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The thin film equation with backwards second order diffusion
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Dedicated to Roberta Dal Passo (1956–2007)

We focus on the thin film equation with lower order “backwards” diffusion which can describe, for
example, the evolution of thin viscous films in the presence of gravity and thermo-capillary effects,
or the thin film equation with a “porous media cutoff” of van der Waals forces. We treat in detail the
equation

ut + {u
n(uxxx + νu

m−nux − Au
M−nux)}x = 0,

where ν = ±1, n > 0, M > m, and A > 0. Global existence of weak nonnegative solutions is
proven when m− n > −2 and A > 0 or ν = −1, and when −2 < m− n < 2, A = 0, ν = 1. From
the weak solutions, we get strong entropy solutions under the additional constraint thatm−n > −3/2
if ν = 1. A local energy estimate is obtained when 2 6 n < 3 under some additional restrictions.
Finite speed of propagation is proven when m > n/2, for the case of “strong slippage”, 0 < n < 2,
when ν = 1 based on local entropy estimates, and for the case of “weak slippage”, 2 6 n < 3, when
ν = ±1 based on local entropy and energy estimates.
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1. Introduction

The thin film equation [44]
ut + {u

n(uxxx)}x = 0, n > 0, (1.1)

with n = 3 models the dynamics of thin viscous films with no slip boundary conditions, and with
n = 1 it models Hele-Shaw flow. Often (1.1) needs to be augmented with various lower order terms
in order to take into account the presence of additional physical effects, and certain such equations
will be considered here. See [41] for a survey and review. Some of the physical systems which are
accommodated by the analysis in this paper are listed below.

(i) The evolution of thin viscous films in the presence of gravity and thermo-capillary effects is
modeled by

ut + {u
n(uxxx + u

m−nux − Au
M−nux)}x = 0, (1.2)

c© European Mathematical Society 2010



464 A. NOVICK-COHEN AND A. SHISHKOV

where m, n, M, A are constants such that A > 0, n > 0, m < M, as well as the more accurate
variant of (1.2) given by

ut + {u
n(uxxx + h

′(u)ux)}x = 0, (1.3)

where h′(u) = −νG + B1/(u(1 + B2u)
2), G,B1, B2 are positive constants, ν = ±1, and where

ν = +1 [−1] represents stabilizing [destabilizing] gravitational forces [41, 49, 42]. Equation (1.2)
with A = 0,

ut + {u
n(uxxx + u

m−nux)}x = 0,

models thin films with thermo-capillary effects but without gravitational effects when m− n = −1
[21], or with destabilizing gravitational effects but without capillary effects when m − n = 0. The
value of n in (1.2), (1.3) reflects the assumptions on the slip conditions at the interface of the thin
film with the underlying substrate, with n = 3 modeling no slip and 0 < n < 3 modeling various
types of slip.

(ii) The equation
ut + {u

n(uxxx + h
′(u)ux)}x = 0 (1.4)

describes (a) the evolution of a thin viscous film in the presence of attractive polar forces if h(u) =
−b1e

−u/b2 where b1, b2 are positive constants, or (b) the evolution of a thin viscous film in the
presence of attractive van der Waals forces if h(u) = Bu−b, where B < 0 is a (negative) Hamaker
constant and b is a positive constant. More generally, if limu↓0 h

′(u) > 0 [< 0], h(u) is said to
represent limiting attractive [repulsive] forces. Equations of the form (1.2), (1.4) can represent a
combination of attractive and repulsive forces, and the limiting power limu↓0 u h

′′(u)/h′(u) can
assume a range of both positive and negative values in modeling various forces such as polar forces,
van der Waals forces, as well as “porous media cut-off” of van der Waals forces. See [38, 41, 11,
31, 16].

(iii) The Hocherman–Rosenau equation [29]

ut + {f (u)uxxx + g(u)ux)}x = 0 (1.5)

was proposed as a generalization of the cylindrical Kuramoto–Sivashinsky equation, which models
low Reynolds number two phase cylindrical flows. Equation (1.5) with f (u), g(u) > 0 has been
used as a prototype equation for studying the relative strength of the second and fourth order terms
in determining criteria for blow up [29, 14]. Setting f (u) = un and g(u) = um or g = h′(u) with
h′(u) > 0 in (1.5) yields (1.4) with “limiting attractive forces”.

To understand these various models, we shall focus on the equation

ut + {u
n(uxxx + νu

m−nux − Au
M−nux)}x = 0, (1.6)

where ν = ±1, and where n, m, M, A are constants satisfying A > 0, n > 0, M > m, with some
further restrictions to be imposed later. All of the examples outlined above may be written in the
form (1.6), except for (1.3) and (1.4)(a) in which

h′(u) = u(1+ Bu)−2 and h′(u) =
b1

b2
e−u/b2 , (1.7)
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respectively. Noting that

0 <
u

(1+ Bu)2
<

1
B2u

, (1.8)

0 <
b1

b2
e−u/b2 <

b1

b2
, (1.9)

for u > 0,we see that the examples in (1.7) have upper bounds of the form h′(u) = νum−n−AuM−n

with ν = 1, A = 0, and m − n = −1 and m − n = 0 respectively, which facilitate the analysis
of (1.3) and (1.4)(a). Our treatment of (1.6) can be generalized to encompass (1.7) as well; some
remarks in this direction are included.

In terms of the physical systems being modeled, it is reasonable to assume zero contact angle,
ux = 0, and zero flux, un(uxxx + νum−nux −AuM−nux) = 0, along the external boundaries of the
domain, and thus

ux = uxxx = 0 if u > 0 and x = ±a. (1.10)

While these boundary conditions are adopted here, other boundary conditions are possible. The zero
contact angle condition reflects the physical assumption that the viscous liquid film completely wets
the underlying substrate; non-zero contact angle conditions, while physical, have proven up to now
to be difficult to implement in dynamical problem formulations [43]. A simple alternative to (1.10)
is to impose periodic boundary conditions.

The term {un(νum−nux)}x with ν = +1 in (1.6) is often referred to as a backwards diffusion
term, since if one considers dynamics dominated by this term alone,

ut + {u
n(um−nux)}x = 0,

and one linearizes about a uniform positive state, then the resulting dynamics is given by the
backwards (ill-posed) diffusion equation. Similarly, if ν = −1, the term {un(νum−nux)}x in (1.6) is
often referred to as forward diffusion, for obvious reasons [40]. We shall often refer to equation (1.6)
with ν = +1 as the unstable case and to equation (1.6) with ν = −1 as the stable case, since in the
context of thin films, (1.6) with ν = +1 models limiting attractive forces which are destabilizing
(“long wavelength unstable” in the terminology of [13]), and (1.6) with ν = −1 models limiting
repulsive forces which are stabilizing [41].

The degenerate Cahn–Hilliard equation

ut + {u(1− u)[− ln u+ ln(1− u)+ αu+ ε2uxx]x}x = 0, (1.11)

whose solutions satisfy 0 6 u 6 1 [23, 40], can also be said to be of the form (1.6) with ν = −1,
n = 1, m = 0 for u near 0 or 1. Equations similar to (1.4), (1.6) also arise in modeling structure
formation and the dynamics of biofilms [33], as well as in modeling the dislocation density in
plasticity theory [26].

Equation (1.6) in the presence of forward or stabilizing diffusion

ut + {u
n(uxxx − u

m−nux)}x = 0 (1.12)

has been studied somewhat more thoroughly than the backwards or unstable variant

ut + {u
n(uxxx + u

m−nux)}x = 0. (1.13)

This is perhaps not surprising, as the behavior of the thin film equation changes qualitatively less
upon adding a stabilizing term as opposed to adding a destabilizing term, and hence the analytical
tools used in studying (1.1) may be more readily adapted to its analysis.
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Since (1.1) is designed to model the evolution of thin viscous films, nonnegative initial data
should yield nonnegative solutions. Compactly supported initial data whose support may spread or
shrink are also physically relevant. A pioneering step in the analysis of (1.1) was the proof of the
existence of weak nonnegative solutions for 1 < n < 3 by Bernis & Friedman [7] for nonnegative
H 1 initial data, which relied on energy and entropy estimates. The analysis in [7] was extended
by Bernis [3] to the interval 0 < n < 3. In [8], existence [nonexistence] of compactly supported
spreading source type solutions to (1.1) was demonstrated for 0 < n < 3 [n > 3], and at the contact
line, the solutions were seen to behave like (x0 − x)

2 for 0 < n < 3/2 and like (x0 − x)
3/n for

3/2 < n < 3. By developing refined entropy estimates, the existence of strong (C1 for a.e. t > 0)
nonnegative solutions was demonstrated by Beretta, Bertsch & Dal Passo [2] and by Bertozzi &
Pugh [12], and the solutions were seen to possess the regularity of the source type solutions at the
contact line. Positivity properties were seen to depend strongly on the value of n [7, 2], with “touch-
down” being possible for small values of n [9, 2]. Solutions were proven to become positive in finite
time, and to converge to their mean as t →∞ [2, 12]. The only nonconstant steady states for (1.1)
are of the form (x−a)+(b−x)+ for a < b, which do not possess the regularity of the strong solutions
[2, 12]. Finite speed of propagation of the support of strong solutions for 0 < n < 3 was proven in
[4, 5]. Some of the details of the various methodologies will be specfied further as we present our
results. Since these basic studies, the analysis has been developed considerably to encompass, for
example, the Cauchy problem for measured valued initial data [17], waiting time phenomena [19],
higher dimensional studies of (1.1) [18, 15], as well as various numerical schemes [28, 27].

With regard to (1.12), existence of nonnegative distributional solutions was proven in [11] for
n > 0 and 0 < m < 1. These solutions were shown to approach their mean as t → ∞, becoming
positive in finite time. Formal asymptotics and numerics were used to suggest the existence of
advancing fronts for n > 3, as well as for 0 < n < 3. Existence of nonnegative solutions for
Ω ⊂ RN , N = 1, 2, 3, was then demonstrated for two special cases of (1.12); namely, for the
model for defects in plasticity theory mentioned earlier [26], and for (1.11), the Cahn–Hilliard
equation [23]. In [20], an existence theory for (1.12) was presented which encompassed the cases
n > 1/8, m > −1, N 6 3 (with n < 4 if N = 3), with the case 0 < n < 1/8 being treatable
by adjusting the definition of the solution. The existence results in [11, 20] build on the results in
[7, 2, 12], and in [20] the results build on [26] as well. In particular, use is made of augmented
entropy estimates [2, 12], which indicate that the contact angle is zero for the solutions obtained if
0 < n < 3 and n − m > −2. The constraint n − m > −2 allows the energy to be bounded from
below for arbitrary nonnegative initial data u0 ∈ H

1. Regularity at the contact line was confirmed
via formal asymptotic arguments in [11]. In [20], finite speed of propagation is demonstrated for
m > 0, 1/8 < n < 2, and estimates are obtained for the speed of propagation; infinite speed of
propagation is proven for m < 0, −2 < m− n < −3/2.

In [1], self-similar spreading source type solutions were shown to exist for (1.12) whenm−n=2
and 0 < n < 3, and not to exist if n > 3. The asymptotics of these solutions at the contact line was
seen to match that of the source type solutions found for (1.1) in [8]. In terms of steady states, in
[34] nonconstant positive periodic steady states and zero contact angle steady states are shown not to
exist, though touchdown steady states with nonzero contact angle are shown to exist ifm−n > −2.

In [28, 27], existence of positive solutions from nonnegative initial data was demonstrated via
construction of a numerical scheme for (1.6) with ν = −1 and m − n < −2. The inclusion of the
term −AuM in (1.6) can be expected to enhance the rate of decay of the solution to its mean, and
should not have any major effect on contact angle and propagation properties. In our analysis in
the present paper, we closed gaps in the parameter range for (1.12) and (1.6) with ν = −1, both in



THIN FILM EQUATION 467

terms of existence and the finite speed of propagation property. Moreover, local energy and entropy
estimates are obtained.

With regard to (1.13), less attention has been paid to the various existence, regularity, and finite
speed of propagation properties for (1.13) than for (1.12), but there has been longstanding interest in
the qualitative predictions of (1.13), in particular in regard to the possibilities of rupture [44, 50] and
blow up [29]. There has been considerable interest in various self-similar and steady state solutions
for (1.13), and their stability [46].

In terms of existence, regularity, and finite speed of propagation properties for (1.13), the results
up to now may be summarized as follows. In [13] it is demonstrated that if 0 < n < 3 and n 6 m <

n+2, then there exist globally bounded nonnegative weak solutions to (1.13) which possess the finite
speed of propagation (FSP) property, and have the same regularity at the contact line as was found
in [8] for (1.1). We remark that formal asymptotics developed in [11] for (1.12) are equally valid
for (1.13). The methodology in [13] relies on [7, 2, 12, 11], incorporating a “disjoining pressure”
potential arising from the lower order terms [31] into the energy used in the basic energy estimate.
Numerical evidence is given that blow up may occur if m > n+ 2. The case n = 1, m > 3 = n+ 2
is considered in [14], and it is demonstrated that for compactly supported nonnegative initial data
whose initial energy is negative, there exists a solution which blows up in finite time. For the critical
case, n = 1, m = 3, this implies blow up if the initial mass is sufficiently large [52]. It was
conjectured in [13, 14] that m − n > 0 constitutes a necessary condition for well posed dynamics.
The existence proof in [27], mentioned earlier in the context of (1.12), includes the case ν = 1,
i.e. (1.13) with n > 0 and m < n − 1, for positive initial data. The inclusion of a term of the form
−AuM in (1.6) when ν = 1 should eliminate the possibility of blow up, and should not have any
major effect on contact angle and propagation properties.

The set of steady states and self-similar solutions is much richer for (1.13) than for (1.12). For
(1.13), positive periodic steady states exist, as do compactly supported “touchdown” steady state
solutions with zero as well as with nonzero contact angles [34]. A study of steady states and stability
based on energy criteria was undertaken in [36] form−n ∈ [1, 2). It has been demonstrated [34, 35,
37, 46] that steady states with zero contact angle exist for all 0 < n < 3, n 6 m; they are stable if
m 6 n+ 2, 0 < n 6 2, marginally stable if m 6 n+ 2, 2 < n < 3, and unstable otherwise. In [10]
for ν = 1, n = 3,m = −1, steady states are seen to converge to a δ-distribution in the limit in which
repulsive forces are neglected; these results should perhaps be compared with the non-single-valued
profiles seen in [38] which result when the term uxx is replaced by the mean curvature, a correction
which becomes important in the singular limit. In terms of self-similar solutions, both spreading and
blow up self-similar solutions are possible. Rupture self-similar solutions have also been observed
and studied [53, 51]. If m = n + 2, there exist spreading self-similar solutions if 0 < n < 3, and
none if n > 3 [1]. Blow up self-similar solutions were considered in [47], with existence being
demonstrated for 0 < n < 3/2 and nonexistence for n > 3/2. For a discussion of the stability of
self-similar solutions, see [52, 46].

The focus of the present paper, however, is not on blow up, steady state solutions, or self-
similar behavior, but rather on conditions that guarantee existence, regularity, and finite speed
of propagation, completing and enhancing what was previously known, in order to construct a
framework to understand, for example, the transition between rupture, positivity and touchdown
properties, global existence, and blow up. Roughly speaking, with regard to existence for ν = −1,
0 < n < 3, there has been a gap for n − 2 6 m 6 −1; and now we have existence of both weak
and strong solutions for n− 2 < m 6 −1, as well as for n− 2 = m for a constrained set of initial
conditions. For ν = 1, 0 < n < 3, previous existence results have required m > n, and now we
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have existence of weak solutions in the interval n − 2 < m < n, as well as strong energy/entropy
solutions in the subinterval n−3/2 < m < n. Note also that for ν = ±1, 0 < n < 3, in the interval
n− 2 < m 6 n− 1, we do not require that the initial data be strictly positive [10]. In terms of FSP,
for ν = −1, 0 < n < 3, there has been a gap at 0 < n 6 1/8 which is now filled for 0 < m < n+2,
as well as a gap at 2 6 n < 3, which is now filled for n/2 < m < n. For ν = 1, 0 < n < 3, there
has been a gap at 0 < m < n, which is now filled for n/2 < m < n.

What physics pertains to the interval ν = −1, 0 < n < 3, n − 2 6 m 6 −1 or ν = 1,
0 < n < 3, n − 2 6 m < n? The thin film equation with ν = 1, 0 < n < 3, −2 < m − n < 0
can reflect a “porous media” cutoff of attractive (or repulsive if ν = −1) van der Waals forces [41],
thin films under the influence of thermo-capillary effects with n = 2 or 3, m− n = −1, ν = 1, [21]
(with other values of n, 0 < n < 3, also possible), or a restricted Hocherman–Rosenau equation
[29]. If one takes ν = 1, n = 2 or 3, m 6 −1, which can model, for example, the effects of a
Lennard–Jones potential or a thin film on a layered solid substrate in the limit in which the limiting
repulsive forces are neglected, the dynamics are known to lead to rupture [50, 53, 51].

As a first step, the existence of weak nonnegative solutions (see Definition 1) is demonstrated
in §2. This is accomplished by means of the basic energy estimate [7, 2, 12]

sup
06t6T

∫
Ω

u2
x dx +

∫ T

0

∫
Ω

un(uxxx + νu
m−nux − Au

M−nux)
2 dx dt 6 C, (1.14)

where Ω = (−a, a), a ∈ (0,∞) is arbitrary, C depends only on the problem parameters and
the initial conditions, and 0 < T < ∞. The estimate (1.14) holds for n > 0, m − n > −2,
m < M, with the additional constraint thatm−n < 2 if ν = 1 and A = 0. Additionally, an entropy
estimate [7, 2, 12] is obtained, using Gronwall’s inequality for regularized solutions. The use here of
Gronwall’s inequality, which explicitly depends on the regularization parameter, differs somewhat
from elsewhere [28], allowing us to control the lower order, possibly singular, forcing terms. These
estimates, together with mass conservation,∫

Ω

u(x, t) dx =
∫
Ω

u(x, 0) dx, (1.15)

imply global bounds from which existence of weak nonnegative solutions can be concluded,
based on uniform Hölder continuity and continuation arguments. See Bernis & Friedman [7] and
Giacomelli [24].

To obtain the existence of a strong (C1(Ω) for a.e. t > 0) solution, a local entropy estimate is
derived in §3, following [2]. For ν = 1, the additional constraintm−n > −3/2 is imposed and the
local entropy estimate may be written as

1
α(α + 1)

∫
Ω

ζ 4u1+α(x, T ) dx + A
∫
QT

ζ 4uα+M−1u2
x dx dt

+ c1

[∫
P

ζ 4uα+n−2γ+1(uγ )2xx dx dt +
∫
QT

ζ 4uα+n−3u4
x dx dt

]
6 c2

∫
QT

(|ζx |
4
+ |ζ ζxx |

2)un+α+1 dxdt + c3

∫
QT

|(ζ 3ζx)x |u
α+m+1 dx dt

+ c4

∫
QT

ζ 4uα+2m−n+1 dx dt +
1

α(α + 1)

∫
Ω

ζ 4u0
α+1 dx, (1.16)
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where QT = Ω × (0, T ), P = Ω × (0,∞) \ {u = 0 or t = 0}, and which holds for certain
α ∈ (max{−2m+n−1,−m−1}, 2−n)\ {0,−1} and for γ satisfying (3.8). For ν = −1, a similar
estimate is obtained without additional restrictions. For both ν = ±1, the local entropy estimate
implies the global entropy estimate

c5

∫
QT

uα+n−3u4
x dx dt + c6

∫
QT

uα+n−1u2
xx dx dt 6 c7 T , T > 0, (1.17)

which also holds for (1.1), and which implies strong solutions and certain positivity properties
[2, 12]. We also present a refinement of Theorem 3.1 from [2] (see Corollary 3.4 in §3), which
clarifies the set of β for which C1([−a, a]) regularity for almost every t > 0 is implied for u1/β(·, t),
based on the local entropy estimates and the properties of the initial data. As in [25], a local energy
estimate is derived for 2 6 n < 3, under the additional restrictions that m > (2n − 2)/3 if
2 6 n < 5/2 and m > n− 3/2 if 5/2 6 n < 3.

In §4 and §5, we investigate conditions for the finite speed of propagation property (FSP) for
(1.1). Two different techniques have been developed for studying the FSP property; both rely on
energy and entropy estimates. The first method was developed by F. Bernis [4, 5] for the standard
thin film equation, (1.1). For 0 < n < 2, Bernis [4] introduced the weighted integral entropy
function

ET (r) :=
∫ T

0

∫ r

−r

(r − |x|)4(u(α+n+1)/2)2xx dx dt, 0 6 r < r0, T > 0, (1.18)

for 0 < r0 < a, which corresponds to the third term on the left hand side of (1.16) with ζ(x) =
(r − |x|)+. By taking supp u0 ⊂ Ω \ {|x| < r0} and deriving a nonlinear ordinary fourth order
differential inequality for ET (r), we will demonstrate the FSP property. For 2 6 n < 3, Bernis
demonstrated the FSP property in [5] based on a similar ordinary differential inequality for an
appropriately defined weighted integral energy function.

An alternative method for studying propagation properties for various thin-film-like equations
was proposed for the case 0 < n < 2 in [32] (see also the references and comments in [30]).
This method relies on functional rather than differential inequalities for various entropy and energy
functions. The emphasis in this technique is on cut-off functions rather than on weight functions,
which lead to functional dependence on parameterized subdomains of Ω. The main feature of the
inequalities which are derived is that the minimal power of u(x, t) in the terms on the left hand
side of the inequality is strictly less than the minimal power of u(x, t) which appears in the terms
on the right hand side. Such inequalities in conjunction with the functional Stampacchia Lemma
(see Lemma 6.1) and its generalization for systems of functional inequalities (see Lemma 6.2) can
be used to demonstrate the FSP property in various contexts. In the present paper, we shall rely
primarily on this second method.

This latter method (the FI-method) has been used [30] to obtain sharp estimates on the
speed of propagation of the support of solutions to equation (1.1) with arbitrary u0 ∈ L1(Ω),
Ω \ supp u0 6= ∅. In [20], using this method for the thin film equation with forward diffusion
(1.12) with source type initial data, mcrit = n + 2 was shown to be a transitional value between
the long and short time asymptotics of the Barenblatt porous media behavior and the predicted
behavior of source type solutions for the standard thin film equation [8]. Using the FI-method,
sharp sufficient conditions were obtained in [19] relating the flatness at the edge of the support of
u0 to the phenomenon of waiting time for propagation of the support of solutions. Moreover for
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equation (1.1) with an additional nonlinear absorption term, in [45] a sharp sufficient condition
on the flatness of u0 guaranteeing the onset of shrinkage of the support was obtained, as well as
estimates from below on the shrinkage rate. In future work, we hope to undertake similar analyzes
for (1.6) with ν = 1.

For (1.6) with forward diffusion (with A = 0), conditions for FSP as well as sharp estimates for
the speed of propagation were obtained in [20] for the strong slippage case (0 < n < 2) only. The
results which we obtain here are for (1.6) with ν = −1, with 2 < n < 3, as well as for the much
more delicate case of backward diffusion, ν = 1, where the lower order diffusion term “encourages”
the destruction of the FSP property at all values of m. Our analysis makes use of some ideas from
[25]. The proof given in §4 is for the strong slippage case in which 0 < n < 2, and requires that
m > n/2 if ν = 1. It relies on the local entropy estimate from §3 for α positive and the Stampacchia
Lemma for systems. We demonstrate that if supp u0 ⊂ {x 6 0}, then there exists a continuous
function s(t) satisfying s(0) = 0, and a positive time T0 such that supp u(·, t) ⊂ [−a, s(t)],
s(t) < a for all t < T0, and s(T0) = a. The proof in §5 is for the weak slippage case in which
2 < n < 3, and requires that m > n/2. It is based on combining local entropy estimates for
−1 < α < 0 with the local energy estimates from §3, and again makes use of the Stampacchia
Lemma for systems. We conjecture that the restrictionm > n/2 for ν = 1 is sharp or close to sharp.
Note that in the stable case ν = −1, the value m = n/3 is critical in the context of asymptotics
near the edge of traveling wave solutions with constant speed of propagation (see [11]). Since the
asymptotics in [11] are also valid for the unstable case ν = 1, we expect that the FSP property fails
in the unstable case for somem near to n/3. Thus we suspect that for ν = 1, the restrictionm > n/2
is sharp or close to sharp.

As to further questions and future directions, a question of interest in the present context is to
understand exactly how strong the backward diffusion can become while maintaining something of
the smoothing properties of the thin film equation with n > 0. Thus one would like to identify
transitional values in terms of rupture, positivity, touchdown, and infinite as opposed to finite
spreading rates. Finally, one would like to extend all aspects of the analysis to higher dimensions.

The outline of the paper is as follows. The existence of weak nonnegative solutions is
proven in §2. Existence of strong energy-entropy solutions is demonstrated in §3. Finite speed of
propagation is proven in §4 for the case of weak slippage and in §5 for the case of strong slippage.

2. Weak solutions

In this section, we follow Bernis & Friedman [7], relying on local parabolic regularity theory [22,
24] to obtain global existence of weak solutions, defined below. We regularize the initial data and
use Gronwall’s inequality in the context of the entropy estimate. This allows us to avoid regularizing
the lower order terms [13, 14], and to widen the range of validity of the results.

Notation. Let Ω = (−a, a) where a ∈ (0,∞) is arbitrary, QT = Ω × (0, T ), 0 < T < ∞, and
set PT = QT \ {u = 0 or t = 0}, Q = Q∞, P = P∞.

Let us consider the problem

(P)


ut + (u

n(uxxx + νu
m−nux − Au

M−nux))x = 0, (x, t) ∈ Q,

ux(±a, t) = uxxx(±a, t) = 0 when u(±a, t) 6= 0, t ∈ (0,∞),
u(x, 0) = u0(x), x ∈ Ω,
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where ν = ±1. We shall assume that the initial conditions satisfy

u0 ∈ H
1(Ω), u0 > 0, u0 6≡ 0. (2.1)

While we shall look for solutions on a finite interval, we can always consider the parallel Cauchy and
periodic problems obtained by extending the initial conditions via periodicity and reflection. This
will allow us, for example, to directly implement the generalized Bernis inequalities for nonnegative
periodic functions [25, Lemma B.1] in obtaining local energy estimates in §3. See also the remarks
in [2, 14].

DEFINITION 1 A function u ∈ C0,1/2, 1/8(Ω× [0,∞))∩L∞([0,∞); H 1(Ω)) is said to be a weak
solution of (P) if:

(a) u ∈ C4,1(P ), u > 0,
(b) ux(x, t) = uxxx(x, t) = 0 when u(x, t) 6= 0, for (x, t) ∈ ∂Ω × (0,∞),
(c) J ≡ un(uxxx + νum−nux − AuM−nux) ∈ L2(P ),

(d) for all φ ∈ Lip(Ω × (0,∞)) with compact support, u satisfies∫
Q

uφt dx dt +
∫
P

un (uxxx + νu
m−nux − Au

M−nux)φx dx dt = 0, (2.2)

(e) u(x, 0) = u0(x) for x ∈ Ω .

Given this definition, we formulate

THEOREM 1 For the following range of parameter values:

(i) ν = −1, n > 0, A > 0, n− 2 < m < M ,
(ii) ν = 1, n > 0, A > 0, n− 2 < m < M ,

(iii) ν = 1, n > 0, A = 0, n− 2 < m < n+ 2,

there exists a solution to (P) in the sense of Definition 1 for u0 satisfying (2.1).

We shall find a weak solution to (P) as the limit of a subsequence of smooth positive solutions
to a regularized problem, with regularized initial conditions u0ε .We shall require that for ε > 0 and
for some λ ∈ (0, 1), θ ∈ (0, 2/5], u0ε satisfies

u0ε ∈ C4,λ(Ω), u′0ε(±a) = u
′′′

0ε(±a) = 0, u0 + ε
θ 6 u0ε 6 u0 + 1,

u0ε → u0 in H 1((−a, a)) as ε → 0.
(2.3)

Following [7], we set

fε(s) =
|s|n+4

ε|s|n + s4 ; (2.4)

when 0 < s � 1, fε(s) ≈ s4/ε if 0 < n < 4 and fε(s) ≈ |s|n if n > 4, which will allow us to
guarantee the positivity of the approximants uε for t > 0. Here and in the section which follows,
ci, di denote positive constants that are independent of ε, and Ci(t) denotes a positive increasing
function defined on (0,∞) that is independent of ε; ci, di, Ci(t) may depend on Ω, u0, and the
problem parameters, and their value may change from line to line.
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Proof of Theorem 1. Let us define the approximating problem to be

(Pε)


ut + {fε(u)(uxxx + νu

m−nux − Au
M−nux)}x = 0, x ∈ Ω, t > 0,

ux(±a, t) = uxxx(±a, t) = 0, t > 0,
u(x, 0) = u0ε(x), x ∈ Ω.

Problem (Pε) has a unique maximal positive solution, uε, such that uε ∈ C4,λ,λ/4 (Ω × [0, τε)),
τε > 0 (see [22, Theorem 6.3, p. 302] as well as the remark following the proof given there). That
the associated Cauchy problem with periodically reflected initial data maintains the periodicity and
reflection properties, can be seen by translating and reflecting the solution, then invoking uniqueness
of the solutions to the Cauchy problem.

Testing (Pε) with φ ≡ 1 and recalling (2.1), (2.3), it follows that

0 < uε(t) = u0ε 6 u0 + 1, t ∈ (0, T ), (2.5)

where v := |Ω|−1 ∫
Ω
v. The equality uε(t) = u0ε in (2.5) expresses mass conservation. Note that

(2.5) also holds for solutions to similarly defined approximating problems for (1.3) and (1.4)(a).
Setting

h(s) =



νsm−n+1

m− n+ 1
− A

sM−n+1

M − n+ 1
, m,M 6= n− 1,

ν ln s − A
sM−n+1

M − n+ 1
, m = n− 1,

νsm−n+1

m− n+ 1
− A ln s, M = n− 1,

and testing (Pε) with −uεxx − h(uε), we obtain the energy estimate [7, 23, 31]∫
Ω

[
1
2
u2
εx −H(uε)

]∣∣∣∣
t=T

dx +
∫
QT

fε(uε)(uεxxx + h
′(uε)uεx)

2 dx dt

=

∫
Ω

[
1
2
u2

0εx −H(u0ε)

]
dx (2.6)

for 0 < T < τε , where

H(s) =



νsm−n+2

(m− n+ 2)(m− n+ 1)
−

AsM−n+2

(M − n+ 2)(M − n+ 1)
, m,M 6= n− 1,

ν(s ln s − s)−
AsM−n+2

(M − n+ 2)(M − n+ 1)
, m = n− 1,

νsm−n+2

(m− n+ 2)(m− n+ 1)
− A(s ln s − s), M = n− 1.

Let ν = 1 and −1 6 m− n < 2. Then noting that

−1 6 s ln s − s < s2, s > 0, (2.7)

recalling the Gagliardo–Nirenberg inequality

‖u‖Lp(Ω) 6 c1‖ux‖
1/2
L2(Ω)
‖u‖

1/2
L1(Ω)

+ c2‖u‖L1(Ω), 1 < p < 4,
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and that the approximating solutions are positive and satisfy (2.5), it follows that∫
Ω

H(uε) dx 6
1
4

∫
Ω

u2
εx dx + c3

(∫
Ω

uε dx
)c4

=
1
4

∫
Ω

u2
εx dx + c5. (2.8)

Suppose the restrictions on the parameters stated in Theorem 1 hold and that −2 < m− n < −1 if
ν = 1. Then recalling (2.7), and noting that for A1, A2 > 0, 0 < α < β,

A1s
α
− A2s

β < A1

(
A1α

A2β

)α/(β−α)
, s > 0,

and that by Hölder’s inequality, if 0 < α < 1, then∫
Ω

|u|α dx 6 α

∫
Ω

|u| dx + (1− α)|Ω|,

we obtain ∫
Ω

H(uε) dx 6 c6(u0 + 1) = c7. (2.9)

From (2.6), (2.8), (2.9), we may now conclude that

1
4

∫
Ω

u2
εx(x, T ) dx +

∫
QT

fε(uε)(uεxxx + νu
m−n
ε uεx − Au

M−n
ε uεx)

2 dx dt 6 c8. (2.10)

REMARK 2.1 The constraint that m − n < 2 when ν = 1, A = 0 has been imposed to guarantee
global existence. If ν = 1, A = 0, and m − n = 2, (2.10) remains valid if u0 is sufficiently small,
and global existence again follows. See [13].

From (2.5), (2.10), we obtain

‖uε‖L∞(0,T ;H 1(Ω)) 6 c8, ‖f
1/2
ε (uεxx + h(uε))x‖L2(QT )

6 c9. (2.11)

The following argument from [7] is by now standard. Noting that ut = −Jx, (2.11) implies that

‖ut‖L2(0,T ;H−1(Ω)), ‖J‖L2(QT )
6 c10, (2.12)

and the estimates (2.11), (2.12) can be seen to imply the uniform Hölder estimate

‖uε‖C0,1/2,1/8(QT )
6 c11. (2.13)

See [7] for details.

REMARK 2.2 It is also possible to implement the above discussion when un is replaced by f (u)
in (P), for f ∈ C((0,∞),R+), and to work with (see [7])

fε(u) =
f (u)u4

εf (u)+ u4 ,

under suitable assumptions on f (u).
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We now demonstrate roughly as in [7, 24] that uε > 4σ > 0 in Ω × [0, τε], where σ = σ(ε).
On [0, τε), recalling (2.13) we know that 0 < uε(x, t) < Ã for some Ã which is independent of ε.
Multiplying the equation in (Pε) by G′ε(uε) [39, 7], where

Gε(s) = −

∫ Ã

s

gε(r) dr, gε(s) = −

∫ Ã

s

dr

fε(r)
,

and integrating, gives∫
Ω

Gε(uε(x, T )) dx +
∫
QT

[u2
εxx − (νu

m−n
ε − AuM−nε )u2

εx] dx dt =
∫
Ω

Gε(u0ε) dx. (2.14)

If m− n 6= −1, then integrating the term −
∫
QT
νum−nε u2

εx by parts yields∫
Ω

Gε(uε(x, T )) dx +
∫
QT

u2
εxx dx dt + A

∫
QT

uM−nε u2
εx dx dt

6
1
2

∫
QT

u2
εxx dx dt +

1
2(m− n+ 1)2

∫
QT

u2m−2n+2
ε dx dt +

∫
Ω

Gε(u0ε) dx, (2.15)

and recalling (2.11) we obtain∫
Ω

Gε(uε(x, T )) dx +
∫
QT

1
2
u2
εxx dx dt 6 c12

∫
QT

u−2
ε dx dt +

∫
Ω

Gε(u0ε) dx. (2.16)

If m− n = −1, the term (ln uε)2 replaces u2m−2n+2
ε /(m− n+ 1)2 in (2.15). Then noting that

ln2(s) 6 c13s
−2, 0 < s < Ã <∞,

the estimate (2.16) again follows.
Since by (2.4),

εs−4 6
1

fε(s)
, s > 0, (2.17)

it now follows easily that∫
Ω

Gε(uε(x, T )) dx +
∫
QT

1
2
u2
εxx dx dt 6

c14

ε

∫
QT

Gε(uε) dx dt + c15T +

∫
Ω

Gε(u0ε) dx.

Using (2.3), (2.17), we find that
∫
Ω
Gε(u0ε) dx 6 c16. Now we may use Gronwall’s inequality to

conclude that ∫
Ω

Gε(uε(x, T )) dx 6 Dε(T ) <∞, T ∈ [0, τε), (2.18)

where for all 0 < ε � 1, Dε(T ) is a positive increasing function of T defined on [0,∞). As in [7],
(2.18) can be seen to imply positivity.

The solution, uε(x, t), may now be extended to exist globally, as in [7, 24]. Select f̃ε ∈ C2(R)
such that f̃ε(s) ≡ fε(s) for s > 2σ, and f̃ε(s) > fε(σ ) for all s ∈ R. Thus uε also constitutes a
weak solution of

uεt + {f̃ε(uε)(uεxxx + h
′(uε)uεx)}x = 0,
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satisfying the same initial and boundary conditions as before. Set

vε(x, t) =

∫ x

−a

(uε(ξ, t)− uε(t)) dξ.

The regularity and positivity of uε(x, t) imply that vε(x, t) is well defined in D = Ω × (0, τε) and
satisfies {

vεt + f̃ε(uε(x, t)){vεxxxx + νu
m−n
ε vεxx − Au

M−n
ε vεxx} = 0,

vε(± a, t) = vεxx(± a, t) = 0.
(2.19)

Using parabolic regularity results for vε, enhanced regularity may be obtained for uε and hence for
the uε-dependent coefficients in (2.19). Returning again to (2.19), additional regularity is obtained
for vε, which allows us to conclude that uε(x, τε) ∈ C4,λ(Ω). Therefore the solution may be
continued, in contradiction to the assumed maximality.

Having demonstrated the global existence of positive approximants, uε, the existence of a
sequence {uεk } converging uniformly to a solution of (P) on QT , for all 0 < T <∞, as εk → 0, is
now implied by Arzelà–Ascoli and the uniform Hölder estimates, (2.13), as in [7]. 2

REMARK 2.3 It can be readily verified that the results of Theorem 1 remain valid when m− n =
−2 and ν = −1, if the initial conditions satisfy the additional constraint that −

∫
Ω
H(u0) dx <∞.

REMARK 2.4 The existence of weak solutions for (1.3) and for (1.4)(a), with h′(u) replacing
νum−n−AuM−n in Definition 1, can be concluded for initial data satisfying (2.1), (2.3), by verifying
that (2.8) holds for (1.3), that (2.9) holds for (1.4)(a), and that (2.16) holds for both (1.3) and (1.4)(a)
and then arguing as above.

3. Strong entropy-energy solutions

To get strong entropy-energy solutions, we derive local entropy estimates [2], which give us strong
solutions [2, 12], then derive a local energy estimate [25]. In obtaining the local entropy estimates
and strong solutions, we follow [2] closely. Throughout this section the parameters will be assumed
to satisfy the conditions in Theorem 1. Moreover, when referring to solutions of (P) and (Pε),
we shall assume that u0 satisfies (2.1) and u0ε satisfies (2.3). Some further restrictions will be
introduced later.

Before deriving the entropy estimates, we present a lemma, which constitutes a refinement of
Theorem 3.1 in [2], and which is useful when deducing regularity results from entropy estimates.

LEMMA 3.1 Let u(x, t) be a weak solution of (P) obtained as the limit of a subsequence of
solutions uε(x, t) of (Pε). Suppose that for some α ∈ (1/2 − n, 2 − n), there exist constants
c1, c2, and δ > 0, which do not depend on ε, such that∫

QT

uα+n−2γ+1
ε (uγε )

2
xx dx dt 6 c1 (3.1)

and ∫
QT

uα+n−3
ε u4

εx
dx dt 6 c2, (3.2)

for all γ satisfying
1+ n+ α

3
6 γ 6

1+ n+ α
3

+ δ, (3.3)

then u1/β(·, t) ∈ C1([−a, a]) for all β ∈ (0, 3/(n+ α + 1)), for almost every t > 0.
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Proof. For any 0 < β < 3/(n+ α + 1), we may choose γ satisfying (3.3) such that 0 < βγ < 1.
Setting q = 4− (1+ n+ α)/γ and arguing as in the proof of [2, Lemma 3.1], it follows from (3.1),
(3.2) that for almost every t > 0 there exists a C1(t) <∞ such that

if u(y, t) = 0 for some y ∈ [−a, a], then

|(uγ )x |
(4−q)/q(x, t) 6 C1(t)|x − y|

(q−1)/q for x ∈ [−a, a]. (3.4)

From (3.4), we find by integrating that for almost every t > 0, there exists a C2(t) <∞ such that

if u(y, t) = 0 for some y ∈ [−a, a], then

u(x, t) 6 C2(t)|x − y|
3/(α+n+1) for x ∈ [−a, a]. (3.5)

Since 0 < βγ < 1, we may combine (3.5) and (3.4) to see that for almost every t > 0, there
exists a C3(t) <∞ such that

if u(y, t) = 0 for some y ∈ [−a, a], then for x ∈ [−a, a],

|(u1/β)x(x, t)| 6 C3(t)|x − y|
3

4−q |x − y|
q−1
4−q 6 C3(t)|x − y|

µ, (3.6)

where µ = 1
β

3
α+n+1 − 1 > 0 and C3(t) <∞. 2

From Lemma 3.1, two simple but useful corollaries follow.

COROLLARY 3.2 ([2]) Let u(x, t) be a weak solution of (P) obtained as the limit of a subsequence
of solutions uε(x, t) of (Pε). Suppose that for some α ∈ (1/2− n, 2− n), there exist constants c1,

c2, and δ > 0, which do not depend on ε, such that for all γ satisfying (3.3), the estimates (3.1) and
(3.2) hold. Then u(·, t) ∈ C1([−a, a]) for almost every t > 0.

Proof. If α ∈ (1/2− n, 2− n), then 3/(α + n+ 1) ∈ (1, 2). Hence 1 ∈ (0, 3/(n+ α + 1)). 2

REMARK 3.3 If u(·, t) ∈ C1([−a, a]) for almost every t > 0, then u(x, t) is said to be a strong
solution in the sense of Bernis [4].

COROLLARY 3.4 Let u(x, t) be a weak solution of (P) obtained as the limit of a subsequence of
solutions uε(x, t) of (Pε). Let Ψ denote a nonempty subset of (1/2 − n, 2 − n). If for all α ∈ Ψ,
there exist constants c1, c2, and δ > 0,which do not depend on ε, such that for all γ satisfying (3.3),
the estimates (3.1) and (3.2) hold, then u1/β(·, t) ∈ C1([−a, a]) for all β ∈ (0, 3/(n + infΨ + 1))
for almost every t > 0.

Proof. The result is an immediate consequence of Lemma 3.1. 2

We now derive our primary entropy estimates. Let

ζ ∈ C4([−a, a]) with support in (−a, a) and ζ > 0, (3.7)

or ζ ≡ 1, and let [2, 12]

Gε(s) =
εsα+n−3

(α + n− 4)(α + n− 3)
+

sα+1

α(α + 1)
,
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where α ∈ (1/2−n, 2−n)\{0,−1}.Using ζ 4G′ε(uε) to test (Pε) onQT = Ω×(0, T ), 0 < T <∞,

and treating the terms which also appear in the classical thin film equation as they were treated in [2],
we conclude that for any γ satisfying

t + 1−
√
(t − 2)(1− 2t)

3
< γ <

t + 1+
√
(t − 2)(1− 2t)

3
, (3.8)

where t = α + n, there exist positive constants, c3, c4, which do not depend on ε, such that∫
Ω

ζ 4Gε(uε(x, T )) dx + c3

[∫
QT

ζ 4uα+n−2γ+1
ε (uγε )

2
xx dx dt +

∫
QT

ζ 4uα+n−3
ε u4

εx dx dt
]

6
∫
Ω

ζ 4Gε(u0ε) dx + c4

∫
QT

(|ζx |
4
+ |ζ ζxx |

2)un+α+1
ε dx dt + I, (3.9)

where

I := −
∫
QT

ζ 4gε(uε){fε(uε)(νu
m−n
ε uεx − Au

M−n
ε uεx)}x dx dt, gε(uε) := G′ε(uε).

Integrating I by parts yields

I =

∫
QT

ζ 4g′ε(uε)fε(uε)(νu
m−n
ε u2

εx − Au
M−n
ε u2

εx) dx dt

+

∫
QT

4ζ 3ζxgε(uε)fε(uε)(νu
m−n
ε uεx − Au

M−n
ε uεx) dx dt =: Ia + Ib.

The term Ia may be written as

Ia =

∫
QT

ζ 4(νuα+m−1
ε − Auα+M−1

ε )u2
εx dx dt. (3.10)

For ν = −1, both terms in (3.10) are nonpositive. For ν = +1, we estimate

Ia 6 δ

∫
QT

ζ 4uα+n−3
ε u4

εx dx dt + c5(δ)

∫
QT

ζ 4uα+2m−n+1
ε dx dt

− A

∫
QT

ζ 4uα+M−1
ε u2

εx dx dt, (3.11)

where δ > 0 is arbitrary.
With regard to Ib, integration by parts gives

Ib = −

∫
QT

4(ζ 3ζx)x

[∫ uε

0
gε(s)fε(s)[νsm−n − AsM−n] ds

]
dx dt.

As noted in [2], |gε(uε)fε(uε)| 6 c6u
n+α
ε . Thus, recalling (2.11) and that M > m,

Ib 6 c7

∫
QT

|(ζ 3ζx)x |u
α+m+1
ε dx dt. (3.12)
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If ν = −1, we may combine the estimates on Ia and Ib to obtain∫
Ω

ζ 4Gε(uε(x, T )) dx + A
∫
QT

ζ 4uα+M−1
ε u2

εx dx dt

+ c3

[∫
QT

ζ 4uα+n−2γ+1
ε (uγε )

2
xx dx dt +

∫
QT

ζ 4uα+n−3
ε u4

εx dx dt
]

+

∫
QT

ζ 4uα+m−1
ε u2

εx dx dt 6
∫
Ω

ζ 4Gε(u0ε) dx + II, (3.13)

where

II = c4

∫
QT

(|ζx |
4
+ |ζ ζxx |

2)un+α+1
ε dx dt + c7

∫
QT

|(ζ 3ζx)x |u
α+m+1
ε dx dt.

Similarly, if ν = +1, the estimates yield∫
Ω

ζ 4Gε(uε(x, T )) dx + A
∫
QT

ζ 4uα+M−1
ε u2

εx dx dt

+ c8

[∫
QT

ζ 4uα+n−2γ+1
ε (uγε )

2
xx dx dt +

∫
QT

ζ 4uα+n−3
ε u4

εx dx dt
]

6 c5

∫
QT

ζ 4uα+2m−n+1
ε dx dt +

∫
Ω

ζ 4Gε(u0ε) dx + II. (3.14)

To obtain bounds from (3.13), (3.14), we impose certain conditions on α and on the initial data.

REMARK 3.5 Suppose that u0 satisfies (2.1) and 0 < n < 3. Defining

α∗ =

{
1/2− n, 0 < n 6 3/2,
−1, 3/2 < n < 3, (3.15)

we see that α∗+ 1 > 0, α∗ ∈ [1/2− n, 2− n), and
∫
Ω
ζ 4uα+1

0 dx <∞ for all α ∈ (α∗, 2− n) and
ζ ∈ C4([−a, a]).

In view of the above remark, we introduce

DEFINITION 2 Suppose that u0 satisfies (2.1) and ζ ∈ C4([−a, a]). Then we define α0(ζ ) to be
the infimum among all α such that α > 1/2− n and∫

Ω

ζ 4uα+1
0 dx <∞ if α 6= −1,∫

Ω

ζ 4
|ln u0| dx <∞ if α = −1.

Remark 3.5 and the definition of α0(ζ ) imply that if 0 < n < 3, then

1/2− n 6 α0(ζ ) 6 α∗ < 2− n. (3.16)

With regard to the stable case, the theorem below follows essentially as in [2, 20].
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THEOREM 2 (The stable case) Suppose that ν = −1, m − n > −2, with m < M if A > 0, and
with −

∫
Ω
H(u0) dx <∞ if m− n = −2.

(i) Let β ∈ (0, β0) where β0 = max
{ 3
n+α0+1 ,

1
m+α0+1

}
and α0 = α0(ζ = 1). Then u1/β(·, t) ∈

C1([−a, a]) for almost every t > 0.
(ii) Let ζ satisfy (3.7). Then, for any α ∈ (max{α0(ζ ),−m − 1}, 2 − n) \ {0,−1} and for any γ

satisfying (3.8),

1
α(α + 1)

∫
Ω

ζ 4u1+α(x, T ) dx + c1

[∫
P

ζ 4uα+n−2γ+1(uγ )2xx dx dt +
∫
QT

ζ 4uα+n−3u4
x dx dt

]
+

[ ∫
QT

ζ 4uα+m−1u2
x dx dt + A

∫
QT

ζ 4
x u

α+M−1u2
x dx dt

]
6 c2

∫
QT

(|ζx |
4
+ |ζ ζxx |

2)un+α+1 dx dt + c3

∫
QT

|(ζ 3ζx)x |u
α+m+1 dx dt

+
1

α(α + 1)

∫
Ω

ζ 4uα+1
0 dx. (3.17)

Proof. Part (i) follows by setting ζ = 1 in (3.13), invoking Lemma 3.1, and noting the Hölder
regularity implied by the boundedness of

∫
QT
(u(α+m+1)/2)2x dx dt. Part (ii) follows easily from

(3.13) by letting ε → 0 and noting that α + m + 1 and α + n + 1 are positive in the indicated
parameter range. 2

REMARK 3.6 If m < 0 and m− n < −3/2, then the Infinite Speed of Propagation Property holds
for the solutions discussed in Theorem 2 due to the boundedness of

∫
QT
(u(α+m+1)/2)2x dx dt . See

[20, Corollary 2.1].

THEOREM 3 (The unstable case) Let ν = 1, A > 0, n > 0, m− n > −3/2, m− n < 2 if A = 0,
and m < M if A > 0.

(i) Let α0 = α0(ζ = 1), α1 = max{α0,−2m+n−1}, and β0 = 3/(n+α1+1). Then u1/β(·, t) ∈

C1([−a, a]) for all β ∈ (0, β0), for almost every t > 0.
(ii) For any ζ satisfying (3.7), let α2 = max{α0(ζ ),−2m + n − 1,−m − 1}. Then, for any α ∈

(α2, 2− n) \ {0,−1} and for any γ satisfying (3.8),

1
α(α + 1)

∫
Ω

ζ 4u1+α(x, T ) dx + A
∫
QT

ζ 4uα+M−1u2
x dx dt

+ c1

[∫
P

ζ 4uα+n−2γ+1(uγ )2xx dx dt +
∫
QT

ζ 4uα+n−3u4
x dx dt

]
6 c2

∫
QT

(|ζx |
4
+ |ζ ζxx |

2)un+α+1 dx dt + c3

∫
QT

|(ζ 3ζx)x |u
α+m+1 dx dt

+ c4

∫
QT

ζ 4uα+2m−n+1 dx dt +
1

α(α + 1)

∫
Ω

ζ 4uα+1
0 dx. (3.18)

Proof. To prove part (i), note that the condition m− n > −3/2 implies that α1 ∈ [1/2− n, 2− n),
and that α1 > α0, α1 + 2m − n + 1 > 0; then invoke Lemma 3.1 with ζ = 1. Part (ii) follows by
noting that α2 ∈ [1/2 − n, 2 − n), α > α0, α + m + 1 > 0, and α + 2m − n + 1 > 0, and then
letting ε → 0 in (3.14). 2
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REMARK 3.7 The results given in Theorem 3 also hold for the exceptional cases (1.3), (1.4)(a),
with A = 0 and withm−n assuming the values−1 andm−n = 0, respectively. This can be easily
demonstrated by following the arguments above, once one notices that estimates (3.11), (3.12) also
hold for (1.3), (1.4)(a) when the value of m − n is −1 or 0, respectively, by utilizing the bounds
(1.8), (1.9).

REMARK 3.8 When 0 < n < 3, Corollary 3.2 and (3.16) imply that under the assumptions in
Theorems 2 and 3, the weak solutions obtained as the limit of a subsequence of {uε(x, t)}, the
solutions to (Pε), are in fact strong solutions in the sense of Bernis [4]. In particular this implies
that solutions with compact support have zero contact angle at the edge of the support.

Using (3.15)–(3.16), one can check that in the context of Theorems 2 and 3,

β0 >

{
2, 0 < n 6 3/2,
3/n, 3/2 < n < 3. (3.19)

These bounds correspond to the bounds which were obtained in [2] for the thin film equation (1.1).
The regularity indicated in (3.19) also corresponds to the contact line regularity of the self-similar
source type solutions which were demonstrated in [1] to exist for (1.6) when 0 < n < 3, ν = ±1,
A = 0, and m = n+ 2. In this sense the regularity obtained is sharp, though additional regularity is
provided by the terms

∫
QT
(u(α+m+1)/2)2x dx,

∫
QT
A(u(α+M+1)/2)2x dx, for some parameter values.

REMARK 3.9 For 0 < n < 3, with regard to the terms in (2.2) which do not depend on m or M ,
since the regularity obtained is the same as the regularity which was obtained for (1.1) in [2], these
terms can be interpreted in the same sense as in [12], which is distributional for 3/8 < n < 3 and
is in the weaker sense of (2.2) for 0 < n 6 3/8. With regard to the terms in (2.2) which depend
on m and M , these terms may be readily seen to be interpretable in a suitable distributional sense if
m > −1 and in the weaker sense of (2.2) for m 6 −1. The details of the case ν = −1, 0 < m < 1
are discussed in [11].

In the case of strong slippage, in which 0 < n < 2, the local entropy estimates provided by
Theorems 2 and 3 can be used to prove the finite speed propagation property for the strong solutions
obtained there when m > n/2 (see §4). In the case of weak slippage in which

2 6 n < 3, (3.20)

the finite speed propagation property for the standard thin film equation (1.1) and u0 ∈ H
1(Ω)

was proved by F. Bernis [5] using local energy estimates, which were derived there. The proof
of the energy estimates is based on certain integral inequalities for smooth functions which are
positive on some interval (see [6]). Our proof of the finite speed of propagation property for (1.6)
for m > n/2 in the case of weak slippage (3.20) is based on combined use of local entropy
estimates, which were derived in Theorems 2 and 3, and local energy estimates which are derived
below in Theorem 4. The derivation of the local energy estimates makes use of a generalization
of the Bernis inequalities mentioned earlier, for nonnegative periodic functions (see Lemma 6.3).
Somewhat similar methodologies were employed in [30, 25] where local energy estimates were
also derived, and which also relied on combined use of local entropy and energy estimates. Notably,
the combination of local energy and entropy estimates used here and in [25] relies on using local
entropy estimates with −1 < α < 0; previous approaches relied on local entropy estimates with
α > 0 in proving the finite speed of propagation property [2, 12, 20].
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THEOREM 4 Suppose that ν = ±1, 2 6 n < 3, A > 0, and that m < M if A > 0, and m < n+ 2
if A = 0 and ν = 1. Suppose moreover that if ν = −1, then m − 3

4n > −1, and if ν = 1, then
m− 2

3n > −2/3 whenever 2 6 n < 5/2, and m− n > −3/2 whenever 5/2 6 n < 3. Under these
assumptions, the strong solutions obtained in Theorems 2 and 3 satisfy the local energy estimate∫

Ω

ζ 6
|ux(x, T )|

2 dx + d1

∫
QT

ζ 6((u(n+2)/6)6x + |(u
(n+2)/3)xx |

3
+ (u(n+2)/2)2xxx

)
dx dt

+ d1

∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt

6
∫
Ω

ζ 6
|u0x(x)|

2 dx + d2

∫
QT

un+2(|ζx |
6
+ |ζ ζxx |

3) dx dt

−

∫
QT ∩{u>0}

(νumux − Au
Mux)(uxζ

6)xx dx dt, (3.21)

where ζ(x) is an arbitrary nonnegative function from C4([−a, a]).

Proof. In order to derive the local energy estimate, we test the equation in the approximating
problem, (Pε), with −(ζ 6uεx)x, and easily deduce that∫

Ω

ζ 6

2
|uεx(x, T )|

2 dx +
∫
QT

ζ 6fε(uε)|uεxxx |
2 dx dt

= −

∫
QT

fε(uε)uεxxx[2uεxx(ζ 6)x + uεx(ζ
6)xx] dx dt

−

∫
QT

fε(uε)(νu
m−n
ε uεx − Au

M−n
ε uεx)(uεxζ

6)xx dx dt +
∫
Ω

ζ 6

2
|u0εx |

2 dx. (3.22)

Assuming (3.20) and noting (3.15), (3.16), it is easy to check that max{α∗,−m − 1} < 0 in
Theorem 2 and that max{α∗,−2m+ n− 1,−m− 1} < 0 in Theorem 3. Hence if n satisfies (3.20),
then for arbitrary ζ satisfying (3.7) or ζ = 1, α may be chosen to be fixed and to satisfy

−1 < α < 0, (3.23)

in addition to satisfying the constraints indicated in part (ii) of either theorem.
For α satisfying (3.23), we have, due to (1.15),∫
Ω

u1+α
ε (x, T ) dx 6 |Ω|−α

(∫
Ω

uε(x, T ) dx
)1+α

= |Ω|−α
(∫

Ω

u0ε dx
)1+α

6 d3. (3.24)

Setting ζ = 1 in (3.13) and employing (2.3), (3.24), we obtain the following inequality when
ν = −1:

c3

[∫
QT

uα+n−2γ+1
ε (uγε )

2
xx dx dt +

∫
QT

uα+n−3
ε u4

εx dx dt
]
+

∫
QT

(uα+m−1
ε + Auα+M−1

ε )u2
εx dx dt

6
∫
Ω

Gε(u0ε) dx + d4 6 d5. (3.25)
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Similarly, setting ζ = 1 in (3.14), employing (2.3), (3.24), and noting that the assumptions on α
imply that α > α2 > −2m+ n− 1, we obtain the following inequality when ν = 1:

c8

[∫
QT

uα+n−2γ+1
ε (uγε )

2
xx dx dt +

∫
QT

uα+n−3
ε u4

εx dx dt
]

+

∫
QT

Auα+M−1
ε u2

εx dx dt 6
∫
Ω

Gε(u0ε) dx + c5

∫
QT

uα+2m−n+1
ε dx dt + d6 6 d7. (3.26)

Next we pass to the limit ε → 0 in (3.22). First, setting ζ = 1 in (3.22) shows that for any
δ > 0,

2−1
∫
Ω

|uεx(x, T )|
2 dx +

∫
QT

fε(uε)|uεxxx |
2 dx dt

6 2−1
∫
Ω

|u0εx |
2 dx + (1+ A| sup uε |M−m)

∫
QT

fε(uε)u
m−n
ε |uεx | |uεxxx | dx dt

6 2−1
∫
Ω

|u0εx |
2 dx + δ

∫
QT

fε(uε)|uεxxx |
2 dx dt +

∫
QT

uα+n−3
ε u4

εx dx dt

+ c(δ)

∫
QT

u4m−2n−(α+n)+3
ε dx dt. (3.27)

Suppose that
4m− 2n− (α + n)+ 3 > 0; (3.28)

then setting δ = 1/2 in (3.27) and using the estimates (3.25), (3.26), we deduce that∫
Ω

|uεx(x, T )|
2 dx +

∫
QT

fε(uε)|uεxxx |
2 dx dt < d8. (3.29)

REMARK 3.10 In the context of Theorem 2, when n satisfies (3.20), we have m > n − 2 > 0,
hence max{α∗,−m − 1} = α∗ = −1. Thus for arbitrary initial data satisfying (2.1) and (2.3), the
condition (3.28) is satisfied for some admissible α if

m−
3
4
n > −1,

which is stronger than the previous constraint, m − n > −2. In the context of Theorem 3, when n
satisfies (3.20), we have m > n − 2 > 0; hence max{α∗,−m − 1} = α∗ = −1, but α there must
also satisfy α > −2m + n − 1. It is easy to check that (3.28) holds for some admissible α if and
only if m, n satisfy the condition

3m− 2n > −2. (3.30)

Recalling the constraint m − n > −3/2 in Theorem 3, it is easy to check that (3.30) constitutes an
additional constraint if n < 5/2.

Using the estimates (3.29), (3.25), (3.26), it is easy to check that the integrals on the right-hand
side of (3.22) are uniformly bounded with respect to ε if (3.28) is satisfied. For t > 0, η > 0,
uε → u strongly in the space C4,λ({u > η}). Therefore passage to the limit ε → 0 in all of the
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integrals in (3.22) over the domainQT ∩{u > η} is straightforward. As to integrals over the domain
{u < η}, we have, for example, by virtue of (3.28),∣∣∣∣ ∫

QT ∩{u<η}

fε(uε)uεxxxuεxu
m−n
ε ζ 6 dx dt

∣∣∣∣
6 c

(∫
QT ∩{u<η}

fε(uε)|uεxxx |
2 dx dt

)1/2(∫
QT ∩{u<η}

uα+n−3
ε u4

εx dx dt
)1/4

×

(∫
QT ∩{u<η}

u4m−2n−(α+n)+3 dx dt
)1/4

6 cη(4m−2n−(α+n)+3)/4
→ 0 as η→ 0.

Analogously, it is easy to check that all of the other integrals over {u < η} on the right hand side of
(3.22) are bounded from above by some continuous function, h(η), such that h(η)→ 0 as η→ 0.
Therefore, first letting ε → 0, and then η→ 0, we easily obtain

2−1
∫
Ω

ζ 6
|ux(x, T )|

2 dx +
∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt

6 2−1
∫
Ω

ζ 6
|u0x |

2 dx −
∫
QT ∩{u>0}

unuxxx[2uxx(ζ 6)x + ux(ζ
6)xx] dx dt

−

∫
QT ∩{u>0}

(νumux − Au
Mux)(uxζ

6)xx dx dt. (3.31)

Since u(·, t) ∈ C1(Ω) for almost t ∈ [0, T ], it is possible to estimate from below the second
term on the left hand side of (3.31) using the generalized Bernis inequalities given in Lemma 6.4.
As a result we obtain

2−1
∫
Ω

ζ 6
|ux(x, T )|

2 dx + d7

∫
QT

ζ 6((u(n+2)/6)6x + |(u
(n+2)/3)xx |

3
+ (u(n+2)/2)2xxx) dx dt

+ d9

∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt

6 2−1
∫
Ω

ζ 6
|u0x(x)|

2 dx + d10

∫
QT

|ζx |
6un+2 dx dt

−

∫
QT ∩{u>0}

unuxxx[2uxx(ζ 6)x + ux(ζ
6)xx] dx dt

−

∫
QT ∩{u>0}

(νumux − Au
Mux)(uxζ

6)xx dx dt. (3.32)

Next we estimate the terms in the third integral on the right hand side as in [30]; namely,∫
QT ∩{u>0}

unuxxxux(ζ
6)xx dx dt

= 6
∫
QT ∩{u>0}

(un/2uxxxζ
3)(u(n−4)/6uxζ )(u

(n+2)/3(5ζ 2
x + ζ ζxx)) dx dt
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6 6
(∫

QT ∩{u>0}
unu2

xxxζ
6 dx dt

)1/2(∫
QT ∩{u>0}

un−4u6
xζ

6 dx dt
)1/6

×

(∫
QT

un+2(5ζ 2
x + ζ |ζxx |)

3 dx dt
)1/3

6 δ

∫
QT ∩{u>0}

(unu2
xxx + (u

(n+2)/6)6x)ζ
6 dx dt + c(δ)

∫
QT

un+2(ζ 6
x + (ζ |ζxx |)

3) dx dt, ∀δ > 0,

and∫
QT ∩{u>0}

unuxxxuxx(ζ
6)x dx dt

= 6
∫
QT ∩{u>0}

(u
n
2 uxxxζ

3)

[(
u
n−1

3 uxx +
n− 1

3
u
n−4

3 u2
x −

n− 1
3

u
n−4

3 u2
x

)
ζ 2
]
(u

n
2−

n−1
3 ζx) dx dt

6 6
(∫

QT ∩{u>0}
unu2

xxxζ
6 dx dt

)1/2

×

[ ∫
QT ∩{u>0}

(
3

n+ 2
|(u

n+2
3 )xx | +

n− 1
3

(
6

n+ 2

)2

(u
n+2

6 )2x

)3

ζ 6 dx dt
]1/3

×

(∫
QT

un+2ζ 6
x dx dt

)1/6

6 δ

∫
QT ∩{u>0}

(unu2
xxx + |(u

n+2
3 )xx |

3
+ (u

n+2
6 )6x)ζ

6 dx dt + c(δ)
∫
QT

un+2ζ 6
x dx dt, ∀δ > 0.

Using these estimates in (3.32) with δ = d9/6, we obtain (3.21). 2

4. Finite speed propagation (strong slippage: 0 < n < 2)

In this section, we consider problem (P) with initial data, u0, which satisfies (2.1) and which also
possesses the additional property

supp u0 ⊂ {x 6 0}. (4.1)

Let us introduce the following family of subdomains:

Ω(s) = Ω ∩ {x | x > s} ∀s ∈ (−a, a), QT (s) = Ω(s)× (0, T ). (4.2)

THEOREM 5 Let u0 satisfy (2.1), (4.1), let ν = ±1, A > 0, 0 < n < 2, m < M if A > 0,
m < n+ 2 if ν = 1, A = 0, and

m > 0 if ν = −1, m > n/2 if ν = 1,

and let u denote an arbitrary strong nonnegative solution of problem (P), obtained as in Theorem 1,
which satisfies the local entropy estimate in Theorem 2 or 3. Then u possesses the finite speed of
propagation property in the sense that there exists a continuous function, s(t), such that s(0) = 0,
and a positive time T0, such that

supp u(·, t) ⊂ Ω \Ω(s(t)), s(t) < a ∀t < T0, s(T0) = a. (4.3)

REMARK 4.1 The analysis in this section also applies to (1.4)(a).
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Proof. Since by assumption 0 < n < 2, the local entropy estimate, (3.17) or (3.18), holds for
some positive α < 2− n. The proof of the finite speed of propagation property is based on a careful
analysis of the properties of solutions satisfying these inequalities with positive α. In the stable case,
ν = −1, such analysis was performed in [20] with A = 0. If ν = −1 and A > 0, a similar proof
can be given. Therefore we restrict our attention here to the unstable case, ν = 1. Although we set
A = 0 for simplicity, all our estimates are also valid for the case ν = 1, A > 0. Thus, the estimate
(3.18) can be written in the form

1
α(α + 1)

∫
Ω

ζ 4u1+α(x, T ) dx + c1

∫
QT

ζ 4(uα+n−2γ+1(uγ )2xx + u
α+n−3u4

x

)
dx dt

6
1

α(α + 1)

∫
Ω

ζ 4u1+α
0 dx + cR, α > 0, (4.4)

where c := max(c2, c3, c4) and

R := R1 + R2 + R3 :=
∫
QT

(|ζ 4
x | + |ζ ζxx |

2)un+α+1 dx dt

+

∫
QT

|(ζ 3ζx)x |u
α+m+1 dx dt +

∫
QT

ζ 4uα+2m−n+1 dx dt.

Note now that due to the constraint m > n/2, the minimal power of u(x, t) in terms of the form∫
QT
ζ 4uσ1 dx dt on the right hand side of (4.4) is strictly greater than the minimal power of u in

terms of the form
∫
Ω
ζ 4uσ2 dx appearing on the left hand side of (4.4); namely,

α + 2m− n+ 1 > α + 1 ⇔ m > n/2.

This will allow us to derive a functional relationship from (4.4), for a suitable set of energy functions,
which satisfies the conditions of the generalized Stampacchia Lemma, Lemma 6.2.

To put (4.4) in an appropriate form, we set ζ(x) = ζs,δ(x), where ζs,δ(x) is the cut-off function
defined as

ζs,δ(x) = ϕ

(
x − s

δ

)
, (4.5)

where s ∈ R, δ > 0 are free parameters, and ϕ(r) is a nonnegative nondecreasing C2(R) function
such that

ϕ(r) = 0 for r 6 0, ϕ(r) = 1 for r > 1. (4.6)

We now define three energy functions which are connected with the terms on the right hand side
of our entropy estimate (4.4),

JT (s) :=
∫
QT (s)

uβ1+α+1 dx dt, ET (s) :=
∫
QT (s)

uβ2+α+1 dx dt,

IT (s) :=
∫
QT (s)

uβ3+α+1 dx dt,
(4.7)

where β1 = n, β2 = m, β3 = 2m − n. Using (4.4), we shall deduce a system of three functional
inequalities for JT (s), ET (s), IT (s). Setting ζ(x) = ζs,δ(x) in (4.4), we obtain after some simple
computations
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sup
t∈(0,T )

∫
Ω(s+δ)

uα+1 dx +D1

∫
QT (s+δ)

[(u(α+n+1)/2)2xx + (u
(α+n+1)/4)4x] dx dt

6 D2

[
1
δ4

∫
QT (s)\QT (s+δ)

uα+n+1 dx dt +
1
δ2

∫
QT (s)\QT (s+δ)

uα+m+1 dx dt

+

∫
QT (s)

uα+2m−n+1 dx dt
]
+

∫
Ω(s)

u1+α
0 dx. (4.8)

Here and throughout the proof, Di denote positive constants which can depend on the problem
parameters, α, n, m, but not on s, δ, and T . For arbitrary β > 0, l > 4, s > 0, δ > 0 such that
s + 2δ < a, we find for σ = β + α + 1 that∫

Ω(s+2δ)
uσ dx 6

∫
Ω(s+δ)

(uζ ls+δ,δ)
σ dx =

∫
Ω(s+δ)

v
4σ

n+α+1 dx, (4.9)

where v = v(x, t) = (uζ ls+δ,δ)
(n+α+1)/4. By the Gagliardo–Nirenberg interpolation inequality,∫

Ω(s+δ)

v
4σ

n+α+1 dx 6 D3

[∫
Ω(s+δ)

|vx |
4 dx

] θσ
n+α+1

[∫
Ω(s+δ)

v
4(α+1)
n+α+1 dx

] (1−θ)σ
α+1

(4.10)

where θ = β(n+α+1)
σ (n+4(α+1)) . Combining (4.9) and (4.10) gives∫

Ω(s+2δ)
uβ+α+1 dx 6 D4

[∫
Ω(s+δ)

uα+1 dx
] (1−θ)σ

α+1

×

[∫
Ω(s+δ)

|(u(n+α+1)/4)x |
4 dx +

1
δ4

∫
Ω(s+δ)\Ω(s+2δ)

un+α+1 dx
] θσ
n+α+1

. (4.11)

Let us suppose that
θσ

n+ α + 1
< 1

or equivalently that
β < n+ 4(α + 1). (4.12)

Then, integrating (4.11) with respect to t and using Hölder’s inequality, we obtain∫
QT (s+2δ)

uβ+α+1 dx dt 6 D5T
1− β

n+4(α+1) sup
t∈(0,T )

(∫
Ω(s+δ)

uα+1 dx
) (1−θ)(β+α+1)

α+1

×

[
1
δ4

∫
QT (s+δ)\QT (s+2δ)

un+α+1 dx dt +
∫
QT (s+δ)

|(u(n+α+1)/4)x |
4 dx dt

] β
n+4(α+1)

6 D6T
1− β

n+4(α+1)

[
sup

t∈(0,T )

∫
Ω(s+δ)

uα+1 dx +
1
δ4

∫
QT (s+δ)\QT (s+2δ)

un+α+1 dx dt

+

∫
QT (s+δ)

|(u(n+α+1)/4)x |
4 dx dt

]1+µ

, (4.13)

where µ = 4β/(n+ 4(α + 1)) > 0.
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Using the definitions in (4.7) and the a priori estimate (4.8), we deduce from (4.13) that∫
QT (s+2δ)

uβ+α+1 dx dt 6 D7T
1−µ/4

×

[
JT (s)− JT (s + 2δ)

δ4 +
ET (s)− ET (s + δ)

δ2 + IT (s)+

∫
Ω(s)

uα+1
0 dx

]1+µ

. (4.14)

The inequality (4.14) holds for the three values of βi, i = 1, 2, 3, prescribed in (4.7), if condition
(4.12) holds with β = βi, i = 1, 2, 3. These conditions may be written as

1) α + 1 > 0, 2) m < n+ 4(α + 1), 3) 2m− n < n+ 4(α + 1).

It is easy to check that all of these conditions are satisfied for some α ∈ (α2, 2− n) if and only if

m < 6− n. (4.15)

Thus, if the inequality (4.15) holds, we obtain the following system of functional inequalities:

JT (s + δ) 6 D8T
(4−µ1)/4

×

[
JT (s)− JT (s + δ)

δ4 +
ET (s)− ET (s + δ)

δ2 + IT (s)+ h0(s)

]1+µ1

,

ET (s + δ) 6 D9T
(4−µ2)/4

×

[
JT (s)− JT (s + δ)

δ4 +
ET (s)− ET (s + δ)

δ2 + IT (s)+ h0(s)

]1+µ2

,

IT (s + δ) 6 D10T
(4−µ3)/4

×

[
JT (s)− JT (s + δ)

δ4 +
ET (s)− ET (s + δ)

δ2 + IT (s)+ h0(s)

]1+µ3

,

(4.16)

where h0(s) =
∫
Ω(s)

u1+α
0 dx, and

µ1 =
4n

n+ 4(α + 1)
, µ2 =

4m
n+ 4(α + 1)

, µ3 =
4(2m− n)
n+ 4(α + 1)

.

Due to the boundedness and nonnegativity of u, the following estimates are obvious:

JT (0) 6 JT :=
∫
QT

uβ1+α+1 dx dt < cT , ∀T > 0,

ET (0) 6 ET :=
∫
QT

uβ2+α+1 dx dt < cT , ∀T > 0,

IT (0) 6 IT :=
∫
QT

uβ3+α+1 dx dt < cT , ∀T > 0,

(4.17)

where c is a constant which does not depend on T . The validity of the statement of Theorem 5 when
inequality (4.15) holds now follows from (4.16), (4.17), and Lemma 6.2, since h0(s) = 0 for any
s > 0.
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If m > 6− n, we proceed as follows. We fix m such that n/2 < m < 6− n. It is easy to see that
due to the boundedness of the solution u, all of the previous estimates in the proof of Theorem 5
remain valid whenm is replaced bym. As a result, the system (4.16) is obtained with respect to new
energy functions (4.7) defined by the values

β1 = n, β2 = m, β3 = 2m−m,

and where

µ1 =
4n

n+ 4(α + 1)
, µ2 =

4m
n+ 4(α + 1)

, µ3 =
4(2m− n)
n+ 4(α + 1)

.

In this manner, the validity of the statement of the theorem for the case m > 6 − n again follows
from (4.16) and Lemma 6.2. 2

5. Finite speed propagation (weak slippage: 2 6 n < 3)

In this section we shall again consider problem (P) with initial data u0 which satisfies (2.1) as well
as the additional property (4.1). The subdomains Ω(s) and Qt (s) are to be understood here to be as
defined in (4.2).

We first prove the following lemma, which provides control on the L1
loc(Ω) norm of some

minimal positive power of the solution under consideration, u(x, t). For the sake of simplicity,
the results in this section are proven for ν = 1 and A = 0, though they remain valid for ν = −1
and A > 0 as well. The results here can also be readily shown to apply to (1.3) if 2 < n < 3 and to
(1.4)(a).

LEMMA 5.1 Let ν = ±1, A > 0, 1/2 < n < 3, m > n/2, η > (1 − n)/3, ε > 0, with m < M

if A > 0 and m < n + 2 if ν = 1, A = 0. Then there exists a positive constant c, depending on
n,m, η, ε only, such that any nonnegative strong solution u of problem (P) satisfies∫

Ω

u(x, T )η+1ζ 4 dx 6 ε

(∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt +

∫
QT

|ζx |
6un+2 dx dt

)
+ c

(∫
QT

[un+2η
|ζx |

2
+ u(3m+3η+1−n)/2ζ 3

+ um+η+1
|ζ ζx |

2] dx dt
)

+

∫
Ω

u
η+1
0 ζ 4 dx + c

∫
QT ∩supp ζ

un+3η−1 dx dt (5.1)

for arbitrary nonnegative ζ ∈ C2([−a, a]).

Proof. The proof here follows that of Lemma 5.2 in [25]. Let us set φ = ϕ in the integral identity
in (2.2), where ϕ is the test function

ϕ = −lδζ
4(u+ γ )η, γ > 0,
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where {lδ} ⊂ C∞c (0, T ) and lδ → χ(0,T ) as δ→ 0. After some simple computations, we obtain

−

∫
QT

(lδ)tζ
4 (u+ γ )

η+1

η + 1
dx dt =

∫
QT

umux lδ((u+ γ )
ηζ 4)x dx dt

+

∫
QT ∩{u>0}

lδ(ζ
4)xu

n(u+ γ )ηuxxx dx dt

+ η

∫
QT ∩{u>0}

lδζ
4un(u+ γ )η−1uxuxxx dx dt

=: A1 + A2 + A3. (5.2)

The terms A2, A3 can be estimated as in [25, Lemma 5.2]. For any ε > 0,

|A2| 6 ε

∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt + C1(ε)

∫
QT

|ζx |
2un(u+ γ )2η dx dt,

|A3| 6 ε

(∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt +

∫
QT

|ζx |
6un+2 dx dt

)
+ C2(ε)

∫
QT ∩supp ζ

(u+ γ )n+3η−1 dx dt.

Here Ci denote constants which may depend on m, n, η, and on ε if indicated, but which are
independent of γ and δ.

Let us now estimate A1. We have

A1 =

∫
QT

ηum(u+γ )η−1u2
xζ

4lδ dx dt+
∫
QT

4um(u+γ )ηuxζ 3ζx lδ dx dt =: A(1)1 +A
(2)
1 . (5.3)

Since m− n−4
3 + η− 1 > 0, it follows from Young’s inequality and Lemma 6.4 that for any ε > 0,

|A
(1)
1 | 6 ε

∫
QT ∩{u>0}

u6
xu
n−4ζ 6 dx dt + C3(ε)

∫
QT

(u+ γ )
3
2 (m−

n−4
3 +η−1)ζ 3 dx dt

6 ε

(∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt + C4

∫
QT

ζ 6
x u

n+2 dx dt
)

+ C3(ε)

∫
QT

(u+ γ )(3m+3η+1−n)/2ζ 3 dx dt. (5.4)

With regard to A(2)1 , we have by Young’s inequality

|A
(2)
1 | 6 |A

(1)
1 | + C5

∫
QT

(u+ γ )m+η+1
|ζ ζx |

2 dx dt. (5.5)

Thus all the integrals in (5.2) are uniformly bounded with respect to the parameters δ, γ > 0.
Therefore, collecting the estimates obtained for the terms Ai, i = 1, 2, 3, and passing to the limit
δ→ 0, and then γ → 0, we obtain the estimate (5.1). 2

THEOREM 6 Let u0 satisfy (2.1), (4.1), let ν = ±1, A > 0, 1/2 < n < 3, m > n/2, m < M if
A > 0, and m < n + 2 if ν = 1, A = 0, and let u denote an arbitrary strong nonnegative solution
of problem (P) obtained as in Theorem 1, which satisfies the local entropy estimate of Theorem 2
or 3. Then u possesses the finite speed of propagation property in the sense of Theorem 5.
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Proof. Let us consider the local energy estimate (3.21) obtained in Theorem 4, and estimate the
third term on the right hand side, setting ν = 1 for simplicity:

B :=
∫
QT ∩{u>0}

umux(uxζ
6)xx dx dt

=

∫
QT ∩{u>0}

umuxuxxxζ
6 dx dt + 12

∫
QT ∩{u>0}

umuxuxxζ
5ζx dx dt

+ 6
∫
QT ∩{u>0}

umu2
x(ζ

5ζx)x dx dt =: B1 + B2 + B3.

Using Young’s inequality, we deduce that for any ε > 0,

|B1| 6

∣∣∣∣ ∫
QT ∩{u>0}

un/2uxxxuxu
(n−4)/6um−n/2−(n−4)/6ζ 6 dx dt

∣∣∣∣
6 ε

∫
QT ∩{u>0}

(unu2
xxx + u

6
xu
n−4)ζ 6 dx dt +D1(ε)

∫
QT

u3m−2n+2ζ 6 dx dt.

Here and below,Di denote constants which may depend onm, n, η, and on ε if indicated, but which
are independent of δ and s. Similarly, we may estimate

|B2| 6 ε

∫
QT ∩{u>0}

(|uxx |
3un−1

+ u6
xu
n−4)ζ 6 dx dt +D2(ε)

∫
QT

u2m−n+2
|ζ 2ζx |

2 dx dt,

|B3| 6 ε

∫
QT ∩{u>0}

u6
xu
n−4ζ 6 dx dt +D3(ε)

∫
QT

u(3m−n+4)/2
|(ζ 3ζx)x |

3/2 dx dt.

Using these estimates in (3.21), we find that for ε > 0 sufficiently small,∫
Ω

|ux(x, T )|
2ζ 6 dx +

d10

2

∫
QT

ζ 6[(u(n+2)/6)6x + |(u
(n+2)/3)xx |

3
+ (u(n+2)/2)2xxx] dx dt

+
d10

2

∫
QT ∩{u>0}

ζ 6unu2
xxx dx dt

6
∫
Ω

|u0x |
2ζ 6 dx + d9

∫
QT

(|ζx |
6
+ |ζ ζxx |

3)|u|n+2 dx dt

+D4

∫
QT

[u3m−2n+2ζ 6
+ u2m−n+2

|ζ 2ζx |
2
+ u(3m−n+4)/2

|(ζ 3ζx)x |
3/2] dx dt. (5.6)

Assuming that η > (1 − n)/3, summing the inequalities (5.6), (5.1), and taking ε > 0 sufficiently
small, we obtain∫

Ω

|u(x, T )|η+1ζ 4 dx +
∫
Ω

|ux(x, T )|
2ζ 6 dx +

d10

4

∫
QT ∩{u>0}

ζ 6
|(u(n+2)/2)xxx |

2 dx dt

6
∫
Ω

|u0x |
2ζ 6 dx +

∫
Ω

|u0|
η+1ζ 4 dx +D5R,



THIN FILM EQUATION 491

where

R :=
∫
QT

u3m−2n+2ζ 6 dx dt +
∫
QT

u(3m+3η+1−n)/2ζ 3 dx dt

+

∫
QT ∩supp ζ

un+3η−1 dx dt +
∫
QT

(|ζx |
6
+ |ζ ζxx |

3)un+2 dx dt

+

∫
QT

u2m−n+2
|ζ 2ζx |

2 dx dt +
∫
QT

un+2η
|ζx |

2 dx dt

+

∫
QT

um+η+1
|ζ ζx |

2 dx dt +
∫
QT

u(3m−n+4)/2
|(ζ 3ζx)x |

3/2 dx dt. (5.7)

Let us take for ζ(x) the function ζs,δ from (4.5). It then follows from (5.7) that

sup
t∈(0,T )

∫
Ω(s+δ)

|u(x, t)|η+1 dx+ sup
t∈(0,T )

∫
Ω(s+δ)

|ux(x, t)|
2 dx+

d10

4

∫
QT (s+δ)

|(u(n+2)/2)xxx |
2 dx dt

6
∫
Ω(s)

(|u0x |
2 dx + |u0|

η+1) dx +D6R̃,

where

R̃ :=
∫
QT (s)

u3m−3n+2 dx dt +
∫
QT (s)

u(3m+3η+1−n)/2 dx dt +
∫
QT (s)

un+3η−1 dx dt

+ δ−6
∫
QT (s)

un+2 dx dt + δ−2
∫
QT (s)

u2m−n+2 dx dt

+ δ−2
∫
QT (s)

un+2η dx dt + δ−2
∫
QT (s)

um+η+1 dx dt + δ−3
∫
QT (s)

u(3m−n+4)/2 dx dt

=:
8∑
i=1

δ−χi
∫
QT (s)

uξi dx dt. (5.8)

We shall use the inequality (5.8) to derive a system of functional relationships which will allow
us to implement the Stampacchia Lemma, Lemma 6.2. In order to undertake similar computations
to those in §4, it suffices to guarantee that

ξi > 1+ η, i = 1, . . . , 8. (5.9)

First we ensure that

ξ3 = n+ 3η − 1 > 1+ η ⇔ η > 1− n/2 =: ηmin. (5.10)

Next we deduce a restriction on m by considering

ξ1 = 3m− 2n+ 2 > 1+ η ⇔ 3
2 (2m− n)+ 1+ (1− n/2) > 1+ η. (5.11)

Together, (5.10) and (5.11) yield

ηmin = 1− n/2 < η < ηmin +
3
2 (2m− n). (5.12)
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There exists η satisfying (5.12) iff
2m− n > 0. (5.13)

Next it is easy to see that

ξ2 =
3m+ 3η + 1− n

2
=
(n+ 3η − 1)+ (3m− 2n+ 2)

2
.

Therefore the inequality
ξ2 > 1+ η (5.14)

follows from (5.10) and (5.11). It is easy to check that the other inequalities in (5.9) can be satisfied
by an appropriate choice of η if conditions (5.10) and (5.11) are satisfied.

As a result of (5.9), the following Gagliardo–Nirenberg interpolation inequalities hold for i =
1, . . . , 8: ∫

Ω(s+2δ)
uξi dx 6 D7

(∫
Ω(s+δ)

|((ζ
6/(n+2)
s+δ,δ u)(n+2)/2)xxx |

2 dx
)θiξi/(n+2)

×

(∫
Ω(s+δ)

(ζ
6/(n+2)
s+δ,δ u)η+1 dx

) (1−θi )ξi
η+1

, (5.15)

where θi =
(n+2)(ξi−η−1)
ξi (5η+n+7) , i = 1, . . . , 8. We now wish to guarantee that

θiξi

n+ 2
< 1, i = 1, . . . , 8. (5.16)

From the definition of θi, it follows that (5.16) holds iff

η >
ξi − n− 8

6
, i = 1, . . . , 8. (5.17)

It is easy to check that all the inequalities in (5.9) and (5.17) hold for some η in the interval (5.12)
if condition (5.13) is satisfied.

Therefore we deduce from (5.8), (5.15) the following inequalities:

∫
QT (s+δ)

uξi dx dt 6 D8T
1− θi ξi

n+2

( 8∑
j=1

δ−χj
∫
QT (s)

uξj dx dt + H0(s)

)1+ 6(ξi−η−1)
5η+n+7

, (5.18)

where H0(s) :=
∫
Ω(s)

(u
1+η
0 + |u0x |

2) dx = 0 for all 0 < s < s + δ < a. From (5.18) and Lemma
6.2, the conclusion of Theorem 6 now follows. 2

REMARK 5.2 The method used here for the qualitative analysis of conditions which guarantee
the finite speed of propagation property should be possible to modify, modulo various technical
difficulties, to yield quantitative predictions for propagation rates, [25, 30, 45]. We hope to perform
such an analysis in a forthcoming paper.
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6. Appendix A

LEMMA 6.1 (Stampacchia’s Lemma [48]) Assume that a given nonnegative nonincreasing func-
tion g : [0,∞)→ [0,∞) satisfies

g(s + δ) 6 c0(δ
−αg(s))β , ∀s, δ > 0,

for some real numbers c0 > 0, α > 0, β > 1. Then

g(s0) = 0, s0 := 2β/(β−1)(c0 g(0)β−1)1/2β .

For given (b1, . . . , bk) ∈ Rk , we denote

b =

k∏
j=1

bj , b̄i =
b

bi
=

k∏
j=1, j 6=i

bj .

LEMMA 6.2 (A Stampacchia Lemma for Systems [25]) Assume that k given nonnegative nonin-
creasing functions gi : [0,∞)→ [0,∞), i = 1, . . . , k, satisfy

gi(s + δ) 6 ci

( k∑
i=1

δ−αigi(s)
)βi
, ∀s, δ > 0, i = 1, . . . , k,

for some real numbers ci > 0, βi > 1, αi > 0, i = 1, . . . , k, where αi > 0 for i = 1, . . . , l, for
some l with 1 6 l 6 k. Denote

g(s) =

k∑
i=1

c
β̄i
i gi(s)

β̄i ,

and assume that the function Q(s) defined by

Q(s) =

k
β

k∑
i=l+1

c
β̄i
i

(
c
β̄i
i

)1−βig(s)βi−1 if l < k,

0 if l = k,

satisfies the constraintQ(s1) < 1 at some point s1 > 0. Then there exists a positive constant C > 1,
which depends on k, l, αi, βi, and Q(s1), such that

gi(s0) = 0, ∀i = 1, . . . , l,

where

s0 := s1 + C
l∑
i=1

(
c
β̄i
i

(
c
β̄i
i

)1−βig(s1)βi−1) 1
αiβ .

REMARK 6.3 If l = k, then s1 = 0 in Lemma 6.2.

LEMMA 6.4 (Generalized Bernis inequalities for periodic functions [25]) Let Ω = (a, b) ⊂ R1,
n ∈ (1/2, 3), and let u ∈ C1(Ω) ∩H 3

loc({u > 0}) be an arbitrary |Ω|-periodic function such that

u > 0, ux ∈ L
2(Ω),

∫
{u>0}

un|uxxx |
2 dx <∞.
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Then u(n+2)/6
∈ W 1,6(Ω), u(n+2)/3

∈ W 2,3(Ω), u(n+2)/2
∈ W 3,2(Ω) =: H 3(Ω), and there exists

a positive constant, C > 1, which depends on n only, such that∫
Ω

ζ 6(|(u(n+2)/6)x |
6
+ |(u(n+2)/3)xx |

3
+ |(u(n+2)/2)xxx |

2) dx

6 C

∫
{u>0}

ζ 6un|uxxx |
2 dx + C

∫
Ω

|ζx |
6un+2 dx,

where ζ(x) is an arbitrary C1 nonnegative |Ω|-periodic function.
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