by [\(2.16\)](#page-6-1) and estimate [\(2.23\)](#page-7-3) we have

$$
\left| \iint_Q (\tilde{v} - v) \psi \, dx \, dt \right| = \lim_{k \to \infty} \left| \iint_Q (\phi(u^{\varepsilon_k}) - v^{\varepsilon_k}) \psi \, dx \, dt \right| \leq \lim_{k \to \infty} \varepsilon_k^{1/2} \iint_Q \varepsilon_k^{1/2} |u_t^{\varepsilon_k}| |\psi| \, dx \, dt = 0
$$

for any $\psi \in C_c(O)$. This implies $v = \tilde{v}$ almost everywhere in Q and concludes the first part of the proof.

(ii) In view of [\(2.24\)](#page-8-2)–[\(2.26\)](#page-8-3), passing to the limit as $\varepsilon_k \to 0$ in the weak formulation of problems (2.15) – (2.16) gives equality [\(2.27\)](#page-8-4).

Next, let $\{\varepsilon_k\}$ be the vanishing sequence given by Theorem [2.9.](#page-7-4) Let $\{\eta^{\varepsilon_k}\}\$ be the sequence of *Young measures* over $Q \times \mathbb{R}$ associated to the family $\{\phi(u^{\varepsilon_k})\}$. In view of the uniform estimate $\|\phi(u^{\varepsilon_k})\|_{L^{\infty}(Q)} \leq C$ (see [\(2.21\)](#page-7-2)), for any $T > 0$ the sequence $\{\eta^{\varepsilon_k}\}\$ is relatively compact with respect to the *narrow topology* of Young measures over $Q_T = \Omega \times (0, T)$. This is the content of the following proposition (see [\[GMS,](#page-39-19) [V\]](#page-39-20) for the proof).

PROPOSITION 5.1 For any $\varepsilon > 0$ and $u_0 \in L^{\infty}(\Omega)$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1) with initial datum u_0 . Let $\{\eta^{\varepsilon}\}\$ be the family of Young measures associated to the family $\{\phi(u^{\varepsilon})\}$ and let $\{\varepsilon_k\}$ be the vanishing sequence given by Theorem [2.9.](#page-7-4) Then:

(i) there exist a subsequence $\{\varepsilon_h\} \equiv \{\varepsilon_{k_h}\}\subseteq \{\varepsilon_k\}$ and a Young measure η on $Q \times \mathbb{R}$ such that for any $T > 0$,

$$
\eta^{\varepsilon_h} \to \eta \quad \text{narrowly in } Q_T \times \mathbb{R},
$$

where $Q_T = \Omega \times (0, T)$; (ii) for any $f \in C(\mathbb{R})$,

$$
f(\phi(u^{\varepsilon_h})) \rightharpoonup f^* \quad \text{in } L^{\infty}(Q), \tag{5.8}
$$

where, for almost every $(x, t) \in Q$,

$$
f^*(x,t) := \int_{\mathbb{R}} f(\xi) d\sigma_{(x,t)}(\xi).
$$
 (5.9)

Here $\sigma_{(x,t)}$ is the *disintegration* of the Young measure η .

The main result of Plotnikov in [\[Pl1\]](#page-39-5) is the characterization of the Young measure disintegration $\sigma_{(x,t)}$, which allows one to define weak entropy measure-valued solutions to the original Neumann (or Dirichlet) problem associated to equation [\(1.1\)](#page-0-1). Analogously, with methods of proof slightly different from those used in [\[Pl1\]](#page-39-5), we will investigate the structure of the measure $\sigma_{(x,t)}$, proving in this way the existence of a two-phase solution to problem [\(2.1\)](#page-3-2). In this direction, we begin by the following three lemmata, whose proofs will be postponed until the end of this subsection.

LEMMA 5.2 Let $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)-[\(2.16\)](#page-6-1) with initial datum u_0 . For any $g \in C^1(\mathbb{R})$ let G be the function defined by [\(2.7\)](#page-4-2). Then for any $T > 0$, for any g as above and for any $\varphi \in C^1(\overline{\Omega})$, there exists a constant $C_{g,\varphi}$ (depending on g and φ) such that for any $\varepsilon > 0$,

$$
\int_0^T \left| \int_{\Omega} [G(u^{\varepsilon})]_t \varphi \, dx \right| dt \leq C_{g,\varphi} [\|\sqrt{\varepsilon} u_t^{\varepsilon}\|_{L^2(Q)}^2 + \sqrt{T} \|v_x^{\varepsilon}\|_{L^2(Q)} + \|v_x^{\varepsilon}\|_{L^2(Q)}^2]. \tag{5.10}
$$

LEMMA 5.3 Let assumption (H_3) hold, let $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) with initial datum u_0 . Let { ε_h } and η be respectively the vanishing sequence and the Young measure over $Q \times \mathbb{R}$ given by Proposition [5.1.](#page-21-0) Finally, let $\sigma_{(x,t)}$ be the disintegration of the Young measure η , defined for almost every $(x, t) \in Q$. Then:

- (i) supp $\sigma_{(x,t)} \subseteq [A, B]$ for almost every $(x, t) \in Q$;
- (ii) there exist a subsequence $\{\varepsilon_{h_l}\}\subseteq \{\varepsilon_h\}$ and a set $E^1\subseteq (0,\infty)$ with $|E^1|=0$ such that for any $t\in(0,\infty)\setminus E^1,$

$$
\lim_{l \to \infty} \int_{\Omega} G(u^{\varepsilon_{h_l}}(x,t)) \varphi(x) dx = \int_{\omega_1}^{0} \left(\int_{[A,B]} [G \circ s_1](\xi) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx \n+ \int_{0}^{\omega_2} \left(\int_{[A,B]} [G \circ s_2](\xi) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx \qquad (5.11)
$$

for any $\varphi \in C^1(\overline{\Omega})$ and for any G defined by [\(2.7\)](#page-4-2) with $g \in C^1([A, B])$.

LEMMA 5.4 Let assumption (H_3) hold, let $u_0 \in L^{\infty}(\Omega)$ and for any $\varepsilon > 0$ let $(u^{\varepsilon}, v^{\varepsilon})$ be the solution of problem [\(2.15\)](#page-6-0)–[\(2.16\)](#page-6-1) with initial datum u_0 . Let $\{\varepsilon_{h_l}\}\$ be the vanishing sequence given by Lemma [5.3.](#page-21-1) Then there exists a subset $E^2 \subseteq (0, \infty)$ with $|E^2| = 0$ and with the following property: for any $t \in (0, \infty) \setminus E^2$ there exist a subsequence $\{\varepsilon_{h_{l,t}}\} \subseteq \{\varepsilon_{h_l}\}\$, possibly depending on t, and a function $v^t \in H^1(\Omega)$ such that

$$
\phi(u^{\varepsilon_{h_{l,t}}}(\cdot,t)) \to v^t(\cdot) \quad \text{ a.e. in } \Omega. \tag{5.12}
$$

We can now prove Theorem [2.10.](#page-8-1)

Proof of Theorem [2.10.](#page-8-1) Let $E^1, E^2 \subseteq (0, \infty)$ be the sets of zero Lebesgue measure given respectively by Lemma [5.3](#page-21-1) and Lemma [5.4.](#page-22-0) Let us define the set

$$
E := E^1 \cup E^2
$$

(clearly of zero Lebesgue measure) and fix any $t \in (0, \infty) \setminus E$. Let $\{\varepsilon_{h_{l,t}}\}$ and $v^t \in H^1(\Omega)$ be respectively the sequence and the function given by Lemma [5.4](#page-22-0) so that convergence [\(5.12\)](#page-22-1) holds. Since we have assumed that the initial datum u_0 satisfies assumption (H_3) , from Theorem [2.8](#page-7-1) we deduce that $a \leq u^{\varepsilon_{h_{l,t}}}(\cdot,t) \leq d$ almost everywhere in Ω , and

$$
u^{\varepsilon_{h_{l,t}}}(\cdot,t) = \begin{cases} s_1(\phi(u^{\varepsilon_{h_{l,t}}}(\cdot,t))) & \text{a.e. in } (\omega_1,0), \\ s_2(\phi(u^{\varepsilon_{h_{l,t}}}(\cdot,t))) & \text{a.e. in } (0,\omega_2). \end{cases}
$$

Therefore we have

$$
u^{\varepsilon_{h_{l,t}}}(\cdot,t)\to u^t(\cdot,t)=:\begin{cases} s_1(v^t(\cdot)) & \text{a.e. in } (\omega_1,0),\\ s_2(v^t(\cdot)) & \text{a.e. in } (0,\omega_2) \end{cases}
$$

(here Lemma [5.4](#page-22-0) has been used). This implies that for any $\varphi \in C^1(\overline{\Omega})$ we have

$$
\lim_{\varepsilon_{h_{l,t}} \to 0} \int_{\Omega} G(u^{\varepsilon_{h_{l,t}}}(x,t)) \varphi(x) dx = \lim_{\varepsilon_{h_{l,t}} \to 0} \int_{\omega_1}^{0} [G \circ s_1] (\phi(u^{\varepsilon_{h_{l,t}}}(x,t))) \varphi(x) dx \n+ \lim_{\varepsilon_{h_{l,t}} \to 0} \int_{0}^{\omega_2} [G \circ s_2] (\phi(u^{\varepsilon_{h_{l,t}}}(x,t))) \varphi(x) dx \n= \int_{\omega_1}^{0} G(s_1(v^t(x))) \varphi(x) dx + \int_{0}^{\omega_2} G(s_2(v^t(x))) \varphi(x) dx \qquad (5.13)
$$

for any G defined by [\(2.7\)](#page-4-2) in terms of $g \in C^1([A, B])$. Combining [\(5.11\)](#page-22-2) and [\(5.13\)](#page-23-0) we obtain

$$
\int_{\omega_1}^{0} \left(\int_{[A,B]} [G \circ s_1](\xi) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx + \int_0^{\omega_2} \left(\int_{[A,B]} [G \circ s_2](\xi) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx
$$

$$
= \int_{\omega_1}^{0} G(s_1(v^t(x))) \varphi(x) dx + \int_0^{\omega_2} G(s_2(v^t(x))) \varphi(x) dx \qquad (5.14)
$$

for any G and φ as above. Here for almost every $(x, t) \in Q$ the measure $\sigma_{(x, t)}$ is the disintegration of the limiting Young measure η given by Proposition [5.1.](#page-21-0) We proceed in three steps.

STEP (i). Let us prove the characterization [\(2.29\)](#page-8-5). Let $u \in L^{\infty}(Q)$ be the weak^{*} limit of the sequence $\{u^{\varepsilon_k}\}\$ given by Theorem [2.9](#page-7-4) and let $\{\varepsilon_h\}\subseteq \{\varepsilon_k\}$ be the vanishing sequence given by Proposition [5.1.](#page-21-0) Observe that in view of Theorem [2.8](#page-7-1) and Proposition [5.1](#page-21-0) (in particular see [\(2.20\)](#page-7-5) and [\(5.8\)](#page-21-2)–[\(5.9\)](#page-21-3)),

$$
\iint_{Q} u(x, t) \psi(x, t) dx dt = \lim_{h \to \infty} \iint_{Q} u^{\varepsilon_h}(x, t) \psi(x, t) dx dt
$$

\n
$$
= \lim_{h \to \infty} \int_{0}^{\infty} \int_{\omega_1}^{0} s_1(\phi(u^{\varepsilon_h}(x, t))) \psi(x, t) dx dt + \lim_{h \to \infty} \int_{0}^{\infty} \int_{0}^{\omega_2} s_2(\phi(u^{\varepsilon_h}(x, t))) \psi(x, t) dx dt
$$

\n
$$
= \int_{0}^{\infty} \int_{\omega_1}^{0} \left(\int_{[A, B]} s_1(\xi) d\sigma_{(x, t)}(\xi) \right) \psi(x, t) dx dt
$$

\n
$$
+ \int_{0}^{\infty} \int_{0}^{\omega_2} \left(\int_{[A, B]} s_2(\xi) d\sigma_{(x, t)}(\xi) \right) \psi(x, t) dx dt
$$

for any $\psi \in C_c^1(Q)$. The above equalities imply

$$
u(x,t) = \left(\int_{[A,B]} s_1(\xi) d\sigma_{(x,t)}(\xi)\right) \chi_{(\omega_1,0)\times(0,\infty)} + \left(\int_{[A,B]} s_2(\xi) d\sigma_{(x,t)}(\xi)\right) \chi_{(0,\omega_2)\times(0,\infty)} \tag{5.15}
$$

for almost every $(x, t) \in Q$. Therefore, the characterization [\(2.29\)](#page-8-5) will follow if we prove that $\sigma_{(x,t)}$ is the Dirac mass:

$$
\sigma_{(x,t)} \equiv \delta_{v(x,t)} \tag{5.16}
$$

for almost every $(x, t) \in Q$, where $v \in L^{\infty}(\Omega)$ is the limit of both the sequences $\{\phi(u^{\varepsilon_h})\}, \{v^{\varepsilon_h}\}\$ in the weak^{*} topology of $L^{\infty}(Q)$ (see Theorem [2.9\)](#page-7-4). In fact, in the light of [\(5.16\)](#page-23-1) equality [\(5.15\)](#page-23-2) will then read

$$
u(x, t) = s_1(v(x, t)) \chi_{(\omega_1, 0) \times (0, \infty)} + s_2(v(x, t)) \chi_{(0, \omega_2) \times (0, \infty)}
$$

for almost every $(x, t) \in Q$, proving [\(2.29\)](#page-8-5).

So, let us prove [\(5.16\)](#page-23-1). Fix any $\bar{t} \in (0, \infty) \setminus E$ and observe that for any $\varphi \in C_c^1((\omega_1, 0))$ equality [\(5.14\)](#page-23-3) reads

$$
\int_{\omega_1}^{0} \left(\int_{[A,B]} [G \circ s_1](\xi) d\sigma_{(x,\bar{t})}(\xi) \right) \varphi(x) dx = \int_{\omega_1}^{0} [G \circ s_1](v^{\bar{t}}(x)) \varphi(x) dx \tag{5.17}
$$

for any G defined by [\(2.7\)](#page-4-2) in terms of $g \in C^1([A, B])$. The above equality implies that there exists a set $F \subseteq (\omega_1, 0)$ of zero Lebesgue measure such that for any G as above,

$$
\int_{[A,B]} [G \circ s_1](\xi) d\sigma_{(x,\bar{t})}(\xi) = [G \circ s_1](v^{\bar{t}}(x))
$$
\n(5.18)

for any $x \in (\omega_1, 0) \setminus F$. Fix any $x \in (\omega_1, 0) \setminus F$ such that [\(5.18\)](#page-24-0) holds. Choosing

$$
\underline{g}(s) \begin{cases} \equiv 0 & \text{if } s \in [A, v^{\overline{t}}(x)], \\ > 0 & \text{if } s \in (v^{\overline{t}}(x), B], \end{cases} \quad \underline{G}(\lambda) := \int_{a}^{\lambda} \underline{g}(\phi(s)) \, ds
$$

in [\(5.18\)](#page-24-0) gives

$$
\int_{(v^{\bar{t}}(x),B]} [G \circ s_1](\xi) d\sigma_{(x,\bar{t})}(\xi) = 0.
$$

Since $\underline{G}(\lambda) > 0$ for $\lambda \in (s_1(v^{\bar{t}}(x)), b]$, the above equality implies that supp $\sigma_{(x, \bar{t})} \subseteq [A, v^{\bar{t}}(x)]$. On the other hand, if we choose

$$
\overline{g}(s) \begin{cases} \equiv 0 & \text{if } s \in [v^{\overline{t}}(x), B], \\ > 0 & \text{if } s \in [A, v^{\overline{t}}(x)), \end{cases} \quad \overline{G}(\lambda) := \int_b^{\lambda} \overline{g}(\phi(s)) \, ds,
$$

equality [\(5.18\)](#page-24-0) reads

$$
\int_{[A,v^{\overline{t}}(x))} [\overline{G}\circ s_1](\xi) d\sigma_{(x,\overline{t})}(\xi) = 0.
$$

Since $\overline{G}(\lambda) < 0$ for $\lambda \in [a, s_1(v^{\overline{t}}(x)))$, the above equality implies that supp $\sigma_{(x,\overline{t})} \subseteq [v^{\overline{t}}(x), B]$. In other words, we have obtained

$$
\operatorname{supp} \sigma_{(x,\overline{t})} = \{v^{\overline{t}}(x)\}\
$$

for almost every $x \in (\omega_1, 0)$. Moreover, by similar arguments we also obtain

$$
\operatorname{supp} \sigma_{(x,\overline{t})} = \{v^{\overline{t}}(x)\}
$$

for almost every $x \in (0, \omega_2)$. Therefore for almost every $x \in \Omega$ the probability measure $\sigma_{(x,\bar{t})}$ is the Dirac mass concentrated at the point $v^{\bar{t}}(x)$:

$$
\sigma_{(x,\bar{t})} = \delta_{v^{\bar{t}}(x)}.
$$
\n(5.19)

Combining [\(5.19\)](#page-24-1) with the basic properties of the narrow convergence of Young measures (in particular see (5.8) – (5.9) in Proposition [5.1\)](#page-21-0), we obtain

$$
v(x,\bar{t}) = \int_{[A,B]} \xi \, d\sigma_{(x,\bar{t})}(\xi) = v^{\bar{t}}(x)
$$
\n(5.20)

for almost every $x \in \Omega$. Here the function $v \in L^{\infty}(Q)$ is the limit of both the sequences $\{\phi(u^{\varepsilon_k})\},\$ $\{v^{\varepsilon_k}\}\$ in the weak* topology of $L^{\infty}(Q)$ (see Theorem [2.9\)](#page-7-4). Since $v \in L^2((0, T); H^1(\Omega))$ for any $T > 0$, and $\bar{t} \in (0, \infty) \setminus E$ where $|E| = 0$, we can suppose that $v(\cdot, \bar{t}) \in H^1(\Omega) \subseteq C(\overline{\Omega})$. Since $v^{\bar{i}}(\cdot) \in H^1(\Omega) \subseteq C(\overline{\Omega})$ too, the above equality holds *for all* $x \in \Omega$, so $\sigma_{(x,\bar{i})} = \delta_{v(x,\bar{i})}$ *for all* $x \in \Omega$. As \bar{t} is arbitrary, the characterization [\(5.16\)](#page-23-1) follows.

STEP (ii). Let us prove the convergences in [\(2.30\)](#page-8-6)–[\(2.31\)](#page-8-7). To this end, let $\{\varepsilon_h\}$ be the vanishing sequence given by Proposition [5.1.](#page-21-0) In view of standard results on the narrow convergence of Young measures, the characterization [\(5.16\)](#page-23-1) implies that

$$
\phi(u^{\varepsilon_h}) \to v \quad \text{in measure}
$$

in every cylinder $Q_T := \Omega \times (0, T)$, for any $T > 0$ ([\[V\]](#page-39-20)). Since Q_T has finite Lebesgue measure for any $T > 0$ and the sequence $\{u^{\varepsilon_h}\}\$ is uniformly bounded in $L^\infty(Q)$, we deduce that

$$
\phi(u^{\varepsilon_h}) \to v \quad \text{in } L^p(Q_T) \tag{5.21}
$$

for any $1 \leq p < \infty$ ([\[B\]](#page-39-21)). By [\(2.23\)](#page-7-3) we also obtain

$$
\|v^{\varepsilon_h} - v\|_{L^2(Q_T)}^2 \le \|v^{\varepsilon_h} - \phi(u^{\varepsilon_h})\|_{L^2(Q)}^2 + \|\phi(u^{\varepsilon_h}) - v\|_{L^2(Q_T)}^2
$$

$$
\le \varepsilon_h \|\sqrt{\varepsilon_h}u_t^{\varepsilon_h}\|_{L^2(Q)}^2 + \|\phi(u^{\varepsilon_h}) - v\|_{L^2(Q_T)}^2 \to 0
$$

as $h \to \infty$, that is,

$$
v^{\varepsilon_h} \to v \quad \text{in } L^2(Q_T) \tag{5.22}
$$

for any $T > 0$. In view of [\(5.21\)](#page-25-0), [\(5.22\)](#page-25-1) there exists a subsequence $\{\varepsilon_j\} \equiv \{\varepsilon_{h_j}\}\subseteq \{\varepsilon_h\}$ such that

$$
\phi(u^{\varepsilon_j}), v^{\varepsilon_j} \to v \quad \text{almost everywhere in } Q_T,
$$
\n(5.23)

therefore by the arbitrariness of $T > 0$ the convergence in [\(2.30\)](#page-8-6) follows. Let us address [\(2.31\)](#page-8-7). For this purpose, observe that by the convergence in [\(2.30\)](#page-8-6) we obtain

$$
u^{\varepsilon_j}(x,t) = s_1(\phi(u^{\varepsilon_j}(x,t))) \to s_1(v(x,t))
$$
\n(5.24)

for almost every $(x, t) \in (\omega_1, 0) \times (0, \infty)$ and

$$
u^{\varepsilon_j}(x,t) = s_2(\phi(u^{\varepsilon_j}(x,t))) \to s_2(v(x,t))
$$
\n(5.25)

for almost every $(x, t) \in (0, \omega_2) \times (0, \infty)$ (here Theorem [2.8](#page-7-1) has been used). The above convergences imply [\(2.31\)](#page-8-7).

STEP (iii). Let us prove the limiting entropy inequalities [\(2.8\)](#page-4-1). To do so, fix any $T > 0$ and pass to the limit as $j \to \infty$ in the viscous entropy inequalities [\(2.18\)](#page-7-0) for $\varepsilon = \varepsilon_j$, $t_1 = 0$, $t_2 = T$ and for $\psi \in C^1(\overline{Q}_T)$, $\psi \ge 0$, $\psi(\cdot, T) = 0$ in $\overline{\Omega}$ (here $Q_T = \Omega \times (0, T)$). In view of [\(2.21\)](#page-7-2) and the convergence in [\(2.31\)](#page-8-7), we have

$$
\iint_{Q_T} G(u^{\varepsilon_j}) \psi_t \, dx \, dt \to \iint_Q G(u) \psi_t \, dx \, dt \tag{5.26}
$$

for any $g \in C^1(\mathbb{R})$ and G defined by [\(2.7\)](#page-4-2). Moreover, since $v^{\varepsilon_j} \to v$ almost everywhere in Q and $v_x^{\varepsilon_j} \rightharpoonup v_x$ in $L^2(Q)$ (see [\(2.26\)](#page-8-3)), it follows that

$$
g(v^{\varepsilon_j})v^{\varepsilon_j}_x \rightharpoonup g(v)v_x \quad \text{in } L^2(Q_T)
$$

(here [\(2.22\)](#page-7-8) has been used), therefore

$$
\iint_{Q_T} g(v^{\varepsilon_j}) v_x^{\varepsilon_j} \psi_x \, dx \, dt \to \iint_{Q_T} g(v) v_x \psi_x \, dx \, dt \tag{5.27}
$$

for any g and ψ as above. Finally, observe that since

$$
\sqrt{g'(v^{\varepsilon_j})}v_x^{\varepsilon_j} \rightharpoonup \sqrt{g'(v)}v_x \quad \text{in } L^2(Q_T)
$$

(recall that $g' \geq 0$), we have

$$
\iint_{Q_T} g'(v) v_x^2 \psi \, dx \, dt \le \liminf_{j \to \infty} \iint_{Q_T} g'(v^{\varepsilon_j})(v_x^{\varepsilon_j})^2 \psi \, dx \, dt \tag{5.28}
$$

for any $\psi \in C^1(\overline{Q}_T)$ with $\psi \geq 0$. Combining [\(5.26\)](#page-25-2)–[\(5.28\)](#page-26-0) gives the entropy inequalities [\(2.8\)](#page-4-1) and concludes the proof. \Box

Proof of Lemma [5.2](#page-21-4). Fix any $T > 0$, $\varphi \in C^1(\overline{\Omega})$, and $g \in C^1(\mathbb{R})$, and let G be the function defined by (2.7) . In view of (2.16) and (2.17) ,

$$
\int_0^T \left| \int_{\Omega} [G(u^{\varepsilon}(x,t))]_t \varphi(x) dx \right| dt = \int_0^T \left| \int_{\Omega} g(\phi(u^{\varepsilon}(x,t))) u_t^{\varepsilon}(x,t) \varphi(x) dx \right| dt
$$

$$
\leq \int_0^T \left| \int_{\Omega} [g(\phi(u^{\varepsilon}(x,t))) - g(v^{\varepsilon}(x,t))] u_t^{\varepsilon}(x,t) \varphi(x) dx \right| dt
$$

$$
+ \int_0^T \left| \int_{\Omega} g(v^{\varepsilon}(x,t)) v_{xx}^{\varepsilon}(x,t) \varphi(x) dx \right| dt.
$$
 (5.29)

Since the family $\{u^{\varepsilon}\}\$ is uniformly bounded in $L^{\infty}(Q)$ (see [\(2.21\)](#page-7-2)), we can find a constant $C^* > 0$ such that

$$
C^* > \sup_{\varepsilon > 0} \|\phi(u^{\varepsilon})\|_{L^{\infty}(Q)}.
$$

Let us study the different terms on the right-hand side of [\(5.29\)](#page-26-1). We have

$$
\int_0^T \left| \int_{\Omega} [g(\phi(u^{\varepsilon}(x,t))) - g(v^{\varepsilon}(x,t))] u_t^{\varepsilon}(x,t) \varphi(x) dx \right| dt
$$

\n
$$
\leq \|g'\|_{C([-C^*, C^*])} \int_0^T \left| \int_{\Omega} \varepsilon [u_t^{\varepsilon}(x,t)]^2 \varphi(x) dx \right| dt
$$

\n
$$
\leq \|g'\|_{C([-C^*, C^*])} \|\sqrt{\varepsilon} u_t^{\varepsilon}\|_{L^2(Q_T)}^2 \|\varphi\|_{C(\overline{\Omega})}
$$
(5.30)

(here [\(2.23\)](#page-7-3) has been used). Moreover,

$$
\int_0^T \left| \int_{\Omega} g(v^{\varepsilon}(x,t)) v_{xx}^{\varepsilon}(x,t) \varphi(x) dx \right| dt \leq \int_0^T \left| \int_{\Omega} g(v^{\varepsilon}(x,t)) v_x^{\varepsilon}(x,t) \varphi_x(x) dx \right| dt + \int_0^T \left| \int_{\Omega} g'(v^{\varepsilon}(x,t)) [v_x^{\varepsilon}(x,t)]^2 \varphi(x) dx \right| dt \leq \|g\|_{C^1([-C^*, C^*])} \|\varphi\|_{C^1(\overline{\Omega})} [\sqrt{T}] |v_x^{\varepsilon}|_{L^2(Q)} + \|v_x^{\varepsilon}|_{L^2(Q)}^2 \right]
$$
(5.31)

(here [\(2.23\)](#page-7-3) has been used). Set

$$
C_{g,\varphi} := \|g\|_{C^1([-C^*,C^*])} \|\varphi\|_{C^1(\overline{\Omega})}.
$$

Then combining (5.29) – (5.31) gives estimate (5.10) and concludes the proof.

Proof of Lemma [5.3](#page-21-1). (i) Firstly we observe that in view of assumption (H3),

$$
A \leqslant \phi(u^{\varepsilon}) \leqslant B \tag{5.32}
$$

almost everywhere in Q (see Theorem [2.8\)](#page-7-1). Let $\{\varepsilon_h\}$ be the vanishing sequence given by Proposition [5.1](#page-21-0) and choose any $f \in C(\mathbb{R})$ such that $f \equiv 0$ in [A, B] and $f > 0$ in $\mathbb{R} \setminus [A, B]$. In view of (5.8) – (5.9) and (5.32) ,

$$
0 \equiv f(\phi(u^{\varepsilon_h})) \stackrel{*}{\rightharpoonup} \int_{\mathbb{R}} f(\xi) d\sigma_{(\cdot,\cdot)}(\xi) \quad \text{in } L^{\infty}(Q),
$$

$$
\int_{\mathbb{R}} f(\xi) d\sigma_{(x,t)}(\xi) \equiv 0 \tag{5.33}
$$

so

for almost every $(x, t) \in Q$. Fix any $(x, t) \in Q$ such that the above equality holds. Since $f \ge 0$, equation [\(5.33\)](#page-27-2) implies $f = 0 \sigma_{(x,t)}$ -a.e. in R. On the other hand, $f > 0$ in R \ [A, B], therefore supp $\sigma_{(x,t)} \subseteq [A, B]$. By the arbitrariness of (x, t) , claim (i) follows.

(ii) Fix any $T > 0$ and set $Q_T := \Omega \times (0, T)$. Fix any $g \in C^1([A, B])$ and let G be defined by [\(2.7\)](#page-4-2). For any $\varepsilon > 0$ and $\varphi \in C^1(\overline{\Omega})$ let $\mathcal{G}^{\varepsilon,\varphi} \in W^{1,1}(0,T)$ be the function defined by setting

$$
\mathcal{G}^{\varepsilon,\varphi}(t) := \int_{\Omega} G(u^{\varepsilon}(x,t))\varphi(x) \, \mathrm{d}x. \tag{5.34}
$$

In view of estimate [\(2.23\)](#page-7-3) and Lemma [5.2](#page-21-4) (in particular see [\(5.10\)](#page-21-5)) the family $\{\mathcal{G}^{\varepsilon,\varphi}\}\$ is uniformly bounded in $W^{1,1}(0,T)$, therefore there exist a subsequence $\{\varepsilon_h^{g,q}$ $\{ \xi_n^{\mathcal{S}, \varphi} \} \subseteq \{ \varepsilon_h \}$, in general depending on g and φ , and a function $\mathcal{G}^{\varphi} \in L^1(0,T)$ such that

$$
\mathcal{G}^{\varepsilon_h^{g,\varphi},\varphi} \to \mathcal{G}^{\varphi} \quad \text{ in } L^1(0,T) \tag{5.35}
$$

as $\varepsilon_h^{g,\varphi} \to 0$. On the other hand, in view of Theorem [2.8](#page-7-1) we have

$$
u^{\varepsilon_h^{g,\varphi}}(x,t) = \begin{cases} s_1(\phi(u^{\varepsilon_h^{g,\varphi}}(x,t))) & \text{for a.e. } (x,t) \in (\omega_1,0) \times (0,\infty), \\ s_2(\phi(u^{\varepsilon_h^{g,\varphi}}(x,t))) & \text{for a.e. } (x,t) \in (0,\omega_2) \times (0,\infty). \end{cases}
$$

Therefore, by Proposition [5.1](#page-21-0) (see [\(5.8\)](#page-21-2)–[\(5.9\)](#page-21-3)) we obtain

$$
\lim_{\varepsilon_h^{g,\varphi}\to 0} \int_0^T h(t) \, \mathrm{d}t \int_{\Omega} G(u^{\varepsilon_h^{g,\varphi}}(x,t)) \varphi(x) \, \mathrm{d}x
$$
\n
$$
= \int_0^T h(t) \, \mathrm{d}t \int_{\omega_1}^0 \left(\int_{[A,B]} G(s_1(\xi)) \, \mathrm{d}\sigma_{(x,t)}(\xi) \right) \varphi(x) \, \mathrm{d}x
$$
\n
$$
+ \int_0^T h(t) \, \mathrm{d}t \int_0^{\omega_2} \left(\int_{[A,B]} G(s_2(\xi)) \, \mathrm{d}\sigma_{(x,t)}(\xi) \right) \varphi(x) \, \mathrm{d}x \tag{5.36}
$$

for any $h \in C^1([0, T])$. Combining [\(5.35\)](#page-27-3) and [\(5.36\)](#page-28-0) we have

$$
\int_0^T \mathcal{G}^{\varphi}(t)h(t) dt = \int_0^T h(t) dt \int_{\omega_1}^0 \left(\int_{[A,B]} G(s_1(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx + \int_0^T h(t) dt \int_0^{\omega_2} \left(\int_{[A,B]} G(s_2(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx
$$

for any h as above, hence

$$
\mathcal{G}^{\varphi}(t) = \int_{\omega_1}^{0} \left(\int_{[A,B]} G(s_1(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx + \int_{0}^{\omega_2} \left(\int_{[A,B]} G(s_2(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx
$$

for almost every $t \in (0, T)$. This implies that the convergence in [\(5.35\)](#page-27-3) holds *along the whole sequence* $\{\varepsilon_h\}$, so

$$
\mathcal{G}^{\varepsilon_h, \varphi} \to \int_{\omega_1}^0 \left(\int_{[A,B]} G(s_1(\xi)) d\sigma_{(x,\cdot)}(\xi) \right) \varphi(x) dx + \int_0^{\omega_2} \left(\int_{[A,B]} G(s_2(\xi)) d\sigma_{(x,\cdot)}(\xi) \right) \varphi(x) dx
$$
(5.37)

in $L^1(0, T)$. In view of [\(5.37\)](#page-28-1), there exist a subsequence $\{\varepsilon_h^{g,q}$ $\{ \xi_h \}_{h_l}^{\mathcal{S}, \varphi} \subseteq \{ \varepsilon_h \}$ and a set $E^{\mathcal{S}, \varphi} \subseteq (0, T)$ of zero Lebesgue measure such that

$$
\mathcal{G}^{\varepsilon_{h_l}^{g,\varphi},\varphi}(t) \to \int_{\omega_1}^{0} \left(\int_{[A,B]} G(s_1(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx + \int_{0}^{\omega_2} \left(\int_{[A,B]} G(s_2(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx
$$
(5.38)

for any $t \in (0, T) \setminus E^{g, \varphi}$. Here in general the sequence $\{\varepsilon_h^{g, \varphi}\}$ $\binom{g,\varphi}{h_l}$ and the set $E^{g,\varphi}$ depend on the choice of $g \in C^1([A, B])$ and $\varphi \in C^1(\overline{\Omega})$. Let us show that the convergence in [\(5.38\)](#page-28-2) holds along a subsequence $\{\varepsilon_{h_l}\}$ and off a set $E^T \subseteq (0, T)$ of zero Lebesgue measure, both independent of g and φ . To see this, observe that the spaces $C^1([A, B])$ and $C^1(\overline{\Omega})$ are separable, hence there exist countable sets $\mathcal{D}_1 \subseteq C^1([A, B])$ and $\mathcal{D}_2 \subseteq C^1(\overline{\Omega})$ such that

$$
\overline{\mathcal{D}}_1 = C^1([A, B]), \quad \overline{\mathcal{D}}_2 = C^1(\overline{\Omega}).
$$

Since \mathcal{D}_1 and \mathcal{D}_2 are countable, by standard diagonal arguments, there exist a subsequence $\{\varepsilon_{h_l}\}\subseteq$ $\{\varepsilon_h\}$ and a set $E^T \subseteq (0, T)$ of zero Lebesgue measure such that, *for any* $g \in \mathcal{D}_1$ *and for any* $\varphi \in \mathcal{D}_2$ *convergence* [\(5.38\)](#page-28-2) *holds along the sequence* $\{\varepsilon_{h_l}\}$ *and for all* $t \in (0, T) \setminus E^T$. In other words,

$$
\lim_{l \to \infty} \int_{\Omega} G(u^{\varepsilon_{h_l}}(x, t)) \varphi(x) dx = \int_{\omega_1}^{0} \left(\int_{[A, B]} G(s_1(\xi)) d\sigma_{(x, t)}(\xi) \right) \varphi(x) dx + \int_{0}^{\omega_2} \left(\int_{[A, B]} G(s_2(\xi)) d\sigma_{(x, t)}(\xi) \right) \varphi(x) dx \qquad (5.39)
$$

for all $g \in \mathcal{D}_1$, $\varphi \in \mathcal{D}_2$, and $t \in (0, T) \setminus E^T$. To prove that [\(5.39\)](#page-29-0) holds for all $g \in C^1([A, B])$ and $\varphi \in C^1(\overline{\Omega})$, fix any $t \in (0, T) \setminus E^T$, $g \in C^1([A, B])$ and $\varphi \in C^1(\overline{\Omega})$. Choose $\{g_n\} \subseteq \mathcal{D}_1$ and $\{\varphi_n\} \subseteq \mathcal{D}_2$ so that

$$
\begin{cases} g_n \to g & \text{in } C^1([A, B]), \\ \varphi_n \to \varphi & \text{in } C^1(\overline{\Omega}). \end{cases}
$$
 (5.40)

Let G and G_n be respectively the functions defined by [\(2.7\)](#page-4-2) for g and g_n ($n \in \mathbb{N}$) for $k = 0$. Then

$$
|G(\lambda) - G_n(\lambda)| = \left| \int_0^{\lambda} [g(\phi(s)) - g_n(\phi(s))] ds \right| \leq ||g - g_n||_{C^1([A, B])} |\lambda| \tag{5.41}
$$

for any $\lambda \in [a, d]$ (see Figure [1\)](#page-0-0). For the sake of simplicity set

$$
\Omega_1 := (\omega_1, 0), \quad \Omega_2 := (0, \omega_2),
$$

and recall that in view of assumption (H_3) we have $u^{\varepsilon h_l}(x, t) = s_l(\phi(u^{\varepsilon h_l}(x, t)))$ in Ω_1 and $u^{\varepsilon_{h_l}}(x, t) = s_2(\phi(u^{\varepsilon_{h_l}}(x, t)))$ in Ω_2 (see Theorem [2.8\)](#page-7-1). Then

$$
\left| \int_{\Omega_{i}} G(u^{\varepsilon_{h_{l}}}(x,t)) \varphi(x) dx - \int_{\Omega_{i}} \left(\int_{[A,B]} G(s_{i}(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx \right|
$$

\n
$$
\leq \int_{\Omega_{i}} |G(u^{\varepsilon_{h_{l}}}(x,t)) - G_{n}(u^{\varepsilon_{h_{l}}}(x,t))| |\varphi(x)| dx + \int_{\Omega_{i}} |G_{n}(u^{\varepsilon_{h_{l}}}(x,t))| |\varphi(x) - \varphi_{n}(x)| dx
$$

\n
$$
+ \left| \int_{\Omega_{i}} \left[G_{n}(u^{\varepsilon_{h_{l}}}(x,t)) \varphi_{n}(x) - \left(\int_{[A,B]} G_{n}(s_{i}(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi_{n}(x) \right] dx \right|
$$

\n
$$
+ \int_{\Omega_{i}} \left(\int_{[A,B]} |G_{n}(s_{i}(\xi))| d\sigma_{(x,t)}(\xi) \right) |\varphi_{n}(x) - \varphi(x)| dx
$$

\n
$$
+ \int_{\Omega_{i}} \left(\int_{[A,B]} |G_{n}(s_{i}(\xi)) - G(s_{i}(\xi))| d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx
$$
(5.42)

 $(i = 1, 2)$. Let us study the five terms on the right-hand side of [\(5.42\)](#page-29-1) first as $l \rightarrow \infty$ and then as $n \to \infty$. In view of [\(5.41\)](#page-29-2),

$$
\limsup_{l \to \infty} \int_{\Omega_l} |G(u^{\varepsilon_{h_l}}(x, t)) - G_n(u^{\varepsilon_{h_l}}(x, t))| |\varphi(x)| dx
$$
\n
$$
\leq \limsup_{l \to \infty} \|g_n - g\|_{C^1([A, B])} \int_{\Omega_l} |u^{\varepsilon_{h_l}}(x, t)| dx \leq C_1 \|g - g_n\|_{C^1([A, B])} \tag{5.43}
$$

 $(i = 1, 2)$; concerning the second and fourth terms on the right-hand side of [\(5.42\)](#page-29-1) we obtain respectively

$$
\limsup_{l \to \infty} \int_{\Omega_l} |G_n(u^{\varepsilon_{h_l}}(x,t))| \, |\varphi(x) - \varphi_n(x)| \, dx
$$
\n
$$
\leq \limsup_{l \to \infty} \|\varphi_n - \varphi\|_{C^1(\overline{\Omega})} \int_{\Omega_l} |G_n(u^{\varepsilon_{h_l}}(x,t))| \, dx \leq C_2 \|\varphi_n - \varphi\|_{C^1(\overline{\Omega})} \tag{5.44}
$$

and

$$
\int_{\Omega_{i}}\left(\int_{[A,B]}|G_{n}(s_{i}(\xi))|\,d\sigma_{(x,t)}(\xi)\right)|\varphi_{n}(x)-\varphi(x)|\,dx\leq C_{3}\|\varphi_{n}-\varphi\|_{C^{1}(\overline{\Omega})}.\tag{5.45}
$$

Finally we address the fifth term on the right-hand side of [\(5.42\)](#page-29-1). By [\(5.41\)](#page-29-2) we obtain

$$
\int_{\Omega_{i}} \left(\int_{[A,B]} |G_{n}(s_{i}(\xi)) - G(s_{i}(\xi))| d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx \leq C_{4} \|g_{n} - g\|_{C^{1}([A,B])}
$$
(5.46)

 $(i = 1, 2)$. Here the constants C_p $(p = 1, 2, 3, 4)$ are independent of n. Concerning the third term on the right-hand side of [\(5.42\)](#page-29-1), observe that in view of [\(5.39\)](#page-29-0),

$$
\lim_{l\to\infty}\left|\int_{\Omega_l}\left[G_n(u^{\varepsilon_{h_l}}(x,t))-\int_{[A,B]}G_n(s_i(\xi))\,d\sigma_{(x,t)}(\xi)\right]\varphi_n(x)\,dx\right|=0
$$

for $i = 1, 2$ and any $n \in \mathbb{N}$ (recall that $\{g_n\} \subset \mathcal{D}_1$ and $\{\varphi_n\} \subset \mathcal{D}_2$). The above equality and (5.43) – (5.46) imply there exists a constant $C > 0$ such that

$$
\limsup_{l \to \infty} \left| \int_{\Omega_l} G(u^{\varepsilon_{h_l}}(x,t)) \varphi(x) dx - \int_{\Omega_l} \left(\int_{[A,B]} G(s_i(\xi)) d\sigma_{(x,t)}(\xi) \right) \varphi(x) dx \right| \leq C [\|g_n - g\|_{C^1([A,B])} + \|\varphi_n - \varphi\|_{C^1(\overline{\Omega})}] \tag{5.47}
$$

 $(i = 1, 2)$. In view of [\(5.40\)](#page-29-4) and in view of the arbitrariness of g, t, φ , letting $n \to \infty$ in [\(5.47\)](#page-30-1) gives equality [\(5.11\)](#page-22-2) for $t \in (0, T) \setminus E^T$, $g \in C^1([A, B])$, and $\varphi \in C^1(\overline{\Omega})$.

Finally, fix any diverging and strictly increasing sequence $\{T_i\} \subseteq (0, \infty)$. Let $\{\varepsilon_{h_i}^1\}$ and $E^{T_1} \subseteq (0, T_1)$ be respectively the subsequence and the set of zero Lebesgue measure such that the convergence in [\(5.11\)](#page-22-2) holds for any $g \in C^1([A, B])$, $\varphi \in C^1(\overline{\Omega})$ and $t \in (0, T_1) \setminus E^{T_1}$. Then we can find a subsequence $\{\varepsilon_{h_l}^2\} \subseteq \{\varepsilon_{h_l}^1\}$ and a set $F^1 \subseteq (T_1, T_2)$ of zero Lebesgue measure such that the convergence in [\(5.11\)](#page-22-2) holds for any $g \in C^1([A, B])$, $\varphi \in C^1(\overline{\Omega})$ and $t \in (0, T_2) \setminus E^{T_2}$, where

$$
E^{T_2} := E^{T_1} \cup F^1.
$$

Therefore, using an inductive procedure, for any $i \in \mathbb{N}$ we can construct a sequence $\{\varepsilon_{h_l}^i\}$ and a set $E^{T_i} \subseteq (0, T_i)$ with $|E^{T_i}| = 0$ such that [\(5.11\)](#page-22-2) holds along the sequence $\{\varepsilon_{h_l}^i\}$ and for any $t \in (0, T_i) \setminus E^{T_i}$. By standard diagonal arguments, setting

$$
E^1 := \bigcup_{i=1}^{\infty} E^{T_i}
$$

gives the claim and concludes the proof. \Box

Proof of Lemma [5.4](#page-22-0). In view of estimate [\(2.23\)](#page-7-3) and the Fatou Lemma, we have

$$
\int_0^\infty \liminf_{l\to\infty}\left\{\int_\Omega[(v_x^{\varepsilon_{h_l}}(x,t))^2+\varepsilon_{h_l}(u_t^{\varepsilon_{h_l}}(x,t))^2]\,\mathrm{d}x\right\}\mathrm{d}t\leqslant C.
$$

The above estimate implies that

$$
\liminf_{l\to\infty}\left\{\int_{\Omega}[(v_x^{\varepsilon_{h_l}}(x,t))^2+\varepsilon_{h_l}(u_t^{\varepsilon_{h_l}}(x,t))^2]\,\mathrm{d}x\right\}
$$

belongs to the space $L^1(0, \infty)$. Therefore we can find a set $E^2 \subset (0, \infty)$ with $|E^2| = 0$ such that for any $t \in (0, \infty) \setminus E^2$ there exist a subsequence $\{\varepsilon_{h_l,t}\} \subseteq \{\varepsilon_{h_l}\}\$ and a constant $C(t) > 0$, both depending on t , such that

$$
\sup_{\varepsilon_{h_l,t}>0}\left\{\int_{\Omega}[(v_x^{\varepsilon_{h_l,t}}(x,t))^2+\varepsilon_{h_l,t}(u_t^{\varepsilon_{h_l,t}}(x,t))^2]\,\mathrm{d}x\right\}\leqslant C(t). \tag{5.48}
$$

Fix any $t \in (0, \infty) \setminus E^2$ and observe that estimate [\(5.48\)](#page-31-1) implies that the sequence $\{v^{\varepsilon_{h_l,t}}(\cdot, t)\}$ is uniformly bounded in $C(\overline{\Omega})$ and equicontinuous. Therefore, passing if necessary to a further subsequence that we continue to denote by $\{\varepsilon_{h_l,t}\}\)$, there exists a function $v^t \in C(\overline{\Omega})$ such that

$$
v^{\varepsilon_{h_l,t}}(\cdot,t) \to v^t(\cdot) \quad \text{in } C(\overline{\Omega}) \tag{5.49}
$$

as $l \to \infty$. Moreover, in view of [\(5.48\)](#page-31-1) again (possibly extracting another subsequence) we obtain

$$
\varepsilon_{h_l,t}\,u_t^{\varepsilon_{h_l,t}}(x,t)\to 0
$$

for almost every $x \in \Omega$. The above convergences imply that

$$
\varphi(u^{\varepsilon_{h_l,t}})(x,t)\to v^t(x)
$$

for almost every $x \in \Omega$ (here [\(2.16\)](#page-6-1) has been used). By the arbitrariness of $t \in (0, \infty) \setminus E^2$, [\(5.12\)](#page-22-1) follows and this concludes the proof.

6. Proofs of the results in Section [2.4](#page-9-2)

6.1 *Basic estimates: proofs*

Proof of Proposition [2.12](#page-9-3). Fix any $t > 0$ and for any $n \in \mathbb{N}$ set

$$
h_n^t(s) = \begin{cases} 1 & \text{if } t \in [0, t), \\ -n(s - t - 1/n) & \text{if } s \in [t, t + 1/n]. \end{cases}
$$
(6.1)

The choice of

$$
\psi_n(x,s) := h_n^t(s)
$$

as test function in the weak formulation [\(2.6\)](#page-4-6) of problem [\(2.1\)](#page-3-2) gives

$$
n \int_{t}^{t+1/n} \int_{\Omega} u(x, t) dx = \int_{\Omega} u_0(x) dx.
$$
 (6.2)

Arguing as in the proof of Proposition [2.1,](#page-5-2) letting $n \to \infty$ in [\(6.2\)](#page-31-2) gives [\(2.33\)](#page-9-4) and concludes the \Box

Proof of Proposition [2.13.](#page-9-5) Choosing $\varphi \equiv 1$ in the pointwise entropy inequalities [\(2.12\)](#page-5-1) gives

$$
\int_{\Omega} G(u(x, t_1)) dx \geqslant \int_{\Omega} G(u(x, t_2)) dx \tag{6.3}
$$

for all $t_1 \leq t_2$ and $g \in C^1(\mathbb{R})$ with $g' \geq 0$ (recall that G is defined in terms of g by [\(2.7\)](#page-4-2)). By standard arguments of approximation with smooth functions, the assumption $g \in C^1(\mathbb{R})$ can be dropped. Inequalities [\(6.3\)](#page-32-0) imply that the map

$$
t \mapsto \int_{\Omega} G(u(x,t)) \, \mathrm{d}x
$$

is nonincreasing in $(0, \infty)$ for any nondecreasing g, hence the claim follows. \Box

Proof of Proposition [2.14](#page-9-6). Let us choose in inequalities [\(2.12\)](#page-5-1) $g(\lambda) = \lambda$, $t_1 = 0$, $t_2 = T$ and $\varphi(\cdot) \equiv 1$ in $\overline{\Omega}$. We obtain

$$
\int_0^T \int_{\Omega} v_x^2(x, t) \, \mathrm{d}x \, \mathrm{d}t \leqslant \int_{\Omega} I(u_0) \, \mathrm{d}x - \int_{\Omega} I(u(x, T)) \, \mathrm{d}x,\tag{6.4}
$$

where

$$
I(\lambda) := \int_0^{\lambda} \phi(s) \, \mathrm{d}s.
$$

Since $u \in L^{\infty}(Q)$ (see Definition [2.1\(](#page-3-0)i)) and $T > 0$ is arbitrary, inequalities [\(6.4\)](#page-32-1) imply estimate (2.35) .

6.2 *Convergence results: proofs*

Most proofs of the results in Subsection [2.4](#page-9-2) need the following technical proposition. PROPOSITION 6.1 Let v^1 , $v^2 \in [A, B]$ and ξ^1 , $\xi^2 \in \overline{\Omega} = [\omega_1, \omega_2]$ be such that

$$
(\xi^{1} - \omega_{1}) \int_{0}^{s_{1}(v^{1})} g(\phi(s)) ds + (\omega_{2} - \xi^{1}) \int_{0}^{s_{2}(v^{1})} g(\phi(s)) ds
$$

= $(\xi^{2} - \omega_{1}) \int_{0}^{s_{1}(v^{2})} g(\phi(s)) ds + (\omega_{2} - \xi^{2}) \int_{0}^{s_{2}(v^{2})} g(\phi(s)) ds$

for any $g \in BV(\mathbb{R})$. Then $v^1 = v^2$ and $\xi^1 = \xi^2$.

Proof. The proof is almost the same as in [\[ST\]](#page-39-14), so we omit it. \square

Proof of Theorem [2.15.](#page-10-3) (i) Let $\{t_n\}$ be any diverging *good* sequence satisfying [\(2.36\)](#page-10-1). Then the claim is a consequence of Theorem 3.6 in [\[ST\]](#page-39-14). Precisely, there exists a constant $v^* \in \mathbb{R}$, uniquely determined by the solution (u, v, ξ) itself, such that for any diverging good sequence $\{t_n\}$ we have $v(\cdot, t_n) \to v^*$ uniformly in $\overline{\Omega}$.

(ii) Let $\{t_n\}$ be any diverging *bad* sequence satisfying [\(2.37\)](#page-10-2). Also in this case the claim is a consequence of the results obtained in Theorem 3.7 in [\[ST\]](#page-39-14) for general weak entropy measurevalued solutions to problem [\(2.1\)](#page-3-2). However, in the case of two-phase solutions the techniques and

the methods of proof are much easier than those used in [\[ST\]](#page-39-14). Therefore we give below the details of the proof.

To start with, observe that when $\{t_n\}$ is a bad sequence, the main complication in comparison to the proof of claim (i) is the weakening of the a priori estimates for the family $\{v(\cdot, t_n)\}\$. In particular, comparing [\(2.37\)](#page-10-2) to [\(2.36\)](#page-10-1), it is easily seen that the sequence $\{v(\cdot, t_n)\}$ need not be relatively compact in the strong topology of $C(\overline{\Omega})$. Therefore, in the investigation of the asymptotic behaviour in time along bad sequences it is natural to look for weaker convergence results, in particular *convergence in measure*. In this connection, let us define

$$
v_{t_n}(x,t) := v(x, t + t_n)
$$

where $x \in \overline{\Omega}$, $t \in (-1, 1)$. Since

$$
\int_{-1}^{1} \int_{\Omega} (v_{t_n})_x^2(x, t) \, dx \, dt = \int_{t_n-1}^{t_n+1} \int_{\Omega} v_x^2(x, s) \, dx \, ds \to 0
$$

as $n \to \infty$ (see estimate [\(2.35\)](#page-10-4) in Proposition [2.14\)](#page-9-6), there exist a subsequence $\{t_{n_k}\} \subseteq \{t_n\}$ and a set $E \subseteq (-1, 1)$ with $|E| = 0$ such that

$$
\int_{\Omega} (v_{t_{n_k}})_x^2(x,t) \, \mathrm{d}x \equiv \int_{\Omega} v_x^2(x,t+t_{n_k}) \, \mathrm{d}x \to 0
$$

for any $t \in (-1, 1) \setminus E$. This implies that there exist a subsequence $\{t_{n_k}\} \subseteq \{t_n\}$ and $t_1 \in (-1, 0) \setminus E$, $t_2 \in (0, 1) \setminus E$ such that if we set

$$
s_k^1 := t_{n_k} + t_1, \quad s_k^2 := t_{n_k} + t_2,
$$

then $\{s_k^j\}$ $\binom{J}{k}$ are diverging *good* sequences and

$$
s_k^1 < t_{n_k} < s_k^2, \qquad |t_{n_k} - s_k^j| \leqslant 1,\tag{6.5}
$$

$$
v(\cdot, s_k^j) \to v^* \quad \text{in } C(\overline{\Omega}) \tag{6.6}
$$

 $(j = 1, 2)$, where $v^* \in \mathbb{R}$ is the constant given by (i). Moreover, there exist subsequences $\{s_k^j\}$ $\{ \xi_h^J \} \subseteq$ ${s_k^j}$ $\binom{j}{k}$ (denoted again $\{s_k^j\}$ $\{(\mathbf{x}_k^j) \}$ for simplicity) and $\xi^j \in \overline{\Omega}$ such that

$$
\xi(s_k^j) \to \xi^j \tag{6.7}
$$

as $k \to \infty$ ($j = 1, 2$). Observe that in view of Proposition [2.13,](#page-9-5) for any $g \in BV(\mathbb{R})$,

$$
(\xi^{1} - \omega_{1}) \int_{0}^{s_{1}(v^{*})} g(\phi(s)) ds + (\omega_{2} - \xi^{1}) \int_{0}^{s_{2}(v^{*})} g(\phi(s)) ds
$$

$$
= \lim_{k \to \infty} \int_{\Omega} G(u(x, s_{k}^{1})) dx = \lim_{k \to \infty} \int_{\Omega} G(u(x, s_{k}^{2})) dx
$$

$$
= (\xi^{2} - \omega_{1}) \int_{0}^{s_{1}(v^{*})} g(\phi(s)) ds + (\omega_{2} - \xi^{2}) \int_{0}^{s_{2}(v^{*})} g(\phi(s)) ds.
$$

The above equality easily implies that

$$
\xi^1 = \xi^2 = \xi^*.\tag{6.8}
$$

Finally, there exist a subsequence $\{t_{n_{k}}\}\subseteq \{t_{n_k}\}\$, which we will continue to denote by $\{t_{n_k}\}\$, and a constant $\xi^{\{t_{n_k}\}} \in \overline{\Omega}$ such that

$$
\xi(t_{n_k}) \to \xi^{\{t_{n_k}\}} \tag{6.9}
$$

as $k \to \infty$. In view of the pointwise entropy inequalities [\(2.12\)](#page-5-1), for any $\varphi \in C^1(\overline{\Omega})$ with $\varphi \ge 0$, we obtain

$$
\int_{\Omega} G(u(x, s_k^1))\varphi(x) dx - \int_{\Omega} G(u(x, t_{n_k}))\varphi(x) dx \ge \int_{s_k^1}^{t_{n_k}} \int_{\Omega} g(v(x, t))v_x(x, t)\varphi_x(x) dx dt
$$
\n(6.10)

(recall that $s_k^1 \leq t_{n_k}$ for any k) and

$$
\int_{\Omega} G(u(x,t_{n_k}))\varphi(x) dx - \int_{\Omega} G(u(x,s_k^2))\varphi(x) dx \geqslant \int_{t_{n_k}}^{s_k^2} \int_{\Omega} g(v(x,t))v_x(x,t)\varphi_x(x) dx dt,
$$
\n(6.11)

for any G defined by [\(2.7\)](#page-4-2) in terms of $g \in C^1(\mathbb{R})$ with $g' \geq 0$ (recall also that $t_{n_k} \leq s_k^2$ for any k). Since $|t_{n_k} - s_k^j|$ $|\dot{k}| \leq 1$ for $j = 1, 2$, by estimate [\(2.35\)](#page-10-4) we have

$$
\left| \int_{t_{n_k}}^{s_k^j} \int_{\Omega} g(v(x,t)) v_x(x,t) \varphi_x(x) \, dx \, dt \right|
$$

\$\leq \|\overline{g}(v)\|_{L^{\infty}(Q)} \|\varphi\|_{C^1(\overline{\Omega})} \left| \int_{t_{n_k}}^{s_k^j} \int_{\Omega} v_x^2(x,t) \, dx \, dt \right|^{1/2} |t_{n_k} - s_k^j|^{1/2} |\Omega|^{1/2} \to 0\$

as $k \to \infty$ (j = 1, 2). Therefore passing to the limit as $k \to \infty$ in [\(6.10\)](#page-34-0)–[\(6.11\)](#page-34-1) gives

$$
\lim_{k \to \infty} \int_{\Omega} G(u(x, t_{n_k})) \varphi(x) dx = \int_{\omega_1}^{\xi^*} G(s_1(v^*)) \varphi(x) dx + \int_{\xi^*}^{\omega_2} G(s_2(v^*)) \varphi(x) dx \qquad (6.12)
$$

for any G and φ as above. Let us proceed in two steps.

(α) First we will prove that

$$
\xi^{\{t_{n_k}\}} = \xi^* \,. \tag{6.13}
$$

(β) Then we will show that along the subsequence $\{t_{n_k}\} \subseteq \{t_n\}$ we have

$$
v(\cdot, t_{n_k}) \to v^* \quad \text{in } L^p(\Omega) \tag{6.14}
$$

for any $1 \leqslant p < \infty$.

Observe that the constant v^* is uniquely determined for any fixed two-phase solution of problem [\(1.1\)](#page-0-1), therefore the convergence in [\(6.14\)](#page-34-2) holds along the whole sequence $\{v(\cdot, t_n)\}\$. Finally, since the set Ω has finite Lebesgue measure, [\(6.14\)](#page-34-2) *is equivalent* to [\(2.39\)](#page-10-5), namely $v(\cdot, t_n)$ converges to v^* in measure ([\[B,](#page-39-21) [GMS,](#page-39-19) [V\]](#page-39-20)). This concludes the proof of claim (ii).

Proof of (α *)*. Towards a contradiction, assume that

$$
\xi^{\{t_{n_k}\}} < \xi^*
$$

(the case $\xi^{t_n} > \xi^*$ can be treated in a similar way). Since $\xi(t_{n_k}) \to \xi^{t_{n_k}}$ and $\xi(s_k^j) \to \xi^*$ as $k \to \infty$ (j = 1, 2), for any $\delta > 0$ such that $\xi^{\{t_{n_k}\}} + \delta < \xi^* - \delta$ we can find $k_\delta \in \mathbb{N}$ such that for any $k \geq k_{\delta}$,

$$
\xi^{\{t_{n_k}\}} - \delta < \xi(t_{n_k}) < \xi^{\{t_{n_k}\}} + \delta < \xi^* - \delta < \xi(s_k^j) < \xi^* + \delta \tag{6.15}
$$

 $(j = 1, 2)$. Therefore choosing $\varphi \in C_c^1((\xi^{\{t_{n_k}\}} + \delta, \xi^* - \delta))$ with $\varphi \ge 0$ and $g(s) \equiv 1$ in equality [\(6.12\)](#page-34-3) gives

$$
\lim_{k\to\infty}\int_{\Omega}u(x,t_{n_k})\varphi(x)\,dx=\lim_{k\to\infty}\int_{\xi^{\{t_{n_k}\}}+\delta}^{\xi^*-\delta}s_2(v(x,t_{n_k}))\varphi(x)\,dx=\int_{\xi^{\{t_{n_k}\}}+\delta}^{\xi^*-\delta}s_1(v^*)\varphi(x)\,dx.
$$

Since the family $\{v(\cdot, t_{n_k})\}$ is bounded in $L^{\infty}(\Omega)$ (see Definition [2.1\)](#page-3-0), the above equality implies

$$
s_2(v(\cdot,t_{n_k})) \stackrel{*}{\rightharpoonup} s_1(v^*) \quad \text{in } L^{\infty}(\xi^{\{t_{n_k}\}} + \delta, \xi^* - \delta). \tag{6.16}
$$

Observe that $s_2(v(x, t_{n_k})) \geq c$ for any $x \in (\xi^{\{t_{n_k}\}} + \delta, \xi^* - \delta)$, while $s_1(v^*) < b < c$. Therefore [\(6.16\)](#page-35-0) gives a contradiction and equality [\(6.13\)](#page-34-4) holds.

Proof of (β). Arguing as in the proof of Step (α), for any $\delta > 0$ there exists $k_{\delta} \in \mathbb{N}$ such that

$$
\xi^* - \delta < \xi(t_{n_k}) < \xi^* + \delta
$$

for any $k \ge k_\delta$ (here [\(6.13\)](#page-34-4) has been used). For any $1 \le p < \infty$, set

$$
g_p(s) := -(p+1)^{-1}[-s_1(s)]^p.
$$

Let G_p be the function defined by

$$
G_p(\lambda) := \int_b^{\lambda} g_p(\phi(s)) \, \mathrm{d} s.
$$

Observe that for any $\lambda < b$,

$$
G_p(\lambda) = |\lambda|^{p+1} - |b|^{p+1}.
$$

Choosing $\varphi \in C_c^1((\omega_1, \xi^* - \delta))$ and $g = g_p$ in [\(6.12\)](#page-34-3) gives

$$
\lim_{k\to\infty}\int_{\omega_1}^{\xi^*-\delta}|s_1(v(x,t_{n_k}))|^p\varphi(x)\,dx=\int_{\omega_1}^{\xi^*-\delta}|s_1(v^*)|^p\varphi(x)\,dx
$$

(for any $1 \leqslant p < \infty$). Similarly, we obtain

$$
\lim_{k \to \infty} \int_{\xi^* + \delta}^{\omega_2} |s_2(v(x, t_{n_k}))|^p \varphi(x) \, dx = \int_{\xi^* + \delta}^{\omega_2} |s_2(v^*)|^p \varphi(x) \, dx
$$

for any $\varphi \in C_c^1((\xi^* + \delta, \omega_2))$ and $1 \leq p < \infty$. By the arbitrariness of δ , the above convergences imply

$$
s_1(v(\cdot, t_{n_k})) \to s_1(v^*)
$$
 in $L^p(\omega_1, \xi^*),$ (6.17)

$$
s_2(v(\cdot, t_{n_k})) \to s_2(v^*) \quad \text{in } L^p(\xi^*, \omega_2). \tag{6.18}
$$

In view of the continuity of the two branches s_1 and s_2 , [\(6.17\)](#page-35-1)–[\(6.18\)](#page-35-2) imply [\(6.14\)](#page-34-2).

(iii) The proof is almost the same as that of Theorem 3.3 in [\[ST\]](#page-39-14), so we omit it. \Box

The following lemma gives properties of monotonicity in time of the interface $\xi(t)$ and can be regarded as the counterpart of Proposition 6.1 in [\[ST\]](#page-39-14).

LEMMA 6.2 Let (u, v, ξ) be any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 and let v^* be the constant given by Theorem [2.15,](#page-10-3) corresponding to the solution (u, v, ξ) . Then there exists $T > 0$ such that for $t \geq T$ the map $t \mapsto \xi(t)$ is:

- (i) nondecreasing if $v^* < B$;
- (ii) nonincreasing if $v^* > A$.

Proof. (i) Assume $v^* < B$ (the case $v^* > A$ being analogous). Fix any diverging good sequence $\{t_n\}$, so that $v(\cdot, t_n) \to v^*$ in $C(\overline{\Omega})$ by Theorem [2.15\(](#page-10-3)i). Since we have assumed $v^* < B$, there exists $\overline{n} \in \mathbb{N}$ such that $v(\cdot, t_n) \leq B$ for any $n \geq \overline{n}$. Set

$$
T:=t_{\overline{n}}.
$$

Write the pointwise entropy inequalities [\(2.12\)](#page-5-1) for $\varphi \equiv 1$ in $\overline{\Omega}$, $t_1 = T$, $t_2 = t$, $g = g_B$ and $G = G_{AB}$, where the nondecreasing function g_B and G_{AB} are defined by

$$
g_B(s) := \begin{cases} 0 & \text{if } s \leq B, \\ (s - B)^2 & \text{if } s > B, \end{cases}
$$

and

$$
G_{AB}(\lambda) := \int_0^{\lambda} g_{AB}(\phi(s)) \, ds.
$$

For any $t \geqslant T$ we obtain

$$
\int_{\omega_1}^{\xi(t)} G_{AB}(s_1(v(x, t))) dx + \int_{\xi(t)}^{\omega_2} G_{AB}(s_2(v(x, t))) dx
$$

\$\leqslant \int_{\omega_1}^{\xi(T)} G_{AB}(s_1(v(x, T))) dx + \int_{\xi(T)}^{\omega_2} G_{AB}(s_2(v(x, T))) dx = 0, (6.19)

the last equality in [\(6.19\)](#page-36-0) following by our choice of T and by the uniform convergence of $v(\cdot, t_n)$ to v^* in $\overline{\Omega}$. On the other hand, observe that the nonnegative function $G_{AB}(\lambda)$ is strictly positive for any $\lambda > s_2(B) = d$, therefore inequality [\(6.19\)](#page-36-0) implies

$$
v(\cdot, t) \leq B \quad \text{for any } t \geq T. \tag{6.20}
$$

Next, for any $\rho > 0$ let g_ρ be the function defined by [\(4.6\)](#page-13-5) and let G_ρ be the function defined by [\(2.7\)](#page-4-2) for $g = g_\rho$ and $k = 0$. Writing the pointwise entropy inequalities [\(2.12\)](#page-5-1) for $g = g_\rho$ and $t_2 \geq t_1 \geq T$ gives

$$
\int_{\omega_1}^{\xi(t_1)} G_{\rho}(s_1(v(x, t_1))) \varphi(x) dx + \int_{\xi(t_1)}^{\omega_2} G_{\rho}(s_2(v(x, t_1))) \varphi(x) dx \n- \left(\int_{\omega_1}^{\xi(t_2)} G_{\rho}(s_1(v(x, t_2))) \varphi(x) dx + \int_{\xi(t_2)}^{\omega_2} G_{\rho}(s_2(v(x, t_2))) \varphi(x) dx \right) \n\geq \int_{t_1}^{t_2} \int_{\Omega} g_{\rho}(v(x, t)) v_x(x, t) \varphi_x(x) dx dt = - \int_{t_1}^{t_2} \int_{\Omega} \varphi_{xx}(x) \left(\int_0^{v(x, t)} g_{\rho}(s) ds \right) dx dt \quad (6.21)
$$

for any $\varphi \in C_c^2(\Omega)$ with $\varphi \ge 0$. Concerning the right-hand side of [\(6.21\)](#page-36-1), we have

$$
\left| \int_{t_1}^{t_2} \int_{\Omega} \varphi_{xx}(x) \left(\int_0^{v(x,t)} g_{\rho}(s) \, ds \right) dx \, dt \right| = \left| \int_{t_1}^{t_2} \int_{\{v(x,t) \ge B - \rho\}} \rho^{-1/2} (v(x,t) - B + \rho) \varphi_{xx}(x) \, dx \, dt \right|
$$

$$
\le \rho^{1/2} \int_{t_1}^{t_2} \int_{\Omega} |\varphi_{xx}(x)| \, dx \to 0 \tag{6.22}
$$

as $\rho \to 0$ (here [\(6.20\)](#page-36-2) has been used). Moreover, for any $t \geq T$,

$$
\int_{\omega_1}^{\xi(t)} G_{\rho}(s_1(v(x,t))) \varphi(x) dx + \int_{\xi(t)}^{\omega_2} G_{\rho}(s_2(v(x,t))) \varphi(x) dx \n= \int_{\omega_1}^{\xi(t)} \chi_{\{v(x,t) < B-\rho\}}(x,t) \left(\int_{s_0(B-\rho)}^{s_1(B-\rho)} \rho^{-1/2} ds \right) dx \n+ \int_{\omega_1}^{\xi(t)} \chi_{\{v(x,t) \ge B-\rho\}}(x,t) \left(\int_{s_0(B-\rho)}^{s_1(v(x,t))} \rho^{-1/2} ds \right) dx \n+ \int_{\xi(t)}^{\omega_2} \chi_{\{v(x,t) \ge B-\rho\}}(x,t) \left(\int_{s_2(B-\rho)}^{s_2(v(x,t))} \rho^{-1/2} ds \right) dx.
$$
\n(6.23)

Since $\phi''(b) \neq 0$, arguing as in the proof of Proposition [2.2](#page-5-4) gives

$$
\lim_{\rho \to 0} \int_{\omega_1}^{\xi(t)} G_{\rho}(s_1(v(x, t))) \varphi(x) dx + \int_{\xi(t)}^{\omega_2} G_{\rho}(s_2(v(x, t))) \varphi(x) dx
$$

=
$$
-\sqrt{\frac{2}{|\phi''(b)|}} \int_{\omega_1}^{\xi(t)} [2\chi_{\{v(x, t) < B\}}(x, t) + \chi_{\{v(x, t) = B\}}(x, t)] \varphi(x) dx. \quad (6.24)
$$

In view of [\(6.22\)](#page-37-0)–[\(6.24\)](#page-37-1), taking the limit as $\rho \to 0$ in [\(6.21\)](#page-36-1) gives

$$
\int_{\omega_1}^{\xi(t_1)} [2\chi_{\{v(x,t_1) < B\}} + \chi_{\{v(x,t_1) = B\}}] \varphi(x) \, dx \le \int_{\omega_1}^{\xi(t_2)} [2\chi_{\{v(x,t_2) < B\}} + \chi_{\{v(x,t_2) = B\}}] \varphi(x) \, dx \tag{6.25}
$$

for any φ as above. Aiming for a contradiction, suppose that $\xi(t_2) < \xi(t_1)$. Fix any $\overline{\varphi} \in$ $C_c^2((\xi(t_2), \xi(t_1)))$ with $\overline{\varphi} \ge 0$, and observe that [\(6.25\)](#page-37-2) gives the absurd:

$$
0<\int_{\xi(t_2)}^{\xi(t_1)}\varphi(x)\,dx\leqslant \int_{\xi(t_2)}^{\xi(t_1)}[2\chi_{\{v(x,t_1)
$$

This concludes the proof. \Box

Proof of Theorem [2.16](#page-10-0). Let us distinguish the cases $A < v^* < B$, $v^* = A$, $v^* = B$ and $v^* < A$, $v^* > B$.

If $A < v^* < B$, in view of Lemma [6.2](#page-36-3) there exists $T > 0$ such that the function $\xi(t)$ is both nonincreasing and nondecreasing for $t \geq T$. This implies that $\xi(t)$ is constant for $t \geq T$ and the claim follows.

In the case $v^* = A$ (respectively, $v^* = B$), by Lemma [6.2](#page-36-3) there exists $T > 0$ such that the map $t \mapsto \xi(t)$ is nondecreasing (respectively, nonincreasing) on (T, ∞) . Therefore the claim follows.

If $v^* < A$, by Theorem [2.15\(](#page-10-3)iii) there exists $T > 0$ such that $v(\cdot, t) < A$ in $\overline{\Omega}$ for any $t \geq T$. Hence, in view of Definition [2.1\(](#page-3-0)ii) we have $u(\cdot, t) = s_1(v(\cdot, t))$, so $\xi(t) = \omega_2$ for any $t \geq T$.

Finally, if $v^* > B$, by Theorem [2.15\(](#page-10-3)iii) there exists $T > 0$ such that $v(\cdot, t) > B$ in $\overline{\Omega}$ for any $t \geqslant T$. In other words, $u(\cdot, t) = s_2(v(\cdot, t))$ and this implies $\xi(t) = \omega_1$ for any $t \geqslant T$. *Proof of Theorem* [2.17](#page-11-2). Let (u, v, ξ) be any two-phase solution of problem [\(2.1\)](#page-3-2) with initial datum u_0 and let $v^* \in \mathbb{R}, \xi^* \in \overline{\Omega}$ be the constants given by Theorems [2.15](#page-10-3)[–2.16](#page-10-0) corresponding to (u, v, ξ) . Fix any diverging sequence $\{t_n\}$ and recall that the sequences $\{u(\cdot, t_n)\}, \{v(\cdot, t_n)\}$ and $\{\xi(t_n)\}$ are

$$
u(x, t_n) = \chi_{(\omega_1, \xi(t_n))} s_1(v(x, t_n)) + \chi_{(\xi(t_n), \omega_2)} s_2(v(x, t_n))
$$
\n(6.26)

for any $x \in \Omega$.

related as follows:

(i) Let $\{t_n\}$ be any diverging *good* sequence satisfying [\(2.36\)](#page-10-1). Since $v(\cdot, t_n) \to v^*$ in $C(\overline{\Omega})$ (Theorem [2.15\(](#page-10-3)i)) and $\xi(t_n) \to \xi^*$ (Theorem [2.16\)](#page-10-0), taking the limit as $n \to \infty$ in [\(6.26\)](#page-38-3) gives

$$
u(x,t_n)\to u^*
$$

for any $x \in \Omega \setminus \xi^*$, the function u^* being defined by [\(2.41\)](#page-11-1).

Moreover, if $M_{u_0} < a$ (the case $M_{u_0} > d$ being analogous), by Theorem [2.15\(](#page-10-3)iii) we have $v^* = \phi(M_{u_0}) < A$ and equation [\(6.26\)](#page-38-3) reads

$$
u(x, t_n) = s_1(v(x, t_n))
$$

for any $x \in \Omega$ and for $n \in \mathbb{N}$ sufficiently large (see Remark [2.6\)](#page-10-6). Thus, for any n large enough,

$$
||s_1(v(x, t_n)) - M_{u_0}||_{C(\overline{\Omega})} = ||s_1(v(x, t_n)) - s_1(\phi(M_{u_0}))||_{C(\overline{\Omega})}
$$

\$\leq B_{M_{u_0}} ||v(\cdot, t_n) - \phi(M_{u_0})||_{C(\overline{\Omega})}\$, \t(6.27)

where

$$
B_{M_{u_0}} := \|s'_1\|_{L^{\infty}(\phi(M_{u_0})-\varepsilon,\phi(M_{u_0})+\varepsilon)} < \infty
$$

(here we have chosen $\varepsilon > 0$ so that $\phi(M_{u_0}) + \varepsilon < A$). Since the right-hand side of [\(6.27\)](#page-38-4) vanishes as $n \to \infty$ by Theorem [2.15,](#page-10-3) the sequence $\{u(\cdot, t_n)\}$ converges to M_{u_0} uniformly in $\overline{\Omega}$.

(ii) Now let $\{t_n\}$ be any diverging *bad* sequence satisfying [\(2.37\)](#page-10-2). In this case, by Theorem [2.15\(](#page-10-3)ii) and Theorem [2.16](#page-10-0) we have $v(\cdot, t_n) \rightarrow v^*$ in measure (hence strongly in $L^1(\Omega)$) and $\xi(t_n) \to \xi^*$. Passing to the limit as $n \to \infty$ in [\(6.26\)](#page-38-3) gives

$$
u(\cdot,t_n)\to u^*\,\mathrm{in}\,L^1(\Omega),
$$

proving the convergence in measure [\(2.44\)](#page-11-3) ([\[B\]](#page-39-21)). \Box

REFERENCES

- [AdB] ANDREUCCI, D., & DI BENEDETTO, E. Weak solutions of equations of the type of non-stationary filtration. *Nonlinear Anal.* 19 (1992), 29–41. [Zbl 0794.35020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0794.35020&format=complete) [MR 1171609](http://www.ams.org/mathscinet-getitem?mr=1171609)
- [BBDU] BARENBLATT, G. I., BERTSCH, M., DAL PASSO, R., & UGHI, M. A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow. *SIAM J. Math. Anal.* 24 (1993), 1414–1439. [Zbl 0790.35054](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0790.35054&format=complete) [MR 1241152](http://www.ams.org/mathscinet-getitem?mr=1241152)
- [BFG] BELLETTINI, G., FUSCO, G., & GUGLIELMI, N. A concept of solution and numerical experiments for forward-backward diffusion equations. *Discrete Contin. Dynam. Systems* 16 (2006), 783–842. [Zbl 1105.350071](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1105.35007&format=complete)105.35007

- [B] BREZIS, H. *Analyse Fonctionnelle*. Masson, Paris (1983). [Zbl 0511.46001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0511.46001&format=complete) [MR 0697382](http://www.ams.org/mathscinet-getitem?mr=0697382)
- [DK] DAHLBERG, B. E. J., & KENIG, C. E. Nonnegative solutions of generalized porous medium equations. *Rev. Mat. Iberoamer.* 2 (1986), 267–305. [Zbl 0644.35057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0644.35057&format=complete) [MR 0908054](http://www.ams.org/mathscinet-getitem?mr=0908054)
- $[dPV]$ DE PABLO, A., & VÁZQUEZ, J. L. Regularity of solutions and interfaces of a generalized porous medium equation in R ^N . *Ann. Mat. Pura Appl.* 58 (1991), 51–74. [Zbl 0757.35009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0757.35009&format=complete) [MR 1131845](http://www.ams.org/mathscinet-getitem?mr=1131845)
- [EP] EVANS, L. C., & PORTILHEIRO, M. Irreversibility and hysteresis for a forward-backward diffusion equation. *Math. Models Methods Appl. Sci.* 14 (2004), 1599–1620. [Zbl 1064.35091](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1064.35091&format=complete) [MR 2103092](http://www.ams.org/mathscinet-getitem?mr=2103092)
- [GMS] GIAQUINTA, M., MODICA, G., & SOUČEK, J. *Cartesian Currents in the Calculus of Variations*. Springer (1998). [Zbl 0914.49001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0914.49001&format=complete) [Zbl 0914.49002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0914.49002&format=complete) [MR 1645086](http://www.ams.org/mathscinet-getitem?mr=1645086) [MR 1645082](http://www.ams.org/mathscinet-getitem?mr=1645082)
- [H] HÖLLIG, K. Existence of infinitely many solutions for a forward backward heat equation. *Trans. Amer. Math. Soc.* 278 (1983), 299–316. [Zbl 0524.35057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0524.35057&format=complete) [MR 0697076](http://www.ams.org/mathscinet-getitem?mr=0697076)
- [LSU] LADYZHENSKAYA, O. A., SOLONNIKOV, V. A., & URAL'TSEVA, N. N. *Linear and Quasilinear Equations of Parabolic Type*. Amer. Math. Soc. (1991). [Zbl 0174.13403](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0174.13403&format=complete) [MR 0241822](http://www.ams.org/mathscinet-getitem?mr=0241822)
- [MTT1] MASCIA, C., TERRACINA, A., & TESEI, A. Evolution of stable phases in forward-backward parabolic equations. In: *Asymptotic Analysis and Singularities*, H. Kozono et al. (eds.), Adv. Stud. Pure Math. 47-2, Math. Soc. Japan (2007), 451–478. [Zbl 1141.35393](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1141.35393&format=complete) [MR 2387251](http://www.ams.org/mathscinet-getitem?mr=2387251)
- [MTT2] MASCIA, C., TERRACINA, A., & TESEI, A. Two-phase entropy solutions of a forward-backward parabolic equation, *Arch. Ration. Mech. Anal.* 194 (2009), 887–925. [Zbl 1183.35163](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.35163&format=complete) [MR 2563628](http://www.ams.org/mathscinet-getitem?mr=2563628)
- [NP] NOVICK-COHEN, A., & PEGO, R. L. Stable patterns in a viscous diffusion equation. *Trans. Amer. Math. Soc.* 324 (1991), 331–351. [Zbl 0738.35035](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0738.35035&format=complete) [MR 1015926](http://www.ams.org/mathscinet-getitem?mr=1015926)
- [Pa] PADRÓN, V. Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations. *Comm. Partial Differential Equations* 23 (1998), 457–486. [Zbl 0910.35138](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0910.35138&format=complete) [MR 1620640](http://www.ams.org/mathscinet-getitem?mr=1620640)
- [Pe] PELETIER, L. A. A necessary and sufficient condition for the existence of an interface in flows through porous media. *Arch. Ration. Mech. Anal.* 56 (1974/75), 183–190. [Zbl 0294.35040](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0294.35040&format=complete) [MR 0417572](http://www.ams.org/mathscinet-getitem?mr=0417572)
- [PM] PERONA, P., & MALIK, J. Scale space and edge detection using anisotropic diffusion. *IEEE Trans. Pattern Anal. Mach. Intell.* 12 (1990), 629–639.
- [Pl1] PLOTNIKOV, P. I. Passing to the limit with respect to viscosity in an equation with variable parabolicity direction. *Differential Equations* 30 (1994), 614–622. [Zbl 0824.35100](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0824.35100&format=complete)
- [Pl2] PLOTNIKOV, P. I. Equations with alternating direction of parabolicity and the hysteresis effect. *Russian Acad. Sci. Dokl. Math.* 47 (1993), 604–608. [Zbl 0831.35091](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0831.35091&format=complete) [MR 1242166](http://www.ams.org/mathscinet-getitem?mr=1242166)
- [Pl3] PLOTNIKOV, P. I. Forward-backward parabolic equations and hysteresis. *J. Math. Sci.* 93 (1999), 747–766. [Zbl 0928.35084](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0928.35084&format=complete) [MR 1699122](http://www.ams.org/mathscinet-getitem?mr=1699122)
- [Sl] SLEMROD, M. Dynamics of measure-valued solutions to a backward-forward heat equation. *J. Dynam. Differential Equations* 3 (1991), 1–28. [Zbl 0747.35013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0747.35013&format=complete) [MR 1094722](http://www.ams.org/mathscinet-getitem?mr=1094722)
- [Sm] SMARRAZZO, F. On a class of equations with variable parabolicity direction. *Discrete Contin. Dynam. Systems* 22 (2007), 729–758.
- [ST] SMARRAZZO, F., & TESEI, A. Long-time behaviour of solutions to a class of forward-backward parabolic equations. *SIAM J. Math. Anal.*, to appear.
- [T] TERRACINA, A. Qualitative behaviour of the two-phase entropy solution of a forward-backward parabolic equation. Preprint.
- [V] VALADIER, M. A course on Young measures. *Rend. Ist. Mat. Univ. Trieste* 26 (1994), suppl., 349– 394 (1995). [Zbl 0880.49013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0880.49013&format=complete) [MR 1408956](http://www.ams.org/mathscinet-getitem?mr=1408956)
- [Va] VÁZQUEZ, J. L. *Porous Medium Equation. Mathematical Theory*. Oxford Univ. Press (2006).
- [Z] ZHANG, K. Existence of infinitely many solutions for the one-dimensional Perona–Malik model. *Calc. Var. Partial Differential Equations* 26 (2006), 171–199. [Zbl 1096.35067](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1096.35067&format=complete) [MR 2222243](http://www.ams.org/mathscinet-getitem?mr=2222243)