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Żwirki i Wigury 93, 02-089 Warszawa, Poland
E-mail: L.Bolikowski@icm.edu.pl, M.Gokieli@icm.edu.pl, N.Varchon@icm.edu.pl

[Received 29 November 2008 and in revised form 16 April 2010]

We consider the stability of patterns for the reaction-diffusion equation with Neumann boundary
conditions in an irregular domain in RN , N > 2, the model example being two convex regions
connected by a small ‘hole’ in their boundaries. By patterns we mean solutions having an interface,
i.e. a transition layer between two constants. It is well known that in 1D domains and in many 2D
domains, patterns are unstable for this equation. We show that, unlike the 1D case, but as in 2D
dumbbell domains, stable patterns exist. In a more general way, we prove invariance of stability
properties for steady states when a sequence of domains Ωn converges to our limit domain Ω in
the sense of Mosco. We illustrate the theoretical results by numerical simulations of evolving and
persisting interfaces.

1. Introduction

Let us consider the Neumann boundary problem for the reaction-diffusion equation

ut −∆u = g(u) (1)

on domains which have a crack, or ‘splitting’ inside: see Figure 1.
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FIG. 1. Our model domain Ωn.

We are particularly interested in the steady, i.e. independent of time, solutions of (1), which
we will also call equilibria or stationary states. Indeed, as part of the attractor, the steady states
determine to a very large extent the evolution of any initial data. With respect to this process, the
main feature of a steady solution is its stability, that is, roughly speaking, its being or not ‘attractive’
for other solutions in some neighborhood. This stability is expressed by the sign of the eigenvalues
for the linearized problem.
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It is well known that stability is strongly influenced by the domain’s shape. First of all, for
Neumann boundary conditions and convex regions Ω , the only stable solutions are constants (given
by the zeros of g). This has been proved in 1978 by Casten and Holland [CH] and independently
in 1979 by Matano [M]. It is also shown in [CH] that this crucial property holds for a larger class
of domains including annuli, and for all domains provided g is convex. On the other hand, Matano
[M] constructs an example of a connected region—of quite complex shape—for which there exist
nonconstant stable equilibria: they are nearly constant in some parts of the domain but possess also
interfaces between these constant parts. In other words, he shows existence of a domain for which
‘pattern formation’ occurs for the reaction-diffusion equation.

Can this be expected for simpler shapes? Many works (Hale and Vegas [HV], Vegas [V], Jimbo
[J1, J2], Jimbo and Morita [JM, MJ], de Oliveira et al. [OPP], Arrieta et al. [ACL] and references
to previous works therein) addressed this question for dumbbell domains: two bigger regions
connected by a thin strip. The answer, under various assumptions, is positive: stable interfaces exist.
We want to ask here if the same occurs for ‘split’ regions, with cracks inside, as the one in Figure 1.
We state below the conditions defining the class of our admissible domains.

Let us start by presenting some numerical experiments so as to illustrate the idea of this work.
For the experiments, we have taken the example of the Allen–Cahn nonlinearity:

g(u) = u(1− u2),

so that (1) has two stable equilibria, 1 and −1, and one unstable, equal to 0. Figure 2 shows the
results of three simulations. (We refer to the Appendix, Section 5, for more details on the numerical
method used here and for more investigations on the dynamics.)

(a)

(b)

(c)

FIG. 2. (a) The initial data u0 ≈ 0, with a random perturbation, on Ωn. We visualize the evolution at t = 0, t = 10,
t = 40 and t = 100. The last state is constant. (b) The same experiment, the initial data u0 = 0 being again randomly
perturbed; t = 0, t = 10, t = 100 and t = 200. The last state has an interface at the level of the connection between the two
subdomains. (c) u0 ≈ 1 on the left, u0 ≈ −1 on the right, t = 0 and t = 1400. The state possessing an interface seems not
to evolve.

Experiments (a) and (b) are performed with initial data taken as a random perturbation of
the constant 0, the stationary unstable solution. The system evolves towards two different states:
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a constant solution (equal to −1) in case (a) and a nonconstant one, close to ±1 in each subregion
in case (b). It is clear that the first one is stable. The experiment (c) is performed so as to verify the
stability of the nonconstant steady state. We take there an initial datum equal to 1 in the domain on
the left-hand side part ofΩn and equal to−1 on the right-hand side part, except for a transition layer
in a neighborhood of the connection, where it is linearly interpolated. This datum does not seem to
evolve towards a constant state.

This visual impression is in no way a proof of any stability, not only because the domain
is approximated, but even more in view of the known results about the extreme slowness of the
evolution of the Allen–Cahn equation and of the ‘dormant instability’ of an analogous, nonconstant
and monotone solution on a segment in one dimension (see Fusco and Hale [FH]). However, as we
prove below, our two-dimensional geometry ensures the stability of this solution.

We actually prove the continuity of the stability properties of each steady stable or unstable
(hyperbolic) solution with respect to domain perturbations. For many usual nonlinearities g having
no degenerate zeros, we are able to count all steady solutions.

We will deal with the problem by considering it as a perturbation of a limit problem, posed on a
setΩ which will typically be disconnected, but such thatΩ is connected. Also the domainsΩn that
we want to consider are not regular, their boundaries are not locally graphs of functions and they do
not admit continuous extension operators E : H 1(ω)→ H 1(Rn), ω = Ω or Ωn. In this regard our
work complements the paper of Arrieta and Carvalho [AC], which deals with the same problem for
regular domains with Lipschitz boundaries.

Let us list our main assumptions on Ω and its admissible perturbations and comment on their
concrete realizations.

(C1) Ω is an open set, (Ωn)n∈N a sequence of open sets and D a ball in Rn such that

∀n ∈ N, Ω ⊂ Ωn+1 ⊂ Ωn ⊂ D;

(C2) |Ωn| = |Ω| for all n ∈ N;
(C3) the injection from H 1(Ω) into L2(Ω) is compact;
(C4) (Ωn) converges in the sense of Mosco to Ω .

We also assume that g is a C1(R) function satisfying

(G) lim sup
|x|→+∞

g(x)

x
< 0.

The geometrical sense of (C1) and (C2) is clear. (C3) is a condition on ∂Ω’s regularity, but it is
very weak—enough to allow splittings and disconnected Ω . Indeed, note first that if Ω has a finite
number of connected components, the compactness of the injection holds forΩ if it holds for every
connected component ofΩ . On the other hand, as far as connected sets are concerned, it is satisfied
by domains having the cone property, and, more generally, by unions of a finite number of domains
admitting an extension operator continuous in theH 1-norm. See the book of Maz’ya [Maz, Sections
1.6 and 1.10] for a review of results on this point and for examples. We give a nonstandard example
of an admissible Ω in Figure 3 (cf. [Maz, 1.5, p. 38]).

Let us comment on (C4). The definition of Mosco convergence is introduced rigorously in
Section 2. Its essential feature is to be equivalent to convergence of solutions of the stationary
Neumann problem on Ωn to the solution of this problem on Ω . This holds independently of the
space dimension (see the paper of Dal Maso et al. [DMa] for the nonlinear setting and references
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FIG. 3. An admissible planar setΩ: the rectangle (−2, 2)× (−1, 1) deprived of four polylines: {(x, y) : 2−k < |x| < 21−k ,
|y| = 2−k or |x| = 2−k , 2−k−1 < |y| < 2−k , k = 0, 1, . . .}.

therein for the linear one; the linear problem should be formulated in quotient spaces so as to have
uniqueness). So, the use of Mosco convergence seems the most appropriate and general approach
to our problem. However, as its definition is not geometrical, it is important to confront it with
more intuitive notions of set convergence. Indeed, for planar domainsΩn having a bounded number
of ‘holes’ (connected components of Ωc

n) and converging to Ω in the Hausdorff complementary
topology, it has been shown by Bucur and Varchon in [BV] that Mosco convergence is equivalent
to the condition meas(Ωn) → meas(Ω). This gives, directly, a very wide range of domains in R2

for which our results apply. In higher dimensions, Mosco convergence is more difficult to obtain;
see e.g. Cortesani [Cor] who shows unstability of the linear Neumann problems satisfying the as-
sumptions of [BV]; cf. also Damlamian [Dam] and many other works related to the Neumann sieve.
However, it is known (see for instance Henrot [H1]) that Mosco convergence occurs if the capacity
ofΩn \Ω converges to 0. (By capacity we mean here the 2-capacity; we refer to Evans and Gariepy
[EG, Chapter 4] for the notion and properties of capacity, which is a tool for measuring very fine sets.
Let us just note here that all sets in RN of Hausdorff dimension greater than N − 2 are of nonzero
capacity.) Thus, one can see that (C4) is satisfied for example if the connected components ofΩ are
each at zero distance from some other, and Ωn is obtained by ‘making holes’ in the joining parts of
the boundary, under the condition that the number of holes does not grow too rapidly and their sizes
diminish. For most applications it is sufficient to assume that the number of holes remains constant.

The plan of this work is as follows. We begin by giving the main mathematical tools
(Section 2), then state the main theorems on stability (Section 3) and finally we study convergence
of the evolution problem (Section 4). In the main part, we show in Theorem 3.4, under the
assumptions above, that any hyperbolic, i.e. linearly stable or unstable steady state on Ω is a
limit of a sequence (un) of hyperbolic steady states on Ωn, in the sense of L2(D) convergence.
In Theorem 3.5, we show that, moreover, for n large enough, un has the same stability as u:
the eigenvalues of the linearized operator −∆ − g′(un) converge to eigenvalues of the operator
−∆ − g′(u) (where ∆ means the Neumann–Laplacian and the second term is a multiplication
operator). We also have convergence of all respective eigenspaces, still in the sense of L2(D)

distance (between unit eigenvectors).
Existence of nonconstant stable equilibria on Ωn, for large n, is an immediate consequence of

Theorems 3.4 and 3.5. Indeed, take g with two stable zeros, like g(u) = u(1− u2), and set u equal
to +1 and −1 on each connected component of Ω . Then u forms a stable equilibrium which by our
result can be approximated, in L2(D), by a sequence un of stable equilibria on Ωn. What remains
an open question is the rate of this convergence: how small the ‘hole’ must be for the equilibria to
become stable.
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In the case when the system admits only hyperbolic equilibria, we show in Theorem 3.8 that
their number is equal on Ω and on Ωn. Theorem 3.9 states that in this case, the Hausdorff distance
in L2(D) between the sets of stable steady points on Ωn and the set of stable steady points on Ω
goes to zero. The same is true for unstable equilibria.

Our method is based on the degree and operator perturbation theories. The perturbation analysis
is very close to the one performed in [AC], and the degree theory (the Leray–Schauder fixed point
index) that we use in Theorem 3.4 has also been applied by the same authors in [ACL] for dumbbell
domains. Also, the results that we obtain have their analogues in [AC, Propositions 3.1, 4.1 and
Corollary 4.3]. In [AC], continuity of unstable manifolds, and thus attractors, is also proved. In this
point, however, the authors rely strongly on the existence of an extension operator continuous inH 1,
which does not exist for our model domains. (Note that planar domains for which such an operator
exists are known to be quasi-conformal to disks; see [Maz, Comments to Section 1.6] and references
therein). Theorem 3.4 could also be deduced from the results of [DMa]; however, it seemed simpler
to give a direct proof.

Finally, we devote Section 4 to the evolution problem. We estimate the difference of the
semigroups in a norm containing an exponential weight with respect to time. This reflects the fact
that, in spite of the results about steady states, the dynamics onΩn and onΩ are of course different.

2. Preliminaries

2.1 Main operator, linear problem

For all f ∈ L2(Ω), the linear equation−∆u+ u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

(2)

has a unique variational solution in H 1(Ω).

DEFINITION 2.1 We will denote by AΩ the Neumann–Laplacian operator −∆+ I ,

AΩ : L2(Ω)→ L2(Ω), AΩv = −∆Nv + v,

considered in the domain

D(AΩ) = {u ∈ H
1(Ω) : ∃f ∈ L2(Ω) such that u is the solution of (2)}.

The operator AΩ is selfadjoint, closed, has compact resolvent and its first eigenvalue is equal to 1.
A simple calculation using the canonical expansion in the basis of eigenvectors (cf. [H2, 1.3]) shows
that AΩ satisfies

‖(λ− AΩ)
−1
‖L(L2(Ω)) 6

2
|λ− 1|

(3)

for all λ in the sector
S = {λ : π/3 6 |arg(λ− 1)| 6 π, λ 6= 1},

i.e. it is sectorial in the sense of Henry [H2, Definition 1.3.1]. We have denoted by L(L2(Ω)) the
space of continuous linear operators in L2(Ω). The operator−AΩ is then (see [H2, Theorem 1.3.4])
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the infinitesimal generator of an analytic linear semigroup {SΩ(t)}t>0, which can be written as

SΩ(t) =
1

2iπ

∫
Γ

eλt (λ+ AΩ)
−1 dλ, (4)

and Γ is a contour in the resolvent set ρ(−AΩ), with argλ → ±θ as |λ| → ∞ for some θ ∈
(π/2, π). We also have (cf. [H2, Theorem 1.3.4])

‖SΩ(t)‖L(L2(Ω)) 6 e−t , ‖SΩ(t)‖L(L2(Ω),H 1(Ω)) 6
e−t
√
t
. (5)

2.2 Definition and basic properties of solutions

For our analysis of the problem, we will now write (1) as{
ut + AΩu = f (u), t > 0,
u(0) = u0

(6)

with
f = g + Id.

Note that the assumption (G) now takes the form

lim sup
|x|→+∞

f (x)

x
< 1. (7)

DEFINITION 2.2 By a solution of (1) on an open set Ω , with an initial condition u0 ∈ L
2(Ω),

we understand a continuous function from [0,+∞) into L2(Ω), satisfying on (0,+∞) the integral
equation

u(t) = SΩ(t)u0 +

∫ t

0
SΩ(t − s)f (u(s)) ds (8)

with SΩ given by (4). By a stationary solution (steady point, equilibrium) of (1) we mean a solution
of

AΩu = f (u). (9)

The set of stationary points will be denoted by SP(Ω).

Our notion of solution corresponds to what is often called a ‘mild’ solution. Every solution in
the sense of Definition 2.2 satisfies (6); that is, mild solutions are also variational (weak) solutions.
This is shown by calculating u(t+h)−u(t) and passing to the limit h→ 0 (cf. [H2, Lemma 3.3.2]).
Let us now consider the stationary states.

DEFINITION 2.3 The linearization of AΩ − f at u ∈ SP(Ω) is the closed linear operator

AΩ − f
′(u) : L2(Ω)→ L2(Ω),

(AΩ − f
′(u))v = AΩv − f

′(u)v,

D(AΩ − f
′(u)) = D(AΩ).
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For all u ∈ SP(Ω) and k ∈ N let λk(AΩ −f ′(u)) be the kth eigenvalue of the operator AΩ −f ′(u).
Let

SP+(Ω) = {u ∈ SP(Ω) : λ1(AΩ − f
′(u)) > 0}

be the subset of stable steady points,

SP0(Ω) = {u ∈ SP(Ω) : ∃k ∈ N, λk(AΩ − f ′(u)) = 0}

be the subset of nonhyperbolic steady points, and

SP−(Ω) = {u ∈ SP(Ω) : λ1(AΩ − f
′(u)) < 0 and ∀k ∈ N, λk(AΩ − f ′(u)) 6= 0}

be the subset of unstable steady points. The set SP+(Ω)∪SP−(Ω) is the subset of hyperbolic steady
points. It is known (see [H2, Chapter 4]) that each of them is isolated in L2(Ω). It is also known
that stable steady states are attractive in the sense of Lyapunov, and the unstable ones are repulsive
for almost all data in their neighborhood.

The condition (7) implies that equilibria and solutions of the parabolic equation with initial
conditions in L∞(Ω) are uniformly bounded in L∞(Ω).

PROPOSITION 2.4 There exists K > 0 such that

∀u ∈ SP(Ω), ‖u‖L∞(Ω) 6 K,

∀t > 0, ‖u(t)‖L∞(Ω) 6 max{K, ‖u0‖L∞(Ω)}

where u(t) is the solution of (6) with the initial condition u0.

Proof. The proof is standard and applies to all weak solutions (see e.g. [GT]). By (7), there exists
K > 0 such that for all x with |x| > K , f (x)/x < 1. Taking as test functions (u−k)+ and (u+k)−

in (9), we obtain −K 6 u 6 K . The second statement is proved in the same way but using (1) and
with K ′ = max(K, ‖u0‖∞). We conclude by the Gronwall lemma. 2

Let K be the constant given in Proposition 2.4. We denote by CKf the smallest constant such that

|f (x)− f (y)| 6 CKf |x − y| ∀x, y ∈ B(0,K). (10)

Of course f is also bounded on B(0,K).

COROLLARY 2.5 Under the conditions f ∈ C1(R), (7) and u0 ∈ L
∞(Ω), we may assume that

f is globally Lipschitz continuous (and bounded). So, for all u0 ∈ L
∞(Ω), there exists a unique

solution of (6).

See e.g. [H2, Corollary 3.3.5]. This will be crucial in most proofs which follow.

2.3 Restriction and extension between D and Ω ⊂ D

As we will perturb the domain, we need one large space in which solutions can be considered and
compared: this is L2(D),D (the design region) being given by (C1). Let us denote by ‖ · ‖ the norm
in L(L2(D)) and fix the following operators of restriction and extension:

rΩ ∈ L(L2(D), L2(Ω)) and pΩ ∈ L(L2(Ω), L2(D))
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defined by
∀u ∈ L2(D), rΩ(u) = u in Ω,
∀u ∈ L2(Ω), pΩ(u) = u in Ω, pΩ(u) = 0 in Ωc.

(11)

When applied to a vector, the operator pΩ acts on each of its components.
Of course pΩ is not continuous inH 1(D). We note now that the operators pΩ ◦(λ−AΩ)−1

◦rΩ
and pΩ ◦ SΩ(t) ◦ rΩ belong to L(L2(D)) and the values of the norms remain unchanged. So, we
will consider the resolvent operator (λ−AΩ)−1 as an operator from L2(D) to L2(D). When it does
not lead to confusion, we will often omit the operators pΩ and rΩ . It is clear that the formula (4)
remains valid when we consider it in the sense of composition with pΩ and rΩ .

2.4 Mosco convergence

We now introduce the notion of Mosco convergence which appears in our main assumption (C4).
As in other works related to the Neumann perturbation problem [DMa, Dan], we use here actually a
special case of the Mosco convergence as introduced in his original paper [Mo, Definition 1.1]. By
applying this definition to the linear subspaces of [L2(D)]N+1 defined by

XΩn = {(pΩn(u), pΩn(∇u)) : u ∈ L2(Ωn)},

XΩ = {(pΩ(u), pΩ(∇u)) : u ∈ L2(Ω)},

we obtain the following

DEFINITION 2.6 LetΩ be an open set and (Ωn)n∈N a sequence of open sets. We say that (Ωn)n∈N
converges in the sense of Mosco to Ω if the following conditions (M1) and (M2) hold:

(M1) if un ∈ H 1(Ωn) are such that

pΩn(un)
L2(D)
−−−−⇀ v, pΩn(∇un)

[L2(D)]N
−−−−−−⇀ b,

then there exists u ∈ H 1(Ω) such that v = pΩ(u) and b = pΩ(∇u),
(M2) for all u ∈ H 1(Ω), there exists un ∈ H 1(Ωn) such that

pΩn(un)
L2(D)
−−−→ pΩ(u), pΩn(∇un)

[L2(D)]N
−−−−−→ pΩ(∇u).

As noted in the Introduction, it is known that under conditions (M1) and (M2), the solution to
the linear problem (2) is continuous with respect to domain perturbations; the same was shown
for the semilinear case in [DMa]. In Section 4, we will prove this also for solutions of the
nonlinear evolution equation (6). In the Introduction we have given more known results about this
convergence.

2.5 Distance between linear spaces

In order to state some of the convergence results, we want to make precise the notion of distance
between sets and between linear spaces.
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DEFINITION 2.7 (see [K, IV.2]) Let dH be the symmetric Hausdorff distance between sets: if X
and Y are nonempty subsets of a normed space (Z, ‖ · ‖),

dH (X, Y ) = max
(

sup
x∈X

inf
y∈Y
‖x − y‖, sup

y∈Y

inf
x∈X
‖x − y‖

)
.

If X and Y are linear spaces, dH (X, Y ) is infinite or 0. So, let d be the Hausdorff distance between
the sets of unit vectors:

d(X, Y ) = max
(

sup
x∈X
‖x‖=1

inf
y∈Y
‖y‖=1

‖x − y‖, sup
y∈Y
‖y‖=1

inf
x∈X
‖x‖=1

‖x − y‖
)
.

If we complete this definition by setting

d(X, {0}) = 2 for X 6= {0}, d({0}, {0}) = 0,

then d is a distance on the set of all closed subspaces of Z.

REMARK 2.8 1) The distance d induces on the set of closed subspaces of Z the same topology as
the ‘gap’ defined as

δ(X, Y ) = max
(

sup
x∈X
‖x‖=1

inf
y∈Y
‖x − y‖, sup

y∈Y
‖y‖=1

inf
x∈X
‖x − y‖

)
.

See [K, IV.2.1]. This ‘gap’ appears in the statements of many theorems in [K].
2) Note that d(X, Y ) < 1 implies dim X = dim Y [K, IV.2.2].

3. Stability

In all what follows in this part, we consider a domain Ω and a sequence of domains (Ωn)n∈N
satisfying conditions (C1)–(C4). For simplicity, let us write An, Sn, A, S instead of AΩn , SΩn , AΩ ,
SΩ and pn, p instead of pΩn , pΩ .

3.1 Resolvent convergence

We denote by RA the resolvent operator which to v associates A−1(f (v)), extended by zero
outside Ω:

RA : L2(D)→ L2(D), v 7→ p(A−1(f (v))). (12)

We define RAn in the same way. Note that only v|Ω enters the definition of RA(v), and so we can
consider L2(Ω) as the effective domain of RA. We also have

u ∈ SP(Ω) ⇔ RA(u) = u.

It is clear that RA is a compact operator, satisfying, for all v ∈ L2(D),

‖RA(v)‖H 1(Ω) 6 CKf ‖v‖L2(D)

where CKf is defined by (10). The following result will be essential for the proof of Theorem 3.4.
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LEMMA 3.1 Suppose that (wn) is a sequence in L2(D) such that (f (wn)) converges weakly to h
in L2(D). Then

lim
n→∞
‖RAn(wn)− A

−1(h)‖L2(D) = 0, lim
n→∞
‖RA(wn)− A

−1(h)‖L2(D) = 0.

Proof. Let us prove the first claim. Let un = RAn(wn). Then∫
Ωn

(∇un∇φn + unφn) =

∫
Ωn

f (wn)φn (13)

for all φn ∈ H 1(Ωn). It is easy to see that the sequence (pn(un), pn(∇un)) is bounded in
[L2(D)]N+1. So, by (M1),

(pn(un), pn(∇un))
[L2(D)]N+1

−−−−−−−⇀ (p(u), p(∇u)).

Let (ϕn) and ϕ be given by (M2) and take them as test functions in (13). We can now pass to the
limit, obtaining Au = h on Ω . So, (un) converges to A−1(h) weakly in L2(D). By (C3), we find
that (un) converges to A−1(h) strongly in L2(Ω). Together with (C2), this gives∫

Ωn

|un − A
−1(h)|2 =

∫
Ω

|un − A
−1(h)|2 → 0 as n→∞. (14)

This ends the proof of the first statement. The second one comes from the weak continuity of the
operator A−1 and the compact injection of H 1(Ω) into L2(D), by (C3). 2

REMARK 3.2 Lemma 3.1 remains true for domains which do not satisfy (C2), but a more general
condition |Ωn \Ω| → 0. One should just replace (14) by

lim
n→∞

∫
D\Ω

|un − A
−1(h)|2 = 0.

This follows from the boundedness of f , which gives the uniform boundedness of un = RAn(wn)
in L∞(D).

LEMMA 3.3 Let (hn) be a sequence in L2(D) such that ‖hn‖L2(D) 6 1. Let λ > CKf − 1. (We
recall that f can be considered Lipschitz continuous with the Lipschitz constant CKf .) Then

lim
n→∞
‖(An + λ− f

′(un))
−1(hn)− (A+ λ− f

′(u))−1(hn)‖L2(D) = 0.

Proof. Up to a subsequence, hn converges weakly in L2(D) to h. Let

vn = (An + λ− f
′(un))

−1(hn).

Then ∫
Ωn

|∇vn|
2
+

∫
Ωn

v2
n + λ

∫
Ωn

v2
n +

∫
Ωn

f ′(un)v
2
n =

∫
Ωn

hnvn,

which gives

‖vn‖
2
H 1(Ωn)

6 1+
1

1+ λ− CKf
.
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So, by (M1) there exists v ∈ H 1(Ω) such that, up to a subsequence,

(pn(∇vn), pn(vn))
[L2(D)]N+1

−−−−−−−⇀ (p(∇v), p(v)).

Also, by (C3), vn converges strongly to v in L2(Ω). Let ϕ ∈ H 1(Ω) and let ϕn ∈ H 1(Ωn) be given
by (M2). Take them as test functions in the equation defining vn:∫

Ωn

{∇vn∇ϕn + (1+ λ)vnϕn − f ′(un)vnϕn} =
∫
Ωn

hnϕn

for all n ∈ N. Passing to the limit, and applying the boundedness of f ′, we obtain v = (A + λ −
f ′(u))−1(h). We now use vn as a test function in the above equation. Note that, by (C2) and (C3),∫

Ωn

hnvn =

∫
Ω

hnvn→

∫
Ω

hv.

Thus

lim
n→∞

∫
Ωn

{|∇vn|
2
+ (1+ λ)|vn|2 − f ′(un)|vn|2} =

∫
Ω

{|∇v|2 + (1+ λ)|v|2 − f ′(u)|v|2}.

It follows that
lim
n→∞

∫
D

{|pn(∇vn)− p(∇v)|
2
+ |pn(vn)− p(v)|

2
} = 0.

So,

lim
n→∞

∫
D

|pn(vn)− p(v)|
2
= 0.

This means that (An + λ − f ′(un))−1(hn) converges to (A + λ − f ′(u))−1(h) in L2(D). On the
other hand, it is easy to see that (A+λ−f ′(u))−1(hn) converges to (A+λ−f ′(u))−1(h) in L2(D).
This ends the proof. 2

3.2 Main theorems

We now establish the continuity of the hyperbolic equilibrium point with respect to our domain
perturbation.

THEOREM 3.4 For all u ∈ SP+(Ω) ∪ SP−(Ω), there exists (un)n∈N which converges to u in
L2(D) and such that un ∈ SP(Ωn) for all n.

THEOREM 3.5 Let (un)n∈N be a sequence such that un ∈ SP(Ωn) and which converges to u in
L2(D). Then u ∈ SP(Ω) and for every k ∈ N,

λk(AΩn − f
′(un))→ λk(AΩ − f

′(u)) as n→∞,
d(W k

n ,W
k)→ 0 as n→∞.

Here d is the distance between closed subspaces of L2(D), as in Definition 2.7, andW k ,W k
n are the

subspaces generated by the first k eigenvectors:

W k
= span[e1

; . . . ; ek], W k
n = span[e1

n; . . . ; e
k
n]

where ek is the eigenvector corresponding to the eigenvalue λk(AΩ−f ′(u)), and ekn the eigenvector
corresponding to the eigenvalue λk(AΩn − f

′(un)).
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Without loss of generality, by Proposition 2.4 and Corollary 2.5, we can suppose that f is
Lipschitz continuous with Lip f = CKf . Here again, we assume that the functions are extended
by zero outside the open set in which they are naturally defined. To prove this result, we will use the
Leray–Schauder fixed-point index (see e.g. [Z, Vol. I, Chapter 12]).

Proof of Theorem 3.4. Let u ∈ SP+(Ω) ∪ SP−(Ω). Being hyperbolic, u is isolated, i.e. for ε
small enough, u is the unique fixed point of RA in B(u, ε), where B(u, ε) denotes the ball in
L2(D) of center u and radius ε. Let i(·, ·) be the Leray-Schauder fixed-point index. We then have
i(RA, B(u, ε)) 6= 0. Let Hn : B(u, ε)× [0, 1]→ L2(D) be defined by

Hn(x, t) = tRAn(x)+ (1− t)RA(x). (15)

Suppose that, for n large enough, Hn is a compact homotopy. Then

i(RAn , B(u, ε)) = i(RA, B(u, ε)) 6= 0.

This implies that there exists un ∈ SP(Ωn)∩B(u, ε). By a direct application of Lemma 3.1 we find
that the sequence (un) converges strongly to u in L2(D): this would end the proof.

In order to prove that Hn is a compact homotopy, we have to verify that Hn is compact and
that Hn(x, t) 6= x for all (x, t) ∈ ∂B(u, ε) × [0, 1]. The compactness of Hn follows from the
compactness of A−1

n and A−1. Suppose that there exists a sequence (vk, tk) ∈ ∂B(u, ε) × [0, 1]
such that Hn(vk, tk) = vk . Note that for a subsequence, after renumbering, we can assume that
Hn(vn, tn) = vn. Let v be the weak limit in L2(D) of vn, and h the weak limit of f (vn). Since
Hn(vn, tn) = vn, the sequence (vn) converges strongly to v ∈ ∂B(u, ε) in L2(D) and as f is
Lipschitz continuous, h = f (v). On the other hand, by Lemma 3.1, (RAn(vn))n and (RA(vn))n
converge strongly in L2(D) to A−1(h) = A−1(f (v)). So, by (15), v = RA(v). This contradicts the
fact that u is the unique fixed point in B(u, ε). 2

Proof of Theorem 3.5. The fact that u ∈ SP(Ω) is clear. The two convergences come (see [K, IV,
3.4–3.5]) from Lemma 3.3: the convergence of the resolvent operators (An + λ− f ′(un))−1 to the
resolvent operator (A + λ − f ′(u))−1 in L(L2(D)). Note that these operators have of course the
same eigenvalues and eigenspaces as (An − f ′(un))−1, (A− f ′(u))−1. 2

REMARK 3.6 1) We do not need (C2) for Theorem 3.4, but it is crucial for the proof of
Theorem 3.5. However, (C2) is of course not a necessary condition for having Theorem 3.5.

We will show now that if the flux in the domain Ω has no nonhyperbolic equilibrium, then the
number of equilibria is the same in the limit and in the perturbed domains. We begin with a lemma
referring to a slightly more general situation.

LEMMA 3.7 Let u ∈ SP+(Ω)∪SP−(Ω). If there exist two sequences (un), (vn)with un ∈ SP(Ωn)
and vn ∈ SP(Ωn) both converging to u in L2(D), then, for n large enough, un = vn.

Proof. Assume that un 6= vn on a set of positive measure. Define wn = (un−vn)/‖un−vn‖L2(Ωn)
.

Note that by (C2), ‖wn‖L2(Ω) = ‖wn‖L2(Ωn)
= 1. We will show that

wn→ 0 strongly in L2(Ω),

which will obviously be a contradiction.
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From the equation solved by un − vn we see that

‖un − vn‖H 1(Ωn)
6 Cf ‖un − vn‖L2(Ωn)

. (16)

So, ‖un − vn‖H 1(Ωn)
→ 0. Note also that wn ∈ H 1(Ωn) and is a solution of∫

Ωn

∇wn∇ϕn +

∫
Ωn

wnϕn =

∫
Ωn

f (un)− f (vn)

‖un − vn‖L2(Ωn)

ϕn, ∀ϕn ∈ H
1(Ωn),

which by (C2) is the same as∫
Ω

∇wn∇ϕn +

∫
Ω

wnϕn =

∫
Ω

f (un)− f (vn)

‖un − vn‖L2(Ω)

ϕn, ∀ϕn ∈ H
1(Ωn). (17)

Taking wn as a test function in (17) implies that ‖wn‖H 1(Ωn)
is uniformly bounded. So, up to a

subsequence, thanks to the Mosco condition (M1), there exists w ∈ H 1(Ω) such that

(pn(∇wn), pn(wn))
[L2(D)]N+1

−−−−−−−⇀ (p(∇w), p(w)). (18)

We will now prove that w is a solution of∫
Ω

∇w∇ϕ +

∫
Ω

wϕ =

∫
Ω

f ′(u)wϕ, ∀ϕ ∈ H 1(Ω). (19)

This, since u ∈ SP+(Ω) ∪ SP−(Ω), gives us w = 0. Let ϕ ∈ H 1(Ω) and let ϕn ∈ H 1(Ωn) be the
sequence given by the Mosco condition (M2). Passing to the limit in (17), in order to obtain (19),
we have to prove that

lim
n→∞

∫
Ω

f (un)− f (vn)

‖un − vn‖L2(Ωn)

ϕn =

∫
Ω

f ′(u)wϕ. (20)

Since the injection from H 1(Ω) into L2(Ω) is compact by (C3), the function f can be considered
to belong to L(H 1(Ω), L2(Ω)), and∥∥∥∥ f (vn)− f (un)‖un − vn‖L2(Ωn)

− f ′(un)wn

∥∥∥∥
L2(Ω)

=
o(‖un − vn‖H 1(Ω))

‖un − vn‖L2(Ωn)

. (21)

By (16) we have
o(‖un − vn‖H 1(Ω)

‖un − vn‖L2(Ωn)
)

6 Cf
o(‖un − vn‖H 1(Ω))

‖un − vn‖H 1(Ω)

. (22)

Since ‖un − vn‖H 1(Ω)→ 0, it follows that

f (vn)− f (un)

‖un − vn‖L2(Ωn)

− f ′(un)wn→ 0 in L2(Ω). (23)

Thus, we can pass to the limit in (17), obtain (19), and conclude that w = 0. We got our
contradiction: (a subsequence of) wn converges strongly in L2(Ω) to 0 and ‖wn‖L2(Ω) = 1. 2
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Thus, if no nonhyperbolic equilibria exist, the structure of the set of equilibria in Ωn is very similar
to the one in the limit domain.

THEOREM 3.8 Suppose that SP(Ω)0 = ∅. Then for n large enough,

card SP+(Ωn) = card SP+(Ω), card SP−(Ωn) = card SP−(Ω).

Proof. This is an immediate consequence of Theorems 3.4 and 3.5 and of Lemma 3.7. 2

THEOREM 3.9 Suppose that SP(Ω)0 = ∅. Then

lim
n→∞

dH (SP+(Ωn), SP+(Ω)) = 0, lim
n→∞

dH (SP−(Ωn), SP−(Ω)) = 0.

Here, dH denotes the Hausdorff distance between sets in L2(D). The functions are considered, as
usual, in L2(D) by extension by zero.

Proof. The assumption (7) on f implies that SP(Ω) is bounded in H 1(Ω) and hence compact
in L2(Ω). So, if SP(Ω) is hyperbolic, the subset SP+(Ω) ∪ SP−(Ω) is finite. It is then clear, by
Theorems 3.4 and 3.5, that

lim
n→∞

sup
u∈SP+(Ω)

inf
v∈SP+(Ωn)

‖u− v‖L2(D) = 0.

On the other hand, let un ∈ SP+(Ωn). As SP(Ωn) is uniformly bounded with respect to n in
H 1(Ωn), using the Mosco conditions, it is easy to see that, up to a subsequence, un converge
strongly to u ∈ SP(Ω) in L2(Ω). Since un ∈ L∞(Ωn), the convergence holds in L2(D). Using
Theorem 3.5 again, we conclude that u ∈ SP+(Ω) and so

lim
n→∞

sup
v∈SP+(Ωn)

inf
u∈SP+(Ω)

‖u− v‖L2(D) = 0.

This ends the proof of the first claim. For the second, we use the same argument. Moreover, from
the first Mosco condition, we have lim sup λ(Ωn) 6 λ(Ω) so if (un) is a sequence in SP−(Ωn), then
each limit of a subsequence is in SP−(Ω)∪SP0(Ω), so in SP−(Ω). This simplifies the proof in this
case. 2

4. Convergence of semigroups

We are now interested in the continuity of parabolic Neumann problems under the perturbation of
domain defined above. According to Corollary 2.5, if we restrict the space of initial conditions to
L∞(D), we can suppose that f is globally Lipschitz continuous.

We know that under the condition (G) or (7), for all u0 ∈ L
2(Ω), there exists a unique solution

of (6). The map TΩ : R+ × L2(Ω) → L2(Ω) which to (t, u0) associates the solution of the
equation (6) is a nonlinear semigroup. Let us make this more specific. Take β > 0 and T > 0. We
define L2

β((0, T ), L
2(D)) to be the Banach space of functions defined on (0, T )×Ω , endowed with

the norm (∫ T

0
e−βt‖u(t)‖2

L2(D)
dt
)1/2

.
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Let F : L2
β((0, T ), L

2(D))→ L2
β((0, T ), L

2(D)) be the map

F(u)(t) =
∫ t

0
S(t − s)f (u(s)) ds.

We deduce from (5) by a simple calculation that F is Lipschitz with a constant smaller than
Lip f/

√
β + 2. Hence, for β large enough, it is strictly contractive, uniformly in T and in Ω .

The solution of (8) is then the unique fixed point in L2
β((0, T ), L

2(D)) of the map G :
L2
β((0, T ), L

2(D))→ L2
β((0, T ), L

2(D)) given by

G(u)(t) = S(t)u0 + F(u)(t).

We define in the same way the maps Fn and Gn for the semigroup Sn; they are uniformly contractive
as well, with respect to T and n.

THEOREM 4.1 Suppose that (Ωn)n∈N converges toΩ in the sense of Mosco. For all u0 ∈ L
∞(D)

and all T > 0,
lim
n→∞
‖Tn(t)u0 − T (t)u0‖L2

β ((0,T ),L
2(D)) = 0 (24)

where β is such that
√
Cf /(β + 1) < 1.

In order to prove this result, we need the resolvent operator and the linear semigroup continuity.

LEMMA 4.2 Assume that (Ωn) converges to Ω in the sense of Mosco. For all h ∈ L2(D), and all
λ ∈ S,

lim
n→∞
‖(λ− An)

−1(h)− (λ− A)−1(h)‖L2(D) = 0.

Proof. We will argue as in the proofs of Lemma 3.1 and Theorem 3.5. Let un = (λ − An)−1(h).
By the inequality (3) and (M1) there exists u ∈ H 1(Ω) such that, up to a subsequence,

(pn(∇un), pn(un))
[L2(D)]N+1

−−−−−−−⇀ (p(∇u), p(u)).

Let ϕ ∈ H 1(Ω) and let ϕn ∈ H 1(Ωn) be given by (M2). Take them as test functions in the
eigenvalue equation for un:∫

Ωn

{∇un∇ϕn + unϕn − λunϕn} =

∫
Ωn

hϕn

for all n ∈ N. Passing to the limit, we obtain u = (λ − A)−1(h). Using un as a test function in the
above equation, as

∫
Ωn
hun −→

∫
Ω
hu, we obtain

lim
n→∞

∫
Ωn

{|∇un|
2
+ |un|

2
− λ|un|

2
} =

∫
Ω

{|∇u|2 + |u|2 − λ|u|2}.

It follows that

lim
n→∞

∫
D

{|pn(∇un)− p(∇u)|
2
+ (1− λ)|pn(un)− p(u)|2} = 0.
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Since λ ∈ S, if its imaginary part is equal to zero, then λ < 1. We get

lim
n→∞

∫
D

|pn(un)− p(u)|
2
= 0,

which is the desired result. 2

COROLLARY 4.3 For all compact K ⊂ S and h ∈ L2(D),

lim
n→∞

sup
λ∈K

‖(λ− An)
−1(h)− (λ− A)−1(h)‖ = 0.

Proof. This is a direct consequence of the resolvent identity. Let r0 = min{|λ− 1| : λ ∈ K}. Since
1 6∈ S, we have r0 > 0. Let (λn)n∈N be a maximizing sequence. Then, up to a subsequence, it
converges to some λ. On the other hand, by the resolvent identity, we have

‖(λn − An)
−1h− (λn − A)

−1h‖L2(D)

6
8|λn − λ|

r2
0
‖h‖ + ‖(λ− An)

−1h− (λ− A)−1h‖L2(D).

We now apply Lemma 4.2 and the proof is finished. 2

As a consequence of Lemma 4.2, we prove the continuity of the linear semigroup.

LEMMA 4.4 Suppose that (Ωn)n∈N converges to Ω in the sense of Mosco. For all u0 ∈ L
2(D)

and all T , δ such that 0 < δ < T ,

lim
n→∞

sup
[δ,T ]
‖Sn(t)u0 − S(t)u0‖L2(D) = 0.

Proof. Let Γ be a smooth contour included in −S, i.e. in the region {λ : 0 6 |arg(λ + 1)| 6
2π/3, λ 6= −1}, and such that for some R0 > 0,

λ ∈ Γ \ B(−1, R0) ⇒ λ = −1+ re±iθ ,

with some fixed θ ∈ (π/2, 2π/3) and r ∈ (R0,∞). Using (4), we have, for all t > 0,

Sn(t)u0 − S(t)u0 =
1

2iπ

∫
Γ

eλt [(λ+ An)−1u0 − (λ+ A)
−1u0] dλ.

Using (3), for all R > R0 we obtain the following inequalities, where r = |λ+ 1|:∥∥∥∥ 1
2iπ

∫
Γ∩B̄(1,R)c

eλt [(λ+ An)−1u0 − (λ+ A)
−1u0] dλ

∥∥∥∥
L2(D)

6
2
π
‖u0‖L2(D)

∫
Γ∩B̄(1,R)c

|eλt |

r
d|λ|

6
4
π
‖u0‖L2(D)

∫
∞

R

e−t+rt cos θ

R
dr 6 −

4
π
‖u0‖L2(D)

e−t+Rt cos θ

Rt cos θ
,
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since π > θ > π/2. Also, for these values of θ ,

lim
R→∞

sup
[δ,T ]

et (−1+R cos θ)

Rt cos θ
= 0.

Fix now ε > 0. There exists R > 0 such that

sup
t∈[δ,T ]

‖Sn(t)u0 − S(t)u0‖L2(D)

6
1

2π

∫
Γ∩B̄(1,R)

|eλT | ‖(λ+ An)
−1u0 − (λ+ A)

−1u0‖L2(D)dλ+ ε.

The result follows by Corollary 4.3. 2

We are in position to prove Theorem 4.1.

Proof of Theorem 4.1. Since Gn are uniformly contractive in L2
β((0, T ), L

2(D)), it is sufficient
to prove that for all p ∈ N and ϕ ∈ L2

β((0, T ), L
2(D)), Gpn (ϕ) converges to Gpn (ϕ) strongly

in L2
β((0, T ), L

2(D)). Proceeding by recurrence, we have to prove that

if ϕn→ ϕ in L2
β((0, T ), L

2(D)), then Gn(ϕn)→ Gn(ϕ) in L2
β((0, T ), L

2(D)).

It is clear, by Lemma 4.4, that Sn(t)u0 → S(t)u0 in L2
β((0, T ), L

2(D)). Hence it is sufficient to
prove that Fn(ϕn) → Fn(ϕ) in L2

β((0, T ), L
2(D)). Since Fn are uniformly Lipschitz continuous,

we have to prove that for all ϕ ∈ L2
β((0, T ), L

2(D)),

Fn(ϕn)→ Fn(ϕ) in L2
β((0, T ), L

2(D)).

Lemma 4.4 implies that Sn(t − s)f (ϕ(s))→ S(t − s)f (ϕ(s)) in L2(D) a.e. in (0, t). Since

‖Sn(t − s)f (ϕ(s))‖L2(D) 6 e−(t−s)(C + CKf ‖ϕ(s)‖L2(D))

with ϕ(s) ∈ L2
β((0, T ), L

2(D)), the result follows by the Dominated Convergence Theorem. 2

5. Appendix

We present here more details on the numerical simulations, results of which were shown in the
Introduction. Recall that we have taken the Allen–Cahn nonlinearity

g(u) = u(1− u2),

having two stable zeros 1 and −1, and one unstable equal to 0. We apply to our equation (1) the
following semi-implicit scheme based on the concave–convex splitting of the free energy introduced
by Eyre [E] and explored in view of unconditional stability for the Allen–Cahn and Cahn–Hilliard
equations by Vollmayr-Lee and Rutenberg in [VR]:

u− ũ

τ
−∆u = (1− a)u+ aũ− ũ3,
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FIG. 4. The domain with its FEM grid and a close-up of the grid near the junction of the two subdomains.

where ũ is the value from the previous time step. In the experiments we have taken a = 3, a value
for which the time-discrete scheme is stable [VR]. We then use the finite element approximation for
the space discretization.

The geometry of the domain and the triangulation are shown in Figure 4. This geometry does
not follow precisely our model of Figure 1, but is very close to it. Figure 4 presents a close-up of
the junction of the two subdomains. The domain’s dimension are:

r1 =
1
3 ∗ 20 radius of the left ball,

r2 =
1
3 ∗ 35 radius of the right ball,

r0 =
1
3 dimension of the ‘hole’,

and the numerical parameters are:

τ = 0.001 time-step size,

hmax =
1
3 ∗ 1.75 diameter of the triangulation,

N = 5366 number of nodes in the triangulation.

The scaling factor κ = 10/3 is actually included in the equation: we multiply∆u by 1/κ2 and work
with the equation ut − (1/κ2)∆u = g(u) and smaller geometrical dimensions.

Results of three simulations are shown in Figure 2.
For an insight into the dynamics of the process under study, let us plot a measure of the rate of

change of the function u in time, defined as

m(tn) =

∫
Ω

|un − un−1
|

τ
. (25)

Here n is the time step, and un the numerical solution at time step n, i.e. at tn = nτ . The measure
is more sensitive to changes of u than the rate of change of mass (where the mass is defined to be∫
Ω
u), in particular,m(tn) = 0 implies un ≡ un−1 a.e. Figure 5 presents the measure for each of the

experiments. Note that a logarithmic scale is used for the vertical axes.
One can see that the evolution speed is (i) nearly constant but increasing on long intervals

of time, and (ii) changing rapidly on some very short intervals. This phenomenon is known to
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FIG. 5. The rate of mass change (25) for experiments of Figure 2.

correspond to the evolution on the attractor, (i) following the invariant manifolds and (ii) near the
unstable equilibria (see for instance [FH] for the Allen–Cahn case). Our graphs also show a much
slower and flatter part by the end of all the experiments, which makes one think there is a particular
feature of the final state—this is its stability. This is particularly meaningful when we compare the
graph (a) with (b), (c), as the stability of the final state of (a) is clear.
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