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1. Introduction

The dependence of macroscopic properties on microstructure is considerably involved in situations
where the microstructure itself can change with deformation, as, e.g., in solids that undergo phase
transformations. The modeling of such solids at macroscopic length scales involves characterising
the microstructures that form in them and their change as a result of macroscopic deformation.

Two such situations are of particular importance: The first is the shape memory effect which
is the temperature-induced recovery of apparently plastic deformation. This phenomenon is the
result of martensitic phase transformation, [8, 9]. The second occurs in superalloys, [55], which
are of great importance to turbine blades. These alloys are precipitate hardened: An alloy with off-
stoichiometric composition is quenched to create numerous precipitates which then increase the
creep resistance of the alloy. Here the key problem is to understand the equilibrium morphology of
the precipitates and its dependence on external loads.

In the present article we shall address this problem by combining the Cahn–Hilliard model with
recent results in [18] where the relaxation of two-well elastic energies with given volume fraction
is studied. We restrict ourselves to the (one- and) two-dimensional case, as only partial relaxation
results are available in three dimensions. Moreover lengthy explicit estimates of the energy are
needed that differ in two and three dimensions.
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Outline. We derive the new Cahn–Hilliard model in Section 2 and address existence and
uniqueness of weak solutions in Section 3. The next section is devoted to numerics: three case
studies in Section 4.2 reveal some of the properties of the new model. We end with some closing
remarks. Ancillary calculations are gathered in the appendices.

Notation. Adopting common notation, · denotes the inner product in RD , and : the inner product
in RD×D , i.e., for A,B ∈ RD×D , A : B := tr(ATB) =

∑D
i,j=1AijBij .

2. The Cahn–Hilliard equation with elasticity

2.1 The elastic Cahn–Hilliard equation

The Cahn–Hilliard equation is a particular example of a Landau–Ginzburg equation and was
introduced in [14]. It describes the segregation of a two-phase solid under isothermal conditions
for a temperature θ below the critical temperature θc of the material. In contrast to, e.g., the Allen–
Cahn equation, the order parameter is a conserved quantity, i.e., its integral over the whole domain
does not change with time.

Substantial progress has been made in the theoretical understanding of the Cahn–Hilliard model,
as evidenced by the generalisation to multiple phases [25], to non-isothermal settings [3, 4], to
concentration-dependent mobilities [13]; incorporation of convective [57] and viscous [42, 49]
effects; coupling to the Navier–Stokes equations [10, 36]; the investigation of many limiting cases
[2, 17, 22]; the existence of general Cahn–Hilliard/Allen–Cahn models [16]; and the extension of
the model to related problems in materials science [11, 34]. The cited articles are only a small
selection and there exist many other significant works.

Our focus here is on the elastic Cahn–Hilliard equation which is the Cahn–Hilliard equation
extended to incorporate elastic effects [35, 31, 32, 33]. Its general form is

∂tχ = div(L∇µ), (2.1a)

µ = −γ4χ + ψ ′(χ)+ ∂χŴ (χ, ε(u)), (2.1b)

0 = div(∂εŴ (χ, ε(u))) (2.1c)

to be solved in a space-time cylinder ΩS := Ω × (0, S), where S > 0 denotes a stop time and Ω ⊂
RD is a bounded domain with Lipschitz boundary containing the solid. Here χ : ΩS → [0, 1] is the
order parameter which coincides with the mass fraction of one phase of the solid. For convenience
we also define

χ1 := χ, χ2 := (1− χ). (2.2)

Equation (2.1a) expresses conservation of mass: ∂tχ = − div J , where the flux J is related to the
chemical potential µ through Onsager’s relation [51, 52], J = −L∇µ. (We remark that this relation
is phenomenological and may be invalid when the system is far from thermodynamic equilibrium.)

Equation (2.1b) states that the chemical potential is the derivative of the free-energy density

F(χ,u) :=
∫
Ω

(
ψ(χ)+

γ

2
|∇χ |2 + Ŵ (χ, ε(u))− σ̄ : ε(u)

)
dx. (2.3)

The entropic part of the free energy is

ψ(χ) = kBθ(χ ln(χ)+ (1− χ) ln(1− χ))+
θc

2
χ(1− χ); (2.4)
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note that this is a double-well potential. The interfacial part of the free energy, γ2 |∇χ |
2, influences

the thickness of the interfacial layer; it neglects anisotropy and surface diffusion, see e.g., [19, 5, 7]
for generalisations. The elastic part of the free energy, Ŵ (χ, ε), is defined in Section 2.2; for now
we note that it is a function of the strain ε which depends on the displacement u : ΩS → RD through

ε(u) :=
1
2
(∇u+∇uT ). (2.5)

The last term is the contribution to the free energy density due to tractions at the boundary.
The Cauchy stress in the system is given by σ := ∂εŴ (χ, ε(u)) and thus (2.1c) is a consequence

of Newton’s second law under the assumption that the acceleration ∂t tu is negligible. The Cahn–
Hilliard equation with non-stationary elasticity has been studied in [54].

Boundary conditions. The system (2.1) is solved with the boundary conditions on ∂Ω ,

L∇µ · n = 0, (2.6a)
γ∇χ · n = 0, (2.6b)

u = ε̄x or ∂εŴ (χ, ε(u))n = σ̄n, (2.6c)

where n is the unit outer normal to ∂Ω and ε̄, σ̄ ∈ RD×Dsym . The first of these enforces zero mass flux
across the boundary and the last imposes either displacement or traction t = σ̄n at the boundary.
The condition γ∇χ ·n = 0 is not physically motivated. It is chosen here to guarantee the uniqueness
of the mathematical solution in certain cases.

In the absence of body forces, the work necessary to transform the undeformed body Ω into a
state with displacement u is

−

∫
∂Ω

u · t = −
∫
∂Ω

D∑
k=1

uk
D∑
j=1

σ̄kjnj = −
∫
∂Ω

D∑
j,k=1

σ̄jkuknj

= −

∫
Ω

div(σ̄u) = −
∫
Ω

∇u : σ̄ = −
∫
Ω

ε(u) : σ̄

where we use that σ̄ is symmetric and constant. This explains the last integrand in (2.3).

The second law of thermodynamics. We end this section by a short verification of the second law
of thermodynamics for the system (2.1), (2.6). A direct computation shows

d
dt
F (χ(t),u(t))

=

∫
Ω

(
γ∇χ · ∇∂tχ + ψ

′(χ)∂tχ + ∂χŴ (χ, ε(u))∂tχ + σ : ∂tε(u)− σ̄ : ∂tε(u)
)

dx

=

∫
Ω

(−γ4χ + ψ ′(χ)+ ∂χŴ (χ, ε))∂tχ dx +
∫
∂Ω

(γ ∂tχ∇χ · n+ (σn− t) · ∂tu) dx

=

∫
Ω

µ div(L∇µ) dx +
∫
∂Ω

(γ ∂tχ∇χ · n+ (σn− t) · ∂tu) dx

= −

∫
Ω

L∇µ · ∇µ dx +
∫
∂Ω

(µL∇µ · n+ γ ∂tχ∇χ · n+ (σn− t) · ∂tu) dx
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where we employed (2.6) and σ : ∂tε(u) = div(σ∂tu), which holds as σ , σ̄ are symmetric, σ̄ is
constant by assumption, and because of (2.1c).

As L is positive semi-definite we have L∇µ · ∇µ > 0; this is the entropy production due to
diffusion. The term

∫
∂Ω
µL∇µ ·n describes energy inflow due to diffusion and

∫
∂Ω
γ ∂tχ∇χ ·n that

due to moving interfaces. Finally,
∫
∂Ω
(σn− t) · ∂tu is the power expended due to the deformation

stresses. For a thermodynamically closed system with boundary conditions (2.6), the boundary
integrals vanish and the above equality shows that the second law of thermodynamics is fulfilled.

2.2 The elastic energy density

In previous work, e.g. [15, 35, 32, 53], the Cahn–Hilliard system has been investigated under the
assumption, dating back to Eshelby [26], that the elastic energy density is of the form

Wlin(χ, ε) :=
1
2
α(ε − εT (χ)) : (ε − εT (χ)), (2.7a)

εT (χ) := χ1ε
T
1 + χ2ε

T
2 . (2.7b)

We refer to this as the ‘linear model’. Note that α, the elastic modulus, is assumed to be the same
for both phases and, critically, εT (χ) is a linear interpolation between the stress-free strains εT1 , εT2
of the two phases. The resulting stress-strain relationship for the mixture is linear: this is Vegard’s
law.

Vegard’s law has been observed to fail in situations of great technological interest where the
microstructure is known to be decisive for macroscopic properties, like, e.g., for Ga/As precipitates
[56] and Ge/Si heterostructures [47]. An overview when Vegard’s law fails is attempted in [28].

Elastic energy densities through relaxation. We propose here to replace Wlin by a rigorously-
derived elastic energy density. We begin, like our predecessors, with two linearly-elastic phases:

Wi(ε) :=
1
2
αi(ε − ε

T
i ) : (ε − εTi )+ wi, i = 1, 2, (2.8)

except that we do not require the elastic moduli αi to be equal. (By εTi , we denote the stress-free
strain of phase i and the constants wi ∈ R allow for the possibility that the two phases have unequal
energy minima.) However, instead of postulating a form (linear or otherwise) for the energy density
of a mixture of the two phases, we derive it rigorously. Our reasoning is as follows:

We interpret the order parameter χ(x) ∈ [0, 1] as prescribing the volume fractions of the two
phases at x ∈ Ω , i.e., in a ball Br(x) ⊂ Ω . (It is tacitly assumed that the regions occupied by each
of the two phases in Br(x) are measurable.) Thus, if χ̃1 ≡ χ̃ , χ̃2 = 1 − χ̃ are the characteristic
functions of the two phases on the microscale, we have χ̃i ∈ BV (Br(x); {0, 1}) and

χi(x) = 〈χ̃i〉 :=
1

|Br(x)|

∫
Br (x)

χ̃i(y) dy, i = 1, 2,

where |E| is the D-dimensional Lebesgue measure of a set E. In the absence of microstructural
surface energy, the elastic energy of this ball for a microscale deformation ũ is∫

Br (x)

(
χ̃1W1(ε(ũ))+ χ̃2W2(ε(ũ))

)
dy.
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Next we postulate that the system selects χ̃ and ũ to minimise the microscopic elastic energy. (In our
context this implies, in particular, that the deformations adopt instantaneously to diffusion-induced
changes in concentration.) This reasoning leads us to conclude that the macroscopic elastic energy
density is

Ŵ (χ, ε) := inf
〈χ̃〉=χ

inf
ũ|∂Br=εx

1
|Br(x)|

∫
Br (x)

(
χ̃1W1(ε(ũ))+ χ̃2W2(ε(ũ))

)
dx. (2.9)

This definition of Ŵ is in fact independent of r (see, e.g., [21]). Mathematically, the infimum over
χ̃ in (2.9) is the result of relaxation subject to prescribed volume fractions (cf. [41]).

Ŵ in two dimensions. The (analytical) computation of Ŵ is non-trivial for dimensions larger than
one. For two dimensions, an explicit (albeit involved) expression was derived in [18]. We reproduce
it here; this requires first defining some intermediate quantities.

With T : R2×2
sym → R2×2

sym being the linear operator defined by

T ε := ε − tr(ε)Id, (2.10a)

let γi > 0 be the reciprocal of the largest eigenvalue of α−1/2
i T α

−1/2
i and

γ ∗ := min{γ1, γ2}. (2.10b)

Next, for β ∈ [0, γ ?], let

α(β, χ) := χ2α1 + χ1α2 − βT , (2.10c)

∆ε∗(β, χ, ε) := α−1(β∗, χ)((α1 − α2)ε + (α2ε
T
2 − α1ε

T
1 )), (2.10d)

ϕ(β, χ, ε) := − det∆ε∗(β, χ, ε), (2.10e)

and let

[0, γ ∗] 3 β∗(χ, ε) :=


0 if ϕ ≡ 0 (Regime 0),
0 if ϕ(0) > 0 (Regime I),
βII (χ, ε) if ϕ(0) 6 0 and ϕ(γ ∗) > 0 (Regime II),
γ ∗ if ϕ(γ ∗) < 0 (Regime III)

(2.10f)

where βII (χ, ε) is the unique solution of ϕ(·, χ, ε) = 0. Finally let

ε∗1(β
∗, χ, ε) := α−1(β∗, χ)((α2 − β

∗T )ε − χ2(α2ε
T
2 − α1ε

T
1 )),

ε∗2(β
∗, χ, ε) := α−1(β∗, χ)((α1 − β

∗T )ε + χ1(α2ε
T
2 − α1ε

T
1 )),

∆ε∗(β, χ, ε) = ε∗2(β, χ, ε)− ε
∗

1(β, χ, ε).

(2.10g)

Then, in two dimensions,

Ŵ (χ, ε) = χ1W1(ε
∗

1)+ χ2W2(ε
∗

2)+ β
∗χ1χ2 det(ε∗2 − ε

∗

1). (2.10h)

It can be shown that this is well defined and the four regimes are mutually exclusive. The different
regimes are associated with different microstructures:
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0. The phases are elastically indistinguishable in that the energy does not depend on the
microstructure. This occurs when α1(ε − ε

T
1 ) = α2(ε − ε

T
2 ).

I. There exist two optimal rank-one laminates.
II. The unique optimal microstructure is a rank-one laminate.

III. There exist two optimal rank-two laminates, other microstructures can also exist.

Figure 1 illustrates rank-one and rank-two laminates.

︸ ︷︷ ︸
h1

︸ ︷︷ ︸
h2

FIG. 1. Two-phase rank-one and rank-two laminates in two-dimensions. The strain is (globally) constant in each shaded
region. Left: A rank-one laminate. In this illustration the volume fraction of each phase is 0.5. Right: A rank-two laminate.
Note the separation in length-scale between the layers.

REMARK 2.1 The linear model can be recovered as a special case of the geometrically linear
theory. In two space-dimensions, sufficient conditions are α1 = α2 and

det(εT2 − ε
T
1 ) 6 0. (2.11)

Indeed, for α1 = α2, the mapping ϕ = ϕ(β) is independent of χ , ε. If the inequality in (2.11) is
strict, we are in Regime I, otherwise in Regime 0; in both cases β∗ ≡ 0 in ΩS and

ε∗1 = ε
∗

1(χ, ε) = ε − χ2(ε
T
2 − ε

T
1 ), ε∗2 = ε

∗

2(χ, ε) = ε + χ1(ε
T
2 − ε

T
1 )

such that
ε∗1 − ε

T
1 = ε − χ1ε

T
1 − χ2ε

T
2 = ε

∗

2 − ε
T
2 .

In combination with (2.10h) we find

Ŵ (χ, ε) =
1
2
(α1(ε − χ1ε

T
1 − χ2ε

T
2 )) : (ε − χ1ε

T
1 − χ2ε

T
2 )+ χ1w1 + χ2w2

showing

div(∂εŴ (χ, ε)) = div(α1(ε − χ1ε
T
1 − χ2ε

T
2 )) = div(α1(ε − (ε

T
1 − ε

T
2 )χ))

= div(∂εŴlin(χ, ε)),

using (2.7b). For the case D = 3, we refer the reader to [18, Note 4.30].

REMARK 2.2 Explicit expressions for Ŵ in one dimension are found in [12]: β∗ = 0 and

Ŵ (χ, ε) = χW1(ε
∗

1)+ (1− χ)W2(ε
∗

2), (2.12a)

ε∗1(χ, ε) =
α2(ε − χ2ε

T
2 )+ χ2α1ε

T
1

χ2α1 + χ1α2
, (2.12b)

ε∗2(χ1, ε) =
α1(ε − χ1ε

T
1 )+ χ1α2ε

T
2

χ2α1 + χ1α2
(2.12c)
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with αi, ε∗i ∈ R. Partial results are available for three dimensions [18]. Explicit expressions are
unknown (although arguably not necessary) for dimensions larger than three.

2.3 Comparison with other approaches

Existing models for segregation and phase-change phenomena in the framework of elasticity
roughly fall in one of three categories.

Atomistic models constitute the first category. On a micromechanical level atomistic models are
used to simulate the behaviour of atoms inside the lattice structure, [38]. These models are based
on probability assumptions describing the exchange of atoms on the lattice (with, e.g., Kawasaki
dynamics). The downside of these models is that it is only possible to simulate a limited amount of
atoms which in general is not sufficient for realistic simulations. In addition, no analytic formulae
for the elastic energy can be derived from these computations.

The second category originates from concentration-dependent models with sharp interfaces.
For example, in [37, 43], the diffusional evolution of microstructure in binary alloys is studied
based on a sharp interface model and a general Gibbs–Thomson law. Inside the bulk phase, Fick’s
law of diffusion with constant diffusivity is assumed and the numerical solver is accelerated by
a preconditioner taylor-made for the Laplace operator. A related sharp interface model has been
studied numerically in [1].

The last category is formed by concentration-dependent models with diffuse interfaces.
Motivated by experimental observations of coherent inclusions in elastic media, a simple theoretical
model for microstructure evolution in the absence of diffusion is developed in [40, 44]. Gurtin [36]
considers a coupling of the Cahn–Hilliard equation with the force balance (2.1c) and the microforce
balance div ξ + π + γ = 0, where ξ are microstresses, π internal microforces and γ external
microforces. The existence and uniqueness of weak solutions to this model is treated in [45, 46].
In contrast to this microforce balance, our model is based on local elastic energy minimisation.
In [29, 30] the ansatz is supplemented by thermodynamically consistent constitutive relations.
The microforce balance then yields a generalisation of the elastic Cahn–Hilliard model where the
chemical potential is derived as variational derivative of the total free energy with respect to atomic
densities. The integration of the configurational force balance over the transition layer yields in the
limit the generalised Gibbs–Thomson law of the sharp-interface theory.

The articles [23, 24] pursue a more engineering approach to simulate coarsening in tin/lead
solders. The authors start from an incoherent structure and study the local stresses and strains
numerically in representative volume elements. In contrast to [29, 36], the analytical model is solely
based on a continuum description. By the Cahn–Hilliard equation, surface tension is incorporated.
The model uses linearised kinematics and for computing the effective elastic modulus in the
interfacial region, a linear interpolation ansatz between the (constant) elastic moduli α1, α2 of the
two phases is made.

3. Existence and uniqueness of weak solutions

3.1 Assumptions

The proof of an earlier existence result for the Cahn–Hilliard equation with linear elasticity and
either polynomial [31, 32] or logarithmic [31, 33] free energy can be adopted to prove existence of
weak solutions to the system (2.1), (2.4), (2.10) provided the nonlinear elastic energy Ŵ satisfies
the following assumptions:
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ASSUMPTION 3.1

(A1) Ŵ ∈ C1([0, 1]× RD×Dsym ; R).
(A2) ∂εŴ (χ, ·) is strongly monotone uniformly in χ , i.e. there exists a constant C1 > 0 inde-

pendent of χ such that for all εa, εb ∈ RD×Dsym ,

(∂εŴ (χ, εa)− ∂εŴ (χ, εb)) : (εa − εb) > C1|εa − εb|
2.

(A3) There exists a constant C2 > 0 such that for all χ ∈ R, ε ∈ RD×Dsym ,

|Ŵ (χ, ε)| 6 C2(|χ |
2
+ |ε|2 + 1),

|∂χŴ (χ, ε)| 6 C2(|χ |
2
+ |ε|2 + 1),

|∂εŴ (χ, ε)| 6 C2(|χ | + |ε| + 1).

These assumptions are satisfied by Ŵ under certain conditions:

LEMMA 3.2 Let D < 3 and for D = 2 let

(1) β∗(χ, ε) be independent of ε, and
(2) αi and T commute whenever β∗ ∈ {γ ∗, βII }.

Then Ŵ given by (2.10h) satisfies Assumption 3.1.

Proof. (i) In one dimension: From (2.8), (2.10g) and (2.10h) it follows that Ŵ ∈ C1(R×R); this
verifies (A1). From (2.12),

∂εε
∗

1(χ, ε) =
α2

χ2α1 + χ1α2
, ∂εε

∗

2(χ, ε) =
α1

χ2α1 + χ1α2
.

With (2.12a) this yields

∂εŴ (χ, εa/b) =
α1α2

χ2α1 + χ1α2
(χ1(ε

∗

1(εa/b)− ε
T
1 )+ χ2(ε

∗

2(εa/b)− ε
T
2 ))

and therefore

(∂εŴ (χ, εa)− ∂εŴ (χ, εb)) : (εa − εb) =
2∑
i=1

χiαi(ε
∗

i (εa)− εi(εb))(εa − εb)

χ2α1 + χ1α2
.

Assumption (A2) follows since, by (2.12), for i = 1, 2,

(ε∗i (εa)− ε
∗

i (εb))(εa − εb) > c|εa − εb|
2.

From (2.12), for i = 1, 2 and χ ∈ [0, 1] we have

|ε∗i (χ, ε)| 6 c
(
|χ | + |ε| + 1

)
. (3.1)

(We denote generic constants by “c”.) Consequently, (A3)1 follows as

|Ŵ (χ, ε)| = |χ(W1(ε
∗

1)−W2(ε
∗

2))+W2(ε
∗

2)| from (2.12a)
6 c(|χ | |W1(ε

∗

1)| + |χ | |W2(ε
∗

2)| + 1)
6 c(|χ |(|χ | + |ε| + 1)+ 1) from (2.12)

6 c(|χ |2 + |ε|2 + 1) using Young’s inequality.
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For χ ∈ [0, 1] we easily compute, for i = 1, 2,

|∂χε
∗

i (χ, ε)| 6 c(|χ | + |ε| + 1).

We use this estimate and Young’s inequality in the identity

∂χŴ (χ, ε) = W1(ε
∗

1(χ, ε))−W2(ε
∗

2(χ, ε))+

2∑
i=1

χiW
′

i (ε
∗

i (χ, ε))∂χε
∗

i (χ, ε)

to obtain

|∂χŴ (χ, ε)| 6 c(|ε∗1(χ, ε)|
2
+ |ε∗2(χ, ε)|

2
+ |χ |(|ε∗1(χ, ε)| + |ε

∗

2(χ, ε)|)+ 1)

6 c(|χ |2 + |ε|2 + 1),

which is (A3)2.
For χ ∈ [0, 1],

|∂εŴ (χ, ε)| =

∣∣∣∣ α1α2

χ2α1 + χ1α2

∣∣∣∣|χ1(ε
∗

1(ε)− ε
T
1 )+ χ2(ε

∗

2(ε)− ε
T
2 )|

6 c(|χ | |ε∗1 | + |χ | |ε
∗

2 | + 1)
6 c(|ε∗1 | + |ε

∗

2 | + 1) as |χ | 6 1,
6 c(|χ | + |ε| + 1) from (3.1),

showing the validity of (A3)3.
(ii) In two dimensions: The regularity of Ŵ is obvious from the definitions. It can be checked

directly that Ŵ is continuously differentiable as required by (A1).
Since, from (2.10), β∗ ∈ [0, γ ∗] and γ ∗ is determined solely by α1, α2, we have |β∗| 6 c for a

constant c independent of χ and ε. From that and (2.10g) we obtain

|ε∗i (β
∗, χ, ε)| 6 c(|χ | + |ε| + 1). (3.2)

With (2.8), (2.10h) and |χ |2 6 1 this shows

|β∗χ1χ2 det(ε∗2(χ, ε)− ε
∗

1(χ, ε))| 6 c
(
|χ |2(|ε∗1(χ, ε)|

2
+ |ε∗2(χ, ε)|

2)+ 1
)

6 c(|ε∗1(χ, ε)|
2
+ |ε∗2(χ, ε)|

2)

6 c(|χ |2 + |ε|2 + 1).

From this we easily verify (A3)1, as the remaining terms in (2.10h) can be estimated as in the
one-dimensional case.

In order to show (A3)2, we pass through the terms in (A.9) (see Appendix A) and notice:

|σ ∗(χ, ε)| =

∣∣∣ 2∑
i=1

χiαi(ε
∗

i − ε
T
i )

∣∣∣ 6 c(|χ | + |ε| + 1) since |χ | 6 1,

|4ε∗(χ, ε)| = |ε∗2 − ε
∗

1 | 6 c(|χ | + |ε| + 1),
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|ϕ(4ε∗(χ, ε))| = |det(4ε∗(χ, ε))|

6 |ε∗2(χ, ε)− ε
∗

1(χ, ε)|
2

6 c(|χ |2 + |ε|2 + 1) from (2.10g),∣∣∣∣∂β∗∂χ (χ, ε)
∣∣∣∣ 6 c by (A.4a).

The terms Wi(ε
∗

i (χ, ε)), i = 1, 2 remaining in (A.9) can be estimated as in the one-dimensional
case. This verifies (A3)2.

Now we prove (A2). When in Regime III we start from (A.12) and find with (3.2),

|χ1(α2 − γ
∗T )α−1α1(ε

∗

1 − ε
T
1 )| 6 c(|χ | |ε∗1 | + 1) 6 c(|ε∗1 | + 1) 6 c(|χ | + |ε| + 1).

In the remaining Regimes 0, I and II we start from (A.11) and the proof is even simpler.
The validation of (A2) relies on equation (A.11). By assumption, ∂β∗/∂ε = 0 and, as χ is fixed,

in (A.11), α−1 is a constant tensor. Assumption (A2) follows from

(ε∗1(εa)− ε
∗

1(εb)) : (εa − εb) = α−1(α2 − β
∗T )(εa − εb) : (εa − εb),

a similar equality for (ε∗2(εa) − ε
∗

2(εb)) : (εa − εb), and the positive definiteness of (αi − β∗T ),
i = 1, 2 and α−1. The validation of (A2) in Regime III is based directly on (A.12). 2

REMARK 3.3 The critical assumption, (A2), requires the strict convexity of Ŵ (χ, ·). But in
general Ŵ is only quasi-convex except in one dimension where the notions of convexity and
quasi-convexity coincide. In higher dimensions the assumption that β∗(χ, ε) is independent of ε
is required to enforce convexity and thus (A2). This is satisfied when the solution is globally in
(only) one of Regimes 0, I, and III.

3.2 Existence of weak solutions

Our main result is the following theorem. The assumptionD < 3 is needed because the proof relies
on the explicit computations of ∂χŴ (χ, ε), ∂εŴ (χ, ε) carried out for D = 1 in Lemma 3.2 and for
D = 2 in Lemma 3.2 and Sections A.5 and A.6.

THEOREM 3.4 Let D < 3 and L be positive definite. Moreover, for D = 2, let

(1) β∗(χ, ε) be independent of ε, and
(2) αi and T commute whenever β∗ ∈ {γ ∗, βII }.

Then there exists a weak solution (χ, µ,u) to the system (2.1), (2.4), (2.6) such that

(i) χ ∈ C0,1/4([0, S];L2(Ω)),
(ii) ∂tχ ∈ L2([0, S]; (H 1(Ω))′),

(iii) u ∈ L∞([0, S];H 1(Ω;RD)),
(iv) µ ∈ L2([0, S];H 1(Ω)),
(v) ln(χ), ln(1−χ) ∈ L1(ΩS) and in particular χ ∈ (0, 1) a.e. in Ω .
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Proof. From Lemma 3.2, under the assumptions of the theorem, Ŵ fulfils Assumption 3.1 for all
χ ∈ [0, 1]. Let the extension Ŵ0(·, ε) : R→ R of Ŵ (·, ε) be given by

Ŵ0(χ, ε) :=



−χ + 1+ Ŵ (0, ε) if χ 6 −1,
ϕ(χ, ε) if −1 < χ < 0,
Ŵ (χ, ε) if 0 6 χ 6 1,
Φ(χ, ε) if 1 < χ < 2,
χ − 1+ Ŵ (1, ε) if 2 6 χ.

(3.3)

for suitable functions ϕ, Φ that ensure Ŵ0(·, ε) ∈ C
1(R;R) together with the validity of (A1)

for Ŵ0(χ, ε) even if χ /∈ [0, 1]. The construction (3.3) further guarantees that Ŵ0 is positive and
coercive for |χ | → ∞.

Now one proves as in [32] the existence of weak solutions to (2.1) for polynomial free energies

ψ(χ) =
1
4
(χ − k)2(χ − 1+ k)2

(where k ∈ (0, 1) is a given constant) and Ŵ0 instead of Ŵ . The extension Ŵ0 is necessary as there
is no maximum principle for the system, and a polynomial functional ψ (in contrast to (2.4) which
is unbounded for χ ↘ 0 and χ ↗ 1) does not ensure χ ∈ [0, 1].

Then, analogous to [31, Chapter 4] or [33], the existence proof of the first step is reused. With the
help of polynomial approximations ψδ of (2.4), parametrised by δ > 0, where ψδ → ψ , solutions
(χδ,uδ) to the regularised system are obtained. Uniform estimates of (χδ,uδ) independent of δ
allow passage to the limit δ ↘ 0. As Ŵ0(χ, ε) = Ŵ (χ, ε) for χ ∈ [0, 1], the proof is complete. 2

3.3 Uniqueness of weak solutions

We begin with some preliminary remarks. Let ψ = ψ1
+ ψ2 for a convex function ψ1 and a

sublinear function ∂χψ2. Let V := H 1(Ω), L : V → V ′ be given by L(µ)(ζ ) :=
∫
Ω
L∇µ · ∇ζ

and G be the inverse of L. (Since L is positive definite the existence of G follows from the Poincaré
inequality and the Lax–Milgram theorem.) From this we find that G is positive definite, self-adjoint,
injective and compact. Thus, for all ζ ∈ V and v ∈ V ′,

(L∇Gv,∇ζ )L2(Ω) = 〈ζ, v〉V,V ′ .

For v1, v2 ∈ V
′ we define the L scalar product

(v1, v2)L := (L∇Gv1,∇Gv2)L2

and the corresponding norm ‖v‖L :=
√
(v, v)L. Since v ∈ V canonically defines an element in V ′,

(·, ·)L and ‖·‖L are well defined in V . Observe that for δ > 0 and χ ∈ V ,

‖χ‖2
L2 = (L∇Gχ,∇χ)L2 6 ‖L1/2

∇Gχ‖L2‖L
1/2
∇χ‖L2 6 cδ−1

‖χ‖2L + δ‖∇χ‖
2
L2 (3.4)

(for some constant c), as a consequence of Young’s inequality. We are now ready for:

THEOREM 3.5 Let D < 3 and α1 = α2 (i.e., the two phases have identical elastic moduli). Then
the weak solution (χ, µ,u) of (2.1), (2.4), (2.9) is unique in the spaces stated in Theorem 3.4.
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Proof. The following is a modification of the corresponding proof for the case of linear elasticity.
Let (χA, µA,uA), (χB , µB ,uB) be two weak solutions and let

(χ, µ,u) = (χB , µB ,uB)− (χA, µA,uA).

The difference χ solves

−

∫
ΩS

χ∂tξ dx +
∫
ΩS

L∇µ · ∇ξ dx = 0 (3.5)

for all ξ ∈ L2([0, S];H 1(Ω)) with ξ(S) = 0 and ∂tξ ∈ L2(ΩS). Pick t0 ∈ (0, S) and η ∈
L2([0, S];H 1(Ω)) and set

ξ(·, t) :=


∫ t0

t

η(·, s) ds if t 6 t0,

0 if t > t0.

Because ∂tξ = −η(t) for t 6 t0 it follows that

0 =
∫
Ωt0

χη dx +
∫
Ωt0

L∇µ · ∇

(∫ t0

t

ηds
)

dx =
∫
Ωt0

χη dx +
∫
Ωt0

L∇

(∫ t

0
µds

)
· ∇η dx.

Therefore we have Gχ = −
∫ t

0 µ ds and ∂tGχ = −µ. When choosing η := µ we find, because of
χ(0) = Gχ(0) = 0,

−

∫
Ωt0

χµ dx =
∫
Ωt0

L∇Gχ · ∇Gχ(t0) dx =
1
2
‖χ(·, t0)‖

2
L. (3.6)

For conciseness we set εB := ε(uB) and εA := ε(uA). For the difference µ we obtain∫
ΩS

µζ dx

=

∫
ΩS

(
γ∇χ · ∇ζ + (ψ ′(χB)− ψ ′(χA))ζ + (∂χŴ (χ

B , εB)− ∂χŴ (χ
A, εA))ζ

)
dx (3.7)

for all ζ ∈ L2([0, S]; H 1(Ω)) ∩ L∞(ΩS). We choose ζ := X[0,t0](χ
B
− χA). Since

(∂χψ
1(χB)− ∂χψ

1(χA))(χB − χA) > 0

it follows that

1
2
‖χ(·, t0)‖

2
L + γ

∫
Ωt0

|∇χ |2 dx +
∫
Ωt0

(∂χŴ (χ
B , εB)− ∂χŴ (χ

B , εA))χ dx

6 −
∫
Ωt0

(∂χψ
2(χB)− ∂χψ

2(χA))χ dx −
∫
Ωt0

(∂χŴ (χ
B , εA)− ∂χŴ (χ

A, εA))χ dx. (3.8)

Because α1 = α2 we find that ϕ (cf. (2.10e)) depends only on β, thus (cf. Section 2.2)

β∗(χB , εB) = β∗(χA, εA)

and α is a constant matrix. This implies

ε∗i (χ
B , εB) = ε∗i (χ

B , εA), i = 1, 2.
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By direct inspection, with the above results, we obtain ∂χŴ (χB , εB) − ∂χŴ (χB , εA) = 0 and
the third integral on the left of (3.8) vanishes identically. The Lipschitz continuity of ∂χŴ and ψ2

implies that the integrals on the right hand side of (3.8) can be estimated by c
∫
Ωt0
|χ |2 dx with

a constant c = c(‖∂χψ
2
‖C0,1 , ‖∂χŴ‖C0,1). With (3.4) and Gronwall’s inequality, (3.8) implies

‖χ‖2
L2(t0) = 0 and thus χ = 0.
Taking the difference between the weak formulations of (2.1c), we find∫

ΩS

(∂εŴ (χ
B , εB)− ∂εŴ (χ

A, εA)) : (εB − εA) dx = 0. (3.9)

From (A.11) this implies ∫
Ωt0

(α1 − β
∗T )α1(ε

B
− εA) : (εB − εA) = 0. (3.10)

By Korn’s inequality, (3.10) yields u = 0. With this knowledge, (3.7) finally yields µ = 0. 2

REMARK 3.6 For α1 6= α2, the proof of Theorem 3.5 fails as we are unable to control

R :=
∫
Ωt0

(∂χŴ (χ
B , εB)− ∂χŴ (χ

B , εA))(χB − χA) dx

in (3.8). Even though ∂χŴ is analytic, no powers of εB − εA can be absorbed on the left of (3.8)
when Gronwall’s inequality is applied. Also, unlike the linear case, (3.9) does not help to show that
R > 0. Consequently, the uniqueness of solutions remains open in most cases. In this context we
observe that in general the microstructure is not unique.

4. Numerical simulations

Many authors favour the solution of the Cahn–Hilliard equation with finite elements: see e.g. [6,
35], the latter containing also a-posteriori error estimators. A finite difference approach is discussed
in [27], spectral methods are presented in [20]. Impressive results are presented in [39], where an
unconditionally stable non-linear multigrid method that allows for adaptively refined grids is used.

We use finite elements here; a non-linear multigrid method in the spirit of [39] is in preparation;
in particular, the multigrid solution of (4.1c) below requires some care.

4.1 Solution method

We assume that ∂Ω is polygonally bounded so as to avoid problems with approximating the
boundary. We assume that the triangulation of Ω is weakly acute, i.e., the sum of the opposite
angles relative to any side does not exceed π [48].

The (n+ 1)th step of the implicit Euler scheme for (2.1) is

χn+1
= χn + k div(L∇µn+1), (4.1a)

µn+1
= ψ ′(χn+1)+ ∂χŴ (χ

n+1, ε(un+1))− γ4χn+1, (4.1b)

0 = div(∂εŴ (χn+1, ε(un+1))), (4.1c)

with k > 0 the step size of the time discretisation, l ∈ N, χ l = χ(·, lk), µl = µ(·, lk), ul = u(·, lk).
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This is solved with a conventional predictor-corrector iteration, i.e. for known χn a fixed point
of the operator implicitly given by (4.1) acting on the triple (χn+1, µn+1,un+1) is sought.

The splitting of the fourth-order parabolic equation for χ into the parabolic equation (4.1a) and
the elliptic equation (4.1b), both of second order, permits the use of linear finite elements. Here
we focus on Ŵ and (4.1c) as these aspects are new compared to other models. The computation of
Ŵ (χ, ε) and its derivatives requires, for every vertex of the triangulation,

1. Determination of β∗(χ, ε) and of the regime.
2. Computation of ε∗i (χ, ε).

Recall that β∗ ∈ [0, γ ∗]. As γ ∗ depends only on the elastic moduli α1, α2, it is computed once at
the start of the algorithm; Appendix B presents an explicit formula for γ ∗ for cubic materials.

For any spatial point x ∈ Ω one needs to compute the regime. This depends on ϕ, (2.10f).
Regime II, where the microstructure is uniquely a rank-one laminate, is numerically the most
elaborate case (Section 2.2). Here the unique zero of [0, γ ∗] 3 β 7→ ϕ(β, χ, ε) needs to be
computed. In our implementation this is done by a Fibonacci subdivision algorithm that splits
[0, γ ∗] consecutively in smaller intervals. Alternatively, this could be realized by a globally
convergent Newton method with adapted step size to guarantee that the iterates remain in the feasible
range [0, γ ∗].

In our simulations Regime II, when present, occurred on large subsets of Ω . Thus the
computation of βII is time-critical. Significant performance improvement is gained by storing for
each lattice point the computed value of βII and using it as the initial guess in the next time step.

Computation of ε∗i and β∗ requires evaluating the inverse of χα1 + (1 − χ)α2 − βT .
Transformation to Mandel notation explained in Appendix B is very helpful here.

Solving (4.1b) and (4.1c) requires explicit expressions for ∂χŴ (χ, ε) and ∂εŴ (χ, ε), which are
presented in (A.9) and (A.11). We remark that the weak formulation of (4.1c) for Ω ⊂ RD is

0 =
∫
Ω

∂εŴ (χ
n+1, ε(un+1)) : ε(vj ) dx, 1 6 j 6 DN, (4.2)

with the basis functions for D = 2,

(vi)16i62N :=
{(
ϕ1
0

)
, . . . ,

(
ϕN
0

)
,

(
0
ϕ1

)
, . . . ,

(
0
ϕN

)}
.

Here, (ϕi)16i6N denotes the basis functions spanning the finite-dimensional subspace Sh ⊂
H 1,2(Ω) of linear finite elements.

To derive the matrix representation of (4.2) we use (2.10g) and (A.11) to find, for commuting T
and αi ,

∂εŴ (χ, ε) = G(β, χ)ε + χ1χ2α
−1(β, χ)(α1 − α2)(I − λα

−1T )(α1ε
T
1 − α2ε

T
2 )

− (χ1α1ε
T
1 + χ2α2ε

T
2 ),

G(β, χ) := χ1α1 + χ2α2 − χ1χ2(α1 − α2)α
−1(β, χ)(α1 − α2)

+ λχ1χ2α
−1(β, χ)(α1 − α2)α

−1(β, χ)(α1 − α2)T ,

λ :=

{
0 in Regimes 0, I, II,
γ ∗ in Regime III.
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The weak formulation (4.2) becomes∫
Ω

Gε(un+1) : ε(vj ) dx =
∫
Ω

(χn+1
1 χn+2

2 α−1(β, χ)(α1 − α2)(α1ε
T
1 − α2ε

T
2 )

− χn+1
1 α1ε

T
1 − χ2α2ε

T
2 − λχ

n+1
1 χn+1

2 α−1(β, χ)(α1 − α2)α
−1T (α1ε

T
1 − α2ε

T
2 )) : ε(vj ) dx.

(4.3)
We pick β∗ = β∗(χn, εn)when constructingG to avoid a dependence of the matrix on the unknown
un+1. For n = 0, we choose β∗ ≡ 0 as this corresponds to the estimate of the linear model.

Writing un+1
=
∑2N
i=1 U

n+1
i vi and χn+1

=
∑N
k=1 d

n+1
k ϕk , we need to compute matrices of the

form
∫
Ω
Gε(vi) : ε(vj ) ϕk dx and

∫
Ω
(v : ε(vj ))ϕk dx. Exploiting

ε(vj ) =
(
∂xϕj

1
2∂yϕj

1
2∂yϕj 0

)
, 1 6 j 6 N,

ε(vj ) =
(

0 1
2∂xϕj−N

1
2∂xϕj−N ∂yϕj−N

)
, N + 1 6 j 6 2N,

we can apply quadrature formulae to write (4.3) in the matrix form

G(χn+1)Un+1
= b(χn+1). (4.4)

Here, G(χn+1) ∈ R2N×2N and b ∈ R2N have block structure. A direct calculation shows that in
two dimensions

ker ε = {v = (v1, v2) : R2
→ R2

| v1(x, y) = c1 − ay, v2(x, y) = c2 + ax}

for real constants c1, c2, a. Consequently, from (4.3), from χ ∈ (0, 1) a.e. (Theorem 3.4) and from
the positive definiteness of G1, G2, it follows that G is singular with kerG = ker ε. To solve (4.4)
we use a modified conjugate gradient method where the iterates are projected on the orthogonal
complement of kerG. This is similar to the case of linearised elasticity; Appendix C has the details.

4.2 Sample simulations

We present three simulations to illustrate features of the new model. We have chosen Ω = (0, 1)2,
θ = 0.3, θc = 1 and the material constants of one of the materials to be

C1,11 = 2, C1,12 = 0, C1,44 = 1, εT1 =

(
0 0
0 0

)
, w1 = 0

(see (B.1) for the relationship between αi and Ci).

SIMULATION 4.1 (Segregation of two cubic materials in Regime II under Neumann BC) We pick
the material constants of the second material to be

C2,11 = 1, C2,12 = 0, C2,44 = 5, εT2 =

(
0 0
0 0.5

)
, w2 = 0.

Fig. 2 displays the characteristic long-time behaviour of the model. Segregation into two phases
(rendered blue and yellow in the pdf file) begins from random initial values around 0.5 for χ ; the
structure then coarsens with time. The microstructure is computed to be in Regime II always and
everywhere.

We observe preferred directions of the phase boundaries going along with a stretching in
preferred directions similar to the linear elasticity model. Due to the Neumann boundary conditions,
the phase boundaries are always perpendicular to ∂Ω .
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(a) t = 0.07 (b) t = 0.16 (c) t = 0.29

(d) t = 0.72 (e) t = 0.94 (f) t = 1.5

FIG. 2. Time evolution of χ for Simulation 4.1.

h hh
h

(a) t = 0.10 (b) t = 0.101 (c) t = 0.102

FIG. 3. Alternating connectivity at junction points.

Fig. 3 displays further time steps. In the leftmost picture, four circular regions are marked
where alternatingly, either the blue phase or the yellow phase is connected. This connectivity
changes multiple times during the time evolution. At these junctions, if for a time step e.g. phase 1
is connected, the two unconnected regions of phase 2 are bent towards each other to form a
‘checkerboard’ geometry. This is observed frequently in our simulations.

SIMULATION 4.2 (Segregation of two cubic materials under periodic BC) Fig. 4 shows the results
of our second calculation, where we re-run Simulation 4.1 with periodic boundary conditions. The
coarsening occurs faster but we observe the same global behaviour as before. Besides the altering
connectivity at junction points illustrated in Fig. 3, our computations in Fig. 2 and Fig. 4 show
another striking difference to the linear model [35]. There it had been found that one phase (the
mechanically harder material) forms particles or inclusions that are surrounded by the other simply-
connected phase.
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(a) t = 0.18 (b) t = 0.77 (c) t = 0.90

FIG. 4. Time evolution of χ for Simulation 4.2.

(a) t = 0 (b) t = 0.002 (c) t = 0.02

(d) t = 0.03 (e) t = 0.07 (f) t = 0.2

FIG. 5. The inclusion problem; see Simulation 4.3

SIMULATION 4.3 (The inclusion problem) In this simulation we study the inclusion problem
further by computing the time evolution in an example where in case of the linear model the initial
connectivity changes and inclusion and matrix swap.

The material constants of the second material are

C2,11 = 1, C2,12 = 0, C2,44 = 5, εT2 =

(
1 0
0 0

)
, w2 = 0.

Fig. 5 shows the results which confirm our earlier observations. Unlike the behaviour of the
linear model [35] the inclusion and matrix phases remain as determined by the initial data. The
inclusions are attracted towards each other, unite and stretch.
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5. Conclusions

In this article we presented a generalisation of the Cahn–Hilliard model using geometrically linear
two-dimensional elasticity which accounts for the microstructure of the solid. We were able to show
existence of weak solutions under certain conditions and recover the earlier theory as a special case.

Numerically, the presented solution method is quite inefficient (and thus slow) and was intended
only for a preliminary investigation. Nevertheless we discovered the local occurrence, especially
in the early stages of the segregation, of alternating connectivities of the phases at junction points.
Moreover, unlike the linear model, the harder phase need not form inclusions.

Some key physical limitations of the model are: restriction to geometrically linear elasticity
(i.e., linearised kinematics), neglecting surface energy (and thus length scale) in the microstructure,
neglect of plastic effects, restriction to two phases, to single crystals and to isothermal situations.

Elasticity is relevant to very many phenomena which have been modelled by numerous
well-studied isothermal segregation models and phase-field equations besides the Cahn–Hilliard
equation. The approach presented here is a first step in the rigorous incorporation of elasticity in
these models.

Appendix A. The derivatives of Ŵ in 2D

For the existence theory of Section 3 we need estimates on ∂χŴ and ∂εŴ . These are provided in
this appendix. We shall use (without explicit reference) the following result: For ε ∈ R2×2 and a
linear invertible operator A : R2×2

→ R2×2,

(det ε)′ = −(T ε) : ε′, (A.1)

(A−1)′ = −A−1A′A−1, (A.2)

where ′ denotes differentiation and the derivatives are assumed to exist.

A.1 The derivatives of ϕ

From (2.10g),

∆ε∗(β, χ, ε) = α−1(β, χ)e(ε), e(ε) := (α1 − α2)ε + (α2ε
T
2 − α1ε

T
1 ).

Then, from (2.10e),

∂ϕ

∂χ
= −

∂

∂χ
det4ε∗ = T4ε∗ : α−1 ∂α

∂χ
α−1e = T4ε∗ : α−1(α2 − α1)4ε

∗

= T (χ2α1 + χ1α2 − βT )
−1(α2 − α1)4ε

∗ : 4ε∗ > 0, (A.3a)
∂ϕ

∂β
= −

∂

∂β
det4ε∗ = T4ε∗ : α−1 ∂α

∂β
α−1e = −T4ε∗ : α−1T4ε∗

= −(χ2α1 + χ1α2 − βT )
−1T4ε∗ : T4ε∗ 6 0. (A.3b)

In (A3), equality holds only when4ε∗ = 0, in which case4ε∗(·, χ, ε) ≡ 0, i.e. we are in Regime 0.
Finally, for f ∈ R2×2

sym ,

∂ϕ

∂ε
: f = T α−1e : α−1 ∂e

∂ε
f = T4ε∗ : α−1(α1 − α2)f = (α1 − α2)α

−1T4ε∗ : f.
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Thus
∂ϕ

∂ε
= (α1 − α2)α

−1T4ε∗. (A.3c)

A.2 The derivatives of β∗

In Regimes 0, I and III we immediately obtain ∂χβ∗ = 0 and ∂εβ∗ = 0. On the other hand, since in
Regime II, ϕ(βII (χ, ε), χ, ε) = 0, the chain rule immediately implies

∂βII

∂χ
= −

∂χϕ

∂βϕ
,

∂βII

∂ε
= −

∂εϕ

∂βϕ
.

(From Section A.1, ∂βϕ 6= 0 in Regime II.) Using (A.3),

∂β∗

∂χ
=


(T (χ2α1 + χ1α2 − βT )

−1(α2 − α1)4ε
∗) : 4ε∗

((χ2α1 + χ1α2 − βT )−1(T4ε∗)) : T4ε∗
in Regime II,

0 otherwise,
(A.4a)

∂β∗

∂ε
=


1

((χ2α1 + χ1α2 − βT )−1(T4ε∗)) : T4ε∗
(α1 − α2)α

−1T4ε∗ in Regime II,

0 otherwise.
(A.4b)

A.3 The derivatives of ε∗i

From (2.10g),

ε∗1(β
∗(χ, ε), χ, ε) = α−1(β∗(χ, ε), χ)e1(ε), e1(χ, ε) := (α2−β

∗(χ, ε)T )ε−χ2(α2ε
T
2−α1ε

T
1 ),

ε∗2(β
∗(χ, ε), χ, ε) = α−1(β∗(χ, ε), χ)e2(ε), e2(χ, ε) := (α1−β

∗(χ, ε)T )ε+χ1(α2ε
T
2−α1ε

T
1 ).

Thus

dε∗i
dχ
= −α−1 dα

dχ
α−1ei + α

−1 dei
dχ
= −α−1

(
dα
dχ
ε∗i +

dei
dχ

)
,

dε∗i
dε
= −α−1 dα

dε
α−1ei + α

−1 dei
dε
= −α−1

(
dα
dε
ε∗i +

dei
dε

)
,

dα
dχ
=
∂α

∂β∗

∂β∗

∂χ
+
∂α

∂χ
= −T

∂β∗

∂χ
+ (α2 − α1),

dei
dχ
=
∂ei

∂β∗

∂β∗

∂χ
+
∂ei

∂χ
= −T ε

∂β∗

∂χ
+ (α2ε

T
2 − α1ε

T
1 ),

dα
dε
= −

∂β∗

∂ε
T ,

de1

dε
= −

∂β∗

∂ε
T ε + α2 − β

∗T ,

de2

dε
= −

∂β∗

∂ε
T ε + α1 − β

∗T .
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Hence, using (2.10g) and ε = χ1ε
∗

1 + χ2ε
∗

2 , after some simplification,

dε∗1
dχ
=

(
Id+ χ2α

−1
(
(α2 − α1)−

∂β∗

∂χ
T

))
4ε∗, (A.5a)

dε∗2
dχ
=

(
Id− χ1α

−1
(
(α2 − α1)−

∂β∗

∂χ
T

))
4ε∗, (A.5b)

dε∗1
dε
= α−1

(
−χ2

∂β∗

∂ε
T4ε∗ + α2 − β

∗T

)
, (A.6a)

dε∗2
dε
= α−1

(
χ1
∂β∗

∂ε
T4ε∗ + α1 − β

∗T

)
, (A.6b)

d
dε
∆ε∗ = α−1

(
∂β∗

∂ε
T4ε∗ + α1 − α2

)
.

A.4 The derivatives of Wi

From (2.8), ∂εW1 = α1(ε − ε
T
1 ). Using (A.5),

∂W1(ε
∗

1)

∂χ
= α1(ε

∗

1 − ε
T
1 ) :

dε∗1
dχ

= α1(ε
∗

1 − ε
T
1 ) :

(
Id+ χ2(χ2α1 + χ1α2 − β

∗T )−1
(
(α2 − α1)−

∂β∗

∂χ
T

))
4ε∗,

(A.7a)
∂W2(ε

∗

2)

∂χ
= α2(ε

∗

2 − ε
T
2 ) :

(
Id− χ1(χ2α1 + χ1α2 − β

∗T )−1
(
(α2 − α1)−

∂β∗

∂χ
T

))
4ε∗.

(A.7b)

From (A.6b),

∂

∂ε
W1(ε

∗

1) =
1
2
∂

∂ε
((α1(ε

∗

1 − ε
T
1 )) : (ε∗1 − ε

T
1 ))

= (α1(ε
∗

1 − ε
T
1 )) :

∂

∂ε
(ε∗1 − ε

T
1 )

= −χ2
∂β∗

∂ε
(α1(ε

∗

1 − ε
T
1 )) : (α−1T4ε∗)+ (α1(ε

∗

1 − ε
T
1 )) :

(
α−1(α2 − β

∗T )
∂ε

∂ε

)
= −χ2

∂β∗

∂ε
(α1(ε

∗

1 − ε
T
1 )) : (α−1T4ε∗)+ (α2 − β

∗T )α−1α1(ε
∗

1 − ε
T
1 ), (A.8a)

∂

∂ε
W2(ε

∗

2) = χ1
∂β∗

∂ε
(α2(ε

∗

2 − ε
T
2 )) : (α−1T4ε∗)+ (α1 − β

∗T )α−1α2(ε
∗

2 − ε
T
2 ). (A.8b)

A.5 Computation of ∂χŴ

For i = 1, 2, let

σ ∗i := αi(ε∗i − ε
T
i ), σ ∗ := χ1σ

∗

1 + χ2σ
∗

2 , 4σ ∗ := σ ∗2 − σ
∗

1 .
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Then, from (A.7),

χ1
∂W1

∂χ
(ε∗1)+ χ2

∂W2

∂χ
(ε∗2)

= σ ∗ : 4ε∗ − χ1χ24σ
∗ : (χ2α1 + χ1α2 − βT )

−1
(
(α2 − α1)−

∂β∗

∂χ
T

)
4ε∗.

Also we observe,

∂

∂χ
(β∗χ1χ2ϕ(4ε

∗)) = χ1χ2
∂β∗

∂χ
ϕ(4ε∗)+ (χ2 − χ1)β

∗ϕ(4ε∗)+ β∗χ1χ2
∂ϕ(4ε∗)

∂χ
.

We are now ready for the main computation. We find

∂Ŵ

∂χ
=

∂

∂χ
(χ1W1(ε

∗

1)+ χ2W2(ε
∗

2)− β
∗χ1χ2ϕ(4ε

∗))

= σ ∗ : 4ε∗ − χ1χ24σ
∗ : (χ2α1 + χ1α2 − βT )

−1
(
(α2 − α1)−

∂β∗

∂χ
T

)
4ε∗

+W1(ε
∗

1)−W2(ε
∗

2)− χ1χ2
∂β∗

∂χ
ϕ(4ε∗)− (χ2 − χ1)β

∗ϕ(4ε∗)

+ β∗χ1χ2
(
T (χ2α1 + χ1α2 − βT )

−1(α2 − α1)4ε
∗
)

: 4ε∗.

This identity can be simplified by discussing the different regimes: In Regime 0, we have β∗ =
ϕ(4ε∗) = 0 and 4ε∗ = 4σ ∗ = 0. Similarly, in Regime I, we find β∗ = ∂β∗/∂χ = 0 leading
to 4σ ∗ = 0. Correspondingly, ϕ(4ε∗) = 0 in Regime II. Finally β∗ = γ ∗ and ∂β∗/∂χ = 0 in
Regime III. Putting everything together, this yields

dŴ
dχ

(χ, ε) = σ ∗ : 4ε∗+W1(ε
∗

1)−W2(ε
∗

2)+


0 in Regimes 0 and I,

β∗χ1χ2
∂β∗

∂χ
‖4ε∗‖2 in Regime II,

(χ1 − χ2)γ
∗ϕ(4ε∗) in Regime III.

(A.9)

A.6 Computation of ∂εŴ

Using (A.8),

∂Ŵ

∂ε
(χ, ε) =

∂

∂ε
(χ1W1(ε

∗

1)+ χ2W2(ε
∗

2)+ β
∗χ1χ2 det∆ε∗)

= χ1χ2
(
(α2(ε

∗

2 − ε
T
2 )− α1(ε

∗

1 − ε
T
1 )) : (α−1T4ε∗)+ det∆ε∗

)∂β∗
∂ε

+ χ1(α2 − β
∗T )α−1α1(ε

∗

1 − ε
T
1 )+ χ2(α1 − β

∗T )α−1α2(ε
∗

2 − ε
T
2 ). (A.10)

This can be simplified further when αi and T commute (which is the case, for example, when α1
and α2 correspond to cubic materials). As the calculations are involved, we formulate the result as
a lemma:
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LEMMA A.1 Let αi and T commute. Then

∂Ŵ

∂ε
(χ, ε) = χ1α1(ε

∗

1 − ε
T
1 )+ χ2α2(ε

∗

2 − ε
T
2 )

+

{
γ ∗χ1χ2α

−1(γ ∗, χ)(α1 − α2)T (ε
∗

2 − ε
∗

1) in Regime III,
0 else.

(A.11)

Alternatively, in Regime III,

∂Ŵ

∂ε
(χ, ε) = χ1(α2 − γ

∗T )α−1(γ ∗, χ)α1(ε
∗

1(γ
∗, χ, ε)− εT1 )

+ χ2(α1 − γ
∗T )α−1(γ ∗, χ)α2(ε

∗

2(γ
∗, χ, ε)− εT2 ). (A.12)

Proof. In Regimes 0, I and III, ∂β∗/∂ε = 0, and we immediately obtain (A.12) from (A.10).
Moreover, in Regime II, β∗ = βII is the unique root of ϕ and, from (2.10e),

ϕ(β∗, χ, ε) = − det(∆ε∗(β∗, χ, ε)) = 0.

Thus, in all four regimes,

(det∆ε∗)
∂β∗

∂ε
= 0.

Based on the equations

∆ε∗(ε) = α−1((α1 − α2)ε − (α1ε
T
1 − α2ε

T
2 )), (A.13)

ε∗2(ε)− ε
T
2 = α

−1((α1 − β
∗T )(ε − εT2 )+ χ1α1(ε

T
2 − ε

T
1 )),

ε∗1(ε)− ε
T
1 = α

−1((α2 − β
∗T )(ε − εT1 )− χ2α2(ε

T
2 − ε

T
1 )),

α2(ε
∗

2(ε)− ε
T
2 )− α1(ε

∗

1(ε)− ε
T
1 ) = β

∗α−1T ((α1 − α2)ε + (α2ε
T
2 − α1ε

T
1 )) (A.14)

we obtain for the first term in (A.10), while in Regime II,

χ1χ2
(
(α2(ε

∗

2 − ε
T
2 )− α1(ε

∗

1 − ε
T
1 )) : (α−1T4ε∗)

)∂β∗
∂ε

= −χ1χ2

(
β∗T (Bε − α−1s) : α−1T (Bε − α−1s)

α−1T (Bε − α−1s) : T (Bε − α−1s)

)
T B(Bε − α−1s)

= −β∗χ1χ2T B(Bε − α
−1s)

where, for conciseness, we have set

B(β, χ) := α−1(β, χ)(α1 − α2), s := α1ε
T
1 − α2ε

T
2 .

Then (A.10) becomes

∂Ŵ

∂ε
(χ, ε) = χ1(α2 − β

∗T )α−1α1(ε
∗

1 − ε
T
1 )+ χ2(α1 − β

∗T )α−1α2(ε
∗

2 − ε
T
2 )

+

{
−β∗χ1χ2T B(ε

∗

2 − ε
∗

1) in Regime II,
0 else.

(A.15)
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Now,
α2 − β

∗T = α − χ2(α1 − α2), α1 − β
∗T = α + χ1(α1 − α2).

Inserting these identities in (A.15), we obtain

∂Ŵ

∂ε
(χ, ε) = χ1α1(ε

∗

1 − ε
T
1 )+ χ2α2(ε

∗

2 − ε
T
2 )+ χ1χ2(α1 − α2)α

−1[α2(ε
∗

2 − ε
T
2 )− α1(ε

∗

1 − ε
T
1 )]

+

{
−β∗χ1χ2T α

−1(β, χ)(α1 − α2)(ε
∗

2 − ε
∗

1) in Regime II,
0 else.

(A.16)

In Regime 0 or I, β∗ = 0 and (A.16) leads to (A.11), as by (A.14) the term within [. . .] also
disappears. When in Regime II, based on (A.13), (A.14) we can rewrite the last term (A.16) and for
commuting T , B and α1−α2, the first and the last term in (A.16) cancel out. Finally, in Regime III,
the first term in (A.16) is not there and rearranging yields (A.11). 2

Appendix B. Computation of γ ∗ for cubic materials

Let ·̃ : R2×2
sym → R3 be the isometry given by

ε :=
(
ε11 ε12
ε12 ε22

)
7→ ε̃ := (ε11, ε22,

√
2ε12).

(This scaled variant of the Voigt notation goes back to Mandel [50].) The orthonormal basis of R2×2
sym ,{(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1/

√
2

1/
√

2 0

)}
is mapped to the standard basis of R3 and cubic elastic moduli toC11 C12 0

C12 C11 0
0 0 2C44

 = U
C11 − C12 0 0

0 C11 + C12 0
0 0 2C44

U t , (B.1)

U :=

1/
√

2 −1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1

 .
Here C11, C12 and C44 are the usual cubic elastic constants. Moreover, T has the representation 0 −1 0

−1 0 0
0 0 1

 = U
1 0 0

0 −1 0
0 0 1

U t .
With this it is easy to see that the quantity γ in (2.10b) is given by

γ := min{C11 − C12, 2C44}.
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Appendix C. Projection on the orthogonal complement of ker ε

To implement the conjugate gradient method and to solve (4.4) we apply an orthogonal projection P
that maps the iterates to (ker ε)⊥ (see below). The modified conjugate gradient method for the
system GUn+1

= b reads as follows:

• Start: Choose Un+1
0 .

• Project initial value: Replace Un+1
0 by PUn+1

0 .
• Set r0 = P(GUn+1

0 − b) and d1 = −r0.
• Iterate for j = 1, 2, 3, . . .

if j > 1

αj−1 =
(rj−1,Gdj−1)

(dj−1,Gdj−1)
,

dj = −rj−1 + αj−1dj−1,

qj = P(Gdj ), βj =
(rj−1, dj )

(dj , qj )
, Un+1

j = Un+1
j−1 + βjdj , rj = rj−1 + βjqj .

In practise the algorithm even works without projections as numerically the Un+1
j are never exactly

orthogonal to kerG. Yet, replacing Un+1
0 by PUn+1

0 is advantageous as for an initial value with a
small component in kerG, the standard conjugate gradient method needs many iterations.

To define P we equip
W := {w : Ω → R2

| w is affine}
with the Euclidean inner product

〈(a1, a2), (b1, b2)〉 :=
∫
Ω

(a1(x, y)b1(x, y)+ a2(x, y)b2(x, y)) dx dy.

It is elementary to check that

w1(x, y) := (1, 0), w2(x, y) := (0, 1),

w3(x, y) :=
1
√

6

(
−y +

1
2
, x −

1
2

)
, w4(x, y) :=

1
√

12

(
x −

1
2
, 0
)
,

w5(x, y) :=
1
√

6

(
y −

1
2
, x −

1
2

)
, w6(x, y) :=

1
√

12

(
0, y −

1
2

)
form an orthonormal basis of (W, 〈·, ·〉). The orthogonal complement of ker ε is taken with respect
to 〈·, ·〉. Since ε11((−y, x)) = ε22((−y, x)) = ε12((−y, x)) = 0, we find

ker ε = span{w1, w2, w3}, (ker ε)⊥ = span{w4, w5, w6}.

Note that

{v1 = w1, v2 = w2, v3(x, y) = (x, 0), v4(x, y) = (0, x), v5(x, y) = (y, 0), v6(x, y) = (0, y)}

also form a basis of W . Expressing vs in terms of ws, we obtain the following formula for P :

P

6∑
i=1

βivi =
√

12β3w4 +

√
6

2
(β4 + β5)w5 +

√
12β6w6

= −

(
β3

2
+
β4

4
+
β5

4

)
v1 −

(
β4

4
+
β5

4
+
β6

2

)
v2 + β3v3 +

β4 + β5

2
(v4 + v5)+ β6v6.
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54. PAWŁOW, I., & ZAJĄCZKOWSKI, W. M. Strong solvability of 3-D Cahn–Hilliard system in elastic solids.

Math. Methods Appl. Sci. 31 (2008), 879–914. Zbl 1145.35004 MR 2418670
55. SVOBODA, J., & LUKÁS, P. Model of creep in 〈001〉-oriented superalloy single crystals. Acta Mater. 46

(1998), 3421–3431.
56. WASILEWSKI, Z. R., DION, M. M., LOCKWOOD, D. J., POOLE, P., STREATER, R. W., &

SPRINGTHORPE, A. J. Composition of AlGaAs. J. Appl. Phys. 81 (1997), 1683–1694.
57. WATSON, S. Crystal growth, coarsening and the convective Cahn–Hilliard equation. In: Free Boundary

Problems (Trento, 2002), Int. Ser. Numer. Math. 147, Birkhäuser (2004), 329–341. Zbl 1040.35078
MR 2044584

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1031.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981620
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1068.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2087470
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0733.65089&format=complete
http://www.ams.org/mathscinet-getitem?mr=1138471
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0632.76119&format=complete
http://www.ams.org/mathscinet-getitem?mr=0970531
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0001.09501&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0004.18303&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1145.35004&format=complete
http://www.ams.org/mathscinet-getitem?mr=2418670
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1040.35078&format=complete
http://www.ams.org/mathscinet-getitem?mr=2044584

	Introduction
	The Cahn–Hilliard equation with elasticity
	The elastic Cahn–Hilliard equation
	The elastic energy density
	Comparison with other approaches

	Existence and uniqueness of weak solutions
	Assumptions
	Existence of weak solutions
	Uniqueness of weak solutions

	Numerical simulations
	Solution method
	Sample simulations

	Conclusions
	The derivatives of 
	The derivatives of *
	The derivatives of _i*
	The derivatives of W_i
	Computation of _W"0362W
	Computation of _W"0362W


