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We consider a mass conserving Allen—Cahn equation u; = Au + 8_2( f(u) — eA(t)) in a bounded
domain with no flux boundary condition, where €A () is the average of f(u(-,¢)) and —f is the
derivative of a double equal well potential. Given a smooth hypersurface y contained in the domain,
we show that the solution u® with appropriate initial data tends, as £ N\ 0, to a limit which takes only
two values, with the jump occurring at the hypersurface obtained from the volume preserving mean
curvature flow starting from yy.

1. Introduction

In this paper, we study the limit, as ¢ — 0, of the solution u? to the mass conserving Allen—Cahn
equation (P?)

ué = Au + 8_2<f(u5) — ][ f(uf)) in 2 x R,
(P*) 1 8,u® =0 § on 32 x R, (0
u®(-,0) =g%() on £2 x {0},
where

& _L &
][Qf(u ) = |m/gf(u (x, 7)) dx.

Here £2 is a smooth bounded domain in R” (n > 1), 9, the outward normal derivative to 952, and
— f (u) is the derivative of a smooth double-well potential with wells of equal depths; more precisely,

feC®®), fEEH=0, f(&£) <0, /uf=/Mf<O Yu e (—1,1). 2)
~1 1
A typical example is f(u) = u — u>.
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Problem (I)) was proposed, along with its well-posedness, by Rubinstein and Sternberg [22] as
a model for phase separation in binary mixture. Note that the well-posedness of (I]) follows from
the general theory of semilinear parabolic equations [18]]. The model is mass conserving and energy
decreasing since

d
vt >0, —/ ub(x,t)dx =0
dr I?)

and 5
d Vu® 1
vizo, L[ (VL dx=—8/(uf)2dx<o,
dr Jo 2 ) Q
where F(u) := — f_"l f(s)ds is the double equal well potential.

Formally, one can show that, as ¢ — 0, assuming @, the solution u? to tends to a limit given
by

—1, XGQZ,

+1, xeR)\ 2, )

lim u®(x,t) = {
e—0
where 2; CC 2, yy = 082y and I := UtZO(Vl x {t}) is the solution to the volume preserving
mean curvature motion equation

n—1

V=—mn-DK, +
"yl

/ K, dH"™"  ony,. )
Yi

Here V is the normal velocity of y; (negative when y; is shrinking) and K,, the mean curvature
(positive at points around which £2; is locally convex). Note that the integral of the curvature on y;
is the sum of the integrals of the curvature on each of the (finitely many) connected components
of y;, with the orientation given by the outer normal vector on y;.

The local in time existence of a unique smooth solution to (@) has been first established in
a two-dimensional setting in [12]. The general result in arbitrary space dimension is obtained
in [14], where the large time behavior of solutions for initial data close to a sphere was also
investigated. When the initial data is convex, it is shown in [19] that admits a unique global
in time convex solution. Related properties of other volume-preserving curvature driven flows are
established in [[13]]. In particular it is shown that the solution to (@) will develop singularities in finite
time. This was previously established in the case of multiple interfaces in the radial setting in [5]].

Concerning the connection between (I)) and @), Bronsard and Stoth [5]] considered a radially
symmetric case with multiple interfaces (rings) and proved (3). The combination of energy and
viscosity methods allowed the authors in [5] to study the convergence of the evolution problem (P?)
even after the formation of singularities, defining “ghost” or “phantom” interfaces. Let us also
mention [17] where the Rubinstein—Sternberg model is modified in order to ensure that the
solution u® satisfies |u®| < 1. This allows the author to use the method introduced in [3] and to
prove convergence to Problem (4).

In this paper we prove the convergence result stated in under the following assumptions
about the initial data.

There exists a smooth subdomain §2o0 CC 2 such that yy = 95§29
is a smooth hypersurface without boundary
with finitely many connected components. o)
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Once y" satisfies this assumption, we will construct g° satisfying

—1, x € £,

o B
Jim g (x)_{+1, xe 2\ %. ©)

We establish the following result.

THEOREM 1 Assume that yy satisfies H LetI" = Uogng (y¢ x {t}) be a smooth solution to l)

such that y, CC §2 for all 1 € [0, T]. Then there exists a family of continuous functions {g®}o<¢<1
satisfying (6) such that the solution u* to (T) satisfies (3) for all 7 € [0, T'].

For the Allen-Cahn equation u? = Au® — =2 f (u®), holds with I" being the solution to
the motion by mean curvature flow V = —(n — 1)K,,. A simple method to verify this is to use a
comparison principle and construct sub-super solutions [6,|16]. There are different notions of weak
solutions such as viscosity [[16] and varifold [20] solutions which can be used to establish the global
in time limit. Nevertheless, (I)) does not have a comparison principle (due to the volume preserving
property) and the simple method does not seem to work. Here we shall employ a method first used
by de Mottoni and Schatzman [[11] for the Allen—Cahn equation, and later on by Alikakos, Bates,
and Chen [1] for the Cahn—Hillard equation and Caginalp and Chen [8] for the phase field system.
Namely we first rewrite the equation for u® in Problem (P?¢) as

uf = Au® +e72(f W) —ere(t)) in 2 x RY, @)

where we define |
Vi 20, A1) = —][ F@W (. 0). ®)
€Je
The basic strategy of the proof is as follows [IL].
1. For a large enough k € N, construct an approximate solution (u{, A7) satisfying
() — Auy — s_z(f(ui) —ely) =38, in2r =0 x[0,T], 0
©)
Jowp)idx =0 Vre[0,T], dui=0 ond2 x[0,T],

where (Si = 0(1)8k . Note that, by integration,

ers (1) = ][Qf(ui)+0(1)gk+2.

2. Foreacht € [0, T] and small ¢ > 0, estimate the lower bound of the spectrum of the self-adjoint
operator —A — g2 f (ui(-, t)); namely, show that for some positive constant C*,

f inf / (VP> — e 2 f i (-, 1)) = —C*. (10)
2

inf  in
0<t<T 0<e<l1 [, ¢=0, [, $>=1
3. Set R = u® — uj and show that R tends to 0 as & — 0.

Note that our analysis establishes the convergence as long as a smooth solution to the limit
problem (@) exists, before the formation of singularities.

The organization of the paper is as follows. In Section 2, we present an error estimate required
in step 3. In Section 3, we recall a known spectrum estimate [10, [7]] that can be adapted here to
prove step 2 in the strategy described above. After some preliminary geometrical computations in
Section 4, we finally construct the approximate solution in Section 5.
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2. Error estimate
The error estimate relies on the following result which is proved in the appendix.

LEMMA 1 Let £ C R" (with n > 1) be a bounded domain. Let p = min{4/n, 1}. Then there
exists C = C,,(£2) > 0 such that for every R € H'(£2) with frz Rdx =0,

2
IRIYY, < CIRIZ,IVRI? (11)

L2+p L2
where LY = L9(§2) forany g > 1.

Rubinstein—Sternberg [22] established L>° bounds for the solution #° to Problem (P?) using
invariant rectangles. Therefore we can modify f outside a compact interval and assume for
simplicity that

lim f(u) =Fo0
u— 300

and that there exists M > 0 such that
Viul =M, uf"(u) <O0.
Since p € (0, 1], for any Cp > 0 there exists C = C(Cp, p) such that for all |u| < Cpand R € R,
(fw+R)— f) — f'@WR)R < C|R|PH2.
Indeed, note that for R in a compact interval, there is 6 € (0, 1) such that

/" +6R)

5 R® < C|RIPT?,

(fw+R) — fw)— f@WRR =
whereas for |R| — 400, f(u + R)R — —oo uniformly in |u| < Cp so that
(fu+R) = f@) = f{@RR < (=f@) = f@RR < CR® < C|RIPT2,
LEMMA 2 Assume that k > max({4, n} and {uf}o<e<1 satisfies (9) and with
1851 202y < €50 Nufllzooqar) < 2.

Let {u®}o<¢<1 be solutions to (I)) with initial data {g®} satisfying

) = ul( 0) + ¢ (), /ﬂ 6 =0, 16520 < £ (12)
Then for all sufficiently small positive ¢,

sup [uf (o 0) —uf ()l 2@y < C(T)er.
0T

REMARK 1 By a bootstrap argument using inequality (I1)), one can show that other norms of
u® —ui tend to 0 as & N\ 0.
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Proof. In the following, C > 0 denotes a generic strictly positive constant independent of ¢ > 0.
Set p = min{4/n, 1} and R = u® — ui Then fg R(x,t)dx =0forallz € [0, T]. Also,

R{f®) — fuf) — f'w$)R) < C|RI*TP.

Multiplying by R the difference of the equations for #® and uj and integrating the resulting equation
over £2 gives, after integration by parts,

1d _ _
quniﬁfQ{WRF—s 2f’<u,i)R2}<fQ{Cs 2R 4R 8)).
By (10).
/Q {(IVR? — 2 f'(uf) R*)
=& [ UVRP =2 W) + (1= ) [ (VRE = )
> &?||VRIl3, — CIIR|3,.

The interpolation estimate then yields

1d

53 IRIZ2 < CUSIL2 IRl 2 + CURIZ = IVRIZ2 (62 = Cre 2 RIT)- (13)

We define
T, :=sup{t € [0, T]: [RC, D)ll;2 < Y77 forall T € [0, 1]}

Since k > max{n, 4} = 4/p, it follows that
IRC,0)]I 2 < &k < e*PCy /P

for ¢ > 0 small enough. Therefore, T, > 0. Also, from @I) we have, for all ¢t € (0, T],

d
g7 1 Rllz2 < CIRI 2 + 1811 22)-

Then Gronwall’s inequality shows that

T:
sup |RC, )ll;2 < eCTs[ch,O)an - C/ [EAE dr} < C(Tp)ek.
0T, 0

Since for € > 0 small enough

1 _
C(To)ek < 584/17C1 p

we must have T, = T. This completes the proof.
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3. The linearized operator
3.1 A spectrum estimate

Assume that f satisfies (2). Then there is a unique solution 6y : R — (0, 1) to

0y + fB) =0 onR, 6Gy(£oo)==%1, 6(0)=0. (14)

The solution satisfies, for & = min{,/— f"(1), /= f' (=D},
DI @o(p) F1) =0 ") as £p—>o00, VmeN.

Let 6; € C'(R) N L (R) be any function satisfying
/ 00> f" (00)61 = 0. (15)
R

Let 27 CC $£2 be a subset with C3 boundary y = 9£2~. Denote by d(x) the signed distance
(negative in §£27) from x to y, and by s(x), for x close to y, the projection from x on y along the
normal to y.

We look for the spectrum of the linearized operator of —Au — ¢ =2 f(u) around u = ¥* given
by

Ve () bo(d(x)/e) + ep® (s(x))B1(d(x) /) + O(e*  if |[d(x)| < Ve, 16)
X) =
+1+ 0()e if £d(x) > Je.

We use the following spectrum estimate.

PROPOSITION | Let y € C3, and p® and O(1) in be bounded independently of e. Then
there exists a positive constant C* depending on ||y || -3, || p®lIze and || O (1) ||z such that for every
ee(0,1]and ¢ € H(2),

/ (VoP — e 2f' (W5)¢?) > —C* / #2.
2 2

This inequality is established in [7]]. Note that such a spectrum estimate was proven by de
Mottoni and Schatzman in [[10], but around a different approximation .. A unified treatment of the
spectra was later obtained in [7]] in a more general situation and has been used in [, §]. Let us also
mention previous results in this direction obtained in [4] and also in [2]] for the 2D Cahn-Hilliard
equation.

We define the linearized operator around 6y (p) acting on v = v(p) by

Lv:=—v" — f(G)v. (17)
In our application, 6 is the unique solution to
L0y =1-06) inR,
01(0)=0, o:= 2/4952. (18)

Integrating 6 £6; by parts over R, one can verify that is satisfied.
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We remark that the distance function d in can be replaced by a “quasi-distance” function d®
given by
d*(x) = d(x) — eh1(s(x)) = £2ha(s(x)) + O(D)é?

where i1 and &, are smooth functions of s € y.

3.2 Solvability condition

LEMMA 3 Assume that f satisfies (). Let 6y be the solution to (I4), define o =
min{\/—f/(l), \/—f/(—l)} and let £ be defined in . Assume that a function i (p, s, t) satisfies,
as p — o0, '

DD Dh(p, s, 1) — hE ()] = O(pl'e™P)

for some i > 0 and all (m, n,l) € N3 and (s,t)inU x [0, T], where U C R"~! Then
LO=h(,s,t) inR, Q(@,s,t)=0,

has a unique bounded solution Q(p, s, t) if and only if
V€U x0T [ ho.s.08p)dp =0, (19)
R

If the solution exists, then it satisfies, for all (m, n, 1) € N3 and (s, 1) € U x [0, T],
h*(1)
S(ED

Proof. Note that £6) = 0 due to translation invariance, and that the null-space of £ is spanned
by 6. Thus the ode £Q = h can be solved explicitly assuming that / satisfies the condition .
We omit the details of the proof; see [10} 7} [1]].

DL"DE’Df[Q(p,s, n+ ] = 0(pl'e™) as p - +oo.

4. Differential geometry: local coordinates
4.1  Parametrization around the limit interface

Let I := U,c0.r(7s x {t}) C $27 be the smooth solution to on [0, T1 with y;]l,=0 = %o
satisfying (3). Let £2, CC $2 be the domain enclosed by y;, with y, = 9$2;. For each fixed
t € [0, T], we use d(x, t) to denote the signed distance from x to y; (negative in £2;). Then d (-, -)
is smooth in a tubular neighborhood of the interface. We choose a parametrization of y; by Xo(s, t)

with s € U ¢ R"™! so that
X0 0Xo
(20)

981 7 dsp—1

is a basis of the tangent space to y; at Xo(s, ), for each s € U. We denote by n(s, ¢) the unit outer
normal vector on d£2; = y; so that

n(s, 1) = Vd(Xo(s, 1), 1).

Up to a suitable multiplication factor s — As;, we may assume that

9X 9X
det[n(s, 1), 220, .., 220 ) — . Q1
051 0Sp—1
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Next for each fixed t+ € [0, T'], a local parametrization by coordinates (s,r7) € U x (—38, 38) is
obtained by

x = Xo(s,t) +rn(s, 1) = X(, 5, 1), (22)
which defines a local diffeomorphism from (—38, 35) x U onto the tubular neighbourhood of y,
V3ta ={xe2:|dx,1)| < 38)}. (23)
We denote the inverse by
r=d(x, 1), s=Sx,1) =S, 0),...,5 x,01). (24)

In particular, since for all fixed s € U, ¢t € [0, T] and for all » € (—34, 36),
d(Xo(s,t) +rn(s,1),t) =r,
it follows by differentiation with respect to r that for all r € (—34, 36),
Vd(Xo(s,t) +rn(s,t),t) -n(s, 1) = 1.

Since
IVd(x,t)| =1 for x close to y;, (25)

this equality imposes that for all (r, s) € (=36, 36) x U,
Vd(Xo(s, 1) + rn(s, 1), 1) = n(s, 1), (26)

proving that Vd is constant along the normal lines to y;. Thus the projection S(x, #) from x on y; is
defined by

Xo(S(x,1),t) =x —d(x,)Vd(x, t). 27
It also follows from that foralli = 1,...,n and forx € Vi,

", 9°%d dd
> (x,1)—(x,1) = 0. (28)

. 3)6,' a)Cj 3)(,'

j=1 -
Thus the symmetric matrix Dfd (x,t) has eigenvalues {«i, ..., x,—1,0} with unit eigenvectors
{1, ..., th—1, Vd} forming an orthonormal basis of R" for x € V3’ s-In particular, for x € y;, the 7;
are the principal directions and the «; are the principal curvatures of y;. Note that {r{, ..., 7,—1}

form a basis of the tangent hyperplane to y; at x = Xq(s,t). By definition, K and K,, are
respectively the sum of the principal curvatures and the mean curvature of y;, given by

n—1
K = — DKy, = Add(Xo(s.1),0) = Y ki(s.1). (29)
i=1
Note that using (28), for x € y;, we have

Va-vad=Y 9 (dd 9 3 2%d \?
o T 8xj 3)6,' ax,’ax]' i axiaxj'

=-> < ) = — Trace((D}d)*) = — Y _«}.
ij i=1

8xiaxj'
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We denote

n—1

b(s.t) = —Vd - VAd|xy(s.00 = Y _ K75, 1). (30)
i=1

Let V (s, t) be the normal velocity of the interface at the point X¢(s, ) defined by
Vs, t) = (Xo)(s,t) - n(s, 1).
Using (26), we have
Vs, 1) = (Xo)(s,t) - Vd(Xo(s, t) +rn(s, 1), 1) = —d; (X (1, 5, 1), 1), 31)
where the last equality follows from differentiating with respect to ¢ the identity
d(Xo(s,t) +rn(s,1),t) =r.

It follows that d;(x, t) is independent of r = d(x, t) for |r| small enough. Changing coordinates
from (x, ) to (r, s, t), we associate to any function ¢ (x, t) the function

¢(r,s, 1) = ¢p(Xo(s, 1) +rn(s, 1), 1) (32)

or equivalently y

¢(x, 1) = ¢(d(x,1),S(x, 1), 1).
By differentiation we obtain the formulas

0p = (=V, +9),

Vo = 3, + V)4, (33)

Ap = (B + Ad 3, + A")9,
with

n—1

ol ¢ = (a, 4 2 s;’aﬂ-)qE,

i=1

vig = (f vsl’asi)&, (34)
i=1

-1 —1
AT = (Z AS'9 + Z A vsfasis./)é,
i=1

i,j=1
where VSi, Sf, Ad, d; are evaluated at x = X(r,s,t) and are viewed as functions of (r, s, 1).
Note that the mixed derivatives of the form 835 j¢~> do not appear eventually in ti because for all
j=1,...,n—landx € Vi,
VSI(x,t) - Vd(x,1) = 0.
(This follows from differentiating with respect to r the identity

Vr e (=38,38), S/(Xo(s,t) +rn(s, 1),1) = s/,
which holds for all fixeds e U,t € [0, T]and j =1,...,n— 1.)
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4.2 The stretched variable

Following the method used in [9], we now define the stretched variable p by considering a graph
over y; of the form
v ={X@r s, 1) r =¢he(s, 1), s € U}, (35)

which is (formally) expected to be a representation of the O-level set at time ¢ of the solution u® of
Problem (P?).
The stretched variable p is then defined by
d(x,1) —ehs(S(x, 1), 1)
8 K

p=p(x,1)= (36)

which represents the distance from x to y in the normal direction divided by ¢. From now on, we
use (p, s, t) as independent variables for the inner expansions. The relation between the old and
new variables is

X = X(p? S, t) = X(E(IO + hS(ss t))v S» t) = XO(S, t) + 8(p + h&‘(s9 t))n(sv t) (37)
We associate to any function w(x, t) the function
w(p,s,t) = w(Xo(s, 1) + e(p + he(s, ))n(s, 1), 1) (38)

or equivalently

wix, ) — ﬁ)<d(x, 1) — ehe(S(x, 1), 1) S(r D). t).
e
Note that i ) <r — ehy(s. 1) )
w(r,s,t) =w| ————, 5,1 ).
e

The relationship between w, W, W is summarized as follows:

&

d—¢ehe(s,t
U)(X,t) = w(8p+8h8a S,t) = a\)(pv S,t) = w<wy S,t).

In view of (33), we obtain the following formulas for differentiation:

dw = (—Ve ' =8 he)yb, + 8],

Vw = (e~ = VI h)b, + Vb,

Aw = (2 + |V he Y + (Ade™ — AT he)id, — 2V he - VD, + AT, (39)
where in the above formula for Aw,

Ad = Ad|x=x(s,0)+e(p+he (s,0)n(s,1)
~ K(s,t) —e(p+ he(s,1)b(s, t) + Z e'bi(s, ) (p + he(s, 1)), (40)
i>2
with b defined in , K defined in , and for some given functions (b; (s, 1)); > only depending
on y;. Therefore
e2(Bw — Aw) = —,p — (V 4+ Ad)h, 4+ 2[(0F i — AT %) — (8] he — AT )]
—&2[|V he Py — 2V he - V0, 1. (41)
The Jacobian. For later purposes, we need to compute the Jacobian of the transformation X.In

the (p, s) coordinates, dx = &J(p, s, t)dsdp where e¢J(p,s,t) = BJA((p,s, t)/9(p, s) is the
Jacobian. We now prove
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LEMMA 4 Forallp e R,s e Uandr € [0, T],
n—1
Jo(p,s, 1) = 1_[[1 +e(p + he(s, )k (s, )] (42)
i=1
Proof. The equality @) is obtained in two steps. First, we consider the function X = X (r, s, 1)
defined in @), denote its Jacobian by J = J(r, s, t) and prove that for all p € R, s € U and
te€[0,T],

JE(p, s, 1) = J(e(p + he(s, 1)), 5, 1). (43)
Second, we compute J and show that forall s € U and all ¢ € [0, T],
n—1 n—1 )
T, ) = [ [l +reis. 0] = 1+ Ad(Xo(s, 1), )r + Y rljis, 1), (44)
i=1 i=2

for some given functions j; depending on y;. Consequently, @2) follows directly from @3) and
@4).
In order to establish (43), note that by definition (37),
X(p,s,1) = X(e(p + he(s, 1)), 5, 1),

so that

andfori =1,...,n—1,
90X 90X . 0h.0X
s os | ds or
Thus forall p e R,s € U and ¢t € [0, T],

e 9 det 0X 90X ohg 0X 0X n oh, 0X
& ,8,1) =¢det| —, — +e——, ..., —— +¢ —
P or 051 dsy or 08Sn—1 08,1 Or
0X 90X X
=edet| —, —.,..., (e(p+ he(s, 1), 5,1) = eJ(e(p + he(s, 1)), s, 1),
ar 0s] 08,1

which is @3).
In order to establish (]Z_Z[) we consider the Hessian matrix of d on y; and denote, for s € U and
t [0, T],
A= A(s, 1) = D2d(Xo(s, 1), 1),

so that (28) reads
A-n(s,t) =0. (45)
Moreover, differentiating the identity (26) at » = 0 with respect to s; fori = 1, ..., n — 1 yields
X 0
J220 _om (46)
asi 8Si
From

X(r,s,t) = Xo(s, 1) +rn(s, 1),
it follows, by using (@3], that

X
3 = n(s,t) = (I, +rA(s, t))(n(s, t)),
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and by @6), fori =1,...,n—1,

X 3X0+ on o+ rAG, B) X0
— = +r—= rA(s, -— .
ds; s ds; " ds;

Therefore forall s € U and r € [0, T],

0X 090X 0X
J(@r,s,t) =det| —, —, ...,
ar ~ 9s] 08p_1
0Xo X0
=det| ([, +rA)m), (I, +rA)| — ), ..., [, +rA)
as1 0sp—1
0X 0X
— det[l, + rA(s, )] det|n, 222 220
081 08p—1

which in view of (2I)) proves that
J(@r,s,t) =det[l, + rA(s, 1)],
which yields (#4), since the eigenvalues of A(s, t) are k1, ..., ky—1, 0.

5. The approximate solution
5.1  Asymptotic expansions

Let k > max{2, n/2} be a fixed integer. In what follows, we use =~ to represent asymptotic expan-
sion: ¢f ~ Zi>0 ' ¢; means that for every integer j € N, we have ¢* = Zi]:() glgi + 0(1)e/t!
where O(1) is bounded independently of ¢ € (0, 1). For example, since f is smooth, for any
bounded sequence {b, ap, ai, az, . .. }, we have the asymptotic expansion

f(b—i—eZs’h,-) ~ Zejf(j)(b)(ZSia,')j/j!
j=0

i>0 i20
~ fb)+ef' )Y elai+e* Yy € fibao, ... a), (47)
i=0 i>0
where for any fixed b, f; (b, ao, ..., a;) is a polynomial in (ayg, ..., a;) of degree < i + 2.

Outer expansion. We expand A®(¢) and u®(x, t) for |d(x, )| > 38 as
AE(t) ~ ho(r) + e i (1) + €2 ha(t) + -+ - (48)
ut (x, 1) A uF(t) i= £1 + eluF (1) + euf @) + - ). (49)
Substituting @8) and {@9) into (7)) gives
[z @) = er* () + &) (o),
which yields, for alli > 0,
() =i — ficr(ELug o ug ) + g ,) (O} (D), (50)

where f_| = ufz =0, ufl = =41, and f; (i > 0) is defined in . Hence, uljt are determined by
{Ao, ..., Ai}.
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Inner expansion. 'We shall assume that &, has the asymptotic expansion
ghe(s, 1) ~ ghi(s, 1) + 2ha(s, ) +---, (s.1) € U x [0, T]. (&2))

Near the interface, we assume that the function u® associated to u® by 1i has the asymptotic
expansion

W (p, s, 1) ~ 0p(p) + eluo(p, s, 1) +eur(p, s,1) +--- . (52)
In the following, the zeroth order expansion refers to
{d(x. 1), k() uo(p. 5, 1), ug (1))

and the i-th order expansion refers to

{hi(s. 1), ki (@), ui(p, 5, 1), u7 (1)}

We shall use (...);—1 to denote a generic function of (p, s, ) depending only on expansions of
order <i — 1.

Matching condition. We suppose that for all i € N,

V(s,1) e U x [0, T],  lim u;i(p,s,1) =ul(). (53)
p—+oo

Translation. We also impose, for alli € N,
V(s,1) e U x[0,T], u;i(0,s5,1) =0, (54)

to be consistent with the assumption that p = 0 is the O-level set of u®.

5.2 The u-equation in the new variables

The equation (7)) reads
—f) = —&2(uy — Au) — ehg(1).

In the new variables (p, s, t), using 1i , it becomes the following equation for the function u = ue
associated to u® by (38):

—f @) =upp +el[(V(s, 1) + Ad)uy — re)l + 2 [(ATu — 8] u) + @O he — AT he)uy)
+ [V hePupp — 2V he - V0, (55)

where V (s, 1) is given by (31)) and Ad is expanded using [@0) and (51)) as

Ad ~ K(s,1) = Y &'[b(s. Dhi(s. 1) + i1 (p. 5. D], (56)
i>1

with §;_1 depending only on expansions of order < i — 1 (in particular, §o(p, s,t) = pb(s, t)).
Note that §;_1(p, s, t) is a polynomial in p of degree < i, whose coefficients are polynomials in
(hi, ..., hj—1) with (s, t)-dependent coefficients.
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5.3 The recursive i-th equations
The zeroth order expansion. ~ Since 6 defined in (T4) satisfies
—f(60) = B0)pp, Oo(£oo) ==%£1, 6p(0) =0,

the equation (53) is satisfied at zeroth order as also are the matching and translation conditions
G3)-ED-
The first order expansion. At first order (¢!), the equation imposes

Lug = (K (s,1) + V(s.))0y(p) — ko (®), 57

with £ defined in (I7). The solvability condition stated in Lemma 3|reads

(K(s, 1)+ V(s, 1)) /R(e(’))z(z) dz = 2x0(1),
or, by definition of o in (T8),
V(s,t) = —K(s,1) + oho(t) forseU, (58)
also equivalent in view of (3T to
dy = Ad —orp(t) ony;. 59)
Moreover equation has then a unique solution satisfying (53)—(54) which is given by
uo(p, s, 1) = —ro(1)01(p) (60)
for all (s,¢) € U x [0, T]. Note that for all non-negative m, n, [,
DD} D[uo(p. 5. 1) — ug ()] = O™l as p — Foo.

Higher order expansion. Plugging the expansions (#7), (51), (52) into (55) and using (58) and (56)
leads to the identity

— 160 —ef @0 (Y e'ui) = 3¢l fiGo,uo, . ui)

i>0 i>0
=67 +2(D_ e @i ) + e[ (o) = D b+ 610 Jup — D] 61)
i>0 i>1 i>0
+e Y e (AT =0 i — (Yo e AT =9 i) (6 + D ), (62)
i>0 i1 i>0
n [ez|vfh€|2upp _ 28(2 s"vfh,-) : vfup]. (63)
>

Define the operator N’/ acting on functions & = (s, ) by
NTh:=98h—A"h —bh. (64)

We derive below the (i 4+ 1)-th order expansion for i > 1 and obtain the following result.
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LEMMA 5 The cancellation of the term of order £/}, withi > 1, in lb is equivalent to
Lui =N (h)0) — 1i(t) + b12(VI hy - VI h)O + Riz1(p. s, 1), (65)

with R;_1 only depending on expansions of order < i — 1. Moreover R;_1(p, s, t) is a polynomial
in p of degree < i (whose coefficients are polynomials in (1, ..., hj_1, u1, ..., u;—1) and in their
derivatives with respect to (p, s, t)).

Proof. First note that using , the coefficient of order &' *! in (61)) is
(i) pp + oo () (Ui—1)p — b(s, hi(s, )0y — Li(t) — 8i—1(s, )6,
= (Ui)pp — b(s, Dhi(s, )0 — 2 () + (...)i—1,  (66)

with (...);—1 depending only on expansions of order < i — 1. Moreover in view of @, itis a
polynomial in p of degree < i (whose coefficients are polynomials in (hy, ..., hj—1, U1, ..., Uj—1)
and in their derivatives with respect to (p, s, t)).

Next, in view of |i the coefficient of order ¢! in ll is

A" =9 uio + @] — ARG, + (. )ica = @ — ATYRi6f+ (. )iza. (67)

To obtain the term of order /! in (63)), note that

i—1
eV ke ~ | ana"(Zth,.vrh,-_j)
i>1 i>2 =1
VI P+ ) e @V Vb + (i),
i>3
so that
2V hgPupy ~ [82|Vrh1|2 +3 6 @V Ry -V i 4 (. .),-_2)][9(; +szsi(ui)pp].
i>3 i>0

Hence the coefficient of order &1 in &2|V h,|%u,,, is
bia(VIhy - VI R)O] + (. )ia (68)

with by = L or2fori = 1ori > 2 respectively.
Similarly, the coefficient of order &'t in the term —2&2V 1 h e vy o 18

Vit -V uo)p + Vi hi—a -V wnp+ -4+ Vi hy -V wiso)p

where the first term cancels out since V! (ug) = 0 in v1ew of . thus it only depends on
expansions of order < i — 2, so that the term of order g *lin is ven by l@)
Finally at order 8’+1 with i > 1, using (66 , the equatlon 5) reads

— [ Bo)ui — fi—1(00, uo, ..., ui—1) = Ui)pp — ri(t)
+ @ hi — A" hi — bh)Oy + b1 (VI hy - VI RO+ (i1 (p, s, 1),
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which is exactly (65), with R;_; only depending on expansions of order < i — 1. Moreover
Ri_1(p, s, 1) is a polynomial in p of degree < i as described in Lemma 3]

The solvability condition. According to Lemma [3] the equation (63)) has a solution if and only if
the following solvability condition is satisfied:

V(s,1) € U x [0, T, / Lu;i(p, s, 1)8)(p)dp = 0. (69)
R
Note that
1
/ﬂ; bio(VI Ry - VRO (0)04(0) dp = bra(V hy - VI hy) (s, 1) fR 5[(95)2]/@) dp =0,
so that (69) reads
N (hi) = oni () +rio1(s, 1), (70)
with
o
ri—l(svt):_E/ Rl—l(pﬂsvt)e(/)(p)dp
R

only depending on expansions of order < i — 1. We summarize the construction by induction in the
next lemma.

LEMMA 6 Letk > 1 be given. Assume that for all i < k — 1, (63) has a solution u; satisfying

DI DD [ui(p. s, t) — ui ()] = O(p'e ") as p —> oo (71)
Also assume that for i = k, {h;(s, ), A; (t)} satisfies (70). Then for i = k, (63) admits a unique
solution satisfying u; (0, s, 1) = 0 and (71).

The proof follows from Lemma [3| and an induction argument and is omitted. Just note that in
the limit p — +o00, the equation 0 = sz(uf — Au®) + f®) — 5)‘8|x:)}(p 5.1 becomes the outer

expansion equation, so that u; (£o0, s, 1) = uii(t). Furthermore since R;_; is a polynomial in p of
degree < i, is satisfied for eachi > O and (s, ¢) € U x [0, T].

5.4  Equation for A*
To find A% (¢), we use an asymptotic expansion for 0 = f o u; (x, t) dx. We denote by Qgi (1) the two
domains separated by 7, defined in (35)), with 7 = 352 (¢). Hence in view of ,
Q;‘(r) ={xeR:dx,t)>35}U{x e V3ta cd(x,t) —ehe(S(x, 1), 1) > 0}
={xefR:dx,t)>35} U{xe V3t(s :pf(x, 1) > 0} (72)
and
2, () =02\ QFf=xeR:dx,t) < -38} U {x e V3ta :p%(x, 1) < 0}. (73)

We write
/ uf(x,t)dx = uf(x,t)dx—i—/ uf(x,t)dx (74)
2 Id (x.1)| 238 d(x.1)| <35
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where

/ uf(x, 1) dx
|d(x,1)]<38

=/ uf(x,t)dx+/ ub(x,t)dx. (75)
(xeVly o7 (x.0) 28/e)

{xeVis:1p (x,0)| <8/}
In the following we choose 0 < ¢ < gg small enough so that for all ¢ € (0, &o],

max |ehg(s, )| < 3/2, (76)
seU,t€[0,T)

and consequently
lp(x, )] = 8/e = |d(x,1)| = 6/2.

| >4
Thus at points (x, t) where either |d(x, t)| > 38 or |p®(x, t)| = §/e¢, it follows that |d(x, t)| > §/2,
so that
uf (x, ) ~ W O xa,n=0y + @z) ) Xd(x.0<0)

since exponentially small terms of order O (¢~*%¢)) do not affect the asymptotic expansion in the
& power series. Note moreover that if |p®(x, t)| > 8/¢, then d(x, t) and p = p®(x, t) have the same
sign. To simplify the notations, we denote

{lo] = 8/e} = {x € Vi35 1 [p°(x, )| = 8/e},
{lol < 8/e} = {x € Vs 1 [p°(x, )| < 8/e}.
Therefore in view of (74)-(73),

/ uy(x, 1) dx %/ (@) @) xpa=0y + @) (1) xpa<oy] dx 77
Q d(x,1)]>38
+ f (W) (O x(p=0) + ) () xppoyldx + / W nde  (78)
lp|=8/e [pl<d/e
~ I +/ [ué — @' (O xae.n=0p — @) ) X(ace.n<oy] dx, (79)
lpl<d/e
where

I = whH 0125 0] + ;) 0)127 @) (80)

In the second integral, we make the change of variables given in (37) and substitute the expression
for uf in formula to obtain
/ [y — @) () x(o>0) — ;) (1) x1p<0y] dx
lpl<d/e
= [ et — i@k s dpds
O<p<é/e
4 / 07 i (p, s,1) — U7 (D)1 (p, s, 1) dp ds
—8/e<p<0

3 e
+/ (—Ve ' =8 n) S e g% (p, 5. 1) dp ds. 81)
lol<8/e dp
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Finally,
/ uf(x,t)ydx =~ Iy + I + I3,
Q
where
L= f o [ (. 5.1) = uf D x1p=0) = uz (Dxip<0)le I (p,5.0)dpds  (82)
[p|<é/e
and N
1 r ou® .
13 = (—VS _8t hg)_gj (,O,S,t)d,ods. (83)
lol<b/e op

The calculation for I;. The boundary of 2 () is 7, which according to is given in local
coordinates (r, s) by r = eh,(s, t). Therefore in view of ({4,

ehg(s,t)
12, ()] = (524 +[ / J(r,s,t)drds
v Jo
~ |82 + Zsi{/ hi(s, 1) ds + (. --)i—l},
i>1 v
where (... );—1 only depends on expansions of order < i — 1. Hence
|52j(r>|=|sz|—|9;(r>|f«e|9|—|9t|—28"{/ hi(S,f)ds—f-(.-.)i—l}-
i>1 Y

From the outer expansion (49), it follows that

W )~ ey e ()~ Y e ) o),

i>0 i>1

with (ul.i_l)’(t) given by and depending only on expansions of order < i — 1. Therefore
L= @ 0127 O+ @)Y 012701~ Y &)
i>1
where (... );—1 depends only on expansions of order < i — 1.

The calculation for I>. Using the expression for Btr u¢ in formula and , we compute

A [t (o, 5, 1) — uf () x(p=0y — Uz ) x(p<0}]

A Zeiaf[ui(p, s, 8) — ui (O xp=0) — U; (1) X{p<0}]
i>1

n—1
~e Y e (0 D 8700 )wi(o. 5.0 — uf Ox1-0 — 4] Ox1=01]
i>1 j=1

~ Zgio(pi—le—ol‘p‘)

i>2
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with O (p'~'eIPl) depending only on expansions of order < i — 1. Therefore by definition of I
in €2).
L~ ZS’(. 2 )im2s
i>3
where (... );_> depends only on expansions of order < i — 2.

The calculation for I3. Using the expansions

Aue Sou;
~ O+ ¢ ZS’ —,
ap > ap
—V =0/ he = d/(Xo(s,1),0) = Y &9 h;

i>1
and rewriting the expression for J¢ in (42) as
n—1

T, s, 0) = [ 11 + (o + hels, D)i(s, )]
i=1

~ 1+ Ad(Xo(s. 1), Deo +he(s,0) + D ()it
i>2

with (...);—1 depending only on expansions of order < i — 1, we obtain

3 e
(—V — e8!l he) S I (0. 5. 1)
ap

~ di(Xo(s, 1), D00(0) + Y_ & 65(p) (=0 hi + di(Xo(s, 1), Dhi Ad) + Y &' (... )i
i>1 i1

so that

I z/ /{96d,(s,t)+Zsi[9(’)(—8trhi +d,(s,t)Ad(s,t)hi)—i—(...)i1]}dpds
U JR

i>l

%2/ d,(s,r)ds+Za"{2/ {(=8! h; —|—(d,Ad)h,»}ds+(...)i1}.
U U

i>1

Finally, substituting d; and 8/ h; by and , and using fU Al'h; ds = 0, we obtain

%f(zuf%/l](Ad—ako)ds+Zsi{/U[(—b—i—d,Ad)h,-—a)»,-]ds—i—(...),-_l}.

i>1
Thus the condition [, uf dx ~ 0 is equivalent to

oio(t) = Ad(-, 1), (84)
ohi(t) = =[b(,1) —di (-, )Ad (-, D]hi (-, 1) + A1 (1), @21, (85)
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where A;_1(¢) depends only on expansions of order < i — 1, and

- 1 1
W“ﬁ/f"ﬁ K

using that J (0, s, t) = 1. Hence we obtain closed systems for d, k1, ..., h;, namely
di(s,t) = Ad(s, 1) — Ad(s, 1), (86)
0 hi = AUhi + bhi —Tb(, 1) —d; (-, )AC, DThi (1) + A1 (1) 87)
onU x [0, T].

5.5 Construction of expansions of arbitrary order
We can now use induction to construct each order of expansion as follows:

1) Zeroth order. Given a smooth initial interface yy, (86) is equivalent to the volume preserving
mean curvature flow @]) By the result established in [14], there is a time 7 > 0 such that there is
a unique smooth solution on a time interval [0, T']. Consequently, I = Uogng(Vt x {t}) and the

modified distance function d are well defined. Set A¢(¢) as in , uo(p, s, t)asin and uat(t) =
r0()/f (£1) asin . We obtain the zeroth order expansion {d(x, t), Lo(?), up(p, s, t), ug }.

2) Higher order expansion. Fixi > 1. Assume that all expansions of order < i — I are constructed.
Then A;_1(¢t) in is known. Since y; is a smooth hypersurface without boundary, it follows from
standard parabolic PDE theory [21] that admits a unique smooth solution (assuming an initial
condition such as 4;(-,0) = 0 on U is given). Consequently, we can define A;(¢) as in , u?t(t)
as in (50) and u; as the solution of (65) given by Lemma [6] This gives the i-th order expansion
{hi(s, 1), Xi(t), ui(p,s,t), ul.i(t)} and completes the induction.

5.6  Construction of the approximate solution

We now fix an arbitrary positive integer k& > max(n, 4). We construct an approximate solution u{
such that Lemma [2|can be applied.

Let § > 0 be a small fixed constant such that d(x, ¢) is smooth in the 35-neighborhood of I,
and for each t € [0, T'], y; is a distance at least 36 away from 2. We define

k+1

pfe.t) =& [d(x, =3 e hi(Sx, 1), t)},
i=1

k+1
up (e, 1) = 00(pp) + 6 Y & ui(of (x, 1), S(x, 1), 1),
i=0
kel
u(g)}lkt’i(t) =41+¢ Zs’uli(t),
i=0
k+1
M@ =) e n).
i=0

We note that p; and u‘g“k are smooth in the 38-neighborhood of I".
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Now let ¢ € C°°(R) be a cut-off function (depending only on §) satisfying

cs)=1 if|s| <8, ¢(s)=0 if|s| > 26,
0<sl'(s) <4 ifs < [s] < 26.

We define the needed approximate solution uj by

i, 1) = o(d e, D)t 4 [1— ¢ d e, ) HuY | Xta.n=0p + Uk _ Xiace.n <0y}

up(x, 1) = ag(x, 1)+ ]{Z{ﬁi(-, 0) — i (-, 1)}

forall (x,1) € £2 x[0,T].

The admissible initial data g are then defined as in . Then by construction (uy, Ay) is an
approximation of order k satisfying the assumptions in Lemma [2| Here we just remark that (i)
in the set {(x,7) : § < £d(x,t) < 26}, the limiting behavior guarantees that ui(x, 1) =
ugulg L+ O (e~*%/(4)) valid also after differentiation, (ii) oy, = 0 on 3§27 since ug is a function
of t near 0827, and (iii) the correction

/{ﬁi(-,m—ﬁi(-,r)}:—// @), (v, ) dr dy
2 2 J10,¢]

is of order O (g**1), valid also after differentiation. The remaining part of the proof follows the
same lines as in [[1]].

This completes the construction of the approximate solution. The proof of Theorem (1| then
follows from the conclusion of Lemma 2 by letting ¢ — 0.

Appendix

Proof of Lemmall] We first consider the case n > 4 so that p = 4/n. The Gagliardo—Nirenberg—
Sobolev inequality (see [[15) Theorem 2, p. 265]) states that there exists C > 0 such that for every
R e H (),

IRl 2+ < ClIRlg1s

with 2* = 2n/(n — 2). Using the Poincaré—Wirtinger inequality (see [15, Theorem 1, p. 275]), it
follows that there exists C > 0 such that for every R € H 1(£2) with f o Rdx =0,

Rl 2 < CIVRI 2. (88)

Using Holder’s inequality, we have

2+p 2 2 VP N\
IRI;E, =/ IRIIRIP < (/ |R| ﬁ) (/ |R|Pﬁ)
2 2 2

and we choose

to obtain ,
+ 2
IRI 5, < IRUZ RN,

L2+p L2*
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Combined with (88), this yields the inequality

2+ 2
IRIZEE, < CIRIE,IVRIZ,
which is the conclusion of Lemmal[il

Next we consider the case that 1 < n < 3 so that p = 1. Schwarz’s inequality then gives

RIS =/ IRPIR] < IRII4IIRIl 2.
2

Forn =1, 2, 3, by the Sobolev imbedding, H 1 = L* so that there exists C > 0 such that for every
Re H' (),
IRl g+ < ClR| g1

Using again the Poincaré—Wirtinger inequality, we finally deduce that there exists C > 0 such that
for every R € H'(£2) with [, Rdx =0,

IR < CIUVRIZIRI 2.

which concludes the proof of Lemmal[T}
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