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We present a phase field model which approximates a one-phase Stefan-like problem with a kinetic
condition at the moving boundary, and which models a dissolution and precipitation reaction. The
concentration of dissolved particles is variable on one side of the free boundary and jumps across the
free boundary to a fixed value given by the constant concentration of the particles in the precipitate.
Using a formal asymptotic analysis we show that the phase field model approximates the appropriate
sharp interface limit. The existence and uniqueness of solutions to the phase field model is studied.
By numerical experiments the approximating behaviour of the phase field model is investigated.

1. Introduction

In this paper we introduce a phase field model describing a one-phase free boundary problem with a
kinetic condition at the moving boundary. The motivating background is the modelling of a process
involving transport of solutes by diffusion in a fluid undergoing a precipitation/dissolution reaction.
This process can be modelled by a sharp interface free boundary problem as presented in [16].
The model in [16] takes into account the dissolved particles present in an aqueous solution. In a
precipitation reaction a fixed number of dissolved particles can precipitate in the form of one particle
of a (crystalline) solid, which is attached to the boundary of the region occupied by the fluid, and
which is immobile. Also the reverse reaction of dissolution is possible. In the case of dissolution of
solid particles the boundary of the fluid region recedes, and in the case of precipitation it advances.

The phase field model presented in this work is intended to model the same precipita-
tion/dissolution reaction. Using a formal asymptotic analysis we show that the phase field model
approximates in the limit ε → 0 the sharp interface model presented in [16]. Here ε is the thickness
of an interfacial layer containing the moving boundary [6]. Phase field models are widely used in the
modelling of phase transitions and solidification processes [2, 3, 5, 6, 7] that can be described using
a Stefan problem with kinetic and curvature undercooling. In this case usually only the jump of the
internal energy (the latent heat) or of the concentration (miscibility gap) across the interface can
be prescribed. In the case of precipitation and dissolution the concentration also jumps across the
interface, but instead of the magnitude of the jump, the value of the concentration on one side of the
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interface is prescribed while leaving it variable on the other side. The fixed value of the concentration
on one side of the interface is given by the fixed and constant concentration of particles in the
precipitate. To achieve this, we need a singular coefficient in the diffusion equation of the phase
field model, or a coefficient that becomes singular in the limit ε → 0.

The reason for proposing and studying such a phase field formulation of the crystal
precipitation/dissolution process is the same as for the classical Stefan problem and other sharp
interface problems: the theoretical mathematical analysis for the phase field problem is usually
much more straightforward for the phase field formulation than for the sharp interface problem. The
phase field formulation is usually also more easy to deal with numerically and in addition rigorous
homogenization results can be obtained (see, for example, [9]).

We propose a phase field model for the (mass per volume) concentration of dissolved particles
u(t, x) and the phase parameter ϕ(t, x), which has the form

αε2∂tϕ − ε
2∆ϕ + p′(ϕ)+ εβk′(ϕ)(f (u)+ (u− ρ)f ′(u)) = 0, (1)

∂tu−D∇ ·

(
∇u+ (ρ − u)

k′(ϕ)

k(ϕ)
∇ϕ

)
= 0, (2)

where p(ϕ) is a double well potential, f (u) is a rate function, k(ϕ) is an interpolation function that
decreases monotonically from 1 to 0 for ϕ ranging from −1 to 1, with vanishing first derivative at
ϕ = ±1. The physical parameters α, β,D and ρ represent the relaxation time, the reciprocal surface
tension, the diffusion coefficient and the fixed (mass per volume) concentration of particles in the
crystalline solid, respectively. The region where ϕ ≈ −1 corresponds to the fluid region and the
region where ϕ ≈ 1 corresponds to the crystalline solid, and ϕ should have a steep transition from
−1 to 1 at the position of the interface between the fluid and solid. As k(ϕ) vanishes for ϕ = 1, the
coefficient k′(ϕ)/k(ϕ) is singular at ϕ = 1. In the asymptotic analysis we will see that this enforces
u ≈ ρ when ϕ ≈ 1 to leading order. This mechanism implements the requirement that u has a fixed
value on the side of the interface that represents the crystalline solid.

The paper is organized as follows. In Section 2 we briefly discuss the sharp interface problem
that is approximated by the proposed phase field model. In Section 3 the phase field model is
introduced, and in Section 4 we show by a formal asymptotic expansion that the phase field model
approximates the sharp interface problem discussed in Section 2. We prove the solvability of our
phase field model in Section 5, and in Section 6 we illustrate numerically that solutions to the phase
field model approximate solutions to the sharp interface equations for small ε.

2. The sharp interface model

For the formulation of the sharp interface model, we consider a domain Ω ⊂ Rd having a
sufficiently regular boundary Γ . We assume that Ω contains two distinct phases: fluid and solid,
which occupy two disjoint time-dependent a priori unknown regionsΩf (t) andΩs(t), respectively.
These regions are separated by the moving interface ΓI (t), where the precipitation/dissolution
reaction is taking place. We have Ω := Ωf (t) ∪ Ωs(t) ∪ ΓI (t). Furthermore, the boundary of
Ω is divided into Γf (t) and Γs(t), where Γi(t) := ∂Ω ∩ ∂Ωi(t) for i = f, s. We denote by n the
normal vector to ∂Ωf (t) pointing outward, which means that on ΓI (t) the vector n points into the
solid part.

The fluid in Ωf (t) contains dissolved solutes which precipitate on the wet part of the grain
boundary and form a crystalline solid. Generally the dissolved particles, or solutes, consist of anions
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and cations. The ratio between their concentrations may vary within the fluid, but in the precipitate
a fixed number of ions, say n1, and fixed number of cations, say n2, form together one particle of
the crystalline solid. We restrict ourselves to the situation where also in the fluid the ratio between
the ion and cation concentrations is constant and equal to the ratio of their concentrations in the
crystalline solid, i.e. n1/n2. One can show that if this is initially the case, and if one assumes that
the diffusion coefficients for the ions and cations are the same, and in the absence of electric forces
and fields, the ratio of the concentrations will stay equal to n1/n2 in the fluid [11, 13, 15, 16]. This
means that under these assumptions we may restrict our attention to the concentration u of one
solute species (the cation). Also note that we do not take into account volume changes due to the
precipitation/dissolution reaction. This would require taking into account fluid flow with either a
time dependent domain Ω or an in/out-flow boundary condition [14]. At the moment we neglect
these volume changes and we assume that there is no fluid flow and that the only means of transport
of the solute in the fluid phase is diffusion. This restricts our model, but the model works well when
the volume changes are small, or when transport by diffusion dominates transport by fluid flow.

The solid domain Ωs(t) is occupied by the crystalline solid in which the ions have a fixed,
constant (mass per volume) concentration, denoted by ρ.

All the quantities and equations involved are considered dimensionless. For T > 0 we define

J := (0, T ],
Q(T ) := J ×Ω,
Qi(T ) :={(t, x) | t ∈ J, x ∈ Ωi(t)} with i = f, s,
Gi(T ) :={(t, x) | t ∈ J, x ∈ Γi(t)} with i = f, s, I.

(3)

Then the model equations are given by
∂tu=D∆u in Qf (T ),

∇u · n= 0 on Gf (T ),
vn(ρ − u)=D(∇u · n) on GI (T ) ∩Q(T ),
u(0, x)= u0(x) on Ωf (0),

(4)

where D is the diffusion coefficient of the solute, vn denotes the normal velocity of ΓI (t), and n
is, as introduced above, the outward pointing unit normal. Equation (43) is a Rankine–Hugoniot
condition [10] and ensures the conservation of mass. The kinetic condition for the normal velocity
vn of the interface ΓI (t) reads

vn + σκ = −f (u) on GI (T ) ∩Q(T ), (5)

where σ is the surface tension and κ is the curvature of the interface ΓI (t). Note that the equation
(5) (just as (43)) holds only in the interior of Ω . In order to make sure that the moving boundary
does not leave the domain Ω , we impose the condition

vn = [−σκ − f (u)]− on GI (T ) ∩G(T ), (6)

with [x]− = min{0, x}, and where G(T ) is the lateral boundary G(T ) := J × Γ . We refer to [16]
for the exact structure of the rate function f (u) in the specific case of dissolution and precipitation,
and also for a well-posedness result for the equations (4)–(5) in a one-dimensional setting. Here we
only mention that f (u) is Lipschitz and non-decreasing. The function u0 appearing in the initial
condition, as well as the initial fluid domain configuration Ωf (0), are assumed to be given.
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The term σκ in (5) modelling curvature effects does not of course appear in one-dimensional
settings, such as, for example, in [16]. Furthermore, surface tension is in general anisotropic due to
the crystalline structure of the solid material. However, in the present paper we restrict ourselves to
isotropic surface tension.

3. The phase field model

In Section 4 we show by a formal asymptotic analysis that solutions to the phase field model
(1)–(2) approximate solutions to the sharp interface model discussed in the previous section. In
fact, we present a formal asymptotic analysis of the phase field model with a regularized version
of (2): we replace the fraction k′(ϕ)/k(ϕ) in (2), which has a singularity for ϕ = 1, by the
fraction k′(ϕ)/(k(ϕ) + ε), which remains bounded for all ϕ. The regularized version is also used
for the numerical computations discussed in Section 6. Since the asymptotic analysis presented in
Section 4 does, with slight variations, also apply for (1)–(2), both versions of the phase field model
approximate the same sharp interface model. In Section 5 we prove existence and uniqueness of
solutions to the regularized phase field model as well as the existence of solutions to the singular
version (1)–(2) when the initial condition ϕ0 satisfies the condition ln(1− ϕ0) ∈ H

1(Ω).
To approximate the sharp interface problem (4)–(5) we consider the following phase field model:

αε2∂tϕ − ε
2∆ϕ + p′(ϕ)+ εβk′(ϕ)(f (u)+ (u− ρ)f ′(u)) = 0, (7)

∂tu−D∇ ·

(
∇u+ (ρ − u)

k′(ϕ)

k(ϕ)+ ε
∇ϕ

)
= 0 (8)

on the time-space cylinder Q(T ). The partial differential equations (7)–(8) are complemented by
the initial data

ϕ(0, x) = ϕ0(x) for all x ∈ Ω, (9)
u(0, x) = u0(x) for all x ∈ Ω, (10)

and homogeneous Neumann conditions on the lateral boundary G(T ),

∇ϕ · n = 0, (11)
∇u · n = 0. (12)

There is some freedom in choosing the exact form of the functions k and p. A typical choice for the
function p is the double well potential given by

p(ϕ) := 1
2 (ϕ

2
− 1)2. (13)

In this paper, however, we need a potential p with slightly different properties, and we will use the
potential given by

p(ϕ) := 1
2 (ϕ

2
− 1)4. (14)

The reasons for choosing this potential will become clear later on (see the remarks at the end of
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Section 4.3). The function k(ϕ) should interpolate between 1 and 0 for ϕ ranging from −1 to 1, and
have vanishing first derivative for ϕ = ±1. In this paper we define k(ϕ) by

k(ϕ) :=


1 for ϕ < −1,
1− 1

2 (1+ ϕ)
2 for −1 6 ϕ 6 0,

1
2 (1− ϕ)

2 for 0 < ϕ 6 1,
0 for ϕ > 1.

(15)

4. Formal asymptotic analysis for ε → 0

In this section we present a formal asymptotic analysis of the phase field model (7)–(8) with p and
k given by (14) and (15). In order to describe the transition from the phase field model to the sharp
interface model we use the matched asymptotic expansion. This expansion consists of two parts, an
outer expansion valid far away from the free boundary, and an inner expansion valid close to the
free boundary. The outer expansions for u and ϕ are given by

u(t, x) = U0(t, x)+ ε U1(t, x)+ ε
2U2(t, x)+ · · · ,

ϕ(t, x) = Φ0(t, x)+ ε Φ1(t, x)+ ε
2Φ2(t, x)+ · · · .

For the inner expansion we use a transform of variables into local curvilinear coordinates [4]
that are derived from the zero-level set ΓI,ε(t) := {x ∈ Rd | ϕ(t, x) = 0} of the solution ϕ to
the phase field model with parameter ε. We assume that this level set is sufficiently smooth and
smoothly approaches the moving interface ΓI (t) as ε → 0. For a point x ∈ Ω , let r(t, x) denote the
signed distance of x to ΓI,ε(t) with negative r(t, x) for x in the liquid domain, and let s 7→ yε(t, s)

for s ∈ P ⊂ Rd−1 be an orthogonal parametrization of ΓI,ε(t). Then any point in a neighbourhood
of ΓI,ε(t) can be represented by

x = yε(t, s)+ r nε(t, s), (16)

where nε(t, s) is the normal vector to ΓI,ε(t) at yε(t, s). The corresponding coordinates r = r(t, x)
and s = s(t, x) satisfy

|∇r|2 = 1, ∇r · ∇s = 0,
∂t r = −vn,

∆r =
κ + 2Πr

1+ κr +Πr2 ,

with κ and Π denoting the mean and Gaussian curvatures of ΓI,ε and vn denoting the normal
velocity of ΓI,ε . The normal is pointing outward from the liquid domain. Furthermore we assume
that the curvature and the normal velocity satisfy the expansions

κ = κ0 +O(ε) and vn = vn,0 +O(ε),

where κ0 and vn,0 are the curvature and the velocity of the moving interface ΓI (t). Using the
transformations ũ(t, r(t, x), s(t, x)) = u(t, x) and ϕ̃(t, r(t, x), s(t, x)) = ϕ(t, x), we transform
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the differential operators involved into (see, for example, [5])

∂tu = (∂t − vn∂r + ∂t s · ∇s)ũ,

∂tϕ = (∂t − vn∂r + ∂t s · ∇s)ϕ̃,

∆u =
(
∂2
r +∆r ∂r +∆s · ∇s +

d−1∑
i=1

|∇si |
2∂2
si

)
ũ,

∇ · (K∇ϕ) =
(
∂r(K∂r)+K∆r∂r +K∆s · ∇s +

d−1∑
i=1

|∇si |
2∂si (K∂si )

)
ϕ̃,

where K = (ρ − u)k′(ϕ)/(k(ϕ)+ ε).
Close to the moving boundary ΓI,ε , the solution to the phase field model is represented in the

new coordinates (t, r, s). In the limit ε → 0, we expect the diffusive layer to shrink to a sharp
interface positioned in ΓI (t). We perform the further change of coordinate ξ = r/ε, introduce the
variables

û(t, ξ, s) = û(t, r
ε
, s) = ũ(t, r, s) and φ(t, ξ, s) = φ(t, r

ε
, s) = ϕ̃(t, r, s),

and use the following expansion ansatz:

û(t, ξ, s) = u0(t, ξ, s)+ εu1(t, ξ, s)+ ε
2u2(t, ξ, s)+ · · · , (17)

φ(t, ξ, s) = φ0(t, ξ, s)+ εφ1(t, ξ, s)+ ε
2φ2(t, ξ, s)+ · · · . (18)

For the equations for the inner expansions we also need to transform and expand the differential
operators. The asymptotic expansions of the differential operators represented in the coordinates
(t, ξ, s) can be written as

∂t = −ε
−1vn∂ξ + (∂t + ∂t s · ∇s),

∆ = ε−2∂2
ξ + ε

−1∆r ∂ξ +
(
∆s · ∇s +

d−1∑
i=1

|∇si |
2∂2
si

)
,

∇ · (K∇) = ε−2∂ξ (K∂ξ )+ ε
−1κ0K∂ξ +O(1).

4.1 Matching conditions

In an intermediate region of distance proportional to
√
ε the inner and outer expansions describe

the same function. This is realized by matching conditions for both expansions. We write the outer
expansion in terms of the local variables (t, ξ, s) using (16) with r = εξ . The normal vector can be
expanded in a series

nε(t, s) = n0(t, s)+ εn1(t, s)+ · · · .

The point yε admits the expansion

yε(t, s) = y0(t, s)+ εn0(t, s)y1(t, s)+ · · · .

The matching conditions are derived from

u(t, yε + εξnε) = U0(t, y0±)+ ε
(
U1(t, y0±)+ (∇U0(t, y0±) · n0)(y1 + ξ)

)
+ · · · , (19)

ϕ(t, yε + εξnε) = Φ0(t, y0±)+ ε
(
Φ1(t, y0±)+ (∇Φ0(t, y0±) · n0)(y1 + ξ)

)
+ · · · , (20)
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where the index ± at y0 indicates the limit at the free boundary from the “fluid” (ξ < 0) or
the “solid” (ξ > 0) side. This distinction is necessary, since the functions Ui and Φi may be
discontinuous at the free boundary. Now we match the inner and outer expansions by equating

û(t, ξ, s) = u(t, yε(t, s)+ εξnε(t, s)),

φ(t, ξ, s) = ϕ(t, yε(t, s)+ εξnε(t, s)).

Next we substitute the inner expansions (17)–(18) and the expansions (19)–(20) in the equations
above, we take the limit ξ → ±∞ and collect the terms of different order in ε. In this way we
obtain, for the terms of order ε0,

lim
ξ→±∞

u0(t, ξ, s) = U0(t, y0±(t, s)), (21)

lim
ξ→±∞

φ0(t, ξ, s) = Φ0(t, y0±(t, s)). (22)

For the terms of order ε1, we obtain

lim
ξ→±∞

[u1(t, ξ, s)− U1(t, y0±(t, s))− (∇U0(t, y0±(t, s)) · n0(t, s))(y1(t, s)+ ξ)] = 0, (23)

lim
ξ→±∞

[φ1(t, ξ, s)−Φ1(t, y0±(t, s))− (∇Φ0(t, y0±(t, s)) · n0(t, s))(y1(t, s)+ ξ)] = 0. (24)

In a similar way we obtain matching conditions for the derivatives with respect to ξ : we equate

∂ξ û(t, ξ, s) = ε∇u(t, yε(t, s)+ εξnε(t, s)) · nε(t, s),

∂ξφ(t, ξ, s) = ε∇ϕ(t, yε(t, s)+ εξnε(t, s)) · nε(t, s),

substitute the expansions, take the limit ξ →±∞, and obtain, for the terms of order ε0,

lim
ξ→±∞

∂ξu0 = 0, (25)

lim
ξ→±∞

∂ξφ0 = 0, (26)

and for the terms of order ε1,

lim
ξ→±∞

∂ξu1(t, ξ, s) = ∇U0(t, y0±(t, s)) · n0(t, s), (27)

lim
ξ→±∞

∂ξφ1(t, ξ, s) = ∇Φ0(t, y0±(t, s)) · n0(t, s). (28)

4.2 Outer expansion

By substituting the outer expansions in the differential equations, we obtain a sequence of problems.
For the outer expansion, however, we will only look at the O(ε0) problem. First we concentrate on
the phase field equation. By the term of order ε0 in the phase field equation, we have p′(Φ0) = 0,
from which it follows that

Φ0 = ±1 a.e. in Ω. (29)
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The remaining zero Φ0 = 0 of p′ is not considered, because it is unstable due to p′′(Φ0) < 0.
The function Φ0 represents the limit of the solutions ϕε to (7) as ε → 0, and unstable stationary
solutions cannot be reached by this limit. This can be formally seen from the linearized equation

αε2∂tϕε = −p
′′(Φ0)(ϕε −Φ0)+O(ε).

If ε is small, then p′′(Φ0) dominates the right hand side. For p′′(Φ0) < 0 any deviation from Φ0
will become larger with increasing time.

For Φ0 = −1, we expand k′(ϕ)/(k(ϕ) + ε) around ϕ = −1 and collect the ε0 terms in the
diffusion equation to obtain

∂tU0 −D∆U0 = 0 when Φ0 = −1. (30)

For Φ0 = 1, we need to be more careful and look in more detail at the term k′(ϕ)
k(ϕ)+ε

∇ϕ. We use
the definition (15) of k(ϕ) near ϕ = 1, we substitute the outer expansion and we use Φ0 = 1 and
∇Φ0 = 0 so that we have

ϕ − 1
1
2 (1− ϕ)

2 + ε
∇ϕ =

εΦ1 + ε
2(. . . )

1
2 (εΦ1 + ε2(. . . ))2 + ε

(ε∇Φ1 + ε
2(. . . ))

=
Φ1 + ε(. . . )

ε 1
2 (Φ1 + ε(. . . ))2 + 1

(ε∇Φ1 + ε
2(. . . )).

We conclude that the term k′(ϕ)
k(ϕ)+ε

∇ϕ is O(ε) when Φ0 = 1. This means that if we collect the ε0

terms in the diffusion equation we also get

∂tU0 −D∆U0 = 0 when Φ0 = 1. (31)

4.3 Inner expansion

Now we substitute the inner expansions of the differential operators and those of û and φ into the
differential equations and collect terms of the same order in ε. In addition we multiply the diffusion
equation with ε2 so that the lowest order terms in both equations are of order ε0. Then we again
obtain a sequence of problems.

The first problem consists of the terms of order ε0 in both the diffusion equation and the phase
field equation. Let us first consider the equation for φ0:

− ∂2
ξ φ0 + p

′(φ0) = 0. (32)

This equation is supplemented by boundary conditions at±∞, derived from the matching condition
(22):

lim
ξ→±∞

φ0(t, ξ, s) = ±1.

Due to the condition φ(t, 0, s) = 0 and the fact that ΓI,ε(t) is supposed to converge to ΓI (t) for
ε → 0 we also have φ0(t, 0, s) = 0. Since p is an even function, i.e. p(x) = p(−x) (see (14)), and
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nonnegative, we can reduce (32) together with the conditions φ0(t, 0, s) = 0 and φ0(t, ξ, s)→ 1 as
ξ →∞ to the first order equation

∂ξφ0 =
√

2p(φ0), φ0(0) = 0. (33)

This equation has, with the given choice for the double well potential, a unique, strictly increasing
solution, independent of t and s, which we from now on denote by φ0(ξ).

Now we turn to the equation for u0. For ξ 6 ξ̄ , with ξ̄ ∈ R a constant, we have φ0(ξ) 6 φ0(ξ̄ )

< 1. This means that for ξ 6 ξ̄ we have the expansion

k′(ϕ)

k(ϕ)+ ε
=
k′(φ0)

k(φ0)
+ ε

(
k′′(φ0)φ1

k(φ0)
−
k′(φ0)(k

′(φ0)φ1 + 1)
(k(φ0))2

)
+ ε2(. . . ).

Substituting this expansion into the diffusion equation and collecting the terms of order ε0, we
obtain

∂2
ξ u0 + ∂ξ

(
(ρ − u0)

k′(φ0)

k(φ0)
∂ξφ0

)
= 0 for ξ 6 ξ̄ , (34)

with boundary conditions (see (21))

lim
ξ→±∞

u0(t, ξ, s) = u±(t, s),

where u±(t, s) := U0(t, y0±(t, s)) denote the different limit values of the solutions to the sharp
interface model at the moving interface from the different sides of the interface. We integrate (34)
from −∞ to ξ̄ to arrive at

∂ξu0 = −
(ρ − u0)k

′(φ0)

k(φ0)
∂ξφ0 at ξ = ξ̄ . (35)

Note that this equation holds for all ξ̄ ∈ R, and that the integration constant vanishes since ∂ξu0
and ∂ξφ0 vanish as ξ →−∞ and (k(φ0))

−1 remains bounded as φ0 →−1. Now we use the ansatz
u0(t, ξ̄ , s) = ũ(t, φ0(ξ̄ ), s), which gives for ũ(t, y, s) the equation

∂y ũ(t, y, s) = −
(ρ − ũ(t, y, s))k′(y)

k(y)
. (36)

This equation has the general solution

ũ(t, y, s) = ρ + C(t, s)k(y), (37)

and we see that we cannot enforce a boundary condition for y = 1 other than

u0(t,+∞, s) = ũ(t, 1, s) = u+(t, s) = ρ. (38)

If we use the boundary condition ũ(t,−1, s) = u−(t, s), the solution is given by ũ(t, y, s) =
ρ + (u−(t, s)− ρ)k(y), so that

u0(t, ξ, s) = ρ + (u−(t, s)− ρ)k(φ0(ξ)). (39)
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REMARK If we supply initial conditions such that U0(0, x) = ρ where Φ0(0, x) = 1, then the
boundary conditions u+(t, s) = ρ at ΓI and (12) imply, together with the equation (31), that

U0(t, x) = ρ when Φ0 = 1, and (∇U0(t, y0+(t, s)) · n(t, s)) = 0. (40)

For the second problem, we collect the terms of order ε of the phase field equation and the
diffusion equation. We arrive at the following equation for φ1:

−∂2
ξ φ1 + p

′′(φ0)φ1 = (αvn,0 + κ0)∂ξφ0 − βk
′(φ0)(f (u0)+ (u0 − ρ)f

′(u0)).

We can write this equation in the form

Lφ1 = A(φ0),

where

Lφ1 = −∂
2
ξ φ1 + p

′′(φ0)φ1,

A(φ0) = (αvn,0 + κ0)∂ξφ0 − βk
′(φ0)(f (u0)+ (u0 − ρ)f

′(u0)).

The boundary conditions are in this case that φ1(±∞) is bounded (see (24)). Note that L is a
Fredholm operator of index zero. In particular, one has the following Fredholm alternative: the
equation Lφ1 = A(φ0) has a solution if and only if A(φ0) is orthogonal to the finite-dimensional
nullspace of L∗, i.e. of L. Since ∂ξφ0 ∈ ker(L), the solvability condition implies∫

∞

−∞

A(φ0) ∂ξφ0 dξ = 0.

This can be written as∫
∞

−∞

[(αvn,0 + κ0)(∂ξφ0)
2
− βk′(φ0) ∂ξφ0(f (u0)+ (u0 − ρ)f

′(u0))] dξ = 0.

Substituting the solution (39) for u0, we can rewrite this as

(αvn,0 + κ0)

∫
∞

−∞

(∂ξφ0)
2 dξ = β

∫
∞

−∞

∂ξ [k(φ0)f (ρ + (u− − ρ)k(φ0))] dξ.

Performing the integration on the right hand side, we obtain the kinetic condition

αvn,0 + κ0 =
−βf (u−)∫
∞

−∞
(∂ξφ0)2 dξ

. (41)

Since ∂ξφ0 = (φ
2
0 − 1)2, we have

∫
∞

−∞
(∂ξφ0)

2 dξ = 16/15. If we choose

α = σ−1 and β = 16α/15, (42)

we obtain the equivalent of equation (5):

vn,0 + σκ0 = −f (u−).
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Now we collect the terms of order ε1 in the diffusion equation, which results in

− vn,0∂ξu0 = D∂ξξu1 + κ0D(∂ξu0 + (ρ − u0)h(φ0)∂ξφ0)

+D∂ξ

[
(ρ − u0)

(
h(φ0)∂ξφ1 +

(
k′′(φ0)φ1

k(φ0)
− (h(φ0))

2φ1 −
h(φ0)

k(φ0)

)
∂ξφ0

)
− u1h(φ0)∂ξφ0

]
, (43)

for ξ 6 ξ̄ , where we have used the notation

h(φ) :=
k′(φ)

k(φ)
. (44)

The boundary conditions follow from the matching conditions (27):

∂ξu1 ∼ (∇uI · n)± for ξ →±∞,

where

(∇uI · n)± := ∇U0(t, y0±(t, s)) · n(t, s) (45)

denote the corresponding normal derivatives from the different sides of the interface. Using (35)
and (39), equation (43) can be rewritten as

−vn,0∂ξu0 = D∂ξ (∂ξu1 − u1h(φ0)∂ξφ0)

+D∂ξ

[
(ρ − u−)k(φ0)

(
h(φ0)∂ξφ1 +

(
k′′(φ0)φ1

k(φ0)
− (h(φ0))

2φ1 −
h(φ0)

k(φ0)

)
∂ξφ0

)]
. (46)

Now we integrate with respect to ξ to obtain

−vn,0u0 = D(∂ξu1 − u1h(φ0)∂ξφ0)

+D

[
(ρ − u−)k(φ0)

(
h(φ0)∂ξφ1 +

(
k′′(φ0)φ1

k(φ0)
− (h(φ0))

2φ1 −
h(φ0)

k(φ0)

)
∂ξφ0

)]
+ C.

The exact value of the integration constant C will be determined later on. Some simple
manipulations show that the equation above is equivalent to

−vn,0u0 = Dk(φ0)∂ξ

[
u1

k(φ0)
+ (ρ − u−)

k′(φ0)φ1 + 1
k(φ0)

]
+ C. (47)

Next we want to take the limits ξ̄ →±∞. With (44), we write (47) as

−vn,0u0(ξ̄ ) = D(∂ξb(ξ̄ )− b(ξ̄ )h(φ0(ξ̄ ))∂ξφ0(ξ̄ ))+ C, (48)

where

b(ξ) := u1(ξ)+ (ρ − u−)(k
′(φ0(ξ))φ1(ξ)+ 1). (49)
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First we will consider the limit ξ̄ → −∞. Using (45) and the fact that (∇Φ0(t, y0−(t, s)) · n(t, s))

= 0, the matching conditions (21)–(28) give

u1(ξ) ∼ ξ(∇uI · n)−,

∂ξu1(ξ) ∼ (∇uI · n)−,

φ0(ξ) ∼ −1,
φ1(ξ) ∼ Φ1(t, y0−),

∂ξφ0(ξ) ∼ 0,
∂ξφ1(ξ) ∼ 0

as ξ →−∞.

These limits, together with the definitions (15) and (49) of k and b, imply for b(ξ) that{
b(ξ) ∼ ξ(∇uI · n)− + ρ − u−,

∂ξb(ξ) ∼ (∇uI · n)−
as ξ →−∞. (50)

Substituting (14) into (33) results in ∂ξφ0 = (φ
2
0 − 1)2. With separation of variables we obtain

ξ =
1
4

(
ln

1+ φ0

1− φ0
− (φ0 − 1)−1

− (φ0 + 1)−1
)
+ C̃.

Now we see, using (44), (501) and φ0 →−1 as ξ →−∞, that

lim
ξ→−∞

b(ξ)h(φ0(ξ))∂ξφ0(ξ) = 0,

since h(φ0(ξ)) remains bounded for ξ →−∞. We use this in letting ξ̄ →−∞ in (48) and obtain

−vn,0u− = D(∇uI · n)− + C. (51)

Secondly we consider the limit ξ̄ → +∞. From equation (33) for φ0 and the definitions of
p(ϕ), k(ϕ) and h(ϕ) we find

lim
ξ→∞

h(φ0)∂ξφ0 = lim
ξ→∞

k′(φ0)

k(φ0)
∂ξφ0 = lim

ξ→∞
2
(φ2

0 − 1)2

(1− φ0)2
(φ0 − 1)

= lim
ξ→∞

2(φ0 + 1)2(φ0 − 1) = 0, (52)

since φ0 tends to 1 as ξ →∞.
Using the fact that (∇U0(t, y0+(t, s) ·n(t, s)) = (∇Φ0(t, y0+(t, s)) ·n(t, s)) = 0, the matching

conditions (21)–(28) give 

u1(ξ) ∼ U1(t, y0+(t, s)),

∂ξu1(ξ) ∼ 0,
φ0(ξ) ∼ 1,
φ1(ξ) ∼ Φ1(t, y0+(t, s)),

∂ξφ0(ξ) ∼ 0,
∂ξφ1(ξ) ∼ 0

as ξ →+∞.
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These limits imply, again together with the definitions (15) and (49) of k and b, that{
b(ξ) ∼ U1(t, y0+(t, s))+ (ρ − u−),

∂ξb(ξ) ∼ 0
as ξ →+∞. (53)

Now we send ξ̄ to +∞ in (48) and, using (52) and (53), we obtain

−vn,0ρ = C. (54)

Subtracting (54) from (51) results in the Rankine–Hugoniot condition

vn,0(ρ − u−) = D(∇uI · n)−. (55)

We now collect the equations (29)–(30), (38), (40), (41) (together with the choice for α and β
in (42)) and (55), which we obtained for the first order terms U0 and Φ0. We define the domains
Ω+(t) := {x ∈ Ω | Φ0(t, x) = 1} and Ω−(t) := {x ∈ Ω | Φ0(t, x) = −1}, with common
boundary ΓI (t), and write

∂tU0 = D∆U0 on Ω−(t),

U0 = ρ on Ω+(t),

vn,0(ρ − U
−

0 ) = D(∇U0 · n)
− on ΓI (t),

vn,0 + σκ0 = −f (U
−

0 ) on ΓI (t),

where we denote by the “−”-superscripts the limit values at ΓI (t) from the side where Φ0 = −1.
Supplementing the equations above with appropriate initial and boundary conditions, we see that
we have now obtained the sharp interface equations (4)–(5).

REMARKS 1. The reason for choosing the particular double well potential given in (14) is the limit
limξ→∞ h(φ0)∂ξφ0, which should be equal to zero, as we have seen above (see (52)), to obtain the
Rankine–Hugoniot condition in the sharp interface limit. With the classical choice of the double
well potential as given in (13), limξ→∞ h(φ0)∂ξφ0 is not equal to zero.

As mentioned in Section 3, there is some freedom in choosing the functions p and k. In this
section we have seen that it is their behaviour near ϕ = ±1 that is important for the asymptotic
analysis. This means that for different functions, but with the same behaviour near ±1, the same
formal asymptotic results can be obtained.

2. The asymptotic analysis as presented above does, with slight variations, also apply if we use
the equation

∂tu−D∇ ·

(
∇u+ (ρ − u)

k′(ϕ)

k(ϕ)
∇ϕ

)
= 0

instead of equation (8). In fact, (8) is a regularized version of the equation above, where the
coefficient (ρ − u)k′(ϕ)/k(ϕ) has a singularity for ϕ = 1. In Section 5 we prove existence and
uniqueness of solutions to the regularized phase field model, and we also prove the existence of
solutions to the singular version when the initial condition ϕ0 satisfies the condition ln(1 − ϕ0) ∈

H 1(Ω).



42 T. L. VAN NOORDEN AND C. ECK

5. Solvability of the phase field model

The phase field model that will be analyzed in this section has the form

αε2∂tϕ − ε
2∆ϕ + p′(ϕ)+ εβq(u, ϕ) = 0, (56)

∂tu−D∆u−D∇ · (g(u, ϕ)∇ϕ) = 0, (57)

with some functions q and g. The original form of q and g is

q(u, ϕ) = k′(ϕ)(f (u)− (ρ − u)f ′(u)), (58)

g(u, ϕ) =
(ρ − u)k′(ϕ)

k(ϕ)
. (59)

The main difficulty here is the singularity of the function g that is generated by the root k(1) = 0.
We will assume that

g(u, ϕ) = g(u, ϕ)(1− ϕ) (60)

is a uniformly bounded Lipschitz function. In fact this contradicts the form (59) of g, because the
factor ρ − u is not bounded. However, since only the values u ∈ (0, ρ) are physically realistic, we
may replace this factor by a bounded term, for example by

ρ − u 7→


0, u > ρ,

ρ − u, 0 6 u 6 ρ,

ρ, u < 0.
(61)

For the double well potential we assume

p(ϕ) > c0|ϕ|
γ
− c1,

|p′(ϕ)− p′(ψ)| 6 c2(|ϕ|
γ−2
+ |ψ |γ−2

+ 1)|ϕ − ψ |
(62)

with c0, c1, c2 > 0 and some 2 6 γ < +∞. For q we assume

|q(u, ϕ)| 6 c1(|ϕ|
γ /2
+ |u| + 1),

|q(u, ϕ)− q(v, ψ)| 6 c2(|ϕ|
γ /2
+ |ψ |γ /2 + 1)(|u− v| + |ϕ − ψ |)

(63)

with the same γ as above. Further conditions for g are specified below.
The system of equations (56)–(57) with initial conditions and boundary conditions given by

(9)–(12) has the following weak formulation: Find functions u, ϕ ∈ L2(J ;H
1(Ω)) with ∂tu, ∂tϕ ∈

L2(J ;H
1(Ω)∗) that satisfy the initial conditions (9)–(10) such that for all test functions v, w ∈

L2(J ;H
1(Ω)),

〈∂tu, v〉 +

∫
Q

D(∇u+ g(u, ϕ)∇ϕ) · ∇v dx dt = 0, (64)

〈αε2∂tϕ,w〉 +

∫
Q

(
ε2
∇ϕ · ∇w + (p′(ϕ)+ εβq(u, ϕ))w

)
dx dt = 0. (65)

Here Q = J ×Ω denotes the time-space cylinder.
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5.1 Analysis for a regularized problem

We first consider the phase field model (64), (65) under the assumption that the function g has
no singularity. We assume that p, q satisfy the conditions (62), (63) and (69) below and that g is
bounded and globally Lipschitz.

The analysis is done by a standard Galerkin approximation. Let {ψm}m∈N be the sequence of
eigenfunctions to the problem of finding ψ ∈ H 1(Ω) such that∫

Ω

∇ψ · ∇v dx = λ
∫
Ω

ψv dx for every v ∈ H 1(Ω),

corresponding to the nondecreasing sequence of eigenvalues {λm}m∈N, and let Vm =

span{ψ1, . . . , ψm}. Then
⋃
m∈N Vm is dense inH 1(Ω) and the orthogonal projection πm ofH 1(Ω)

onto Vm with respect to the scalar product of L2(Ω) is bounded with respect to the norm of
H 1(Ω) uniformly in m. These properties that follow from the special choice of the basis will
be mathematically convenient to derive a “dual estimate” below. They are, however, not strictly
required for the existence proof. For a sufficiently regular domain (for example a C2 domain) we
have

Vm ⊂ L∞(Ω) (66)

by elliptic regularity theory. The Galerkin approximation of levelm to (64), (65) is a pair (um, ϕm) ∈
C1(J ;Vm) of functions that satisfy the approximate initial conditions

um(0, ·) = πmu0 and ϕm(0, ·) = πmϕ0,

and the variational equations (64), (65) for test functions v,w ∈ L2(J ;Vm). The Galerkin
equations can be formulated as a system of ordinary differential equations for the coefficients in
the representation of um, ϕm with respect to the basis of Vm. The existence and uniqueness of a
solution follows from the standard theory of ordinary differential equations.

In order to pass to the limit m → +∞, we need a priori estimates that are independent of m.
The first estimate is derived by using the test functions v = χt0 um and w = χt0 ∂tϕm with the
indicator function χt0 of the time interval (0, t0) in (64), (65). With the help of the representations
and estimates

p′(ϕm)∂tϕm = ∂t (p(ϕm)),

|q(um, ϕm)∂tϕm| 6 c(|∂tϕm|
2
+ |ϕm|

γ
+ |um|

2
+ 1)

and the application of suitable Hölder inequalities and the Gronwall Lemma we derive

‖∂tϕm‖
2
L2(Q)

+ ‖∇ϕm‖
2
L∞(J ;L2(Ω))

+ ‖p(ϕm)‖L∞(J ;L1(Ω))

+ ‖um‖
2
L∞(J ;L2(Ω))

+ ‖∇um‖
2
L2(Q)

6 c (67)

with some constant c that depends on the initial conditions and the coefficients and coefficient
functions of (64), (65), but not on m. In order to obtain some time regularity of um we consider the
following dual estimate: for v ∈ L2(J ;H

1(Ω)) we use πmv ∈ L2(J ;Vm) as test function in (64).
Due to 〈∂tum, πmv〉 = 〈∂tum, v〉 and ‖πmv‖H 1(Ω) 6 c‖v‖H 1(Ω) with c independent ofm we obtain

‖∂tum‖L2(J ;H 1(Ω)∗) 6 c
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with c independent of m. Interpolation with um ∈ L2(J ;H
1(Ω)) yields

‖um‖H 1/2(J ;L2(Ω))
6 c

with c independent of m.
As a consequence of these a priori estimates, there is a sequence mk → +∞ of Galerkin

parameters, a sequence (uk, ϕk) = (umk , ϕmk ) of solutions and a limit (u, ϕ) ∈ L2(J ;H
1(Ω))2 ∩

H 1(J ;H 1(Ω)∗) such that uk ⇀ u, ϕk ⇀ ϕ weakly in L2(J ;H
1(Ω)) and ∂tuk ⇀ ∂tu, ∂tϕk ⇀ ∂tϕ

weakly inL2(J ;H
1(Ω)∗). LetH 1/2,1(Q) be the anisotropic Sobolev space with time regularity 1/2

and space regularity 1, that is, H 1/2,1(Q) = H 1/2(J ;L2(Ω)) ∩ L2(J ;H
1(Ω)). By the embedding

H 1/2,1(Q) ↪→ H λ/2(J ;H 1−λ(Ω)) for arbitrary λ ∈ (0, 1) (see e.g. Theorem 6.4.5 in [1]) and the
usual compact embeddings of Sobolev spaces we conclude the compact embedding H 1/2,1(Q) ↪→

Lr(Q) with r such that λ/2− 1/2 > −1/r and (1− λ)− d/2 > −d/r . Choosing λ in an optimal
way we conclude r < 2+ 4/d . Altogether we have the compact embedding

H 1/2,1(Q) ↪→ Lr(Q) for any r < 2+ 4/d. (68)

Hence, for any such r we can extract a subsequence such that uk → u and ϕk → ϕ almost
everywhere in Q and strongly in Lr(Q). Relations (67) and (62) imply an upper bound for
‖ϕk‖L∞(J ;Lγ (Ω)). From (622) we also find |p′(ϕk)| 6 c3 + c4|ϕk|

γ−1. Together with (63) this
implies that p′(ϕk) and q(uk, ϕk) are bounded in L2(J ;Lγ /(γ−1)(Ω)). Hence we can choose our
subsequence such that ϕk ⇀ ϕ weakly in Lγ (Q) and, by interpolation with the strong convergence
in Lr(Q), strongly in Lγ /2(Q), p′(ϕk) ⇀ ζ and q(uk, ϕk) ⇀ ξ in L2(J ;Lγ /(γ−1)(Ω)) with
suitable limits ζ, ξ . Moreover, from the continuity estimates of (62) and (63) we have p′(ϕk) →
p′(ϕ) and q(uk, ϕk) → q(u, ϕ) in L1(Q). Since both the weak limits in L2(J ;Lγ /(γ−1)(Ω)) and
the strong limits in L1(Q) must be the same we have p′(ϕk) ⇀ p′(ϕ) and q(uk, ϕk) ⇀ q(u, ϕ) in
L2(J ;Lγ /(γ−1)(Ω)).

We now pass to the limit k→+∞ in the Galerkin equations of level mk with solution (uk, ϕk)
and test functions v,w ∈ L2(J ;Vm) with fixed m. Since g is globally bounded and Lipschitz and
uk → u, ϕk → ϕ a.e., we find by the Lebesgue dominated convergence theorem that∫

Q

|g(uk, ϕk)∇v − g(u, ϕ)∇v|
2 dx dt → 0

as k→+∞. This implies∫
Q

g(uk, ϕk)∇ϕk · ∇v dx dt →
∫
Q

g(u, ϕ)∇ϕ · ∇v dx dt

as k → +∞. From the weak convergences p′(ϕk) ⇀ p′(ϕ) and q(uk, ϕk) ⇀ q(u, ϕ) in
L2(J ;Lγ /(γ−1)(Ω)) and the property w ∈ L2(J ;Vm) ⊂ L2(J ;L∞(Ω)) (see (66)), we find∫

Q

(p′(ϕk)+ εβq(uk, ϕk))w dx dt →
∫
Q

(p′(ϕ)+ εβq(u, ϕ))w dx dt.

The convergence of the other terms in the weak formulations follows easily. Hence (ϕ, u) solves
(64), (65) for arbitrary test functions v,w ∈ L2(J ;Vm) with arbitrary m ∈ N. Since

⋃
m∈N Vm is

dense in H 1(Ω), (u, ϕ) is a solution of (64), (65) for any test functions v,w ∈ L2(J ;H
1(Ω)).
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In order to prove uniqueness of the weak solution, we first need some additional regularity of
the phase field ϕ. Using the weak maximum principle and the additional requirements |ϕ0| 6 1 for
the initial conditions and

p′(ϕ)+ εβ q(u, ϕ) > 0 for ϕ > 1,
p′(ϕ)+ εβ q(u, ϕ) 6 0 for ϕ 6 −1,

(69)

we obtain |ϕ| 6 1 almost everywhere. By the application of standard regularity results for linear
parabolic equations (see e.g. [12, Theorem 5.4]) to the phase field equation with p′(ϕ)+ εβq(u, ϕ)
interpreted as a given right hand side we prove ϕ ∈ W 1,2

s (Q) for an arbitrary s 6 2+ 4/d , provided
Ω is sufficiently regular and the initial condition satisfies ϕ0 ∈ W

2−2/s
s (Ω). Here W 1,2

s (Q) =

W 1
s (J ;Ls(Q)) ∩ Ls(J ;W

2
s (Q)); and the condition s 6 2 + 4/d is necessary to ensure p′(ϕ) +

εβq(u, ϕ) ∈ Ls(Q) via the embedding H 1/2,1(Q) ↪→ Ls(Q).
We now consider two possibly different solutions (u(j), ϕ(j)), j = 1, 2. From the regularity just

obtained and the embedding W 1,2
s (Q) ↪→ W λ

s (J ;W
2(1−λ)
s (Ω)) ↪→ L∞(J ;W

1
r (Ω)) with λ > 1/s

and 2(1 − λ) − d/s > 1 − d/r we conclude ϕ(j) ∈ L∞(J ;W 1
r (Ω)), j = 1, 2, provided 1/r >

1/s + 2/ds − 1/d . We use the test functions v = χt (u(1) − u(2)) and w = µχt (ϕ(1) − ϕ(2)) with
some sufficiently large µ in the difference of the equations (64), (65) for the two different solutions
and exploit the Lipschitz properties of p, q and g as well as standard Hölder estimates. In particular
we use the estimates∣∣(g(u(1), ϕ(1))∇ϕ(1) − g(u(2), ϕ(2))∇ϕ(2)) · ∇(u(1) − u(2))∣∣

6 c1|∇ϕ
(1)
|
2(|u(1) − u(2)|2 + |ϕ(1) − ϕ(2)|2)+ c2|∇(ϕ

(1)
− ϕ(2))|2 + D

2 |∇(u
(1)
− u(2))|2

and ∫ t

0

∫
Ω

|∇ϕ(1)|2(|u(1) − u(2)|2 + |ϕ(1) − ϕ(2)|2) dx dt

6 ‖∇ϕ(1)‖2L∞((0,t);Lr (Ω))(‖u
(1)
− u(2)‖2L2((0,t);Lσ (Ω)) + ‖ϕ

(1)
− ϕ(2)‖2L2((0,t);Lσ (Ω)))

with 2/r + 2/σ = 1. The contribution of u(1) − u(2) can be further estimated by

‖u(1) − u(2)‖2L2((0,t);Lσ (Ω)) 6 η‖u(1) − u(2)‖2
L2((0,t);H 1(Ω))

+ c(η)‖u(1) − u(2)‖2L2((0,t)×Ω)

with arbitrarily small η > 0, if 1− d/2 > −d/σ . Combining the conditions for r and σ we find

1
2
−

1
d
<

1
σ
<

1
2
−

1
s
−

2
ds
+

1
d
.

Hence we can choose any value s > 1+ d/2 if d 6 3. Then we find the estimate

‖u(1)(t)− u(2)(t)‖2L2(Ω)
+ ‖ϕ(1)(t)− ϕ(2)(t)‖2L2(Ω)

+ ‖∇(u(1) − u(2))‖2L2((0,t)×Ω) + ‖∇(ϕ
(1)
− ϕ(2))‖2L2((0,t)×Ω)

6 c1(‖u
(1)
− u(2)‖2L2((0,t)×Ω) + ‖ϕ

(1)(t)− ϕ(2)(t)‖2L2((0,t)×Ω)).

Application of the Gronwall Lemma shows the uniqueness. This concludes the proof of the
following theorem:
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THEOREM 1 Let α, ε,D be positive parameters. Let Ω be a bounded C2 domain of dimension
d ∈ {2, 3}, let p : R → R and q : R2

→ R satisfy the conditions (62), (63) and (69), let g
be bounded and globally Lipschitz, and let u0 ∈ L2(Ω), ϕ0 ∈ W

2−2/s
s (Ω) for s > 1 + d/2 and

|ϕ0| 6 1. Then the weak formulation (64), (65) has a unique solution (u, ϕ) with ϕ ∈ W 1,2
s (Q) and

|ϕ| 6 1 almost everywhere.

REMARKS 1. The Lipschitz property of p, q and g is required for the proof of the uniqueness
result; for the existence proof it is sufficient to have continuity and appropriate growth conditions.

2. The conditions on the smoothness of the domain here are formulated to ensure the regularity
properties for the Galerkin basis and the phase field to be used. Some additional regularity of
the phase field is necessary for the proof of uniqueness, due to the coefficient function g(u, ϕ)
that depends on the solution. The regularity of the basis Vm is just required for simplicity of the
presentation, it can be cirumvented by some additional technicalities.

3. It is easily checked that both the double well potentials (13) and (14) satisfy the conditions
in (62). The condition (631) is satisfied for q(u, ϕ) as in (58) with the choice of k(ϕ) as in (15) and
for f (u) that has bounded first derivatives, since for this choice k′(ϕ) is bounded. The condition
(632) holds for q(u, ϕ) as in (58) and k(ϕ) as in (15) if f (u) − (ρ − u)f ′(u) is bounded and f ′ is
bounded and Lipschitz. If this is not the case for a particular choice of f (u), then one may need to
replace this term with a bounded version by cutting the term for unphysical values of u as in (61).
The conditions in (69) are satisfied for both (13) and (14) together with (15) and q given by (58),
since for the k(ϕ) in (15) we have k′(ϕ) = 0 for ϕ 6 −1 and ϕ > 1.

5.2 Analysis of the singular case

The analysis for the singular case will be done by the following approach: we first regularize the
term g(u, ϕ) by

gδ(u, ϕ) =
g(u, ϕ)

[1− ϕ]+ + δ
with the g from (60), where [x]+ = max{x, 0} is the positive part of x. In addition to (62), (63) and
(69) we also assume

p′(ϕ) = (1− ϕ) p(ϕ), q(u, ϕ) = (1− ϕ) q(u, ϕ) (70)

with Lipschitz functions p, q that are uniformly bounded for ϕ ∈ [−1, 1] and u ∈ R.
The existence and uniqueness of solutions to the modified problem as well as the property

|ϕ| 6 1 a.e. follow from Theorem 1. Then we plan to pass to the limit δ → 0. For this it is
necessary to have a priori estimates that are independent of δ. Using the test function w = χt0∂tϕ,
where χt0 is the indicator function of the time interval (0, t0), in (65) and applying the Gronwall
Lemma yields

‖∂tϕ‖L2(Q) + ‖∇ϕ‖L∞(J ;H 1(Ω)) 6 c

with c independent of δ.
For the following considerations we make the assumptions ϕ0 < 1 and

ln(1− ϕ0) ∈ H
1(Ω) (71)

for the initial data. This seems to be a little strange at a first view, because ϕ = 1 corresponds to
the solid phase. However, from the asymptotic analysis done in the previous section we see that the
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first order term φ0(ξ) in the asymptotic expansion is the solution to the initial value problem (33).
Due to p(±1) = 0 this solution approaches the values ±1 as ξ → ±∞, but it does not attain these
values: if there is a point ξ0 with φ0(ξ0) = 1, then φ0 is also a solution to the problem

φ′(ξ) =
√

2p(φ(ξ)) for ξ ∈ R, φ(ξ0) = 1;

and the unique solution to this problem is φ0(ξ) = 1. The variable ξ here stands for ξ = r/ε,
where r = r(x) is a signed distance to the sharp interface. If ε is fixed, then it makes sense to use
initial data that satisfy (71), for example by choosing ϕ0(x) = φ0(r(x)/ε). For fixed ε the argument
|r(x)|/ε 6 diam(Ω)/ε is bounded, hence we find φ0(r(x)/ε) 6 Φ0(diam(Ω)/ε) < 1 and therefore
|ln(1− φ0)| 6 c with some c < +∞.

We now use the test function w = χt0(1 − ϕ + δ)
−1, where χt0 denotes again the indicator

function of the time interval (0, t0), in (65). This function is well defined because ϕ 6 1 and δ > 0.
We use the relations ∂tϕw = −∂t ln(1−ϕ+δ), ∇ϕ ·∇w = (1−ϕ+δ)−2

|∇ϕ|2 = |∇ ln(1−ϕ+δ)|2

for t ∈ (0, t0) and the estimates

|p′(ϕ)(1− ϕ + δ)−1
| 6 |p(ϕ)| 6 c1, |q(u, ϕ)(1− ϕ + δ)−1

| 6 |q(u, ϕ)| 6 c2,

which are a consequence of (70) and the property ϕ ∈ [−1, 1], and obtain

αε2
∫
Ω

(
ln(1− ϕ0 + δ)− ln(1− ϕ(t0)+ δ)

)
dx + ε2

∫ t0

0

∫
Ω

|∇ ln(1− ϕ + δ)|2 dx dt 6 c

with some c independent of δ. From ϕ ∈ [−1, 1] and the properties− ln(1−ϕ+δ) = |ln(1−ϕ+δ)|
for ϕ > δ and |ln(1− ϕ + δ)| 6 ln(3) for ϕ 6 δ and δ < 1 we conclude∫

Ω

(− ln(1− ϕ(t0)+ δ)) dx > ‖ln(1− ϕ(t0)+ δ)‖L1(Ω) − c

with some c independent of δ for δ ∈ (0, 1). This shows

‖ln(1− ϕ + δ)‖L∞(J ;L1(Ω)) + ‖∇ ln(1− ϕ + δ)‖2L2(Q)
6 c (72)

with c independent of δ. By the Poincaré inequality

‖v‖L2(Ω) 6 c1‖∇v‖L2(Ω) + c2‖v‖L1(Ω)

applied to v = ln(1− ϕ + δ), we then derive

‖ln(1− ϕ + δ)‖L2(Q) 6 c.

Then we take the test function v = u in (64). From (72) and the uniform bound of g we find

‖gδ(u, ϕ)∇ϕ‖L2(Q) = ‖g(u, ϕ)∇ ln(1− ϕ + δ)‖L2(Q) 6 c1‖ln(1− ϕ + δ)‖L2(Q) 6 c2. (73)

Hence we obtain the a priori estimate

‖u‖2L∞(J ;L2(Ω))
+ ‖∇u‖2L2(J×Ω)

6 c (74)
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with constant independent of δ. Moreover, a standard dual estimate for equation (64) with the help
of (73) shows

‖∂tu‖L2(J ;H 1(Ω)∗) 6 c

and then by interpolation with (74),

‖u‖H 1/2(J ;L2(Ω))
6 c.

As a consequence there exists a sequence of approximation parameters δk → 0 and corresponding
solutions uk = uδk , ϕk = ϕδk such that uk ⇀ u weakly in H 1/2,1(Q) ∩ H 1(J ;H 1(Ω)∗) and, due
to the compact embedding (68), strongly in Lr(Q) for an arbitrarily chosen r < 2 + 4/d , ϕk ⇀ ϕ

weakly inH 1(Q) and strongly in Ls(Q) for an arbitrarily chosen s < +∞, and∇ ln(1−ϕk+δk) ⇀
Θ weakly in L2(Q). As a consequence of the strong convergence of ϕk and uk in Ls(Q) and Lr(Q)
we also have convergence almost everywhere in Q after extraction of a suitable subsequence. We
pass to the limit k→ 0 and conclude that (u, ϕ) is a solution to the problem

〈∂tu, v〉 +

∫
Q

D(∇u− g(u, ϕ)Θ) · ∇v dx dt = 0,

〈αε2∂tϕ,w〉 +

∫
Q

(
ε2
∇ϕ · ∇w + (p′(ϕ)+ εβq(u, ϕ))w

)
dx dt = 0

for all v,w ∈ L2(J ;H
1(Ω)). It remains to prove Θ = ∇ ln(1 − ϕ). We first show ϕ < 1 almost

everywhere. Let us assume that this is not the case, say ϕ = 1 on some set of measure ζ > 0. By
the Egorov theorem there is a setQζ of measure |Qζ | > |Q| − ζ/2 such that ϕk → ϕ uniformly on
the set Qζ . As a consequence there is a set Sζ of measure ζ/2 such that ϕk → 1 uniformly on Sζ .
Then the limit k→∞ in the estimate

c1 > ‖ln(1− ϕk + δk)‖L1(Q) > ‖ln(1− ϕk + δk)‖L1(Sη)

gives a contradiction, and therefore it is proved that ϕ < 1. Now we consider the limit k→∞ in∫
Q

∇ ln(1− ϕk + δk) w dx dt = −
∫
Q

ln(1− ϕk + δk)∇ · w dx dt

with some test function w ∈ C∞0 (Q;R
n). The left hand side here converges to

∫
Q
Θ · w dx dt .

Therefore it suffices to prove that the right hand side converges to −
∫
Q

ln(1 − ϕ)∇ · w dx dt .
Consider some arbitrary positive η, with η < |Q|. Since |{(t, x) ∈ Q |ϕ(t, x) < 1− λ}| converges
to |{(t, x) ∈ Q |ϕ(t, x) 6 1}| = |Q| as λ → 0, there is some λ = λ(η) > 0 such that ϕ < 1 − λ
on a set of measure |Q| − η/2. Moreover, due to the Egorov theorem, ϕk converges uniformly to ϕ
on a set of measure |Q| − η/2. As a consequence we have ϕk → ϕ < 1− λ on a set Rη of measure
|Q| − η. Then it follows that∫

Rη

ln(1− ϕk + δk)∇ · w dx dt →
∫
Rη

ln(1− ϕ)∇ · w dx dt,

and, with Sη := Q \ Rη,∣∣∣∣∫
Sη

ln(1− ϕk + δk)∇ · w dx dt
∣∣∣∣ 6 ‖∇ · w‖L∞(Q)‖ln(1− ϕk + δk)‖L2(Sη)|Sη|

1/2 6 c
√
η
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with some constant c independent of η. Moreover, due to ϕ < 1 we have |ln(1 − ϕk + δk)| →
|ln(1− ϕ)| a.e. Using the Fatou Lemma we obtain∣∣∣∣∫

Sη

ln(1− ϕ) dx
∣∣∣∣ 6

∫
Sη

|ln(1− ϕ)| dx =
∫
Sη

lim
k→+∞

|ln(1− ϕk + δk)| dx

6 lim inf
k→+∞

∫
Sη

|ln(1− ϕk + δk)| dx 6 lim inf
k→+∞

‖ln(1− ϕk + δk)‖L2(Q)|Sη|
1/2 6 c

√
η.

Since η ∈ (0, |Q|) can be arbitrarily chosen, by letting η→ 0 we obtain∫
Q

ln(1− ϕk + δk)∇ · w dx dt →
∫
Q

ln(1− ϕ)∇ · w dx dt.

Hence the following theorem is proved:

THEOREM 2 Let α, ξ,D be positive constants, let Ω be a bounded C2 domain of dimension
d ∈ {2, 3}, let the functions p, q and g satisfy the conditions (62), (63), (69), (70) with Lipschitz
functions p, q and g that are bounded for ϕ ∈ [−1, 1] and u ∈ R. Let the initial conditions satisfy
u0 ∈ L2(Ω), ϕ0 ∈ W

2−2/s
s (Ω) with s > 1 + d/2, −1 < ϕ0 < 1 and ln(1 − ϕ0) ∈ H

1(Ω). Then
problem (64), (65) has a solution.

REMARK The condition in (701) is again satisfied by both the double well potentials (13) and (14).
For the condition (702) to hold for q(u, ϕ) as in (58) and k(ϕ) as in (15) it is again required
that f (u) − (ρ − u)f ′(u) is bounded. This may be achieved by a particular choice of f (u) or,
as mentioned before, by replacing the term by a bounded version as in (61).

6. Numerical examples

6.1 1D example

In this section we investigate numerically how well the phase field model approximates the sharp
interface model. We first study the following 1D free boundary problem:

∂tu = ∂
2
xu for x ∈ (−1, s(t)),

∂xu = 0 for x = −1,
∂xu = ṡ(ρ − u) for x = s(t),
ṡ = −(u(t, s(t))− u∗),

u(0, x) = uI (x),
s(0) = 0

with ρ = 1, u∗ = 0.5 and uI ≡ 0.8. We compute the solution to this free-boundary problem using
the Arbitrary Lagrangian-Eulerian (ALE) method [8] with a discretization on 960 quadratic finite
elements. We use this solution as the reference solution.

Substituting the form of f (u) (which is f (u) = u− u∗) into (56) with α = 1, and using the 1D
setting, we obtain the equations
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ε2∂tϕ − ε
2∂2
xϕ + p

′(ϕ)+ ε 16
15k
′(ϕ)(2u− 1.5) = 0 for x ∈ (−1, 1),

∂tu− ∂
2
xu− ∂x

(
(ρ − u)k′(ϕ)

k(ϕ)+ ε
∂xϕ

)
= 0 for x ∈ (−1, 1),

∂xϕ = 0 for x ∈ {−1, 1},
∂xu = 0 for x ∈ {−1, 1},
ϕ(0, x) = ϕI (x),
u(0, x) = uI (x),

where the initial data are given by

ϕI (x) =

{
−1 for x ∈ [−1, 0),
1 for x ∈ [0, 1],

uI (x) =

{
0.8 for x ∈ [−1, 0),
1 for x ∈ [0, 1].

We solve the phase field model for three different values of ε, using a discretization on 1920
quadratic finite elements. The time discretization for both the sharp interface model and the phase
field model is performed using variable step size, variable order BDF formulae with a relative and
absolute error tolerance set to 10−7.

Notice that we use a coarser discretization in the ALE method for the reference solution of the
sharp interface model than for computations for the phase field model. This may seem contradictory,
but it is not: this is due to the different methods that are used. For the phase field model we need
to resolve the steep transition of the phase parameter ϕ at the position of the moving fluid/solid
interface. Here we use a fixed, uniform discretization, so that we need quite a fine mesh, especially
for small ε. If an adaptive grid were used, fewer finite elements would have been sufficient. The
ALE method for the sharp interface model does not need to resolve steep transitions. Instead, the
movement of the free boundary is captured by moving the nodes along with the boundary. This
means that for the ALE method sufficient accuracy can be obtained with a coarser grid.

In Figure 1 we plot the position of the free boundary s(t) for the reference solution and the
position of the zero level set of the phase field variable ϕ(t, x). The sharp interface problem has
a steady state for s(t) = −0.6 and u(t, x) = u∗ = 0.5 on [−1,−0.6]. We see that the reference
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FIG. 1. The position of the free boundary s(t) against time t . Dots: reference solution computed with the ALE method;
dashed line: phase field model with ε = 0.1; dash-dotted line: ε = 0.02; solid line: ε = 0.004.
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solution approaches that solution asymptotically. The phase field model with ε = 0.1 does not
approach a stationary solution, probably because of boundary effects, but this is mainly due to
the regularization of the u-equation. If we compute the solution, with ε = 0.1 in the phase field
equation, and ε = 0.001 in the u-equation we obtain a solution that is in the plot indistinguishable
from the reference solution and the solution with ε = 0.004 in the phase field equation.

6.2 2D example

For a 2D test problem we solve the equations

∂tu = ∆u for x ∈ Ωf (t),
∇u · n = 0 for x ∈ Γf ,
∇u · n = vn(ρ − u) for x ∈ ΓI (t),
vn = −(u− u

∗)− σκ for x ∈ ΓI (t),
u(0, x) = 0 for x ∈ Ωf (0)

with ρ = 1, σ = 0.1 and u∗ = 0.5. The initial domain Ωf (0) is depicted in Figure 2. We compute
the solution to this free-boundary problem using the ALE method with a discretization on 52608
quadratic finite elements. We use this solution as the reference solution.
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FIG. 2. The initial configuration for the sharp interface model.

We approximate the reference solution using the following phase field model:

αε2∂tϕ − ε
2∆ϕ + p′(ϕ)+ εβk′(ϕ)(f (u)+ (u− ρ)f ′(u)) = 0, (75)

∂tu−∇ ·

(
∇u+ (ρ − u)

k′(ϕ)

k(ϕ)+ δ
∇ϕ

)
= 0, (76)

on the time-space cylinder Q(T ) := J ×Ω with time interval J := (0, 0.6], where the domain Ω
is given by the square Ω = [−1, 1]2. On ∂Ω we have for both ϕ and u homogeneous Neumann
boundary conditions: ∇ϕ · n = 0 and ∇u · n = 0. We use the following parameter values:

α = 10, ε = 0.01, β = 32/3, f (u) = u− u∗, ρ = 1, u∗ = 0.5, δ = 0.001.



52 T. L. VAN NOORDEN AND C. ECK

FIG. 3. Plots of the phase field ϕ (left) and the concentration u (right) for t = 0.25.
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x

u

FIG. 4. Profiles of u along the line x2 = 0 for t = 0.25 and t = 0.6. Dots: reference solution computed with the ALE
method; solid line: phase field model.

The initial data are given by

ϕI (x) =

{
−1 for x ∈ [−1, 1]2, |x| > 1/2,
1 for x ∈ [−1, 1]2, |x| < 1/2,

uI (x) =

{
0 for x ∈ [−1, 1]2, |x| > 1/2,
1 for x ∈ [−1, 1]2, |x| < 1/2.

We solve the phase field model using a discretization on 62720 quadratic finite elements. The time
discretization for both the sharp interface model and the phase field model is performed using
variable step size, variable order BDF formulae with a relative and absolute error tolerance set
to 10−4. In Figure 3, we show the solution to the phase field model for t = 0.25. We see that a part
of the initial crystalline solid has dissolved, and that the crystalline solid is still more or less circular
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in shape. In order to compare the solution to the phase field model with the reference solution, we
plot in Figure 4 the profiles of the concentration u for both the reference solution and the phase field
solution for two time instants, t = 0.25 and t = 0.6, along the cross section on the line x2 = 0. We
see that the solutions agree very well on the fluid domain.

6.3 Convergence

In this section we show a more quantitative comparison of the phase field model and the sharp
interface model. We consider the phase field model

αε2∂tϕ − ε
2∂2
xϕ + p

′(ϕ)+ εβk′(ϕ)(f (u)+ (u− ρ)f ′(u)) = 0, (77)

∂tu−D∂x

(
∂xu+ (ρ − u)

k′(ϕ)

k(ϕ)+ δ
∂xϕ

)
= 0 (78)

on the interval [−0.01, 0.01] with the parameter values

α = 1, D = 10−5, β = 16/15, f (u) = 0.01(u− u∗), ρ = 1, u∗ = 0.5,

and varying values of ε and δ. We compare solutions to this phase field model with solutions to the
free boundary problem given by

∂tu = D∂
2
xu for x ∈ (−0.01, s(t)),

∂xu = 0 for x = −0.01,
∂xu = ṡ(ρ − u) for x = s(t),
ṡ(t) = −0.01(u(t, s(t))− u∗),
u(0, x) = uI (x),
s(0) = 0

with uI ≡ 0.8.
In order to study the convergence of the phase field model, we show the absolute value of

the difference between the computed position of the interface—defined as zero point of the phase
field—at time t = 1 and the position of the interface as given by the reference solution to
the corresponding sharp interface model computed using the ALE method for several selected
discretization parameters. The reference solution is computed using a grid consisting of 1920
elements. The interface position (for the sharp interface model) as given by the reference solution is
s(1) = −0.001867.

In Table 1 the difference between the position of the interface computed using the phase field
model and the position of the interface in the ALE reference solution at t = 1 is given. For ε =
0.0005 the phase field model does not give a very accurate prediction of the position of the interface:
the relative error (error divided by the interface position) is of order one. In this case the value of δ
and the number of elements used do not improve the accuracy of the phase field model very much.
For smaller values of ε the accuracy of the phase field model improves, but also here the value of δ
and the number of elements improve the accuracy very little. The results, however, indicate that the
phase field model with small values of ε approximates the behaviour of the sharp interface model
quite accurately.
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TABLE 1
Comparison results

ε δ # elem. error rel. error

0.0005 0.0005 480 1.5739e-3 8.4299e-1
0.0005 0.0001 480 1.5690e-3 8.4041e-1
0.0005 0.00002 480 1.5679e-3 8.3981e-1
0.0005 0.0005 1920 1.5710e-3 8.4147e-1
0.0005 0.0001 1920 1.5659e-3 8.3872e-1
0.0005 0.00002 1920 1.5654e-3 8.3847e-1
0.0005 0.0005 7680 1.5712e-3 8.4158e-1
0.0005 0.0001 7680 1.5664e-3 8.3900e-1
0.0005 0.00002 7680 1.5654e-3 8.3844e-1
0.0001 0.0005 1920 2.0733e-5 1.1105e-2
0.0001 0.0001 1920 2.0121e-5 1.0777e-2
0.0001 0.00002 1920 1.9812e-5 1.0612e-2
0.0001 0.0005 7680 1.8981e-5 1.0166e-2
0.0001 0.0001 7680 1.8234e-5 9.7666e-3
0.0001 0.00002 7680 1.7974e-5 9.6274e-3

0.00002 0.0005 7680 5.1131e-6 2.7387e-3
0.00002 0.0001 7680 4.6235e-6 2.4765e-3
0.00002 0.00002 7680 4.4945e-6 2.4074e-3

7. Conclusions

We have proposed a phase field model for a precipitation/dissolution process. It describes a
one-phase free boundary problem with a kinetic condition at the moving boundary. In addition,
instead of the jump of the concentration across the interface, the concentration on one side of
the interface is prescribed, and the normal velocity of the interface depends nonlinearly on the
variable concentration on the other side of the interface. Using a formal asymptotic analysis we
have shown that the phase field model approximates in the limit ε → 0 the appropriate sharp
interface model. Here ε is the thickness of an interfacial layer containing the moving boundary. The
existence of a solution to the phase field model has been proved for the cases of a nonsingular and
a singular coefficient. Uniqueness of the solution is established for the nonsingular version only.
The convergence behaviour of the phase field model to the sharp interface model is supported by
numerical evidence.
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