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We consider the Willmore flow of axially symmetric surfaces subject to Dirichlet boundary
conditions. The corresponding evolution is described by a nonlinear parabolic PDE of fourth order
for the radius function. A suitable weak form of the equation, which is based on the first variation of
the Willmore energy, leads to a semidiscrete scheme, in which we employ piecewise cubic C1-finite
elements for the one-dimensional approximation in space. We prove optimal error bounds in Sobolev
norms for the solution and its time derivative and present numerical test examples.
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1. Introduction

Let Γ be a smooth, oriented hypersurface in R3. The Willmore functional is defined by

W(Γ ) =

∫
Γ

H 2 dA, (1.1)

where H = 1
2 (κ1 + κ2) denotes the mean curvature of Γ and κ1, κ2 are the principal curvatures.

We use the convention that a sphere has positive mean curvature if the orientation is given by
the unit outer normal. In view of its invariance with respect to conformal transformations of R3,
the Willmore functional has been intensively studied in differential geometry (see [22] for an
introduction). The functional W and suitable generalizations also serve as mathematical models
for the bending energy of thin plates and biological cell membranes (see e.g. [12], [20]). In this
paper we focus on the L2-gradient flow of W , the so-called Willmore flow, which is given by the
following geometric evolution equation:

V = ∆ΓH + 2H 3
− 2HK on Γ (t). (1.2)

Here, V denotes the normal velocity of (Γ (t))t∈[0,T ],K = κ1κ2 is the Gauss curvature and∆Γ is the
Laplace–Beltrami operator. Depending on the representation of the evolving surfaces, (1.2) leads to
a nonlinear parabolic equation or system which is of fourth order in space. Global existence results
for the evolution of closed surfaces can be found in [14], [15]. In addition, two boundary conditions
need to be prescribed in case the evolving surfaces have a boundary. Willmore flow coupled with
boundary conditions has been used in image processing for problems related to surface restoration
and image inpainting (see [4] and the references therein). Furthermore, one can use (1.2) in order
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to calculate local or global minima of W by considering the limits t →∞. A rigorous proof of the
existence of such minima subject to Dirichlet boundary conditions has been obtained in the axially
symmetric case in [5], [6], while the parametric case is investigated in [19].

This paper is concerned with the numerical approximation of axially symmetric solutions of
(1.2) subject to Dirichlet boundary conditions. Before we describe our setting let us briefly review
the literature on numerical methods for Willmore flow. In [13], a discrete version of (1.1) was
minimized with the help of Brakke’s surface evolver ([3]). Mayer and Simonett ([16]) use a finite
difference scheme in order to approximate axisymmetric solutions of Willmore flow. Finite element
discretizations for parametric Willmore flow are presented in [18], [1], [10] and [17]. These methods
have in common that they split the fourth order problem into two second order problems for the
position and either the scalar mean curvature or the mean curvature vector. These variables are then
approximated by piecewise linear finite elements. A discretization based on quadratic isoparametric
elements is introduced in [2]. While the above-mentioned papers treat closed surfaces, the evolution
of surfaces with boundaries has been less investigated. In [9], a level set approach to Willmore flow
is presented into which boundary conditions can be incorporated. Again a splitting technique is
applied using the level set function and a weighted mean curvature as variables. In view of its formal
similarity, this approach can also be employed to discretize the Willmore flow of graphs. [7] contains
an error analysis for the Willmore flow of graphs that evolve subject to boundary conditions in which
the height of the graph is given and its mean curvature vanishes. In [4], the parametric approach from
[18] is extended to surfaces with boundaries and applied to problems in surface restoration.

In this paper we shall focus on surfaces of revolution of the form

Γ (t) = {x ∈ R3
| x = (x, u(x, t) cosϕ, u(x, t) sinϕ), x ∈ Ī , ϕ ∈ [0, 2π ]}, (1.3)

evolving by (1.2). Here, I = (−1, 1) and u : Ī × [0, T ]→ R is smooth and positive. The evolution
law (1.2) translates into a nonlinear parabolic PDE of fourth order for the radius function u. We
impose Dirichlet boundary conditions, i.e. u(±1, t) and ux(±1, t) are prescribed for t ∈ [0, T ]. The
corresponding initial-boundary value problem along with a variational formulation involving test
functions in H 2

0 (I ) is derived in Section 2. In Section 3 we use that weak form in order to discretize
in space. We employ a conforming finite element method using piecewise cubic polynomials which
are globally C1. This leads to an approximation of order 4 in the L2-norm, which allows us to
work with relatively coarse meshes and avoids the introduction of a second variable required for
the splitting approach mentioned above. Our main result are the following error estimates for the
semidiscrete method:

(∫ T

0
‖ut − uht‖

2 dt
)1/2

+

2∑
i=0

hi max
06t6T

‖∂ ix(u− uh)(·, t)‖ 6 Ch4.

Here, ‖ · ‖ denotes the L2-norm. In Section 4 we introduce a suitable nonlinear projection that is
adapted to the elliptic part of the underlying operator and which plays a key role in the analysis.
The proof of the above bounds is presented in Section 5. In order to obtain a practical algorithm one
still needs to discretize in time. We will employ the Crank–Nicolson scheme, which is of order 2,
allowing us to take better advantage of the high approximation order in space. Details along with
corresponding numerical tests can be found in Section 6.
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2. Variational formulation

The aim of this section is to derive a variational formulation for the evolution of surfaces of
revolution under Willmore flow. To begin, consider

Γ = {x ∈ R3
| x = (x, v(x) cosϕ, v(x) sinϕ), x ∈ Ī , ϕ ∈ [0, 2π ]},

where the function v belongs to the set

M := {v ∈ H 2(I ) | v > 0 in I, v(−1) = αl, v(1) = αr , v′(−1) = βl, v′(1) = βr}.

Here αl, αr , βl, βr are given real numbers and αl, αr > 0. Note that the definition of M takes
into account the fact that we intend to prescribe clamped boundary conditions. A straightforward
calculation shows that the first and second fundamental forms of the above surface are given by

(gij (x, ϕ)) =

(
1+ v′(x)2 0

0 v(x)2

)
, (hij (x, ϕ)) =

1√
1+ v′(x)2

(
−v′′(x) 0

0 v(x)

)
,

where the orientation is the one induced by

ν(x, ϕ) =
1√

1+ v′(x)2
(−v′(x), cosϕ, sinϕ).

The inverse matrix (gij ) and the area element are given by

(gij (x, ϕ)) =
1

v(x)2(1+ v′(x)2)

(
v(x)2 0

0 1+ v′(x)2

)
, dA = v

√
1+ (v′)2 dx dϕ. (2.1)

Furthermore, we have the following formulae for the mean curvatureH and the Gauss curvatureK:

H(x) =
1
2

[
−

v′′(x)

(1+ v′(x))2)3/2
+

1
v(x)(1+ v′(x)2)1/2

]
, K(x) = −

v′′(x)

v(x)(1+ v′(x)2)2
. (2.2)

In view of (2.1), (2.2) we obtain

W(v) =
π

2

∫
I

[
−

v′′(x)

(1+ v′(x)2)3/2
+

1
v(x)(1+ v′(x)2)1/2

]2

v(x)
√

1+ v′(x)2 dx

=
π

2

∫
I

[
v(x)v′′(x)2

(1+ v′(x)2)5/2
− 2

v′′(x)

(1+ v′(x)2)3/2
+

1
v(x)(1+ v′(x)2)1/2

]
dx

=
π

2

∫
I

[
v(x)v′′(x)2

(1+ v′(x)2)5/2
+

1
v(x)(1+ v′(x)2)1/2

]
dx − π

[
v′(x)

(1+ v′(x)2)1/2

]x=1

x=−1
,

where we have written W(v) instead of W(Γ ). Hence, for v ∈ M we have

W(v) = 2πW̃(v)− π
[

βr

(1+ β2
r )

1/2 −
βl

(1+ β2
l )

1/2

]
with the abbreviation

W̃ (v) =
1
4

∫
I

[
v(x)v′′(x)2

(1+ v′(x)2)5/2
+

1
v(x)(1+ v′(x)2)1/2

]
dx. (2.3)
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As a consequence, the first variation of W in direction φ ∈ H 2
0 (I ) is given by

〈W ′(v), φ〉 = 2π〈W̃ ′(v), φ〉,

where

〈W̃ ′(v), φ〉 =
d
dε
W̃ (v + εφ)

∣∣∣∣
ε=0
=

1
4

∫
I

{
2

vv′′φ′′

(1+ (v′)2)5/2
+

(v′′)2φ

(1+ (v′)2)5/2

− 5
vv′(v′′)2φ′

(1+ (v′)2)7/2
−

φ

v2(1+ (v′)2)1/2
−

v′φ′

v(1+ (v′)2)3/2

}
dx. (2.4)

For later purposes it is convenient to write (2.4) in the form

〈W̃ ′(v), φ〉 =

2∑
k=0

∫
I

bk(v, v
′, v′′)φ(k) dx

where for s0 > 0, s1, s2 ∈ R,

b0(s0, s1, s2) =
1
4

s2
2

(1+ s2
1)

5/2
−

1
4

1
s2

0(1+ s
2
1)

1/2
,

b1(s0, s1, s2) = −
5
4

s0s1s
2
2

(1+ s2
1)

7/2
−

1
4

s1

s0(1+ s2
1)

3/2
,

b2(s0, s1, s2) =
1
2

s0s2

(1+ s2
1)

5/2
.

Suppose that v ∈ M satisfies

v(x) > c1, x ∈ Ī , ‖v‖H 2 6 C1 (2.5)

for some positive constants c1, C1. We define the functions akj : I → R by

akj :=
∂bk

∂sj
(v, v′, v′′), 0 6 k, j 6 2. (2.6)

In particular, a22 =
1
2v(1+ (v

′)2)−5/2, so that there exists δ = δ(c1, C1) > 0 with

a22(x) > δ, x ∈ Ī . (2.7)

Using the continuous embedding H 1(I ) ↪→ C0(Ī ) and the elementary inequalities

‖f ‖L∞ 6 ε‖f ′‖ + Cε‖f ‖, ‖f
′
‖ 6 ε‖f ‖H 2 + Cε‖f ‖ (2.8)

we deduce that there exists γ = γ (c1, C1) > 0 such that

B(v;φ, φ) >
δ

2
‖φ‖2

H 2 ∀φ ∈ H 2(I ), (2.9)

where

B(v;φ,ψ) :=
2∑

k,j=0

∫
I

akjφ
(j)ψ (k) dx + γ

∫
I

φψ dx. (2.10)
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Let us now return to the Willmore flow problem and suppose that a family of surfaces
(Γ (t))t∈[0,T ] of the form (1.3) evolves according to (1.2). The normal velocity of Γ (t) in the
direction of ν is given by

V =
ut

(1+ u2
x)

1/2 ,

where we will use ux rather than u′ to denote a spatial derivative when functions of x and t are
involved. Lemma A.1 in [8] implies

〈W̃ ′(u(·, t)), φ〉 = −

∫
I

u(·, t)φ
(
∆ΓH(·, t)+ 2H(·, t)3 − 2H(·, t)K(·, t)

)
dx, φ ∈ C∞0 (I ).

(2.11)
Therefore, multiplying (1.2) by u(·, t)φ, φ ∈ H 2

0 (I ), integrating over I and taking into account
(2.11) yields∫

I

u(·, t)ut (·, t)φ√
1+ ux(·, t)2

dx + 〈W̃ ′(u(·, t)), φ〉 = 0 ∀φ ∈ H 2
0 (I ), t ∈ (0, T ]. (2.12)

Note that if we make use of the formula (2.4) for 〈W̃ ′(u(·, t)), φ〉 then only spatial derivatives up to
second order of both u(·, t) and φ appear. As mentioned above we impose the boundary conditions

u(−1, t) = αl, u(1, t) = αr , ux(−1, t) = βl, ux(1, t) = βr , 0 6 t 6 T . (2.13)

Finally, we assume
u(x, 0) = u0(x), x ∈ I, (2.14)

for a given smooth positive function u0 : Ī → R.

REMARK 2.1 Combining (2.11) and (2.2) with the formulae

∆ΓH =
1

u
√

1+ u2
x

∂x

(
u√

1+ u2
x

Hx

)
, H 2

−K =
1
4

(
uxx

(1+ u2
x)

3/2 +
1

u(1+ u2
x)

1/2

)2

we can show that the evolution law (1.2) is equivalent to the following quasilinear fourth order
parabolic PDE for u:

ut =
1

2u

{
u

(1+ u2
x)

1/2

(
−

uxx

(1+ u2
x)

3/2 +
1

u(1+ u2
x)

1/2

)
x

}
x

+
1
4

(
−

uxx

1+ u2
x

+
1
u

)(
uxx

(1+ u2
x)

3/2 +
1

u(1+ u2
x)

1/2

)2

=: L(u, ux, uxx, uxxx, uxxxx) in I × (0, T ]. (2.15)

It is beyond the scope of this paper to prove an existence and uniqueness theorem for (2.15),
(2.13), (2.14). A local result could be obtained by linearizing L around u0 and by combining the
linear theory for higher order parabolic equations with a fixed point argument. This would give the
existence of a unique solution u ∈ C4+α(Ī × [0, T ]) (α ∈ (0, 1)) for some T > 0 provided that
u0 ∈ C

4+α(Ī ) satisfies the compatibility conditions

u0(−1) = αl, u0(1) = αr , u0,x(−1) = βl, u0,x(1) = βr ,
L(u0(±1), u0,x(±1), u0,xx(±1), u0,xxx(±1), u0,xxxx(±1)) = 0.
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The definition of the parabolic Hölder spaces Cs(Ī × [0, T ]) and a description of the compatibility
conditions can be found in [11, II.3.1 and VI.3.2] respectively. By further strengthening the
hypotheses on u0 we may assume that there exist 0 < c0 < C such that

u(x, t) > c0, (x, t) ∈ Ī × [0, T ], max
06t6T

(‖u(·, t)‖C4 + ‖ut (·, t)‖C4) 6 C. (2.16)

3. Discretization and main result

We now use (2.12) in order to discretize the problem in space. To this end let −1 = x0 < x1 <

· · · < xN−1 < xN = 1, hj = xj − xj−1 and h := max16j6N hj . We make an inverse assumption
of the form

h 6 ηhj , j = 1, . . . , N, (3.1)

where η > 0 is independent of h. The space of C1-finite elements is defined by

Xh := {φh ∈ C1(Ī ) | φh|[xj−1,xj ] ∈ P3, 1 6 j 6 N} ⊂ H 2(I ).

Furthermore, we setXh0 := Xh∩H 2
0 (I ). There exists an interpolation operator Ih : W 4,p(I )→ Xh

with the property that Ihv ∈ Xh0 for v ∈ W 4,p(I ) ∩H 2
0 (I ) and

2∑
i=0

hi‖(v − Ihv)
(i)
‖Lp 6 Ch4

‖v‖W 4,p ∀v ∈ W 4,p(I ), (3.2)

where 1 6 p 6∞. Next, let us introduce a projection operator which is related to the first variation
of W̃ . Suppose that u ∈ C4(Ī ) satisfies

u(x) > c1 > 0, x ∈ Ī , ‖u‖C4 6 C1.

Then the coefficients akj := ∂bk
∂sj
(u, u′, u′′) (cf. (2.6)) belong to C2(Ī ) and there exists a constant

C = C(c1, C1) such that ‖akj‖C2 6 C. For a given function v ∈ H 4(I ) we now introduce the
projection Qhv ∈ Xh by requiring (Qhv)(±1) = v(±1), (Qhv)

′(±1) = v′(±1) and

B(u; v, φh) = B(u;Qhv, φh) ∀φh ∈ Xh0. (3.3)

Note that the projectionQh depends on the function u. The existence ofQhv together with the error
bound

‖v −Qhv‖H 2 6 Ch2
‖v‖H 4 (3.4)

follows from (3.2) and (2.9). In order to obtain optimal error bounds we use a standard dual argument
based on the solution of the boundary value problem

2∑
k,j=0

(−1)j
dj

dxj
(akjw

(k))+ γw = v −Qhv in I,

w(−1) = w(1) = w′(−1) = w′(1) = 0.
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The solvability of this problem along with the a priori estimate ‖w‖H 4 6 C‖v−Qhv‖ is guaranteed
by the regularity of the coefficients akj and (2.9). Note that the constant C again only depends on c1
and C1. Using (3.2), (3.4) and an interpolation argument we deduce that

‖v −Qhv‖ + h‖(v −Qhv)
′
‖ + h2

‖(v −Qhv)
′′
‖ 6 Ch4

‖v‖H 4 ∀v ∈ H 4(I ). (3.5)

Our discrete problem reads: find a positive function uh : Ī× [0, T ]→ R such that uh(·, t) ∈ Xh
for 0 6 t 6 T and∫

I

uh(·, t)uht (·, t)φh√
1+ uhx(·, t)2

dx + 〈W̃ ′(uh(·, t)), φh〉 = 0 ∀φh ∈ Xh0, 0 < t 6 T , (3.6)

uh(−1, t) = αl, uh(1, t) = αr , uhx(−1, t) = βl, uhx(1, t) = βr , 0 6 t 6 T , (3.7)
uh(·, 0) = Qh0u0. (3.8)

Here, Qh0 is the projection defined in (3.3) for u = u0. Let us emphasize again that
〈W̃ ′(uh(·, t)), φh〉 is evaluated using the formula (2.4). Problem (3.6)–(3.8) can be rewritten as a
nonlinear system of ODEs which has a unique positive solution uh on some time interval [0, Th],
Th > 0. Our main result are the following optimal error estimates for the semidiscrete scheme
(3.6)–(3.8):

THEOREM 3.1 Suppose that (2.15), (2.13), (2.14) has a solution u : Ī×[0, T ]→ R which satisfies
the bounds (2.16). Then there exists h0 > 0 such that for all 0 < h 6 h0 the discrete solution uh
exists on [0, T ] and(∫ T

0
‖ut − uht‖

2 dt
)1/2

+

2∑
i=0

hi max
06t6T

‖∂ ix(u− uh)(·, t)‖ 6 Ch4.

The proof of this theorem will be carried out in Section 5. It relies on a decomposition of the
error eh = u− uh into

eh = (u− ûh)+ (ûh − uh) =: ρh + θh, (3.9)

where ûh denotes a suitable nonlinear projection of u onto Xh. That projection is defined with
the help of the elliptic part of the problem which is essentially given by the first variation of W̃ and
satisfies the same error bounds as the interpolation operator (see Section 4). The remaining part θh is
controlled using energy arguments and enjoys certain superconvergence properties. The procedure
can be viewed as a nonlinear, fourth order version of a well-known argument by Wheeler for the
heat equation (see [21]).

4. A nonlinear projection

The aim of this section is to introduce and analyze a nonlinear projection which is adapted to the
first variation of W̃ and which will play a crucial role in proving our main result.

LEMMA 4.1 Suppose that u ∈ C4(I ) satisfies

u(x) > c1 > 0, x ∈ I, ‖u‖C4 6 C1, (4.1)
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and let Qh be defined as above. Then there exist 0 < h0 6 1 and K > 0 only depending on c1, C1
and η such that for 0 < h 6 h0 the problem

〈W̃ ′(ûh), φh〉 + γ

∫
I

ûhφh dx = 〈W̃ ′(u), φh〉 + γ
∫
I

uφh dx ∀φh ∈ Xh0 (4.2)

has a unique solution ûh in the set {vh ∈ Xh | vh − Qhu ∈ Xh0, ‖vh − Qhu‖H 2 6 Kh4
}.

Furthermore, there exists C = C(c1, C1, η) such that

‖u− ûh‖ + h‖(u− ûh)
′
‖ + h2

‖(u− ûh)
′′
‖ 6 Ch4.

Proof. Let us define

Mh := {vh ∈ Xh | vh −Qhu ∈ Xh0, ‖vh −Qhu‖H 2 6 Kh4
}

where the constantK will be defined later. Using an inverse inequality, (3.2), (3.4) and the definition
of Mh we have, for vh ∈ Mh,

‖vh‖W 2,∞ 6 ‖vh − Ihu‖W 2,∞ + ‖u− Ihu‖W 2,∞ + ‖u‖W 2,∞

6 Ch−1/2
‖vh − Ihu‖H 2 + Ch

2
‖u‖W 4,∞ + C1

6 Ch−1/2(‖vh −Qhu‖H 2 + ‖u−Qhu‖H 2 + ‖u− Ihu‖H 2)+ C

6 C + CKh7/2 6 2C (4.3)

provided that Kh7/2
0 6 1. Furthermore, since ‖f ‖L∞ 6 ‖f ‖H 1 for f ∈ H 1

0 (I ) we infer with the
help of (3.5) and (4.1) that

vh(x) > u(x)− ‖u−Qhu‖H 1 − ‖vh −Qhu‖H 1 > c1 − Ch
3
−Kh4

0 >
c1

2
, x ∈ I, (4.4)

provided that Ch3
0 6 c1/4 and Kh4

0 6 c1/4. Using a Taylor expansion, (2.10) as well as (3.3) we
may write, for vh ∈ Mh,

〈W̃ ′(vh), φh〉 + γ

∫
I

vhφh dx − 〈W̃ ′(u), φh〉 − γ
∫
I

uφh dx

=

2∑
k=0

∫
I

(bk(vh)− bk(u))φ
(k)
h dx + γ

∫
I

(vh − u)φh dx

= B(u; vh − u, φh)+ 〈Rh(u; vh), φh〉 = B(u; vh −Qhu, φh)+ 〈Rh(u; vh), φh〉, (4.5)

where we have abbreviated bk(u) = bk(u, u′, u′′) etc. and where

〈Rh(u; vh), φh〉

=

2∑
k,j,l=0

∫
I

∫ 1

0
(1− σ)

∂2bk

∂sj∂sl
(u+ σ(vh − u))(vh − u)

(j)(vh − u)
(l)φ

(k)
h dσ dx. (4.6)
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It follows from (4.3), (4.4), the fact that ∂2b2/∂s
2
2 ≡ 0 and the continuous embedding H 1(I ) ↪→

C0(Ī ) that

|〈Rh(u; vh), φh〉| 6 C‖vh − u‖
2
H 2‖φh‖H 2 6 C(‖vh −Qhu‖

2
H 2 + ‖u−Qhu‖

2
H 2)‖φh‖H 2

6 C(h4
+K2h8)‖φh‖H 2 , φh ∈ Xh0, (4.7)

in view of (3.4) and the definition of Mh.
We define a mapping F : Mh→ Xh as follows: for a given vh ∈ Mh we denote by wh = F(vh)

the solution of the following linear problem: wh −Qhu ∈ Xh0 and

B(u;wh, φh) = B(u;Qhu, φh)− 〈Rh(u; vh), φh〉 ∀φh ∈ Xh0. (4.8)

We shall prove that F has a fixed point provided that h0 and K are suitably chosen. To begin, let
vh ∈ Mh, wh = F(vh). Inserting φh = wh −Qhu into (4.8) we obtain, with the help of (2.9) and
(4.7),

δ

2
‖wh −Qhu‖

2
H 2 6 C(h4

+K2h8)‖wh −Qhu‖H 2 ,

and therefore
‖wh −Qhu‖H 2 6

2
δ
Ch4
+

2
δ
CK2h8 6 Kh4,

if we choose K = 4C/δ and h0 > 0 so small that K2h4
0 6 1. Hence we see that wh ∈ Mh.

Furthermore, by using similar arguments and choosing h0 smaller if necessary one can show that
F is a contraction with respect to the norm in H 2(I ). Thus, Banach’s fixed point theorem yields
the existence of a unique solution ûh ∈ Mh of F(ûh) = ûh which is the required solution of our
problem in view of (4.5). The bounds on u − ûh then follow from (3.2), (3.5) and the definition
of Mh. 2
In the final part of this section we consider the above projection in the case that the function u also
depends on time. Suppose that u : Ī × [0, T ]→ R is a smooth function satisfying (2.13) and (2.16).
For each t ∈ [0, T ] let ûh(·, t) ∈ Xh be the nonlinear projection of u(·, t) defined in Lemma 4.1.
Hence,

2∑
i=0

hi max
06t6T

‖∂ ix(u(·, t)− ûh(·, t))‖ 6 Ch4. (4.9)

Our error analysis will also require estimates analogous to (4.9) for the time derivative
ut − ûht . Using an argument based on the implicit function theorem it can be shown that
ûh ∈ C

1([0, T ];H 2(I )). Abbreviating ρh := u − ûh and using the calculations in (4.5) we may
write (4.2) in the form

2∑
k,j=0

∫
I

akj (·, t)∂
j
xρh(·, t)φ

(k)
h dx + γ

∫
I

ρh(·, t)φh dx = 〈Rh(u(·, t); ûh(·, t)), φh〉

for all φh ∈ Xh0 and 0 6 t 6 T , where akj (·, t) = ∂bk
∂sj
(u(·, t), ux(·, t), uxx(·, t)) (see (2.6)).

Differentiating with respect to time we obtain

2∑
k,j=0

∫
I

akj∂
j
xρhtφ

(k)
h dx + γ

∫
I

ρhtφh dx = −
2∑

k,j=0

∫
I

akj,t∂
j
xρhφ

(k)
h dx + ∂t (〈Rh(u; ûh), φh〉)

(4.10)



560 K. DECKELNICK AND F. SCHIEWECK

for all φh ∈ Xh0 and 0 6 t 6 T . Recalling (4.6), the fact that ∂2b2/∂s
2
2 ≡ 0 as well as the

continuous embedding H 1(I ) ↪→ C0(Ī ) it is not difficult to verify that

|∂t (〈Rh(u; ûh), φh〉)| 6 C‖ρh‖
2
H 2‖φh‖H 2 + C‖ρht‖H 2‖ρh‖H 2‖φh‖H 2 . (4.11)

Inserting φh = Ihut (·, t) − ûht (·, t) into (4.10) and combining (4.9), (4.11) with estimates similar
to those used above we derive

max
06t6T

‖ut (·, t)− ûht (·, t)‖H 2 6 Ch2 (4.12)

provided that 0 < h 6 h0, where h0 is sufficiently small. In order to obtain an optimal bound for
‖ut (·, t) − ûht (·, t)‖ we again employ a duality argument. For fixed t ∈ [0, T ] we consider the
boundary value problem

2∑
k,j=0

(−1)j
dj

dxj
(akj (·, t)w

(k))+ γw = ρht (·, t) in I,

w(−1) = w(1) = w′(−1) = w′(1) = 0.

This problem has a unique solution w ∈ H 4(I ) ∩H 2
0 (I ) satisfying

‖w‖H 4 6 C‖ρht (·, t)‖, (4.13)

where C is independent of t ∈ [0, T ]. Multiplying the dual equation by ρht , integrating by parts and
recalling (4.10) yields∫

I

ρ2
ht dx =

2∑
k,j=0

∫
I

akj∂
j
xρht (w − Ihw)

(k) dx + γ
∫
I

ρht (w − Ihw) dx

−

2∑
k,j=0

∫
I

akj,t∂
j
xρh(Ihw)

(k) dx + ∂t (〈Rh(u; ûh), Ihw〉) ≡ I + II + III + IV,

where we have suppressed the t-variable. We infer from (4.12), (3.2) and (4.13) that

|I | + |II | 6 C‖ρht‖H 2‖w − Ihw‖H 2 6 Ch4
‖w‖H 4 6 Ch4

‖ρht‖.

Integration by parts implies

III = −

2∑
k,j=0

∫
I

akj,t∂
j
xρhw

(k) dx +
2∑

k,j=0

∫
I

akj,t∂
j
xρh(w − Ihw)

(k) dx

= −

2∑
k,j=0

(−1)j
∫
I

∂j

∂xj
(akj,tw

(k))ρh dx +
2∑

k,j=0

∫
I

akj,t∂
j
xρh(w − Ihw)

(k) dx,

and hence
|III | 6 C‖ρh‖ ‖w‖H 4 + Ch

2
‖ρh‖H 2‖w‖H 4 6 Ch4

‖ρht‖.
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Finally,
|IV | 6 Ch4

‖Ihw‖H 2 6 Ch4(‖w‖H 2 + ‖w − Ihw‖H 2) 6 Ch4
‖ρht‖.

As a result we obtain max06t6T ‖ρht‖ 6 Ch4 and combining this estimate with (4.12) finally
implies

2∑
i=0

hi max
06t6T

‖∂ ix(ut (·, t)− ûht (·, t))‖ 6 Ch4. (4.14)

5. Proof of Theorem 3.1

As already mentioned above, the proof of Theorem 3.1 relies on the decomposition (3.9) of the error
eh = u − uh. Since the projection error ρh = u − ûh has been treated in the previous section, it
remains to analyze the error θh = ûh − uh. Note that (3.8) and Lemma 4.1 imply that

‖θh(·, 0)‖H 2 = ‖ûh(·, 0)−Qh0u0‖H 2 6 Ch4. (5.1)

Recalling (2.16) there exists C0 > 0 such that

c0 6 u(x, t) 6 C0, |ux(x, t)|, |uxx(x, t)| 6 C0 ∀(x, t) ∈ Ī × [0, T ]. (5.2)

By choosing Th > 0 smaller if necessary we may assume that

c0/2 6 uh(x, t) 6 2C0, |uhx(x, t)|, |uhxx(x, t)| 6 2C0 ∀(x, t) ∈ Ī × [0, Th]. (5.3)

Next, let us define

T̂h := sup{t ∈ [0, T ] | uh solves (3.6)–(3.8) on [0, t] and c0/2 6 uh(x, s) 6 2C0,

|uhx(x, s)|, |uhxx(x, s)| 6 2C0 ∀(x, s) ∈ Ī × [0, t]}.

Clearly, T̂h > Th > 0. Our aim is to show that T̂h = T for small h. By definition of T̂h we have

c0/2 6 uh(x, t) 6 2C0, |uhx(x, t)|, |uhxx(x, t)| 6 2C0 ∀(x, t) ∈ Ī × [0, T̂h). (5.4)

In what follows, we shall denote by C a constant which may depend on c0, C0, T , η (see (3.1))
and on the constant appearing in (2.16). In order to shorten the formulae we shall omit dx in the
integrals.

Taking the difference of (2.12) and (3.6) and recalling the definition of ûh we derive

∫
I

uh(ûht − uht )φh√
1+ u2

hx

+ 〈W̃ ′(ûh), φh〉 − 〈W̃
′(uh), φh〉

=

∫
I

(
uh√

1+ u2
hx

−
u√

1+ u2
x

)
utφh +

∫
I

uh(ûht − ut )φh√
1+ u2

hx

+ γ

∫
I

(u− ûh)φh (5.5)
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for all φh ∈ Xh0 and 0 6 t < T̂h. Using φh = (ûht − uht )(·, t) = θht (·, t) ∈ Xh0 in (5.5) we obtain

c2‖θht‖
2
+ 〈W̃ ′(ûh), θht 〉 − 〈W̃

′(uh), θht 〉

6
∫
I

(
1√

1+ u2
hx

−
1√

1+ u2
x

)
uutθht −

∫
I

ehutθht√
1+ u2

hx

−

∫
I

uhρhtθht√
1+ u2

hx

+ γ

∫
I

ρhθht

≡ I + II + III + IV . (5.6)

Here, c2 = c2(c0, C0) > 0 in view of (5.4). Clearly, (2.16), (5.4), (4.9) and (4.14) imply

|II | + |III | + |IV | 6 C(‖eh‖ + ‖ρht‖ + ‖ρh‖)‖θht‖ 6 ε‖θht‖
2
+ Cε(h

8
+ ‖θh‖

2).

Next, let us write

1√
1+ u2

hx

−
1√

1+ u2
x

= −
ux

(1+ u2
x)

3/2 (uhx − ux)+ R =
uxehx

(1+ u2
x)

3/2 + R,

where |R| 6 C|ehx |
2. Abbreviating f = uutux/(1+ u2

x)
3/2 we have

I =

∫
I

f ehxθht +

∫
I

uutRθht ≡ I1 + I2.

Integration by parts yields

I1 = −

∫
I

fxehθht −

∫
I

f ehθhtx = −

∫
I

fxehθht −
d
dt

∫
I

f ehθhx +

∫
I

ftehθhx +

∫
I

f ehtθhx .

As a result,

I1 6 −
d
dt

∫
I

f ehθhx + C(‖eh‖ ‖θht‖ + ‖eh‖ ‖θhx‖ + ‖eht‖ ‖θhx‖)

6 −
d
dt

∫
I

f ehθhx + ε‖θht‖
2
+ Cε(h

8
+ ‖θh‖

2
H 1)

in view of (4.9) and (4.14). Note in particular that ‖ft‖C0 6 C follows from (2.16) and by
differentiating (2.15) with respect to t . Furthermore, using also (5.4) we obtain

I2 6 C

∫
I

(|ρhx |
2
+ |θhx |

2)|θht | 6 C(‖ρh‖
2
H 2 + ‖θh‖H 1)‖θht‖ 6 ε‖θht‖

2
+ Cε(h

8
+ ‖θh‖

2
H 1).

In conclusion we have

I + II + III + IV 6 −
d
dt

∫
I

f ehθhx + ε‖θht‖
2
+ Cε(h

8
+ ‖θh‖

2
H 1). (5.7)

Let us next turn to the left hand side of (5.6). Clearly,

〈W̃ ′(ûh), θht 〉 − 〈W̃
′(uh), θht 〉

= 〈W̃ ′(ûh), ûht 〉 − 〈W̃
′(ûh), uht 〉 − 〈W̃

′(uh), ûht 〉 + 〈W̃
′(uh), uht 〉. (5.8)
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To begin, recalling (2.3), (2.4), we have

〈W̃ ′(ûh), ûht 〉 =
d
dt
W̃ (ûh)

=
1
4

d
dt

∫
I

ûhû
2
hxx

(1+ û2
hx)

5/2
−

1
4

∫
I

ûht

û2
h(1+ û

2
hx)

1/2
−

1
4

∫
I

ûhx ûhtx

ûh(1+ û2
hx)

3/2

=
1
2

d
dt

∫
I

ûhû
2
hxx

(1+ û2
hx)

5/2
+

∫
I

(ûhtA1 + ûhtxB1 + ûhtxxC1), (5.9)

where

A1 = −
1
4

û2
hxx

(1+ û2
hx)

5/2
−

1
4

1
û2
h(1+ û

2
hx)

1/2
,

B1 =
5
4
ûhûhx û

2
hxx

(1+ û2
hx)

7/2
−

1
4

ûhx

ûh(1+ û2
hx)

3/2
,

C1 = −
1
2

ûhûhxx

(1+ û2
hx)

5/2
.

Next, again by (2.4),

〈W̃ ′(ûh), uht 〉 =
1
2

∫
I

ûhûhxxuhtxx

(1+ û2
hx)

5/2
+

1
4

∫
I

û2
hxxuht

(1+ û2
hx)

5/2

−
5
4

∫
I

ûhûhx û
2
hxxuhtx

(1+ û2
hx)

7/2
−

1
4

∫
I

uht

û2
h(1+ û

2
hx)

1/2
−

1
4

∫
I

ûhxuhtx

ûh(1+ û2
hx)

3/2

=
1
4

d
dt

∫
I

{
2
ûhûhxxuhxx

(1+ û2
hx)

5/2
+

uhû
2
hxx

(1+ û2
hx)

5/2
− 5

ûhûhx û
2
hxx(uhx − ûhx)

(1+ û2
hx)

7/2
−
ûhx(uhx − ûhx)

ûh(1+ û2
hx)

3/2

+
1

uh(1+ û2
hx)

1/2

}
+

1
4

∫
I

uht − ûht

(1+ û2
hx)

1/2

(
1
u2
h

−
1
û2
h

)
+

∫
I

(ûhtA2 + ûhtxB2 + ûhtxxC2),

(5.10)

where

A2 = −
1
2
ûhxxuhxx

(1+ û2
hx)

5/2
+

5
4
ûhx û

2
hxx(uhx − ûhx)

(1+ û2
hx)

7/2
−

1
4
ûhx(uhx − ûhx)

û2
h(1+ û

2
hx)

3/2

+
1
4

1
(1+ û2

hx)
1/2

(
1
u2
h

−
1
û2
h

)
,

B2 =
5
2
ûhûhx ûhxxuhxx

(1+ û2
hx)

7/2
+

5
4
uhûhx û

2
hxx

(1+ û2
hx)

7/2
+

5
4
ûhû

2
hxx(uhx − ûhx)

(1+ û2
hx)

7/2

−
35
4
ûhû

2
hx û

2
hxx(uhx − ûhx)

(1+ û2
hx)

9/2
−

5
4
ûhûhx û

2
hxx

(1+ û2
hx)

7/2
+

1
4

ûhx

uh(1+ û2
hx)

3/2

−
1
4

ûhx

ûh(1+ û2
hx)

3/2
+

1
4

uhx − ûhx

ûh(1+ û2
hx)

3/2
−

3
4
û2
hx(uhx − ûhx)

ûh(1+ û2
hx)

5/2
,
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and

C2 = −
1
2

ûhuhxx

(1+ û2
hx)

5/2
−

1
2

uhûhxx

(1+ û2
hx)

5/2
+

5
2
ûhûhx ûhxx(uhx − ûhx)

(1+ û2
hx)

7/2
.

Finally,

〈W̃ ′(uh), ûht 〉 =

∫
I

(ûhtA3 + ûhtxB3 + ûhtxxC3), (5.11)

where

A3 =
1
4

u2
hxx

(1+ u2
hx)

5/2
−

1
4

1
u2
h(1+ u

2
hx)

1/2
,

B3 = −
5
4
uhuhxu

2
hxx

(1+ u2
hx)

7/2
−

1
4

uhx

uh(1+ u2
hx)

3/2
,

C3 =
1
2

uhuhxx

(1+ u2
hx)

5/2

while

〈W̃ ′(uh), uht 〉 =
1
4

d
dt

∫
I

{
uhu

2
hxx

(1+ u2
hx)

5/2
+

1
uh(1+ u2

hx)
1/2

}
. (5.12)

Combining the above expressions we derive

〈W̃ ′(ûh), θht 〉 − 〈W̃
′(uh), θht 〉

= ψ ′(t)+
1
4

∫
I

ûht − uht

(1+ û2
hx)

1/2

(
1
u2
h

−
1
û2
h

)
+

∫
I

(ûhtA+ ûhtxB + ûhtxxC), (5.13)

where

ψ(t) =
1
4

∫
I

{
2

ûhû
2
hxx

(1+ û2
hx)

5/2
− 2

ûhûhxxuhxx

(1+ û2
hx)

5/2
−

uhû
2
hxx

(1+ û2
hx)

5/2
+ 5

ûhûhx û
2
hxx(uhx − ûhx)

(1+ û2
hx)

7/2

+
ûhx(uhx − ûhx)

ûh(1+ û2
hx)

3/2
−

1
uh(1+ û2

hx)
1/2
+

uhu
2
hxx

(1+ u2
hx)

5/2
+

1
uh(1+ u2

hx)
1/2

}
and

A = A1 − A2 − A3, B = B1 − B2 − B3, C = C1 − C2 − C3.

To begin, let us rewrite ψ as follows:

ψ(t) =
1
4

∫
I

{(
uhxx

(1+ u2
hx)

3/2
−
ûh

uh

1+ u2
hx

1+ û2
hx

ûhxx

(1+ û2
hx)

3/2

)2

uh(1+ u2
hx)

1/2

−
ûhû

2
hxx

(1+ û2
hx)

5
((1+ u2

hx)
5/2
− (1+ û2

hx)
5/2
− 5ûhx(1+ û2

hx)
3/2(uhx − ûhx))

+
û2
hxx

(1+ û2
hx)

5/2

(
(1+ u2

hx)
5/2

(1+ û2
hx)

5/2

ûh

uh
− 1

)
(uh − ûh)+

ûhx(uhx − ûhx)

(1+ û2
hx)

3/2

(
1
ûh
−

1
uh

)
+

1
uh

(
1

(1+ u2
hx)

1/2
−

1
(1+ û2

hx)
1/2
+
ûhx(uhx − ûhx)

(1+ û2
hx)

3/2

)}
.
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We claim that there exists µ > 0 such that

ψ(t) > µ‖θh(·, t)‖
2
H 2 − C‖θh(·, t)‖

2
H 1 , 0 6 t < Th. (5.14)

To see this, let us examine the first term in the definition of ψ in detail. Clearly,

uhxx

(1+ u2
hx)

3/2
−
ûh

uh

1+ u2
hx

1+ û2
hx

ûhxx

(1+ û2
hx)

3/2

=
−θhxx

(1+ u2
hx)

3/2
+ ûhxx

(
1

(1+ u2
hx)

3/2
−

1
(1+ û2

hx)
3/2
+
uh(1+ û2

hx)− ûh(1+ u
2
hx)

uh(1+ û2
hx)

5/2

)
.

The elementary inequality (a + b)2 > 1
2a

2
− b2 together with (5.4) implies that

1
4

∫
I

(
uhxx

(1+ u2
hx)

3/2
−
ûh

uh

1+ u2
hx

1+ û2
hx

ûhxx

(1+ û2
hx)

3/2

)2

uh(1+ u2
hx)

1/2

>
1
16

c0

(1+ 4C2
0)

3
‖θhxx‖

2
− C‖ûhxx‖

2
L∞‖θh‖

2
H 1 > µ‖θh‖

2
H 2 − C‖θ‖

2
H 1 ,

where we used the inequality ‖φ‖H 2 6 C‖φ′′‖ for φ ∈ H 2
0 (I ) and the fact that ‖ûh‖W 2,∞ 6 C.

Estimating the remaining terms by C‖θh‖2H 1 yields (5.14).
Next, a long but straightforward calculation gives

A = −
1
4
(ûhxx − uhxx)

2

(1+ û2
hx)

5/2
−
u2
hxx

4

{
1

(1+ u2
hx)

5/2
−

1
(1+ û2

hx)
5/2
+ 5

ûhx(uhx − ûhx)

(1+ û2
hx)

7/2

}
+

5
4
ûhx(u

2
hxx − û

2
hxx)(uhx − ûhx)

(1+ û2
hx)

7/2
+

1
4
ûhx(uhx − ûhx)

(1+ û2
hx)

3/2

(
1
û2
h

−
1
u2
h

)
+

1
4u2
h

{
1

(1+ u2
hx)

1/2
−

1
(1+ û2

hx)
1/2
+
ûhx(uhx − ûhx)

(1+ û2
hx)

3/2

}
,

B =
5
2
ûhxx(ûhxx − uhxx)(ûhûhx − uhuhx)

(1+ û2
hx)

7/2

+
5
4
uhuhx(ûhxx − uhxx)

2

(1+ û2
hx)

7/2
+

5
4
û2
hxx(ûh − uh)(ûhx − uhx)

(1+ û2
hx)

7/2

+
5
4
uhuhxu

2
hxx

{
1

(1+ u2
hx)

7/2
−

1
(1+ û2

hx)
7/2
+ 7

ûhx(uhx − ûhx)

(1+ û2
hx)

9/2

}
+

35
4
ûhx(uhx − ûhx)

(1+ û2
hx)

9/2
(ûhûhx û

2
hxx − uhuhxu

2
hxx)+

3
4
ûhx(uhx − ûhx)

(1+ û2
hx)

5/2

(
ûhx

ûh
−
uhx

uh

)
+

1
4
uhx − ûhx

(1+ û2
hx)

3/2

(
1
uh
−

1
ûh

)
+

1
4
uhx

uh

{
1

(1+ u2
hx)

3/2
−

1
(1+ û2

hx)
3/2
+ 3

ûhx(uhx − ûhx)

(1+ û2
hx)

5/2

}
,

C = −
1
2
(ûh − uh)(ûhxx − uhxx)

(1+ û2
hx)

5/2
−

5
2
ûhx(uhx − ûhx)(ûhûhxx − uhuhxx)

(1+ û2
hx)

7/2

−
1
2
uhuhxx

{
1

(1+ u2
hx)

5/2
−

1
(1+ û2

hx)
5/2
+ 5

ûhx(uhx − ûhx)

(1+ û2
hx)

7/2

}
.
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It follows from the above representation that

|A| + |B| + |C| 6 C(|θh|
2
+ |θhx |

2
+ |θhxx |

2) in Ī × [0, T̂h). (5.15)

Inserting (5.13) into (5.6) taking into account (5.7) and (5.15) we obtain

c2‖θht‖
2
+ ψ ′(t) 6 C‖θht‖ ‖θh‖ + C‖θh‖

2
H 2 −

d
dt

∫
I

f ehθhx + ε‖θht‖
2
+ Cε(h

8
+ ‖θh‖

2
H 1)

6 ε‖θht‖
2
−

d
dt

∫
I

f ehθhx + Cε(h
8
+ ‖θh‖

2
H 2).

If we choose ε = c2/2 and integrate with respect to time taking into account (4.9) we deduce

c2

2

∫ t

0
‖θht‖

2 ds + ψ(t) 6 ψ(0)+ C(‖eh(·, t)‖ ‖θhx(·, t)‖ + ‖eh(·, 0)‖ ‖θhx(·, 0)‖)

+Ch8
+ C

∫ t

0
‖θh‖

2
H 2 ds

6 C‖θh(·, t)‖
2
H 1 + Ch

8
+

∫ t

0
‖θh‖

2
H 2 ds.

Here we also used the fact that ψ(0) 6 C‖θh(·, 0)‖2
H 2 6 Ch8, the second inequality being a

consequence of (5.1). Recalling (5.14) and using the interpolation inequality ‖θhx‖2 6 ε‖θh‖
2
H 2 +

Cε‖θh‖
2 we infer, with ε = µ/(2C),

c2

2

∫ t

0
‖θht‖

2 ds +
µ

2
‖θh(·, t)‖

2
H 2 6 C‖θh(·, t)‖

2
+ Ch8

+ C

∫ t

0
‖θh‖

2
H 2 ds.

Note that in view of (5.1),

‖θh(·, t)‖
2 6 Ch8

+ 2
∫ t

0
‖θh‖ ‖θht‖ ds 6 ε

∫ t

0
‖θht‖

2 ds + Ch8
+ Cε

∫ t

0
‖θh‖

2 ds.

Inserting this estimate into the above inequality we finally obtain, after choosing ε small enough,

c2

4

∫ t

0
‖θht‖

2 ds +
µ

2
‖θh(·, t)‖

2
H 2 6 Ch8

+ C

∫ t

0
‖θh‖

2
H 2 ds.

Gronwall’s inequality implies∫ T̂h

0
‖θht‖

2 ds + sup
06t6T̂h

‖θh(·, t)‖
2
H 2 6 Ch8. (5.16)

We can now prove that T̂h = T . If not, we would have T̂h < T . Combining (3.2) with an inverse
estimate, (4.9) and (5.16) we obtain

‖u(·, t)− uh(·, t)‖W 2,∞ 6 ‖u(·, t)− Ihu(·, t)‖W 2,∞ + ‖Ihu(·, t)− uh(·, t)‖W 2,∞

6 Ch2
‖u(·, t)‖W 4,∞ + Ch

−1/2
‖Ihu(·, t)− uh(·, t)‖H 2

6 Ch2
+ Ch−1/2(‖u(·, t)− Ihu(·, t)‖H 2 + ‖ρh(·, t)‖H 2 + ‖θh(·, t)‖H 2)

6 Ch3/2, 0 6 t 6 T̂h.
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In view of (5.2) there exists h0 > 0 which only depends on c0, C0, η, T and the solution u such that

3
4
c0 6 uh(x, t) 6

3
2
C0, |uhx(x, t)|, |uhxx(x, t)| 6

3
2
C0 ∀(x, t) ∈ I × [0, T̂h],

provided that 0 < h 6 h0. However, we could then extend the discrete solution to an interval
[0, T̂h + δ] for some δ > 0 with

c0/2 6 uh(x, t) 6 2C0, |uhx(x, t)|, |uhxx(x, t)| 6 2C0 ∀(x, t) ∈ I × [0, T̂h + δ],

contradicting the definition of T̂h. Thus T̂h = T . Combining (5.16) with (4.9) and (4.14) completes
the proof of Theorem 3.1.

6. Numerical results

In order to confirm the theoretically derived error estimates one needs a test problem with a known
exact solution of the continuous problem. To this purpose we consider the more general problem

∫
I

u(·, t)ut (·, t)φ√
1+ ux(·, t)2

+ 〈W̃ ′(u(·, t)), φ〉 =

∫
I

f (·, t)u(·, t)φ ∀φ ∈ H 2
0 (I ), t ∈ (0, T ]. (6.1)

The function f : Ī × [0, T ]→ R is computed from a given smooth function u : Ī × [0, T ]→ R
according to

f (x, t) =
ut (x, t)√

1+ ux(x, t)2
− {∆ΓH + 2H(H 2

−K)},

while the expressions∆ΓH andH 2
−K are given in terms of u(x, t) by the formulae in Remark 2.1.

Then the equation (3.6) of the semidiscrete problem (3.6)–(3.8) is generalized to∫
I

uh(·, t)uht (·, t)φh√
1+ uhx(·, t)2

+ 〈W̃ ′(uh(·, t)), φh〉 =

∫
I

f (·, t)uh(·, t)φh ∀φh ∈ Xh0, t ∈ (0, T ]. (6.2)

Now, we want to solve this semidiscrete problem numerically with the boundary conditions (3.7)
and the practically more suitable initial condition

uh(·, 0) = Ihu0, (6.3)

where the function u0 : Ī → R, in the case of the academic test problem with a given analytical
solution u(x, t), is defined as u0(x) := u(x, 0). We will write (6.2) as a finite-dimensional nonlinear
system of ODEs. The time-exact solution uh(·, t) ∈ Xh for all t ∈ [0, T ] can be represented as

uh(x, t) =

2N∑
j=−1

cj (t)ϕj (x) ∀x ∈ Ī , (6.4)

where the time dependent coefficients cj : [0, T ]→ R are unknown and the space basis functions
ϕj ∈ C

1(Ī ) are defined as follows. For each element Ki := [xi−1, xi], i = 1, . . . , N , we have
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ϕj |Ki ∈ P3 for all j . The first set of basis functions {ϕ2i−1} is responsible for the point values of the
discrete function at the nodes xi , i.e.,

ϕ2i−1(xk) = δi,k, ϕ′2i−1(xk) = 0 ∀i, k ∈ {0, . . . , N}.

The second set {ϕ2i} is responsible for the values of the x-derivatives at the nodes xi , i.e.,

ϕ2i(xk) = 0, ϕ′2i(xk) = δi,k ∀i, k ∈ {0, . . . , N}.

These conditions for the definition of the basis functions ϕj imply the following meaning of the
coefficients cj (t) in (6.4):

c2i−1(t) = uh(xi, t), c2i(t) = uhx(xi, t) ∀i = 0, . . . , N.

The Dirichlet boundary conditions (3.7) are satisfied if and only if

c−1(t) = αl, c0(t) = βl, c2N−1(t) = αr , c2N (t) = βr ∀t ∈ [0, T ]. (6.5)

The modified initial condition (6.3) is implemented as

uh(x, 0) = u0,h(x) =

2N∑
j=−1

c0
j ϕj (x),

where u0,h := Ihu0 ∈ Xh, i.e.,

c0
2i−1 := u0(xi), c0

2i :=
du0

dx
(xi) ∀i = 0, . . . , N.

Therefore, the initial conditions for the unknown coefficient functions cj (t) are cj (0) = c0
j . To get

the equations for the remaining unknown functions cj (·), j = 1, . . . , 2N − 2, we choose in (6.2)
the test functions φh = ϕi ∈ Xh,0 with i = 1, . . . , 2N − 2. Then the semidiscrete problem (6.2),
(3.7), (6.3) is equivalent to the following nonlinear system of ODEs of dimension d := 2N − 2 for
the vector function U : [0, T ]→ Rd of the coefficient functions with Uj (t) := cj (t):

M(U(t))U ′(t) = F(t, U(t)) ∀t ∈ (0, T ],
U(0) = U0,

(6.6)

where the initial vector is U0
= (c0

j ) ∈ Rd . The matrix-valued function M : Rd → Rd×d is given
by

M(U) = (M(U)i,j ) with M(U)i,j :=
∫
I

uh(U)ϕjϕi√
1+ uhx(U)2

. (6.7)

Here, uh(U) ∈ Xh denotes the function

uh(U)(x) =

2N∑
j=−1

Ujϕj (x) ∀x ∈ I (6.8)

with the convention that, for a given vector U ∈ Rd , we formally define U−1 = αl , U0 = βl ,
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U2N−1 = αr and U2N = βr . The function F : [0, T ] × Rd → Rd is defined by its components
Fi(t, U) as

Fi(t, U) :=
∫
I

f (·, t)uh(U)ϕi − 〈W̃
′(uh(U)), ϕi〉. (6.9)

Under the assumption that uh(U) > c1 on Ī , the nonlinear mass matrix M(U) is symmetric and
positive definite such that its inverse is well-defined. So the problem (6.6) is equivalent to the ODE
system in the classical form

U ′(t) = F̃ (t, U(t)) := M(U(t))−1F(t, U(t)) ∀t ∈ (0, T ],
U(0) = U0.

(6.10)

In order to solve this ODE system numerically we compute approximations Un ≈ U(tn) of the
exact solution U : [0, T ] → Rd at the discrete time levels tn := nτ , n = 0, . . . ,M ,where τ :=
T/M is the time step size corresponding to a given number M of equidistant time intervals. Due
to the stiffness of the ODE system we should apply an A-stable time discretization scheme. A first
candidate would be the implicit Euler scheme, but this would require, due to its first order accuracy,
a very small time step to guarantee that the time discretization error is of the size of the spatial error
O(h4). Therefore, we apply the A-stable Crank–Nicolson scheme which is of second order accuracy.
A comparison of different time discretizations for the Willmore flow problem will be an object of
future work. We compute the approximations Un of the Crank–Nicolson scheme successively, i.e.,
from a known vector Un−1, we compute the next vector Un as the solution of the nonlinear system
of equations

Un = Un−1
+
τ

2
{F̃ (tn−1, U

n−1)+ F̃ (tn, U
n)}.

This system is solved by means of a quasi-Newton method applied to the homogeneous defect
equation

d̃(U) := U − Un−1
−
τ

2
{F̃ (tn−1, U

n−1)+ F̃ (tn, U)} = 0Rd .

Instead of solving with the correct Jacobi matrix J = DU d̃(Uold) we solve with the quasi-Jacobi
matrix

J̃ := I +
τ

2
(Mold)−1

{γsS −DUF(tn, U
old)}

where Mold := M(Uold), γs > 0 is a relatively small parameter and S a stabilizing matrix defined
by

S = (Si,j ) with Si,j :=
∫
I

ϕ′′j ϕ
′′

i . (6.11)

The matrix S, which is symmetric and positive definite, has been introduced in order to achieve
more robust convergence of the quasi-Newton iteration. Numerical experiments have shown that in
some cases a positive value of γs indeed yields better convergence compared to the choice γs = 0.
We compute the new Newton iterate as Unew := Uold

− V new where we get the correction V new by
solving the linear system

J̃ V new
= d̃(Uold),

which is practically done by solving the equivalent system

AV new
= Mold

(
Uold
− Un−1

−
τ

2
F̃ (tn−1, U

n−1)

)
−
τ

2
F(tn, U

old)
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with
A := Mold

+
τ

2
{γsS −DUF(tn, U

old)}.

For a sufficiently small time step size τ , the convergence of this quasi-Newton iteration is relatively
fast. In the computations below, the damping factor of the norm of the defect in one Newton step
was between 0.05 in the first steps and 0.4 in the last steps during one nonlinear solve. The number
of Newton iterations per time step to achieve that the norm of the defect is less than 10−14 was at
most 17.

An analysis of the fully discrete scheme is beyond the scope of this paper. Since the Crank–
Nicolson scheme is of order τ 2, we expect an error bound of the form

‖eh,τ‖i := max
06n6M

‖u(·, tn)− uh,τ (·, tn)‖H i 6 C(τ 2
+ h4)h−i, i = 0, 1. (6.12)

We want to confirm this estimate by a numerical example where we prescribe the exact solution
as

u(x, t) :=
3
2
+ cos(πt){cos(x)− c + sx2

}

with s = sin(1)/2, c = cos(1) + s and compute the corresponding function f (x, t) as explained
above. This solution satisfies the Dirichlet boundary conditions with αl = αr = 3/2 and βl =
βr = 0. For the length T of the time interval we take T = 1. The space grid is chosen equidistant
with the mesh size h. We consider a series of four computations where in the k-th calculation the
discretization parameters hk and τk are chosen such that

hk := 2−k, τk :=
h2
k

64
=

1
64 · 4k

, k = 1, . . . , 4.

If the error estimate (6.12) is correct we should see an error reduction like

‖eh,τ‖i 6 Ch4−i
k 6 C

(
2i

16

)k
,

i.e., if we double the number of elements and take four times more time steps as in the previous
calculation then the error ‖eh,τ‖0 should be reduced by a factor of 1/16 and the error ‖eh,τ‖1
by a factor of 1/8. Table 1 shows the results of the corresponding four calculations and confirms
the theoretically predicted behavior. The error norms have been computed by means of the 4-
point Gaussian quadrature formula applied to the space integrals such that the quadrature error is
negligibly small. For the parameter γs in the Crank–Nicolson scheme, we have used the value 0.5.

TABLE 1
Error norms ‖u − uh,τ‖i for the test problem with known analytical solution and experimental
orders of convergence (EOC).

h τ ‖u− uh,τ ‖0 EOC ‖u− uh,τ ‖1 EOC
1/2 1/256 1.245 e − 4 8.691 e − 4
1/4 1/1024 7.774 e − 6 4.001 1.084 e − 4 3.003
1/8 1/4096 4.860 e − 7 4.000 1.355 e − 5 3.001

1/16 1/16384 3.038 e − 8 4.000 1.693 e − 6 3.000
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As a second numerical test example we consider the Willmore flow problem (2.12)–(2.14) and
its discretization (6.2), (3.7), (6.3) with f (x, t) ≡ 0. For the Dirichlet boundary data, we choose
αl = αr = 0.2 and βl = βr = 0. We have used T = 1 as the length of the time interval. As initial
condition u0 we used an analytically motivated C1 function that satisfies the boundary conditions
(see [6]). To investigate the convergence behavior we performed a series of five computations where
in the k-th calculation we used a boundary adapted grid consisting of NEL(k) := 3 · 2k−1 elements
with mesh-size hk = (12/5)2−k . In order to neglect the error of the time discretization by the
Crank–Nicolson scheme, we have chosen the relatively fine time step size τk = 1/(25 · 4k) in the
k-th calculation. As an indicator for the accuracy of the computed time discrete solution we have
presented in the last column of Table 2 the distance of the actual k-th solution to the solution with
time step size τk/2. As an approximation for the exact solution we computed a reference solution
ũ(x, t) on a mesh with mesh-size h = 3/80 constructed by uniform refinement from the 5-th mesh.
We used a uniform time step size of τ = 1/204 800 ≈ 4.883 e−6. For the stabilization parameter in
the Newton iteration of the Crank–Nicolson scheme, the value γs = 0 provided the best convergence
rates in all five computations. Figure 1 shows, for the coarsest mesh with NEL(1) = 3 elements,
the discrete solution uh1,τ1(·, T ) at the final time T and the reference solution ũ(·, T ). One can see
the high accuracy of the C1 finite elements even on this very coarse grid. For this coarse space

FIG. 1. Reference solution (solid line) and approximate semidiscrete solution (dashed line) at final time T = 1 on a mesh
with three elements indicated by the ‘∗’.

grid, Figure 2 shows a plot of the discrete Willmore energy over the time. Table 2 shows how the
L2-error of the approximate semidiscrete solution at the final time T = 1 is reduced if the mesh
from the previous calculation is uniformly refined by bisecting each element. The error norms have
been computed by means of the 4-point Gaussian quadrature formula applied on each element of
the grid for the reference solution. For h 6 3/40 one seems to be in the asymptotic regime ofO(h4)

convergence.
Finally, we present in Figure 3 the graph of the stationary discrete solution for the non-symmetric

boundary data αl = 0.5, αr = 0.3, βl = −2 and βr = −4 determined by computing the Willmore
flow up to time T = 0.5.
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FIG. 2. Discrete Willmore energy over the time computed on the space grid from Figure 1 with three elements (h = 6/5)
using a time step size of τ = 1/100.

TABLE 2
L2-error between the reference solution ũ(·, T ) and the approximate semidiscrete solution
uh,τ (·, T ) computed with time step size τ at final time T = 1 on a grid with mesh size h and
experimental orders of convergence (EOC).

h τ h4
‖uh,τ (T )− ũ(T )‖0 EOC ‖uh,τ (T )− uh,τ/2(T )‖0

6/5 1/100 2.074e + 0 1.426e − 3 1.090e − 8
3/5 1/400 1.296e − 1 5.141e − 4 1.472 8.329e − 8

3/10 1/1600 8.100e − 3 1.469e − 4 1.807 2.804e − 6
3/20 1/6400 5.062e − 4 1.574e − 5 3.222 1.348e − 6
3/40 1/25600 3.164e − 5 1.060e − 6 3.892 1.214e − 7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 3. Stationary discrete solution for nonsymmetric boundary data.
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6. DALL’ACQUA, A., FRÖHLICH, S., GRUNAU, H.-CH., & SCHIEWECK, F. Symmetric Willmore surfaces
of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var., to appear.

7. DECKELNICK, K., & DZIUK, G. Error analysis of a finite element method for the Willmore flow of
graphs. Interfaces Free Bound. 8 (2006), 21–46. Zbl 1102.35047 MR 2231251

8. DECKELNICK, K., & GRUNAU, H.-CH. A Navier boundary value problem for Willmore surfaces of
revolution. Analysis 29 (2009), 229–258. Zbl 1188.53065 MR 2568881

9. DROSKE, M., & RUMPF, M. A level set formulation for Willmore flow. Interfaces Free Bound. 6 (2004),
361–378. Zbl 1062.35028 MR 2095338

10. DZIUK, G. Computational parametric Willmore flow. Numer. Math. 111 (2008), 55–80. Zbl 1158.65073
MR 2448203

11. EIDELMAN, S. D., & ZHITARASHU, N. V. Parabolic Boundary Value Problems. Birkhäuser, Basel
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