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We are interested in a rigorous derivation of the Kuramoto–Sivashinsky (K-S) equation from a free
boundary problem. As a paradigm, we consider a two-dimensional Stefan problem in a strip, a
simplified version of a solid-liquid interface model. Near the instability threshold, we introduce a
small parameter ε and define rescaled variables accordingly. At fixed ε, our method is based on:
definition of a suitable linear 1D operator, projection with respect to the longitudinal coordinate only,
and the Lyapunov–Schmidt method. As a solvability condition, we derive a self-consistent parabolic
equation for the front. We prove that, starting from the same configuration, the latter remains close
to the solution of K-S on a fixed time interval, uniformly in ε sufficiently small.
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1. Introduction

A very challenging problem in free boundary problems is the derivation of a single equation for
the interface or moving front which captures the dynamics of the system, at least asymptotically,
when a suitable parameter ε tends to 0. The Kuramoto–Sivashinsky equation, which we abbreviate
hereafter as the K-S equation, or simply K-S,

Φτ + νΦηηηη +Φηη +
1
2
(Φη)

2
= 0, (1.1)

appears in a variety of domains in physics and chemistry, where it models cellular instabilities,
pattern formation, turbulence phenomena and transition to chaos. Among many references, we refer
to the pioneering papers [12, 10]. The former was historically the first asymptotical derivation of
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K-S, in the framework of the Near Equidiffusive Flames model, in short NEF, in combustion theory.
The latter provided the first comprehensive computational study. We also refer the reader to the book
[14] and its extensive bibliography. Our purpose here is to provide some rigorous mathematical
commentary on the derivation of this well-known model from a two-dimensional Stefan problem.
We point out that our method might work for other systems allowing scale separation and thereby
reduction of the effective dimensionality of the problem. In this respect, we have considered the
NEF problem in [5, 6].

As one would surmise at the outset, the K-S model involves a balance between several effects.
Roughly speaking, K-S arises when the competing effects of a destabilizing linear part and a
stabilizing nonlinearity are the dominant processes in physical reality. The linear instability is itself
the result of a competition between two linear operators, A = Dηη and νA2 (we call νA2

+ A the
Kuramoto–Sivashinsky linear operator).

Put another way, the K-S equation is the simplest, and indeed a paradigm system in which these
effects compete equally. It is this dominant balance that is explored rigorously in the present essay.
It will turn out that, in deriving K-S as an asymptotic limit of more complex systems, only certain
type of terms contribute to the lowest order of approximation. Other types of terms will lead to
higher order perturbations. In a forthcoming paper, we intend to consider the effects of these higher
order perturbations on the basic K-S system.

As a paradigm two-dimensional problem (see [3, 2, 1] for the one-dimensional case and the Q-S
equation in flame front dynamics), we consider a solid-liquid interface model introduced by Frankel
in [8]. The solidification front is represented by x = ξ(t, y). The liquid phase occurs when x <
ξ(t, y), the solid one when x > ξ(t, y). The dynamics of heat is described by the heat conduction
equation

Tt (t, x, y) = ∆T (t, x, y), x 6= ξ(t, y), (1.2)

where y ∈ [−`/2, `/2] with periodic boundary conditions. At −∞, the temperature of the liquid is
normalized to 0. At the front x = ξ(t, y) there are two conditions. First, the balance of energy at the
interface is given by the jump [

∂T

∂n

]
= Vn, (1.3)

where Vn is the normal velocity. Second, according to the Gibbs–Thompson law, the nonequilibrium
interface temperature is defined by

T = 1− γ κ + r(Vn), (1.4)

where the melting temperature has been normalized to 1, κ is the interface curvature and the positive
constant γ represents the solid-liquid surface tension. The function r is increasing and such that
r(−1) = 0, r ′(−1) = 1 (see [8, 9]). Hereafter, we assume that r − 1 is linear and we replace the
curvature by the second-order derivative. Therefore, (1.4) becomes

T = 1− γ ξyy + Vn + 1. (1.5)

It is not difficult to see that system (1.2), (1.3), (1.4) admits a one-phase planar travelling wave (TW)
solution (T (t, x), ξ(t)) = (Θ(t + x),−t), where Θ(z) = ez for z < 0, and Θ(z) = 1 for z > 0.

As usual, we fix the free boundary. We set ξ(t, y) = −t + ϕ(t, y), x′ = x − ξ(t, y) and we will
omit primes. In this new framework, (1.2) reads

Tt + (1− ϕt )Tx = ∆ϕT , x 6= 0,
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where ∆ϕ = (1+ (ϕy)2)Dxx +Dyy − ϕyyDx − 2ϕyDxy . The front is now fixed at x = 0. The first
condition (1.3) reads

ϕt = 1+ (1+ (ϕy)2)[Tx], (1.6)

whereas we replace (1.5) by

T = 1− γ ϕyy + ϕt +
1
2
(ϕy)

2.

Introducing the temperature perturbation u = T −Θ , the problem for the couple (u, ϕ) reads

ut + (1− ϕt )ux −∆ϕu− ϕtΘx = (∆ϕ −∆)Θ, x 6= 0, (1.7)

where
(∆ϕ −∆)Θ = {(ϕy)

2
− ϕyy}e

xχ(−∞,0) = ((ϕy)
2
− ϕyy)Θx .

As in [4], we make further simplifications: (i) we consider a quasi-steady problem, dropping
the time derivative ut in (1.7); (ii) we take a linearized problem for u; (iii) we limit ourselves to
considering only the second-order terms in the jump conditions at x = 0. Actually, as observed
in similar problems (see [3]), not far from the instability threshold the time derivative in the
temperature equation has a relatively small effect on the solution. Our final system reads

ux −∆u− ϕtΘx = (∆ϕ −∆)Θ, x 6= 0, (1.8)

ϕt = [ux]− (ϕy)2, (1.9)

u|x=0 = −γ ϕyy + ϕt +
1
2
(ϕy)

2. (1.10)

For the convenience of the reader, we recall the main results of [4], where we considered problem
(1.8)–(1.10) in the strip R×[−`/2, `/2], with periodic boundary conditions prescribed at y = ±`/2.
More precisely, we studied the stability of the TW solution and proved the following result: there
exists γc < 1 such that

(i) for γ > γc, the TW solution to problem (1.8)–(1.10) is orbitally stable (with asymptotic phase);
(ii) for 0 < γ < γc, the TW is unstable.

We also showed that γc = 1− 3λ1(`)+ · · · , where −λ1(`) = −4π2/`2 is the largest eigenvalue of
the realization of Dyy in C([−`/2, `/2]) with periodic boundary conditions and zero average.

The main tool is the derivation of a self-consistent equation for the front ϕ:

ϕt +G((ϕy)
2) = Ωϕ, |y| 6 `/2, (1.11)

where both Ω and G are linear pseudo-differential operators whose symbols ωk and gk are explicit
and g0 = 1/2, which is reminiscent of K-S. If we think formally of (1.11) in the whole space (i.e.
` = +∞), then ωk is the growth rate which expands, for small wave number k, as

ωk = (1− γ )k2
+ (γ − 4)k4

+ · · · ,

with exchange of stability at γ = 1. Therefore, when γ is close to unity, but smaller, it is natural to
introduce a small parameter ε > 0, setting

γ = 1− ε,
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and define the rescaled dependent and independent variables accordingly:

t = τ/ε2, y = η/
√
ε, u = ε2v, ϕ = εψ. (1.12)

Then we anticipate, in the limit ε → 0, that ψ ' Φ, where Φ solves the following K-S equation
(with ν = 3):

Φτ + 3Φηηηη +Φηη +
1
2
(Φη)

2
= 0. (1.13)

This is what we have to establish in a rigorous mathematical way. Let us fix `0 > 0. The main
idea is to link the small parameter ε and the width of the strip, which will become larger and larger
as ε→ 0, i.e., as γ → 1. Take for ` the quantity

`ε = `0/
√
ε,

which blows up as ε → 0 and the strip R × [−`ε/2, `ε/2] approaches R2. We easily see that
λ1(`ε) = 4π2/`2

ε = 4π2ε/`2
0; hence,

γc = 1−
12π2

`2
0
ε + . . .

Thus, `0 becomes the new bifurcation parameter. We shall assume that `0 >
√

12π in order to
have γc ∈ (1 − ε, 1), i.e., γ > γc, otherwise the TW is stable and the dynamics is trivial. Clearly,
this is related to the stability of the null solution to K-S. The relevant eigenvalue of the Kuramoto–
Sivashinsky linear operator 3A2

+A is 3(λ1(`0))
2
− λ1(`0) which vanishes for λ1(`0) = 1/3, i.e.,

when `0 =
√

12π .
An important feature of this paper is that we work in the fixed strip R× [−`0/2, `0/2], with the

rescaled variables (1.12). We will return to the original variable only in the final section.
The main result is the following.

MAIN THEOREM 1.1 Fix α ∈ (0, 1/2) and let Φ0 ∈ C
6+2α([−`0/2, `0/2]) satisfy the condition

D
(k)
η Φ0(−`0/2) = D

(k)
η Φ0(`0/2) for any k = 0, . . . , 6. Let Φ be the periodic solution of (1.13)

(with period `0) on a fixed time interval [0, T ], satisfying the initial condition Φ(0, ·) = Φ0. Then
there exists ε0 = ε0(T ) ∈ (0, 1/2) such that, for 0 < ε 6 ε0, problem (1.8)–(1.10) admits a unique
smooth solution (u, ϕ) on [0, T /ε2], which is periodic with period `0/

√
ε with respect to y, and

satisfies
ϕ(0, y) = εΦ0(y

√
ε), |y| 6

`0

2
√
ε
.

Moreover, there exists a positive constant C, independent of ε ∈ (0, ε0], such that

|ϕ(t, y)− εΦ(tε2, y
√
ε)| 6 Cε2, 0 6 t 6

T

ε2 , |y| 6
`0

2
√
ε
.

For a precise definition of what smooth solution means we refer the reader to Subsection 6.3.
Clearly, the initial condition for ϕ is of special type, compatible with Φ0 and (1.1) at τ = 0.

Initial conditions of this type have already been considered in [1, 3].
The paper is organized as follows. In Section 2 we introduce some notation and the function

spaces we extensively use throughout the paper. In Section 3 we proceed to a formal Ansatz in the
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spirit of [12]. We set γ = 1 − ε, expand v = v0
+ εv1

+ · · · , ψ = ψ0
+ εψ1

+ · · · , and show
that ψ0 satisfies the K-S equation (1.13), thanks to an elementary solvability condition. The paper
consists in giving a rigorous proof of the Ansatz (i.e., of Main Theorem 1.1), thanks to an abstract
solvability condition within the framework of adequate function spaces. In this respect, in Section
4 we transform system (1.8)–(1.10) in an equivalent problem (for the new unknowns) using the
techniques of [4], which are based on

(i) definition of a suitable linear one-dimensional operator;
(ii) projection with respect to the x coordinate only;

(iii) Lyapunov–Schmidt method.

This allows us to decouple the system into a self-consistent fourth-order (in space) parabolic
equation for the front ψ and an elliptic equation which can be easily solved whenever a solution to
the front equation is determined. Hence, the rest of the paper is devoted to the parabolic equation. In
this direction, according to the Ansatz, we splitψ = Φ+ερε. In Section 5, we solve the fourth-order
equation for ρε, locally in time, with time domain possibly depending on ε. Then, in Section 6, we
prove that, for any T > 0, the function ρε exists, and is smooth, in the whole of [0, T ] provided ε is
small enough. This result is obtained as a consequence of some a priori estimates independent of ε,
which we prove in Subsection 6.1. The a priori estimates are also used to prove Main Theorem 1.1
(see Subsection 6.3). Finally, some technical tools are deferred to the appendix.

2. Notation and function spaces

In this section we introduce some notation and the function spaces which will be used throughout
the paper.

2.1 Notation

We define

I = R× [−`0/2, `0/2], I− = (−∞, 0]× [−`0/2, `0/2], I+ = [0,+∞)× [−`0/2, `0/2].

We use the bold notation for elements of both the spaces C((−∞, 0])× C([0,+∞)) and C(I−)×
C(I+). Given an element u of the previous spaces we denote its components by u1 and u2. We write
D
(i)
x u (resp. D(i)y u) (i = 1, 2, . . .) to denote the function whose components are D(i)x u1 and D(i)x u2

(resp. D(i)y u1 and D(i)y u2).
We extensively use the elements T, T′ (related to the TW), U and V of the space C((−∞, 0])×

C([0,+∞)), which are defined by{
T1(x) = e

x, x 6 0,
T2(x) = 1, x > 0,

{
T ′1(x) = e

x, x 6 0,
T ′2(x) = 0, x > 0,

(2.1)
U1(x) =

1− x
3

ex, x 6 0,

U2(x) =
1
3
, x > 0,

V1(x) =

(
1−

2
3
x +

x2

6

)
ex, x 6 0,

V2(x) = 1+
x

3
, x > 0.

(2.2)
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2.2 Function spaces

Here, we introduce the function spaces we use in this paper.

2.2.1 Spaces of one variable only. Let us fix `0 > 0. Given a real- or complex-valued function
f ∈ L2 := L2(−`0/2, `0/2), we denote by f̂ (k) its k-th Fourier coefficient, i.e., we write

f (η) =

+∞∑
k=0

f̂ (k)wk(η), η ∈ (−`0/2, `0/2),

where {wk} is a complete set of eigenfunctions of the operator

A : D(A) = H 2
→ L2, Au = Dηηu, u ∈ D(A),

with `0-periodic boundary conditions, corresponding to the sequence {−λk} of nonpositive
eigenvalues, which we label as 0 = −λ0 > −λ1 = −λ2 > −λ3 = −λ4 > · · · , for notational
convenience.

For integer or arbitrary real s we denote by H s the usual Sobolev spaces of `0-periodic
(generalized) functions, which we conveniently represent as

H s
=

{
w =

+∞∑
k=0

akwk :
+∞∑
k=0

λska
2
k < +∞

}
, (2.3)

with the usual norm. Next, for any β > 0, we denote by Cβ] the space of all functions f ∈ Cβ :=

Cβ([−`0/2, `0/2]) such that f (j)(−`0/2) = f (j)(`0/2) for any j = 0, . . . , [β]. The space Cβ] is
endowed with the Euclidean norm of Cβ([−`0/2, `0/2]).

2.2.2 Function spaces of two variables. Given h, k ∈ N∪{0}, an interval J ⊂ R and a (possibly
unbounded) closed set K ⊂ Rd (for some d ∈ N), we denote by Ch,k(J × K) the set of functions
f : J × K → R which are h-times continuously differentiable in J × K with respect to the first
variable and k-times continuously differentiable in J×K with respect to the second set of variables.
When J ×K is a compact set, we endow the space Ch,k(J ×K) with the norm

‖f ‖Ch,k(J×K) = sup
s∈J

‖f (s, ·)‖Ck(K) + sup
z∈K

‖f (·, z)‖Ch(J ) (2.4)

for any f ∈ Ch,k(J × K). Using (2.4) we can extend the definition of the spaces Ch,k(J × K) to
the case when h, k /∈ N.

Next, we introduce the space X defined by

X = {f = (f1, f2) ∈ C(I−)× C(I+) : f̃1 ∈ Cb(I−), f̃2 ∈ Cb(I+)}, (2.5)

where “b” stands for bounded and the functions f̃1 and f̃2 are defined as follows:

f̃1(x, η) = e
−x/2f1(x, η), x 6 0, |η| 6 `0/2,

f̃2(x, η) = e
−x/2f2(x, η), x > 0, |η| 6 `0/2.

In what follows, we will write f̃ := (f̃1, f̃2). The space X is a Banach space when endowed with the
norm

‖f‖X = ‖f̃1‖Cb(I−) + ‖f̃2‖Cb(I+) := sup
(x,η)∈I−

|f̃1(x, η)| + sup
(x,η)∈I+

|f̃2(x, η)|

for any f ∈ X.
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2.2.3 Interpolation spaces. Let X be a Banach space and A : D(A) ⊂ X → X be a sectorial
operator. For any θ ∈ (0, 1) we denote by DA(θ,∞) the interpolation space between X and D(A),
defined as follows:

DA(θ,∞) =
{
x ∈ X : [x]θ,∞ := sup

t∈(0,1]
t−θ‖etAx − x‖ < +∞

}
=

{
x ∈ X : [[x]]θ,∞ := sup

t∈(0,1]
‖t1−θAetAx‖ < +∞

}
,

where {etA} is the analytic semigroup generated by A. DA(θ,∞) is a Banach space when endowed
with one of the following equivalent norms:

‖x‖θ,∞,1 = ‖x‖ + [x]θ,∞, ‖x‖θ,∞,2 = ‖x‖ + [[x]]θ,∞.

The interpolation space DA(θ,∞) can also be defined in a more abstract way as follows:

DA(θ,∞) :=
{
x ∈ X : [[[x]]]θ,∞ := sup

t∈(0,1]
t−θK(t, x) < +∞

}
,

where

K(t, x) = inf{‖a‖X + t‖b‖D(A) : x = a + b, a ∈ X, b ∈ D(A)},

and ‖ · ‖D(A) denotes the graph-norm. The norm ‖x‖θ,∞,3 = ‖x‖ + [[[x]]]θ,∞ is equivalent to the
above defined norms. We refer the reader to [11, Chaps. 1 & 2] and [15] for further details.

3. Formal Ansatz

Let us set γ = 1 − ε in (1.10). Applying the change of variables defined by (1.12) to problem
(1.8)–(1.10), the problem for the couple (v, ψ) reads (after simplification by ε2) as follows:

vx − (vxx + εvηη) = (εψτ + ε(ψη)
2
− ψηη)Θx, x 6= 0, (3.1)

and at x = 0:

εψτ = [vx]− ε(ψη)2, (3.2)

v|x=0 = −ψηη + εψηη + ε

(
ψτ +

1
2
(ψη)

2
)
. (3.3)

In the spirit of [12, p. 75], we look for formal expansions:

v = v0
+ εv1

+ · · · , ψ = ψ0
+ εψ1

+ · · ·

of the solution to problem (3.1)–(3.3). Considering the zeroth order part of (3.1)–(3.3) (i.e., the
terms with no powers of ε in front), it is easy to see that the function v0 satisfies the system

v0
x − v

0
xx = −ψ

0
ηηe

xχ(−∞,0], (3.4)

[v0
x] = 0, (3.5)

v0
|x=0 = −ψ

0
ηη. (3.6)
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It is trivial to solve (3.4) together with, e.g., (3.6): it gives

v0
=

{
−ψ0

ηηe
x(1− x), x 6 0,

−ψ0
ηη, x > 0.

We remark that (3.5) is automatically satisfied. Hence, we are unable to “close” the system for
(v0, ψ0) at the zeroth order. This situation is quite common in singular perturbation theory when
the zeroth order cannot be fully determined (see, e.g., [7]). In such a case, one needs to go to
the first order. Most often, the latter demands a solvability condition, for example based on the
Fredholm alternative, which provides the missing relation for the zeroth order. Therefore, repeating
computations similar to the previous ones, we get the following equation for (v1, ψ1):

v1
x − v

1
xx − v

0
ηη = {ψ

0
τ + (ψ

0
η )

2
− ψ1

ηη}e
xχ(−∞,0]. (3.7)

At x = 0 we have the conditions

[v1
x] = ψ0

τ + (ψ
0
η )

2, (3.8)

v1
|x=0 = −ψ

1
ηη + ψ

0
ηη + ψ

0
τ +

1
2
(ψ0

η )
2. (3.9)

Clearly, the solution to (3.7)–(3.9) is given by

v1
=

{
aex + 2ψ0

ηηηη − ψ
0
τ − (ψ

0
η )

2
+ ψ1

ηηxe
x
−

1
2ψ

0
ηηηηx

2ex, x 6 0,

a − ψ0
ηηηηx, x > 0,

where a is an arbitrary parameter. There are two remaining unknowns at the first order, namely a
and ψ1

ηη, and still two relations at x = 0. First we use (3.9), which gives

a = v1(0) = −ψ1
ηη + ψ

0
ηη + ψ

0
τ +

1
2
(ψ0

η )
2. (3.10)

Second, we compute

v1
x(0
+) = −ψ0

ηηηη v1
x(0
−) = a + 2ψ0

ηηηη − ψ
0
τ − (ψ

0
η )

2
+ ψ1

ηη.

Therefore, from (3.8) we get

v1
x(0
+)− v1

x(0
−) = −a − {3ψ0

ηηηη − ψ
0
τ − (ψ

0
η )

2
+ ψ1

ηη} = ψ
0
τ + (ψ

0
η )

2. (3.11)

Obviously (3.10)–(3.11) is a linear system for (a, ψ1
ηη) with solvability condition

ψ0
ηη + ψ

0
τ +

1
2
(ψ0

η )
2
+ 3ψ0

ηηηη = 0,

i.e., ψ0 satisfies a K-S equation.
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4. An equivalent problem to (3.1)–(3.3)

The aim of this section is to transform problem (3.1)–(3.3) into an equivalent one. More precisely,
we are going to decouple the problem, getting a self-consistent equation for the front ψ and an
equation for the other unknown (say z) which can be immediately solved once ψ is known.

In deriving the equivalent problem, we assume that the solution (v, ψ) to problem (3.1)–(3.3) in
the time domain [0, T ] belongs to the space VT × YT , defined as follows:

DEFINITION 4.1 For any T > 0, we denote by VT the space of all functions v : [0, T ] × R ×
[−`0/2, `0/2]→ R such that

(i) v is twice continuously differentiable with respect to the spatial variables in [0, T ]× I− and in
[0, T ]× I+;

(ii) the functions (τ, x, η) 7→ e−x/2D
(i)
x v(τ, x, η) and (τ, x, η) 7→ e−x/2D

(i)
η v(τ, x, η) are

bounded in [0, T ]× I− and in [0, T ]× I+ for any i = 0, 1, 2.

Further, for any α ∈ (0, 1/2), we denote by YT the space of all functions ζ ∈ C1,4([0, T ] ×
[−`0/2, `0/2]) such that ζτ ∈ C0,2+α([0, T ] × [−`0/2, `0/2]) and D

(j)
η ζ(·,−`0/2) =

D
(j)
η ζ(·, `0/2) for j = 0, 1, 2, 3.

REMARK 4.2 Note that, for any ζ ∈ YT , the function ζηη is continuously differentiable in [0, T ]×
[−`0/2, `0/2] with respect to τ , and ζτηη ≡ ζηητ . Indeed,

ζ(τ, η) = ζ(0, η)+
∫ τ

0
ζτ (s, η) ds, τ ∈ [0, T ], η ∈ [−`/2, `/2].

Since ζτ ∈ C0,2([0, T ]× [−`/2, `/2]) we can differentiate under the integral sign to get

ζηη(τ, η) = ζηη(0, η)+
∫ τ

0
ζηητ (s, η) ds, τ ∈ [0, T ], η ∈ [−`/2, `/2].

This formula clearly shows that ζηη is continuously differentiable with respect to τ in [0, T ] ×
[−`/2, `/2] and ζτηη ≡ ζηητ . Hence, in what follows, we always write ζτηη instead of ζηητ .

4.1 Derivation of a self-consistent equation for the front

In this subsection we derive a self-consistent equation for the front. Since its derivation is rather
long, we split the proof into several steps.

4.1.1 Elimination of ψτ . First we eliminate ψτ from (3.1) thanks to (3.3), getting the equation

vx − vxx − εvηη − v(·, 0, ·)Θx =
(

1
2
ε(ψη)

2
− εψηη

)
Θx, x 6= 0. (4.1)

Let us set v(τ, x, η) := (v1(τ, x, η), v2(τ, x, η)), where v1(·, x, ·) = v(·, x, ·) for any x 6 0 and
v2(·, x, ·) = v(·, x, ·) for any x > 0, and

F0 =

(
ψηη −

1
2
(ψη)

2
)

T′, g = ψτ + (ψη)
2,
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where T′ is given by (2.1). Taking (3.3) and (4.1) into account, we can easily show that v solves the
problem 

Lv = εF0 − εvηη,
v2(·, 0, ·)− v1(·, 0, ·) = 0,
Dxv2(·, 0, ·)−Dxv1(·, 0, ·) = εg,

(4.2)

where

(Lv)(·, x, η) =

{
Dxxv1(·, x, η)−Dxv1(·, x, η)+ e

xv1(·, 0, η), x 6 0, |η| 6 `0/2,
Dxxv2(·, x, η)−Dxv2(·, x, η), x > 0, |η| 6 `0/2.

4.1.2 Lifting up the boundary conditions. We introduce the new unknown w = v−εN(g), where
N(g) = g(V − T), and T and V are defined in (2.1) and (2.2). It is easy to see that w solves the
problem Lw = εF0 − εwηη − ε2gηηN(1)− εgLN(1),

w2(·, 0, ·)− w1(·, 0, ·) = 0,
Dxw2(·, 0, ·)−Dxw1(·, 0, ·) = 0.

(4.3)

Since v ∈ VT , v(τ, ·), Lv(τ, ·) ∈ X (see (2.5) for the definition of the space X) for any τ ∈ [0, T ],
a straightforward computation shows that w(τ, ·) belongs to X for any τ ∈ [0, T ], and hence to the
set

{h ∈ C2,0(I−)× C
2,0(I+) : h,Lh ∈ X, D

(j)
x h1(0, ·) = D

(j)
x h2(0, ·), j = 0, 1},

which is the domain of the realization L of the operator L in X (see Section A.1).

4.1.3 A Lyapunov–Schmidt method. From the results in the previous subsection, we know that
w(τ, ·) ∈ D(L) for any τ ∈ [0, T ], and it solves the equation

Lw = εF0 − εwηη − ε2gηηN(1)− εgLN(1). (4.4)

We are going to project (4.4) along a suitable subspace of X, to derive a self-consistent equation for
the front ψ .

According to Theorem A.1, the equation Lz = f ∈ X has a solution if and only if P(f) = 0,
where

P(f) =
(∫ 0

−∞

f1(x, ·) dx +
∫
+∞

0
e−xf2(x, ·) dx

)
U = Q(f)U, f ∈ X.

Since w is any of such solutions, it follows that

P(εF0 − εwηη − εgLN(1)− ε2gηηN(1)) = 0,

or equivalently, after division by ε > 0,

0 = Q(F0 − wηη − gLN(1)− εgηηN(1)). (4.5)

Observing that

Q(F0) = ψηη −
1
2
(ψη)

2, (4.6a)

Q(gηηN(1)) =
4
3
gηη =

4
3
(ψτηη + ((ψη)

2)ηη), (4.6b)

Q(gLN(1)) = −g = −ψτ − (ψη)2, (4.6c)



KURAMOTO–SIVASHINSKY EQUATION 83

we can rewrite (4.5) as follows:

ψτ −
4
3
εψτηη +

1
2
(ψη)

2
+ ψηη −

4
3
ε((ψη)

2)ηη = Q(wηη). (4.7)

To get a self-contained equation for the front ψ , we have to give a representation of Q(wηη)
on the right-hand side of (4.7). For this purpose, in the spirit of the Lyapunov–Schmidt method, we
split w(τ, ·) (τ ∈ [0, T ]) along P(X) and (I − P)(X). Writing

w(τ, x, η) = a(τ, η)U(x)+ εz(τ, x, η),

and observing that our assumptions on v guarantee that zηη belongs to (I − P)(X) (indeed, Pz = 0
and P commutes with Dη), we get

Q(wηη) = Q(aηηU+ εzηη) = aηη. (4.8)

Let us compute formally the function a and its second spatial derivative. We use the relation in (3.3)
to obtain

1
3
a + εz1(·, 0, ·) = (ε − 1)ψηη + εψτ +

1
2
ε(ψη)

2.

Thus,

aηη = −3εDηηz1(·, 0, ·)+ 3(ε − 1)ψηηηη + 3εψτηη +
3
2
ε((ψη)

2)ηη. (4.9)

From (4.8) and (4.9) it follows that

Q(wηη) = −3εDηηz1(·, 0, ·)+ 3(ε − 1)ψηηηη + 3εψτηη +
3
2
ε((ψη)

2)ηη.

Inserting this into (4.7) we get the following equation for ψ :

ψτ −
13
3
εψτηη + 3(1− ε)ψηηηη + ψηη +

1
2
(ψη)

2
+ 3εDηηz1(·, 0, ·) =

17
6
ε((ψη)

2)ηη. (4.10)

We already see that (4.10) reduces to K-S if ε = 0. However, we still have z1 on the left-hand side
of (4.10). In the next subsection, we write it in terms of ψ .

4.1.4 The equation for z. To write Dηηz1(·, 0, ·) in terms of ψ , we determine the equation
satisfied by z. Projecting equation (4.4) on (I−P)(X), we see that z(τ, ·) = (I−P)(z(τ, ·)) ∈ D(L)
(τ ∈ [0, T ]) solves the equation

Lz = (I − P)(F0)− g(I − P)(LN(1))− εgηη(I − P)(N(1))− εzηη. (4.11)

Taking (4.6a)–(4.6c) into account, we can rewrite (4.11) as

Lz+ εzηη =
(
ψηη −

1
2
(ψη)

2
)
(T′ − U)− ε(ψτηη + ((ψη)2)ηη)

(
V− T−

4
3

U
)
. (4.12)

We now observe that the operator L+ εA := L+ εDηη with domain

D(L+ εA) = {u ∈ D(L) : uηη ∈ X, D(j)η ui(·,−`0/2) = D(j)η ui(·, `0/2), i = 1, 2, j = 0, 1}
(4.13)
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is closable and its closure, denoted by Lε, is sectorial and 0 is in the resolvent set of the restriction
of Lε to (I − P)(X) (see Theorem A.2). Hence, we can invert (4.12) using R(0, Lε) = (−Lε)−1,
collecting linear and nonlinear terms in ψ :

z = R(0, Lε)
(
−ψηη(T′ − U)+ εψτηη

(
V− T−

4
3

U
))

+ R(0, Lε)
(

1
2
(ψη)

2(T′ − U)+ ε((ψη)2)ηη
(

V− T−
4
3

U
))
. (4.14)

4.1.5 The fourth-order equation for the front. Using (4.14), we can compute z1(·, 0, ·) getting

z1(·, 0, ·) = −(R(0, Lε)[ψηη(T′−U)])1(·, 0, ·)+ε
(
R(0, Lε)

[
ψτηη

(
V−T−

4
3

U
)])

1
(·, 0, ·)

+

{
R(0, Lε)

(
1
2
(ψη)

2(T′−U)+ε((ψη)2)ηη
(

V−T−
4
3

U
))}

1
(·, 0, ·).

Since z1 is as smooth as v1 is, we can differentiate the previous formula twice with respect to η
obtaining

Dηηz1(·, 0, ·) =−(DηηR(0, Lε)[ψηη(T′ − U)])1(·, 0, ·)

+ ε

(
DηηR(0, Lε)

[
ψτηη

(
V− T−

4
3

U
)])

1
(·, 0, ·)

+
1
2
{DηηR(0, Lε)((ψη)2(T′ − U))}1(·, 0, ·)

+ ε

{
DηηR(0, Lε)

(
((ψη)

2)ηη

(
V− T−

4
3

U
))}

1
(·, 0, ·). (4.15)

Estimate (A2) and our assumptions on ψ (which guarantee that ψηη ∈ C1([0, T ];Cα), see Remark
4.2) show that (DηηR(0, Lε)[ψηη(V−T− 4

3 U)])1(·, 0, ·) belongs to C1,0([0, T ]× [−`0/2, `0/2])
and its derivative is (DηηR(0, Lε)[ψτηη(V−T− 4

3 U)])1(·, 0, ·). Hence, inserting (4.15) into (4.10),
we conclude that the function ψ solves the fourth-order equation

∂

∂τ
Bεψ = Sεψ + Fε((ψη)

2), (4.16)

where

Bεψ = ψ −
13ε
3
ψηη + 3ε2

(
DηηR(0, Lε)

[
ψηη

(
V− T−

4
3

U
)])

1
(·, 0, ·), (4.17a)

Sεψ = −3(1− ε)ψηηηη − ψηη + 3ε(DηηR(0, Lε)[ψηη(T′ − U)])1(·, 0, ·), (4.17b)

Fε(ψ) = −3εDηη

{
R(0, Lε)

(
1
2
ψ(T′ − U)+ εψηη

(
V− T−

4
3

U
))}

1
(·, 0, ·)

+
17ε
6
ψηη −

1
2
ψ. (4.17c)

Clearly, (4.16) reduces to K-S when we set ε = 0.
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4.2 Equivalence between problem (3.1)–(3.3) and equation (4.16)

The following theorem states the equivalence of problem (3.1)–(3.3) and equation (4.16).

THEOREM 4.3 Fix ε, T > 0 and α ∈ (0, 1/2). Further, let (v, ψ) ∈ VT × YT be a solution to
problem (3.1)–(3.3) (see Definition 4.1). Then the function ψ solves (4.16). Conversely, if ψ ∈ YT
is a solution to (4.16), then there exists a function v ∈ VT such that the pair (v, ψ) solves the Cauchy
problem (3.1)–(3.3).

Proof. In view of the arguments in Subsection 4.1, we just need to show that to any solutionψ ∈ YT
to equation (4.16) there corresponds a unique function v ∈ VT such that the pair (v, ψ) solves
problem (3.1)–(3.3). For this purpose, let z be defined by (4.14). By assumptions, ψηη, (ψη)2,
((ψη)

2)ηη and ψτηη are bounded in [0, T ] with values in Cα] . Moreover, the functions T′ − U and
V− T− 4

3 U are in (I − P)(X). Hence, we can apply Theorem A.2(iii) to conclude that z(τ, ·) is in
D(L+ εA) (see (4.13)) for any τ ∈ [0, T ].

Clearly, the components z1 and z2 of z are continuous in [0, T ]×I− and [0, T ]×I+, respectively.
Let us show that also their spatial derivatives (up to the second order) are continuous in [0, T ]× I−
and [0, T ] × I+, respectively. This follows from the estimate (A2) provided one shows that the
functions ψηη, ((ψη)2)ηη and ψτηη belong to C([0, T ];Cθ] ) for some θ ∈ (0, α). This property can
be proved using an interpolation argument. Indeed, it is well-known that, for any θ ∈ (0, α), there
exists a positive constant K such that

‖ψ‖Cθ 6 K‖ψ‖
1−θ/α
C0 ‖ψ‖

θ/α
Cα

for any ψ ∈ Cα (see, e.g., [15]). Applying this estimate to the function ψηη(τ2, ·) − ψηη(τ1, ·),
with τ1, τ2 ∈ [0, T ], shows that ψηη is continuous in [0, T ] with values in Cθ (and, hence, in Cθ] )
for any θ ∈ (0, α). The same argument shows that the functions (ψη)2, ((ψη)2)ηη and ψτηη are
in C([0, T ];Cθ] ) as well. Finally, since z(τ, ·) ∈ D(L + εA) for any τ ∈ [0, T ], the functions

(τ, x, η) 7→ e−x/2D
(i)
x z1(τ, x, η) and (τ, x, η) 7→ e−x/2D

(i)
η z2(τ, x, η) are bounded in [0, T ]× I−

and [0, T ]× I+, respectively, for any i = 0, 1, 2.
z will represent the component along (I − P)(X) of v − εN(ψτ + (ψη)2), where v1(·, x, ·) =

v(·, x, ·) for any x 6 0 and v2(·, x, ·) = v(·, x, ·) for any x > 0, and v is the solution
to problem (3.1)–(3.3) we are looking for. The computations in Subsection 4.1 suggest setting
v := w+ εN(ψτ + (ψη)2) := aU+ εz+ εN(ψτ + (ψη)2), where

a = −3εz1(·, 0, ·)+ 3(ε − 1)ψηη + 3εψτ +
3
2
ε(ψη)

2. (4.18)

Using formulae (4.6a)–(4.6c) and (4.15) we can show that

P(εF0 − εwηη − εLN(ψτ + (ψη)
2)− ε2N((ψτ + (ψη)

2)ηη)) = 0.

Hence, v solves the equation

Lv = L(aU)+ εLz+ εLN(ψτ + (ψη)
2)

= (I − P){εF0 − εwηη − εLN(ψτ + (ψη)
2)− ε2N((ψτ + (ψη)

2)ηη)} + εL(N(ψτ + (ψη)
2))

= εF0 − εvηη.
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Moreover, it is easy to check that v also satisfies the boundary conditions of the Cauchy problem
(4.2).

Clearly, the function v defined above belongs to VT and the pair (v, ψ) solves the differential
equation (3.1). Using the second boundary condition in (4.2), it follows immediately that (v, ψ)
satisfies condition (3.2). Finally, to check condition (3.3) it suffices to use (4.18), recalling that
N(ψτ + (ψη)

3) vanishes when η = 0. This completes the proof. 2

4.3 The equation for the remainder

In view of Theorem 4.3, in the rest of the paper we deal only with equation (4.16) with periodic
boundary conditions. To begin, we recall the following result about K-S:

THEOREM 4.4 Let Φ0 ∈ C
6+α
] for some α ∈ (0, 1/2). Then the Cauchy problem

Φτ (τ, η) = −3Φηηηη(τ, η)−Φηη(τ, η)− 1
2 (Φη(τ, η))

2, τ > 0, |η| 6 `0/2,

DkηΦ(τ,−`0/2) = DkηΦ(τ, `0/2), τ > 0, k = 0, 1, 2, 3,

Φ(0, η) = Φ0(η), |η| 6 `0/2,

(4.19)

admits a unique solution Φ ∈ C1,4([0,+∞)× [−`0/2, `0/2]). In fact, Φ ∈ YT for any T > 0.

Most of the literature is about the differentiated version of K-S. For this reason and the reader’s
convenience, we provide a full proof of Theorem 4.4 in the appendix.

According to the Ansatz, we split

ψ = Φ + ερε,

which defines the remainder ρε. To avoid cumbersome notation, we simply write ρ for ρε. From
Theorem 4.4 we know that ρ ∈ YT and it solves the equation

∂

∂τ
Bε(ρ) = Sε(ρ)−Φηρη −

ε

2
(ρη)

2
+ Gε((Φη + ερη)

2)+Hε(Φ), (4.20)

where

Gε(ξ) =
17
6
ξηη − 3

{
DηηR(0, Lε)

(
1
2
ξ(T′ − U)+ εξηη

(
V− T−

4
3

U
))}

1
(·, 0, ·),

Hε(Φ) = 3Φηηηη + 3(DηηR(0, Lε)[Φηη(T′ − U)])1(·, 0, ·)+
13
3
Φτηη

− 3ε
(
DηηR(0, Lε)

[
Φτηη

(
V− T−

4
3

U
)])

1
(·, 0, ·).

Equation (4.20) on [−`0/2, `0/2] is supplemented by periodic boundary conditions and by an
initial condition ρ0 at τ = 0. For simplicity, to avoid lengthly computations, we take hereafter
ρ0 = 0, that is, ψ(0, ·) = Φ(0, ·) = Φ0. In other words, the front ψ and the solution of K-S start
from the same configuration, which is physically reasonable. More general compatible initial data
can be considered as in [3, 1].
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5. Local in time solvability of equation (4.20)

As has been remarked in the introduction, except for small `0, where the TW is stable, global
existence of ρ is not guaranteed.

In this section, we prove the following local in time existence and uniqueness result.

THEOREM 5.1 For any ε ∈ (0, 1/2] there exist Tε > 0 and a unique solution ρ to equation (4.20)
which belongs to YTε and vanishes at τ = 0.

The proof is rather long and needs many preliminary results. For this reason, we split it into
several steps. Before entering into the details, we sketch here the strategy of the proof.

As a first step, for any fixed ε > 0, we transform (4.20) into a semilinear equation associated
with a sectorial operator. Employing classical tools from the theory of analytic semigroups we
prove that such a semilinear equation admits a unique solution ρ = ρε defined in some time domain
[0, Tε], which vanishes at τ = 0. Using some bootstrap arguments, we then regularize ρ, showing
that it actually belongs to YTε . These regularity properties of ρ allow us to show that it is in fact a
solution to (4.20).

5.1 The semilinear equation

In this subsection, we show that we can transform equation (4.20) into a semilinear equation
associated with a second order elliptic operator. We obtain it by inverting the operator Bε in (4.17a),
i.e., the operator defined by

Bεψ = ψ −
13ε
3
ψηη + 3ε2

(
DηηR(0, Lε)

[
ψηη

(
V− T−

4
3

U
)])

1
(·, 0, ·).

By Theorem A.2 and the results in the proof of Theorem 4.3, we know that the operator Bε is well-
defined in C2+θ

] for any θ ∈ (0, 1). We will show that Bε can be extended to the whole of C2
] as an

operator which is invertible. For this purpose, we compute the symbol of the operator Bε.
Throughout the section, given a function f : J × [−`0/2, `0/2] → R, where J ⊂ R is an

interval, we denote by f̂ (x, k) the k-th Fourier coefficient of the function f (x, ·). Moreover, we set

Xε,k =
√

1+ 4ελk, k = 0, 1, . . . . (5.1)

LEMMA 5.2 Fix ε ∈ (0, 1/2]. Then the k-th Fourier multiplier bε,k of the operator Bε is given by

bε,k =
3
4

(Xε,k + 1)(X2
ε,k + 2Xε,k − 1)

Xε,k + 2
∼ 3ελk (k→+∞). (5.2)

Proof. Even if the proof can be obtained by arguing as in the proof of [4, Prop. 4.2], for the reader’s
convenience we provide the details.

The main step of the proof is the computation of the symbol of the operator ϕ 7→ u1 :=
(R(0, Lε)[ϕ(V − T − 4

3 U)])1(0, ·) for any ε > 0. To lighten notation, throughout the proof we do
not stress explicitly the dependence on ε of the quantities we consider.

We claim that

û1(0, k) = −
4
9

4Xk + 7
(Xk + 1)2(Xk + 2)

ϕ̂(k), k = 0, 1, . . . . (5.3)
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Let us first assume that ϕ is smooth enough. Since the function V−T− 4
3 U belongs to (I −P)(X),

from Theorem A.2(iii) it follows that u ∈ D(L + εA), so that Lu + εAu = −(V − T − 4
3 U)ϕ.

Moreover, the function û(·, k) belongs to (I−P)(D(L)) and solves the equation (ελk−L)̂u(·, k) =
(V − T − 4

3 U)ϕ̂(k) for any k = 0, 1, . . . . Since λk is in the resolvent set of the operator L for any
k = 0, 1, . . . , by Theorem A.1 it follows that

û(·, k) = R(ελk, L)
(

V− T−
4
3

U
)
ϕ̂(k), k = 0, 1, . . . . (5.4)

Formula (5.4) can be extended to all functions ϕ ∈ C] by a straightforward approximation argument.
From formula (A1) it is immediate to check that

(R(ελk, L)f)1(0, ·) =
1
Xk

(
4ελk

(1+ (2ελk − 1)Xk)(Xk + 1)
+ 1

)
×

[∫ 0

−∞

e−ν1,k tf1(t, ·) dt +
∫
+∞

0
e−ν2,k tf2(t, ·) dt

]
for any f = (f1, f2) ∈ X, where

ν1,k =
1
2
−

1
2
Xk, ν2,k =

1
2
+

1
2
Xk, k = 0, 1, . . . .

Hence, from the definition of the functions V, T and U (see (2.1) and (2.2)), we get

∫ 0

−∞

e−ν1,k t

(
V1(t)− T1(t)−

4
3
U1(t)

)
dt +

∫
+∞

0
e−ν2,k t

(
V2(t)− T2(t)−

4
3
U2(t)

)
dt

= −
4
9
(4Xk + 7)(Xk − 1)

(Xk + 1)3
.

Since 0 is in the resolvent set of the restriction of L to (I − P)(X), we can extend the previous
formula, by continuity, to λ = 0. Thus,

û1(0, k) = −
4
9

(
4ελk

(1+ (2ελk − 1)Xk)(Xk + 1)
+ 1

)
(4Xk + 7)(Xk − 1)
Xk(Xk + 1)3

ϕ̂(k)

= −
4
9

4Xk + 7
(Xk + 2)(Xk + 1)2

ϕ̂(k)

for any k = 0, 1, . . . , and the assertion follows.
Now, using formula (5.3) it is immediate to complete the proof. 2

PROPOSITION 5.3 For any ε ∈ (0, 1/2], the operator Bε is invertible from C2+θ
] into Cθ] for any

θ ∈ (0, 1).

Proof. From Lemma 5.2, we know that bε,k 6= 0 for any k = 0, 1, . . . . Hence, the operator Bε

admits a realization in L2 which is invertible from H 2 into L2. We still denote by Bε such a
realization. To prove that Bε is invertible from C2

] into C], let us fix f ∈ C] and let u ∈ H 2

be the unique solution to the equation Bεu = f . Taking (5.2) into account, it is immediate to check
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that we can split Bε = −3εDηη +B
(1)
ε , where B

(1)
ε ∈ L(H

1, L2), since its symbol (b(1)ε,k) satisfies

b
(1)
ε,k ∼

3
2

√
ελk (k→+∞).

It follows that the function B
(1)
ε (u) is in C1/2

] . Consequently, uηη is in C].
Let us now suppose that f ∈ Cθ] with θ 6 1/2 and let u ∈ H 2 satisfy Bε(u) = f . Since

B
(1)
ε (u) ⊂ C

1/2
] , uηη belongs to Cθ] and hence u ∈ C2+θ

] . Let now θ ∈ (1/2, 1). The above result

shows that u ∈ C5/2
] . Since C5/2

] ⊂ H 5/2, B
(1)
ε u ∈ H

3/2
⊂ Cθ] . Hence, also in this case uηη ∈ Cθ]

and we are done. 2

In view of Proposition 5.3, we can invert the operator Bε from C2+θ
] into Cθ] for any θ ∈ (0, 1),

getting the following equation for ρ:

ρτ (τ, ·) = Rε(ρ(τ, ·))+Kε(τ, ρη(τ, ·)), τ ∈ [0, T ], (5.5)

where

Rε(ρ) = B−1
ε (Sε(ρ)),

Kε(τ, ρ) = B−1
ε (Gε((Φη(τ, ·))

2))−B−1
ε (Φη(τ, ·)ρ)+ 2εB−1

ε (Gε(Φη(τ, ·)ρ))

−
ε

2
B−1
ε (ρ2)+ ε2B−1

ε (Gε(ρ
2))+ 3B−1

ε (Φηηηη)

+ 3B−1
ε

(
(DηηR(0, Lε)[Φηη(T′ − U)])1(·, 0, ·)

)
+

13
3

B−1
ε (Φτηη)

− 3εB−1
ε

((
DηηR(0, Lε)

[
Φτηη

(
V− T−

4
3

U
)])

1
(·, 0, ·)

)
. (5.6)

5.2 Solving equation (5.5)

Here, we prove an existence and uniqueness result for equation (5.5) with initial condition
ρ(0, ·) = 0. For this purpose, we need to thoroughly study the operators Rε and Kε. To lighten
notation, we do not stress explicitly the dependence on ε of the symbols of the operators we are
going to consider. In particular, we simply write Xk for Xε,k (see (5.1)).

We begin by considering the operator Rε. Taking Proposition 5.3 and Theorem A.2(iii) into
account, it is immediate to check that Rε is well-defined in C4

] . Actually, we show that it can be
extended to C1

] ∩ C
2 as a bounded operator which is sectorial.

PROPOSITION 5.4 For any ε ∈ (0, 1/2], the operator Rε can be extended to a sectorial operator
Rε with domain C1

] ∩C
2. Moreover,DRε (θ,∞) = C

2θ
] for any θ ∈ (0, 1)\ {1/2}, with equivalence

of the corresponding norms.

Proof. To begin, we compute the symbol of the operator Sε (see (4.17b)). For this purpose we set
v1 := (R(0, Lε)[ϕ(T′ −U)])1(0, ·) and observe that, arguing as in the proof of (5.3), we can easily
show that

v̂1(0, k) =
2
3

1
(Xk + 1)(Xk + 2)

ϕ̂(k), k = 0, 1, . . . . (5.7)
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Hence, we have

sk =
3(Xk − 1)(Xk + 1)2{(ε − 1)X2

k + (ε − 1)Xk + 2}
16ε2(Xk + 2)

∼ 48(ε − 1)ε2λ2
k (5.8)

as k→+∞. From (5.2) and (5.8) it follows that the k-th symbol of the operator Rε is

rk =
(X2

k − 1){(ε − 1)X2
k + (ε − 1)Xk + 2}

4ε2(X2
k + 2Xk − 1)

, k = 0, 1, . . . .

For any fixed ε ∈ (0, 1/2], rk ∼ (1− ε−1)λk as k→+∞. Hence, we can split

Rεϕ =
1− ε
ε

ϕyy + R(1)ε ϕ,

where the symbol of R
(1)
ε is

r
(1)
k =

(X2
k − 1){(1− ε)Xk + ε + 1}

4ε2(X2
k + 2Xk − 1)

∼
(1− ε)

√
ε

2ε2

√
λk (k→+∞).

We claim that the operator R
(1)
ε admits a realization in C0 which is in L(C1+α

] , C]) for any α ∈
(1/2, 1). As a first step, we observe that, due to the characterization of the spaces H s given in (2.3),
the operator R

(1)
ε admits a realization R(1)ε ∈ L(H s, H s−1) for any s > 1. It is well-known that

Cm] ⊂ H
m
⊂ C

m−1/2
] with continuous embeddings for any m > 1/2 such that m− 1/2 /∈ N. As a

consequence, R(1)ε ∈ L(Cs] , C
s−3/2
] ) for any s > 3/2 such that s − 3/2 /∈ N. Therefore, Rε can be

extended with a bounded operator Rε from D(Rε) = C
1
] ∩ C

2 into C0.
Let us now prove that Rε is sectorial. For this purpose, we note that Cθ] belongs to the class Jθ/2

between C0 and C1
] ∩ C

2, for any θ ∈ (0, 2), i.e., there exists a positive constant K such that

‖f ‖Cθ 6 K‖f ‖
(2−θ)/2
C0 ‖f ‖

θ/2
C2 (5.9)

for any f ∈ C1
] ∩ C

2, and the realization of the second-order derivative in C([−`0/2, `0/2]) with
domain C1

] ∩ C
2 is sectorial. Hence, we can apply [11, Prop. 2.4.1(i)] to conclude that the operator

Rε is sectorial in C0. It is now clear that the graph norm of Rε is equivalent to the Euclidean norm
of C1

] ∩ C
2. Hence, [11, Prop. 2.2.2] implies that DRε (θ,∞) = C

2θ
] for any θ ∈ (0, 1) \ {1/2}. 2

We now consider the operator Kε of (5.6). From Proposition 5.3 and Theorems 4.4 and A.2(iii), we
know that Kε is continuous from C2+α

] into [0,+∞) × C] for any α > 0. Let us show that it can
be extended to a larger domain.

PROPOSITION 5.5 Let the assumptions of Theorem 4.4 be satisfied. Then, for any ε ∈ (0, 1/2],
the operator Kε can be extended to a continuous operator mapping Cs] into [0,+∞) × Cs] for any
s > 0. Moreover, for any r, T > 0, there exists a positive constant K = K(T , r) such that

‖Kε(τ2, ψ)−Kε(τ1, ψ)‖∞ + ‖Kε(τ, ψ)−Kε(τ, ξ)‖∞ 6 K(|τ2 − τ1| + ‖ψ − ξ‖∞)

for any τ, τ1, τ2 ∈ [0, T ] and any ψ, ξ ∈ B(0, r) ⊂ C].
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Proof. As a first step, we observe that, using formulae (5.3) and (5.7), one can easily show that the
k-th symbol gk of the operator Gε is

gk = −λk
3X2

k + 15Xk + 4
2(Xk + 1)(Xk + 2)

. (5.10)

From (5.2) and (5.10), it follows that the symbol of the operator Zε := B−1
ε Gε is

zk = −
2
3
λk

3X2
k + 15Xk + 4

(Xk + 1)2(X2
k + 2Xk − 1)

= −
1
2ε
+ z

(1)
k ,

where
z
(1)
k ∼ −

1

4
√
ε3λk

, k→+∞. (5.11)

We can thus split

Zε = −
1
2ε

Id+ Z(1)ε ,

where Z
(1)
ε is the operator whose symbol is (z(1)k ). Formula (5.11) shows that Z

(1)
ε ∈ L(H

s, H s+1)

for any s > 0. Hence, Z
(1)
ε ∈ L(Cs] , C

s+θ
] ) for any s ∈ N ∪ {0} and any θ ∈ (0, 1/2). As a

byproduct, Zε ∈ L(C
s
] ) for any s > 0. The assertion now follows from (5.6) on taking Proposition

5.3 and Theorem 4.4 into account. 2

From all the previous results, we get the following:

THEOREM 5.6 For any ε ∈ (0, 1/2], equation (5.5) admits a unique solution ρ, defined in a
maximal time domain [0, Tε), which vanishes at τ = 0, belongs to C1,2([0, Tε) × [−`0/2, `0/2])
and satisfies D(j)η ρ(·,−`0/2) ≡ D

(j)
η ρ(·, `0/2) for j = 0, 1.

Proof. Combining [11, Thms. 7.1.2 & 4.3.8], we can easily show that equation (5.5) admits a
unique solution ρ, defined in a maximal time domain [0, Tε), which belongs to C1,β([0, Tε) ×
[−`0/2, `0/2]) for any β < 2, vanishes at τ = 0, and satisfies D(j)η ρ(·,−`0/2) ≡ D

(j)
η ρ(·, `0/2)

for j = 0, 1. Moreover, Rε(ρ) is continuous in [0, Tε) × [−`0/2, `0/2]. Since Rε(ρ) and 1−ε
ε
Dηη

differ by the the lower order operator R(1)ε (see the proof of Proposition 5.4), ρηη ∈ C([0, Tε) ×
[−`0/2, `0/2]) as well, and this completes the proof. 2

5.3 Proof of Theorem 5.1

This subsection is the final step of the proof of Theorem 5.1. Using some bootstrap arguments, we
show that the solution ρ to equation (5.5) given by Theorem 5.6 is actually a solution to equation
(4.20). Of course, we just need to show that both the functions ρηη and ρτ belong to C0,2([0, Tε)×
[−`0/2, `0/2]). Throughout the proof, we assume that T ′ is any fixed number in the interval [0, Tε).

To begin, we observe that Propositions 5.4 and 5.5 show that Kε(·, ρ) ∈ C([0, T ′];DRε (θ,∞))
for any θ ∈ (0, 1). Therefore, we can apply [11, Thm. 4.3.8] and conclude that ρτ , Rε(ρ) are
bounded in [0, T ′] with values in C2θ

] for any θ ∈ (0, 1). Since Rε(ρ) and 1−ε
ε
Dηη differ by the

lower order operator R(1)ε , ρηη ∈ C0,2θ ([0, T ′] × [−`0/2, `0/2]) for any θ as above. In particular,
ρτ and ρηη belong to C0,1([0, T ′]× [−`0/2, `0/2]).
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Let us now set ζ := ρη. Clearly, ζ ∈ C([0, Tε);C2
] )∩C

1([0, Tε);C]) and ζτ = ρητ . Moreover,

ζτ = (1− ε−1)ζηη +DηR
(1)
ε ρ +DηKε(·, ρη)

in [0, Tε)×[−`0/2, `0/2], and ζ(0, ·) ≡ 0. SinceR(1)ε ∈ L(C3+θ
] , C

3/2+θ
] ) for any θ ∈ (0, 1)\{1/2},

the functionDηR
(1)
ε (ρ) is bounded in [0, T ′] with values in Cα] for any α < 3/2. Using Proposition

5.5 we now deduce that DηR
(1)
ε (ρ)+DηKε(·, ρη(τ, ·)) is bounded in [0, T ′] with values in Cα] for

any α as above. Hence, Theorem 4.3.9(iii) of [11] implies that the functions ζτ and ζηη are bounded
(in fact, continuous) in [0, T ′] with values in Cα] . This completes the proof.

6. Uniform existence of ρ and proof of the main result

So far we have only proved a local existence-uniqueness result for equation (4.20) on an ε-dependent
time interval. In this section, we want to prove that, for any fixed T > 0, the local solution ρ exists
in the whole of [0, T ], at least for sufficiently small values of ε. The main tool in this direction is
represented by the a priori estimates in the next subsection.

6.1 A priori estimates

The main result of this subsection is contained in the following theorem.

THEOREM 6.1 For any T > 0, there exist ε0 = ε0(T ) ∈ (0, 1/2) and K = K(T ) > 0 such that,
for any T ′ < T and any ρ ∈ YT ′ (see Definition 4.1) which solves equation (4.20), we have

sup
τ∈(0,T ′]

η∈[−`0/2,`0/2]

|ρη(τ, η)| + sup
τ∈(0,T ′]

∫ `0/2

−`0/2
(ρηη(τ, η))

2 dη

+

∫ T ′

0

∫ `0/2

−`0/2
(ρτ (τ, η))

2 dη dτ +
∫ T ′

0

∫ `0/2

−`0/2
(ρτη(τ, η))

2 dη dτ 6 K

for all τ ∈ (0, T ′], whenever ε 6 ε0.

The proof of Theorem 6.1 employs an energy method. Let ρ ∈ YT ′ solve (4.20), i.e.,

∂

∂τ
Bε(ρ) = Sε(ρ)−Φηρη −

ε

2
(ρη)

2
+ Gε((Φη + ερη)

2)+Hε(Φ). (6.1)

Multiplying both sides of (6.1) by ρτ and integrating over [−`0/2, `0/2], we get∫ `0/2

−`0/2
Bε(ρτ )ρτ dη =

∫ `0/2

−`0/2
Sε(ρ)ρτ dη −

∫ `0/2

−`0/2
Φηρηρτ dη −

ε

2

∫ `0/2

−`0/2
(ρη)

2ρτ dη

+

∫ `0/2

−`0/2
Gε((Φη + ερη)

2)ρτ dη +
∫ `0/2

−`0/2
Hε(Φ)ρτ dη. (6.2)
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Using the definition of the operator Sε (see (4.17b)) and then integrating by parts yields

∫ `0/2

−`0/2
Sε(ρ)ρτ dη

=

∫ `0/2

−`0/2
{−3(1− ε)ρηηηη − ρηη + 3ε(DηηR(0, Lε)[ρηη(T′ − U)])1(·, 0, ·)}ρτ dη

= −
3
2
(1− ε)

d
dt

∫ `0/2

−`0/2
(ρηη)

2 dη −
∫ `0/2

−`0/2
ρηηρτ dη

+ 3ε
∫ `0/2

−`0/2
(DηηR(0, Lε)[ρηη(T′ − U)])1(·, 0, ·)ρτ dη.

Therefore, we can write equation (6.2) in the following equivalent form:

3
2
(1− ε)

d
dτ

∫ `0/2

−`0/2
(ρηη)

2 dη +
∫ `0/2

−`0/2
Bε(ρτ )ρτ dη

= −
ε

2

∫ `0/2

−`0/2
(ρη)

2ρτ dη −
∫ `0/2

−`0/2
ρηηρτ dη

+ 3ε
∫ `0/2

−`0/2
(DηηR(0, Lε)[ρηη(T′ − U)])1(·, 0, ·)ρτ dη

+

∫ `0/2

−`0/2
Gε((Φη + ερη)

2)ρτ dη −
∫ `0/2

−`0/2
Φηρηρτ dη +

∫ `0/2

−`0/2
Hε(Φ)ρτ dη. (6.3)

In the following lemmata we estimate the terms

I1 :=
∫ `0/2

−`0/2
Bε(ρτ )ρτ dη,

I2 :=
∫ `0/2

−`0/2
(DηηR(0, Lε)[ρηη(T′ − U)])1(·, 0, ·)ρτ dη,

I3 :=
∫ `0/2

−`0/2
Gε((Φη + ερη)

2)ρτ dη,

I4 :=
∫ `0/2

−`0/2
Hε(Φ)ρτ dη.

The main issue is to control I1:

LEMMA 6.2 We have

I1(τ ) >
∫ `0/2

−`0/2
(ρτ (τ, ·))

2 dη + 3ε
∫ `0/2

−`0/2
(ρτη(τ, ·))

2 dη

for any τ ∈ [0, T ′] and any ε ∈ (0, 1/2].
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Proof. Of course, we can limit ourselves to proving the estimate with ρτ (τ, ·) replaced by ϕ ∈ H 2.
It is immediate to check that∫ `0/2

−`0/2
Bε(ϕ)ϕ dη =

+∞∑
k=0

bε,k|ϕ̂(k)|
2,

where the symbol (bε,k) of the operator Bε is defined by (5.2). Note that bε,k = h(Xε,k) for any
k = 0, 1, . . . , where the function h : [1,+∞)→ R is defined by

h(s) =
3
4
(s + 1)(s2

+ 2s − 1)
s + 2

, s > 1.

Since h(s) > (3s2
+ 1)/4 for any s > 1, we can estimate∫ `0/2

−`0/2
Bε(ϕ)ϕ dη >

+∞∑
k=0

(1+ 3ελk)|ϕ̂(k)|2 =
∫ `0/2

−`0/2
|ϕ|2 dη + 3ε

∫ `0/2

−`0/2
|ϕη|

2 dη,

and we are done. 2

We now consider the terms I2, I3 and I4.

LEMMA 6.3 For any τ ∈ [0, T ′] and any ε ∈ (0, 1/2],

|I2(τ )| 6
1

12ε
‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖2.

Proof. It is immediately seen that for any τ ∈ [0, T ] we can estimate∣∣∣∣∫ `0/2

−`0/2
(DηηR(0, Lε)[ρηη(T′ − U)])1(τ, 0, ·)ρτ (τ, ·) dη

∣∣∣∣
6

1
3ε
‖%τ (τ, ·)‖2‖(DηηR(0, Lε)[ρηη(T′ − U)])1(τ, 0, ·)‖2.

To compute the L2-norm of the function (DηηR(0, Lε)[ρηη(T′ − U)])1(τ, 0, ·), we take advantage
of formula (5.7), which allows us to estimate

‖(DηηR(0, Lε)[ρηη(T′ − U)])1(τ, 0, ·)‖22 =
1
4

+∞∑
k=0

∣∣∣∣Xk + 1
Xk + 2

λ2
kρ̂(τ, k)

∣∣∣∣2 6
1
4
‖ρηη(τ, ·)‖

2
2,

where, as usual, Xk =
√

1+ 4ελk and ρ̂(τ, k) is the k-th Fourier coefficient of the function ρ(τ, ·).
This accomplishes the proof. 2

LEMMA 6.4 There exists a positive constant C, independent of ε ∈ (0, 1/2], τ and T ′, such that

|I3(τ )| 6 C
(
‖ρτ (τ, ·)‖2 + ‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖2 + ε‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖

2
2

+ ε‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖2 + ε
2
‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖

2
2
)

for any τ ∈ [0, T ′].



KURAMOTO–SIVASHINSKY EQUATION 95

Proof. As in the proof of the previous lemma, it is enough to estimate the L2-norm of the function
Gε((Φη(τ, ·)+ ερη(τ, ·))

2). For this purpose, we observe that (see (5.10))

‖Gε(ψ)‖
2
2 =

+∞∑
k=0

λ2
k

(
3X2

k + 15Xk + 4
2(Xk + 1)(Xk + 2)

)2

|ψ̂(k)|2 6
121
36

+∞∑
k=0

λ2
k|ψ̂(k)|

2

for any ψ ∈ H 2, where Xk =
√

1+ 4ελk for any k = 0, 1, . . . . It follows that

‖Gε(ψ)‖2 6 2‖ψηη‖2. (6.4)

Moreover, the symbol gk can be split as follows:

gk = −
3
2
λk +

1
4ε
h(Xk), k = 0, 1, . . . ,

where the function h : [1,+∞)→ R is defined by

h(s) =
(1− 3s)(s − 1)

s + 2
, s > 1.

Clearly, −3s 6 h(s) 6 0 for any s > 1. Hence, we can split

Gε(ψ) =
3
2
ψηη +

1
4ε

G(1)ε (ψ), (6.5)

where G
(1)
ε ∈ L(H

1, L2) and

‖G(1)ε (ψ)‖2 6 3
(+∞∑
k=0

(1+ 4ελk)|ψ̂(k)|2
)1/2
= 3(‖ψ‖22 + 4ε‖ψη‖22)

1/2 6 6‖ψ‖H 1 . (6.6)

We now split (for any arbitrarily fixed τ ∈ [0, T ′])

∫ `0/2

−`0/2
Gε((Φη(τ, ·)+ ερη(τ, ·))

2)ρτ (τ, ·) dη

=

∫ `0/2

−`0/2
Gε((Φη(τ, ·))

2)ρτ (τ, ·) dη + 2ε
∫ `0/2

−`0/2
Gε(Φη(τ, ·)ρη(τ, ·))ρτ (τ, ·) dη

+ ε2
∫ `0/2

−`0/2
Gε((ρη(τ, ·))

2)ρτ dη

:= J1(τ )+ J2(τ )+ J3(τ ).

To estimate J1, we use (6.4) and the Hölder inequality to get

|J1(τ )| 6 2‖ρτ (τ, ·)‖2‖((Φη(τ, ·))2)ηη‖2. (6.7)
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Estimating the terms J2 and J3 is a bit more tricky. Using (6.5) and (6.6), we get

|J2(τ )| 6 3ε
∣∣∣∣∫ `0/2

−`0/2
ρτ (τ, ·)(Φη(τ, ·)ρη(τ, ·))ηη dη

∣∣∣∣+ 3
2
‖Φη(τ, ·)ρη(τ, ·)‖H 1‖ρτ (τ, ·)‖2

= 3ε
∣∣∣∣∫ `0/2

−`0/2
ρτη(τ, ·)(Φηη(τ, ·)ρη(τ, ·)+Φη(τ, ·)ρηη(τ, ·)) dη

∣∣∣∣
+

3
2
‖Φη(τ, ·)ρη(τ, ·)‖H 1‖ρτ (τ, ·)‖2

6 3ε‖Φηη‖∞‖ρτη(τ, ·)‖2‖ρη(τ, ·)‖2 + 3ε‖Φη‖∞‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖2

+
3
2
{(‖Φη‖∞ + ‖Φηη‖∞)‖ρη(τ, ·)‖2 + ‖Φη‖∞‖ρηη(τ, ·)‖2}‖ρτ (τ, ·)‖2. (6.8)

Using the Poincaré–Wirtinger inequality, we can continue the estimate to obtain

|J2(τ )| 6 C1(ε‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖2 + ‖ρηη(τ, ·)‖2‖ρτ (τ, ·)‖2) (6.9)

for some positive constant C1, independent of τ , T ′ and ε.
To estimate J3 we argue similarly to get

|J3(τ )| 6
3
2
ε2
∣∣∣∣∫ `0/2

−`0/2
ρτ (τ, ·)((ρη(τ, ·))

2)ηη dη
∣∣∣∣+ 3

2
ε‖(ρη(τ, ·))

2
‖H 1‖ρτ (τ, ·)‖2

=
3
2
ε2
∣∣∣∣∫ `0/2

−`0/2
ρτη(τ, ·)((ρη(τ, ·))

2)η dη
∣∣∣∣+ 3

2
ε‖(ρη(τ, ·))

2
‖H 1‖ρτ (τ, ·)‖2

6 3ε2
‖ρτη(τ, ·)‖2‖ρη(τ, ·)‖∞‖ρηη(τ, ·)‖2

+
3
2
ε‖ρη(τ, ·)‖∞(‖ρη(τ, ·)‖2 + 2‖ρηη(τ, ·)‖2)‖ρτ (τ, ·)‖2

6 C2(ε
2
‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖

2
2 + ε‖ρηη(τ, ·)‖

2
2‖ρτ (τ, ·)‖2) (6.10)

for some positive constant C2, independent of τ , T ′ and ε.
By combining (6.7), (6.8) and (6.10), the assertion follows at once. 2

LEMMA 6.5 There exists a positive constant C, independent of ε ∈ (0, 1/2], τ and T ′, such that

|I4(τ )| 6 C(‖Φτηη(τ, ·)‖2 + ‖Φηηηη(τ, ·)‖2)‖ρτ (τ, ·)‖2, τ ∈ [0, T ′]. (6.11)

Proof. Of course, we just need to estimate the terms

J
(1)
4 (τ ) = ε

∫ `0/2

−`0/2
ρτ

(
DηηR(0, Lε)

[
Φτηη

(
V− T−

4
3

U
)])

1
(·, 0, ·) dη,

J
(2)
4 (τ ) =

∫ `0/2

−`0/2
ρτ (DηηR(0, Lε)[Φηη(T′ − U)])1(·, 0, ·) dη;

the remaining terms are easily handled.
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Concerning J (1)4 , taking (5.3) into account we can estimate

|J
(1)
4 (τ )| 6

4
9
ε

+∞∑
k=0

λ2
k

4Xk + 7
(Xk + 1)2(Xk + 2)

|ρ̂τ (τ, k)| |Φ̂τ (τ, k)|

6
1
9

+∞∑
k=0

λk
X2
k(4Xk + 7)

(Xk + 1)2(Xk + 2)
|ρ̂τ (τ, k)| |Φ̂τ (τ, k)|

6
4
9

+∞∑
k=0

λk|ρ̂τ (τ, k)| |Φ̂τ (τ, k)| =
4
9
‖ρτ (τ, ·)‖2‖Φτηη(τ, ·)‖2

for any τ ∈ [0, T ′]. Similarly, using (5.7) we can estimate

|J
(2)
4 (τ )| 6

2
3

+∞∑
k=0

λ2
k

1
(Xk + 1)(Xk + 2)

|ρ̂τ (τ, k)| |Φ̂(τ, k)| 6
1
3

+∞∑
k=0

λ2
k|ρ̂τ (τ, k)| |Φ̂(τ, k)|

=
1
3
‖ρτ (τ, ·)‖2‖Φηηηη(τ, ·)‖2

for any τ ∈ [0, T ′]. Now, estimate (6.11) follows immediately. 2

Finally, we recall the following technical result proved in [1], which plays a crucial role in the proof
of Theorem 6.1.

LEMMA 6.6 (slight extension of [1, Lemma 3.1]) Let A0, C0, C1, C2 be positive constants. For
any T > 0, there exist ε0 ∈ (0, 1/2) and a constant K0 such that, if Aε ∈ C1([0, T ′]) (T ′ ∈ (0, T ])
satisfies {

A′ε(τ ) 6 C0 + C1Aε(τ )+ C2ε(Aε(τ ))
2, τ ∈ [0, T ′],

Aε(0) 6 A0,

for some ε ∈ (0, ε0], then Aε(τ ) 6 K0 for any τ ∈ [0, T ′].

Proof of Theorem 6.1. To begin, we observe that, invoking the Poincaré–Wirtinger inequality, we
can estimate∣∣∣∣∫ `0/2

−`0/2
(ρη(τ, ·))

2ρτ (τ, ·) dη
∣∣∣∣ 6 ‖ρτ (τ, ·)‖2‖ρη(τ, ·)‖2‖ρη(τ, ·)‖∞ 6

√
`0‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖

2
2

for any τ ∈ [0, T ′]. Hence, Lemmata 6.2–6.5, estimate (6.3) and the Hölder inequality give

3
2
(1− ε)

d
dτ
‖ρηη(τ, ·)‖

2
2 + ‖ρτ (τ, ·)‖

2
2 + 3ε‖ρτη(τ, ·)‖22

6 K
(
‖ρτ (τ, ·)‖2 + ‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖2 + ε‖ρτ (τ, ·)‖2‖ρηη(τ, ·)‖

2
2

+ ε‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖2 + ε
2
‖ρτη(τ, ·)‖2‖ρηη(τ, ·)‖

2
2
)

(6.12)
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for some positive constant K , depending on Φ but independent of τ ∈ [0, T ′]. Using the Young
inequality ab 6 1

4a
2
+ b2 we get

3
2
(1− ε)

d
dτ
‖ρηη(τ, ·)‖

2
2 + ‖ρτ (τ, ·)‖

2
2 + 3ε‖ρτη(τ, ·)‖22

6 K2
+

3
4
‖ρτ (τ, ·)‖

2
2 +

1
4
(ε + ε2)‖ρτη(τ, ·)‖

2
2

+K2(1+ ε + ε2)‖ρηη(τ, ·)‖
2
2 +K

2ε2
‖ρηη(τ, ·)‖

4
2, (6.13)

or, equivalently,

d
dτ
‖ρηη(τ, ·)‖

2
2 6

4
3
K2
+ 4K2

‖ρηη(τ, ·)‖
2
2 +

4
3
K2ε2

‖ρηη(τ, ·)‖
4
2

6
4
3
K2
+ 4K2

‖ρηη(τ, ·)‖
2
2 +

2
3
K2ε‖ρηη(τ, ·)‖

4
2, (6.14)

provided that ε 6 1/2. Applying Lemma 6.6 to (6.14) with (C0, C1, C2) = (4K2/3, 4K2, 2K2/3)
and Aε(τ ) = ‖ρηη(τ, ·)‖22, we deduce that there exist ε0 ∈ (0, 1/2) and K0 > 0 such that

sup
τ∈(0,T ′]

∫ `0/2

−`0/2
(ρηη(τ, η))

2 dη 6 K0

for any ε ∈ (0, ε0). Now, using again the Poincaré–Wirtinger inequality, we get

sup
τ∈(0,T ′]

η∈[−`0/2,`0/2]

|ρη(τ, η)| 6 K1

for any ε ∈ (0, ε0], with K1 independent of ε and T ′ < T .
Finally, integrating (6.13) and using the estimates obtained so far, we deduce that∫ T ′

0

∫ `0/2

−`0/2
(ρτ (τ, η))

2 dτ dη +
∫ T ′

0

∫ `0/2

−`0/2
(ρτη(τ, η))

2 dτ dη 6 K2 (6.15)

for some constant K2, independent of ε and T ′ < T . The assertion now follows. 2

COROLLARY 6.7 Under the assumptions of Theorem 6.1, there exists a constant M > 0,
independent of T ′ < T , such that

‖ρ‖C0,1([0,T ′]×[−`0/2,`0/2]) 6 M

for any ε ∈ (0, ε0].

Proof. In view of Theorem 6.1 we only have to estimate the sup-norm of the function ρ, but this
is immediate if we observe that (6.15) implies that ρ is bounded in H 1([0, T ′];H 1) by a constant
independent of T ′, and ρ(0, ·) = 0. 2
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6.2 Solving equation (4.20) in [0, T ]

We now consider a fixed time interval [0, T ] and 0 < ε 6 ε0, with ε0 = ε0(T ) given by Theorem
6.1. Thanks to the a priori estimates of Subsection 6.1 and a classical result for semilinear problems,
we can show that, for any ε ∈ (0, ε0], the solution ρ = ρε to problem (4.20), given by Theorem 5.1,
can be extended to a function ρ ∈ YT (see Definition 4.1) which solves the equation in the whole of
[0, T ].

THEOREM 6.8 Fix T > 0 and let ε0 = ε0(T ) be as in Theorem 6.1. Then, for any ε ∈ (0, ε0],
equation (4.20) admits a unique solution ρ ∈ YT .

Proof. Let us fix T as in the statement of the theorem and let ε ∈ (0, ε0). Suppose for contradiction
that Tε < T . Then, by Theorem 6.1 applied with any T ′ < Tε, we get

sup
τ∈[0,Tε)

‖ρ(τ, ·)‖C1 < K

for some positive constant K , independent of ε. Hence, the function Kε(·, ρη) is bounded in
[0, Tε) × [−`0/2, `0/2]. In view of [11, Prop. 7.1.8], applied to equation (5.5), and the bootstrap
argument in the proof of Theorem 5.1, this leads us to a contradiction. 2

6.3 Proof of Main Theorem 1.1

We are now in a position to prove the main result of this paper. Let us fix a function Φ0 ∈ C
4+4β
]

for some β ∈ (1/2, 1).
From the results in Subsection 6.2, we know that, for any T > 0, there exists ε0 = ε0(T )

such that equation (4.16) admits a unique solution ψε ∈ YT such that ρ(0, ·) = Φ0. Moreover, by
Corollary 6.7,

‖ψε(τ, ·)−Φ0(τ, ·)‖C0 6 εM, τ ∈ [0, T ]

for some positive constant M and any ε ∈ (0, ε0].
In view of Theorem 4.3, there exists a function v ∈ VT such that the pair (v, ψ) is the unique

solution to problem (3.1)–(3.3).
Coming back to problem (1.8)–(1.10) and setting `ε = `0/

√
ε and Tε = T/ε2, it is now

immediate to conclude that, for any ε ∈ (0, ε0], it admits a unique solution (u, ϕ) ∈ VTε × YTε .
Moreover,

‖ϕε(t, ·)− εΦ(tε
2,
√
ε ·)‖C([−`ε/2,`ε/2]) 6 ε2M, t ∈ [0, Tε].

This accomplishes the proof of the Main Theorem.

A. Some results from [4]

In this appendix we recall some results from [4] that are used throughout this paper.

A.1 The operator L

Let L be the differential operator defined on smooth functions u by

(Lu)(x, η) =
{
Dxxu1(x, η)−Dxu1(x, η)+ e

xu1(0, η), x 6 0, |η| 6 `0/2,
Dxxu2(x, η)−Dxu2(x, η), x > 0, |η| 6 `0/2,
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and let L be its realization in X, defined by
D(L) = {u ∈ C2,0(I−)× C

2,0(I+) : u,Lu ∈ X, D
(j)
x u1(0, ·) = D

(j)
x u2(0, ·), j = 0, 1},

Lu =

{
Dxxu1 −Dxu1 + e

xu1(0, ·), (x, η) ∈ I−,

Dxxu2 −Dxu2, (x, η) ∈ I+.

THEOREM A.1 The following properties are satisfied:

(i) the operator L is sectorial, and hence it generates an analytic semigroup in X;
(ii) the spectrum of the operator L consists of 0 and the halfline (−∞,−1/4];

(iii) the spectral projection on the kernel of L is the operator P defined by

P(f) =
(∫ 0

−∞

f1(x, ·) dx +
∫
+∞

0
e−xf2(x, ·) dx

)
U = Q(f)U, f ∈ X;

(iv) let f ∈ X; then the equation Lu = f has a solution u ∈ D(L) if and only if P(f) = 0;
(v) for any λ /∈ (−∞,−1/4] ∪ {0} and any f = (f1, f2) ∈ X, setting u := R(λ,L)f we have

u1(0, η) = u2(0, η) = g(λ)
(∫ 0

−∞

e−ν1tf1(t, η) dt +
∫
+∞

0
e−ν2tf2(t, η) dt

)
(A1)

for any η ∈ [−`0/2, `0/2], where

g(λ) =

(
2λ

1+ (2λ− 1)X(λ)
1
ν2
+ 1

)
1

X(λ)
, X(λ) =

√
1+ 4λ.

A.2 The operator Lε

For any ε > 0, we consider the operator L+ εA defined by

D(L+ εA) = {u ∈ C2,0(I−) ∩ C
0,2(I−)× C

2,0(I+) ∩ C
0,2(I+) :

u,uηη,Lu ∈ X, D
(j)
x u1(0, ·) = D

(j)
x u2(0, ·), j = 0, 1,

D(j)η ui(·,−`0/2) = D(j)η ui(·, `0/2), i = 1, 2, j = 0, 1},

(L+ εA)u =

{
Dxxu1 + εDηηu1 −Dxu1 + e

xu1(0, ·), (x, η) ∈ I−,

Dxxu2 + εDηηu2 −Dxu2, (x, η) ∈ I+.

THEOREM A.2 The following properties are satisfied:

(i) the operator L+ εA is closable and its closure Lε is sectorial;
(ii) the restriction of Lε to (I − P)(X) is sectorial and 0 is in its resolvent set;

(iii) let f = hϕ for some h ∈ (I−P)(X), independent of η, and some ϕ ∈ C2α
] (α ∈ (0, 1)\{1/2});

then the function R(0, Lε)f belongs to D(L + εA), and there exists a positive constant C,
depending on ε and α but independent of h and ϕ, such that

‖D(i)x R(0, Lε)f‖X + ‖D
(i)
η R(0, Lε)f‖X 6 C‖h‖X‖ϕ‖C2α (A2)

for i = 0, 1, 2.
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A.3 Proof of Theorem 4.4

We split the proof into three steps. In the first one, we show that problem (4.19) admits a unique
solution Φ in some time domain [0, T ). Since this result can be proved using the same arguments
as in Subsection 5.3, we just sketch the proof. Then, in Steps 2 and 3, we show that Φ exists and is
smooth in the whole of [0,+∞).

Step 1. By the proof of Proposition 5.4, the realizationA of the second-order derivative inC0, with
domain C1

] ∩C
2, is a sectorial operator with spectrum contained in (−∞, 0]. Hence, [11, Prop. 2.4.1

& 2.4.4] applies and shows that the operator B := −3A2
−A is sectorial in C0 with domainD(A2).

Moreover, DB(α,∞) = C4α
] , with equivalence of norms, for any α ∈ (0, 2) such that 4α 6∈ N.

The variation of constants formula shows that any solutionΦ ∈ C1,4([0,+∞)×[−`0/2, `0/2])
to the Cauchy problem (4.19) is a fixed point of the operator Γ , formally defined by

(Γ (Φ))(τ, ·) = eτBΦ0 +

∫ τ

0
e(τ−s)B(Φη(s, ·))

2 ds, τ > 0,

where {etB} denotes the semigroup generated by B.
Let us fix α ∈ (1/4, 1/2). Theorem 7.1.2 in [11] implies that Γ has a unique fixed point Φ

in C([0, T0];DB(α,∞)). A bootstrap argument allows us to prove that Φ belongs to YT0 . Using
[11, Prop. 4.2.1] and our assumptions on Φ0, it can be shown first that Φ ∈ Cβ,4γ ([0, T0] ×
[−`0/2, `0/2]) for any β, γ ∈ (0, 1), and then that Φη ∈ Cβ([0, T0] × [−`0/2, `0/2]) for
any β ∈ (0, 3/4). Moreover, D(j)η Φ(·,−`0/2) ≡ D

(j)
η Φ(·, `0/2) for j = 0, 1, 2, 3. Next,

applying [11, Thm. 4.3.1(i)], we deduce that Φ ∈ C1,4([0, T ] × [−`0/2, `0/2]) and is a solution
to problem (4.19). Moreover, since Φ0 ∈ DB(3/2 + α/4,∞), Φτ is bounded in [0, T0] with
values in DB(1/2 + α/4,∞). Hence, Φτ ∈ C0,2+α([0, T0] × [−`0/2, `0/2]). As a byproduct,
Φηηηη ∈ C

0,2+α([0, T0]× [−`0/2, `0/2]) and D(j)η Φ(·,−`0/2) = D
(j)
η Φ(·, `0/2) for j = 4, 5, 6.

Using a continuation argument, we can extend Φ to a maximal domain [0, T ) with a function
(still denoted by Φ) which belongs to YT ′ for any T ′ < T .

The rest of the proof is devoted to showing that T = +∞. The main step is an a priori estimate
suggested by the proof [13, Thm. 2.4], which deals with L2-regularity for the K-S equation.

Step 2. Here we show that

‖Φη(τ, ·)‖2 6 e13τ/6
‖DηΦ0‖2, τ ∈ [0, T ). (A3)

For this purpose, we introduce the function v defined by v(τ, η) = e−2τΦη(τ, η) for any (τ, η) ∈
[0, T )× [−`0/2, `0/2]. The smoothness of Φ implies that v ∈ C1,4([0, T )× [−`0/2, `0/2]) solves
the parabolic equation

vτ = −3vηηηη − vηη − e2τvvη − 2v, (A4)

and satisfies the boundary conditions D(k)η v(τ,−`0/2) = D
(k)
η v(τ, `0/2) for any τ ∈ [0, T ) and

k = 0, 1, 2, 3. Multiplying both sides of (A4) by v(τ, ·), integrating on (−`0/2, `0/2) and observing
that the integral over (−`0/2, `0/2) of (v(τ, ·))2vη(τ, ·) vanishes for any τ ∈ (0, T ], we get

d
dτ
‖v(τ, ·)‖22 + 3‖vηη(τ, ·)‖22 − ‖vη(τ, ·)‖

2
2 + 2‖v(τ, ·)‖22 = 0, τ ∈ [0, T ). (A5)
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In view of the estimate

‖vη(τ, ·)‖
2
2 6 ‖v(τ, ·)‖2‖vηη(τ, ·)‖2 6 3‖vηη(τ, ·)‖22 +

5
3
‖v(τ, ·)‖22, τ ∈ [0, T ),

formula (A5) leads us to the inequality

d
dτ
‖v(τ, ·)‖22 +

1
3
‖v(τ, ·)‖22 6 0, τ ∈ [0, T ),

from which estimate (A3) follows at once.

Step 3. Let us consider the function Ψ defined by Ψ (τ, η) = Φ(τ, η) − Π(Φ(τ, ·)) for any τ ∈
[0, T ) and any η ∈ [−`0/2, `0/2], whereΠ(Φ(τ, ·)) denotes the average ofΦ(τ, ·) over the interval
(−`0/2, `0/2). Applying the Poincaré–Wirtinger inequality, we get

‖Φ(τ, ·)−Π(Φ(τ, ·))‖∞ 6
√
`0e

13τ/6
‖DηΦ0‖2, τ ∈ [0, T ). (A6)

Let us now show that the function τ 7→ Π(Φ(τ, ·)) satisfies a similar estimate. For this purpose,
we fix T ′ ∈ (0, T ), τ ∈ [0, T ′), and apply the operator Π to both sides of (4.19). Since Φ and its
derivatives satisfy periodic boundary conditions,

d
dτ
Π(Φ(τ, ·)) = Π(Φτ (τ, ·)) = −

1
2`0

Π((Φη(τ, ·))
2)

for any τ ∈ [0, T ). Taking (A3) into account, we can then estimate∣∣∣∣ d
dτ
Π(Φ(τ, ·))

∣∣∣∣ 6
1

2`0
e13τ/3

‖DηΦ0‖
2
2, τ ∈ [0, T ).

Hence,

|Π(Φ(τ))| 6 |Π(Φ0)| +

∫ τ

0

∣∣∣∣ d
dτ
Π(Φ(τ, ·))

∣∣∣∣ dτ 6 |Π(Φ0)| +
3

26`0
‖DηΦ0‖

2
2e

13τ/3 (A7)

for any τ ∈ [0, T ). Estimates (A6) and (A7) show that Φ is bounded in [0, T ) × [−`0/2, `0/2].
Therefore, we can apply [11, Prop. 7.2.2] with Xα = DB(α,∞), which implies that T = +∞.
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