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On the evolution of subcritical regions for the Perona–Malik equation

MARINA GHISI

Dipartimento di Matematica “Leonida Tonelli”, Università degli Studi di Pisa, Pisa, Italy
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The Perona–Malik equation is a celebrated example of forward-backward parabolic equation. The
forward behavior takes place in the so-called subcritical region, in which the gradient of the solution
is smaller than a fixed threshold. In this paper we show that this subcritical region evolves in a
different way in the following three cases: dimension one, radial solutions in dimension greater than
one, general solutions in dimension greater than one.

In the first case subcritical regions do not shrink, that is, that they expand with a nonnegative
rate. In the second case they expand with a positive rate and always spread over the whole domain
after a finite time, depending only on the (outer) radius of the domain. As a by-product, we obtain
a nonexistence result for global-in-time classical radial solutions with large enough gradient. In the
third case we show an example where subcritical regions do not expand.

Our proofs exploit comparison principles for suitable degenerate and nonsmooth free boundary
problems.
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1. Introduction

In this paper we consider the Perona–Malik equation

ut (x, t)− div
( ∇u(x, t)

1+ |∇u(x, t)|2
)
= 0 ∀(x, t) ∈ Ω × [0, T ), (1.1)

whereΩ ⊆ Rn is an open set and T > 0. This equation is the formal gradient flow of the functional

PM(u) := 1
2

∫
Ω

log(1+ |∇u(x)|2) dx.

The convex-concave behavior of the integrand makes (1.1) a forward-backward partial
differential equation of parabolic type. The forward (or subcritical) region is the set of points
(x, t) where |∇u(x, t)| < 1, the backward (or supercritical) region is the set of points where
|∇u(x, t)| > 1.

c© European Mathematical Society 2011
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This equation was introduced by P. Perona and J. Malik [17] in the context of image denoising.
They considered equation (1.1) in a rectangle Ω ⊆ R2, with an initial condition u(x, 0) = u0(x)

representing the grey level of a (noisy) picture, and Neumann boundary conditions. For increasing
values of t the functions x 7→ u(x, t) are thought to be improved versions of u0(x), where the
improvement mostly lies in noise reduction and edge enhancing.

The heuristic idea is that small disturbances, corresponding to small values of the gradient,
are smoothed out because of the diffusion which takes place in the forward regions. On the other
hand, sharp edges correspond to large values of the gradient and therefore they are expected to be
enhanced by the backward character of the equation in supercritical regions. This phenomenology
has been actually observed in numerical experiments, which also reveal an unexpected stability
(see [7, 8, 14]). The method has well known shortcomings such as the staircasing effect observed
in supercritical regions (see [19, 14]), but it has none of the dramatic instabilities which are typical,
for example, of the backward heat equation. This discrepancy between the practical efficacy of (1.1)
and its analytical ill-posedness has been called “Perona–Malik paradox” after S. Kichenassamy’s
paper [16].

In the last fifteen years the paradox has been investigated in numerous papers. Several authors
proved well-posedness results for approximations of (1.1) obtained via space discretization [4, 9] or
convolution [5], time delay [1], fractional derivatives [13], fourth order regularization [2], simplified
nonlinearities [3].

The behavior of such approximations as a suitable parameter goes to 0 is a much more
challenging problem. As far as we know, results in this direction have been obtained only for the
semidiscrete scheme in dimension one. In this case the present authors [9] (see also [4]) proved that,
for every initial condition u0 ∈ BV , approximate solutions converge to a limit, and under reasonable
assumptions this limit is a classical solution of (1.1) inside its subcritical region. All these results
motivate analysts to look for a notion of weak solution for (1.1) which exists for large classes of
initial data, is reasonably stable, and to which reasonable approximations converge.

Such a notion of weak solution would represent, from the analytical point of view, a solution to
the paradox. In this direction, K. Zhang [20] (see also [6, 18]) showed that the class of Lipschitz
solutions is not the right one. Indeed he proved that for any nonconstant smooth initial condition,
even if subcritical, the Neumann boundary value problem admits infinitely many (pathological)
local-in-time Lipschitz solutions.

Classical solutions (namely solutions which are at least of class C1) have also been investigated.
B. Kawohl and N. Kutev [15] observed that global-in-time classical solutions exist if the initial
condition is subcritical, while in [16] it is remarked that local-in-time classical solutions cannot
exist unless the initial condition is very regular in its supercritical region. Moreover the authors
proved in [10] that in dimension one there exists a dense set of initial data for which the Cauchy
problem with Neumann boundary conditions admits a local-in-time classical solution of class C2,1

(i.e. with two continuous derivatives with respect to space variables, and one continuous derivative
with respect to time). On the other hand, such solutions cannot be global if the initial condition has
a nonempty supercritical region (see [15] and [12]).

Quite surprisingly, things are not so drastic in dimension greater than one. Indeed the authors
proved in [11] that global-in-time radial solutions of class C2,1 do exist for some classes of initial
data with nonempty supercritical region.

For classical solutions one can define the family of open sets

I−(t) := {x ∈ Ω : |∇u(x, t)| < 1} ∀t ∈ [0, T ).
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This is the family of subcritical regions. Its behavior as t varies is the object of this paper. We
point out that this definition is purely local, in the sense that it does not depend on the boundary
conditions. We show three situations in which subcritical regions evolve in a different way.

The one-dimensional case. In dimension one subcritical regions do not shrink, namely

I−(s) ⊆ I−(t) whenever 0 6 s 6 t < T . (1.2)

Similar results were already proved in [15] and in [12]. In this paper we present an alternative
proof (see Theorem 2.1) based on a comparison principle, which only requires C1 regularity, and
works essentially for all equations which are the gradient flow of a nonconvex functional. This proof
gives us the opportunity to show, in a simpler setting, the method which is fundamental in the next
case, when the result was not known before.

This result is optimal in the sense that it may happen that the subcritical region is the same for
every t ∈ [0, T ). An example is provided by the local-in-time solutions constructed in [10].

The radial case. Let us consider a radial solution of (1.1) defined in a ball or an anulus. Then (1.2)
holds true also in this case. If moreover I−(0) 6= ∅, then the inclusion is strict whenever s < t , and
there exists T0 > 0 such that I−(t) = Ω for every t > T0. The value of T0 depends on the outer
radius ofΩ , but is independent of u. In other words, supercritical and critical regions disappear after
a finite time depending only on Ω .

If the solution survives and remains regular up to T0, then it becomes subcritical and there are no
more obstructions to global existence. This is what actually happens in the classes of global-in-time
radial solutions constructed in [11].

In Theorem 2.3 we show that this is not always the case. If the initial condition has a supercritical
region where the gradient is large enough, and this supercritical region is surrounded by subcritical
regions, then there is no C1 classical solution with T > T0, independently of the boundary
conditions. The reason is that the maximum of |∇u(x, t)| in this supercritical region is a function
of time which cannot decrease too fast. On the other hand, the supercritical region must disappear
after T0, and thus this maximum does not have enough time to decrease from its large initial value
up to 1.

The nonradial case. Roughly speaking, in the radial case each interface between the subcritical
and the supercritical region is a circle which evolves with velocity proportional to the inverse of
its radius. This reminded us of the mean curvature motion, and in a first moment led us to suspect
that this interface could evolve in a similar way also for nonradial solutions. In particular it seemed
reasonable that this interface could evolve in such a way that supercritical regions tend to shrink, at
least where they are convex.

In Theorem 2.4 we show that this is not the case. We prove indeed that there exists an initial
condition u0 in two variables with the following properties. The supercritical region of u0 is convex
in a neighborhood of the origin, and any local-in-time solution starting from u0, independently of
the boundary conditions, has a supercritical region which invades a neighborhood of the origin. In
particular any such solution does not satisfy (1.2).

Evolution of supercritical regions. If subcritical regions expand, then supercritical regions shrink.
This is true, but not obvious. Indeed it could happen that both the subcritical and the supercritical
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region expand at the expense of the critical region where |∇u(x, t)| = 1. However one can prove
that this is not the case. It is enough to apply the techniques of this paper to the equation obtained
by reversing the time. In this way the role of subcritical and supercritical regions is just exchanged.

Connection with free boundary problems. The evolution of subcritical regions is itself a free
boundary problem. Unfortunately it involves a forward-backward equation. After some variable
changes we reduce ourselves to more standard situations. Roughly speaking, in the new variable v
we end up with equations such as

vt =
√
v vxx, vt =

√
v{vxx + A+ lower order terms},

where A > 0. These equations are satisfied where v > 0, and we are interested in the evolution of
the region where v is positive.

The good news is that these equations are forward parabolic. The bad news is that they are
degenerate and involve a nonlinear term which is not Lipschitz continuous. This complicates things
when using comparison principles.

For the first equation we show (see Theorem 2.5) that the region where v is positive does not
shrink in time. This is enough to treat the Perona–Malik equation in dimension one. For the second
equation we show (see Theorem 2.6) that the region where v is positive expands with a positive rate
depending on A. This implies our conclusions for the radial Perona–Malik equation.

Comments. We conclude by speculating on some consequences of our results.
From the analytic point of view they show that forward-backward diffusion reveals a rich

and somewhat unexpected phenomenology in dimension n > 2. In the one-dimensional case
the situation is simple and clear: global classical transcritical (i.e., with nonempty subcritical and
supercritical regions) solutions do not exist, subcritical regions do not shrink, supercritical regions
do not expand but never disappear as soon as the solution is classical. In higher dimensions the
opposite is true: there are examples of global classical transcritical solutions, there is no prescribed
monotonicity in the evolution of subcritical and supercritical regions (except in the radial case), and
supercritical regions may disappear during the evolution.

We also emphasize that the monotonicity results proved in the one-dimensional and in the radial
case depend on the interaction between forward and backward regions across the critical region. In
other words, it is essential that subcritical regions are defined with respect to the critical threshold
σ = 1 where equation (1.1) switches from forward to backward regime. There are no corresponding
results for nondegenerate forward parabolic equations. It is also essential that the solution is of class
C1 in order that it actually crosses the critical threshold instead of jumping from below to above.

From the numerical point of view, things are more complex. On the one hand, it is clear that
smooth solutions cannot represent an answer to the paradox. Even if they exist for a dense set of
initial data (at least in the one-dimensional case), one could always argue that this dense set is not
enough “generic” to be suitable for applications, or that these solutions are not stable enough with
respect to small perturbations of initial data.

On the other hand, we explained in [10] that no classical solution can be neglected by a stable
theory. Any such solution, indeed, is the limit of solutions of regularized problems with vanishing
perturbations (in [10] this was shown formally in the case of fourth order regularization, but the
procedure is quite general).

Some of the features observed in higher dimensions might look rather strange for people
interested in applications. For example, it is hard to disagree with the authors of [15] when they
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state that in image enhancing “no new edges should be generated as the image evolves, nor do
we want edges to disappear”. If we identify edges with supercritical regions, in dimension one the
Perona–Malik equation does the job. But now we know that in higher dimensions things are quite
different: supercritical regions may both disappear (which means that some edges may be lost), and
invade subcritical regions (which changes the shape of objects). In other words, there are examples
in dimension n > 2 where the Perona–Malik filter does not seem to do the job. Probably these
examples are not generic enough to compromise the practical efficiency of the method, but for sure
they represent a serious issue when looking for a mathematically rigorous stable theory.

This paper is organized as follows. In Section 2 we state our results for the Perona–Malik
equation and the related free boundary problems. In Section 3 we prove these results.

2. Statements

Throughout this paper we assume that ϕ ∈ C∞(R) is an even function, hence in particular
ϕ′(0) = 0. We also assume that

ϕ′′(σ ) > 0 ∀σ ∈ [0, 1), (2.1)
ϕ′′(1) = 0, (2.2)

ϕ′′(σ ) < 0 ∀σ > 1. (2.3)

These assumptions imply that ϕ′(1) > 0 and ϕ′′′(1) 6 0. In some statements we also need the
stronger assumption

ϕ′′′(1) < 0. (2.4)

These assumptions are consistent with the concrete case ϕ(σ) = 2−1 log(1 + σ 2) of the Perona–
Malik equation. We refer to Figure 2 for the typical behavior of ϕ′(σ ).

We consider the equation

ut = div
(
ϕ′(|∇u|) ∇u|∇u|

)
, (2.5)

which is a natural generalization of (1.1). We believe and hope that this generality simplifies the
presentation, and shows more clearly which properties of the nonlinearity are essential in each step.
For the sake of generality one could also weaken the regularity assumptions on ϕ (we never consider
more than three derivatives), replace the threshold σ = 1 in (2.2) with any σ1, and weaken (2.1)
and (2.3) by asking only that ϕ′′ is positive in a left-hand neighborhood of σ1 and negative in a
right-hand neighborhood of σ1.

2.1 Main results

Let us state our results on the evolution of subcritical regions. The first result concerns the one-
dimensional case, where (2.5) reduces to

ut = (ϕ′(ux))x . (2.6)

This form of the equation is suitable for C1 solutions, because it involves only first order derivatives.
When the solution is of class C2,1, equation (2.6) can of course be rewritten as ut = ϕ′′(ux)uxx .
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THEOREM 2.1 Let ϕ ∈ C∞(R) be a function satisfying (2.1) through (2.3). Let x1 6 x3 < x4
6 x2 and T > 0 be real numbers. Let u ∈ C1((x1, x2) × [0, T )) be a function satisfying (2.6) in
(x1, x2)× [0, T ), and

|ux(x, 0)| < 1 ∀x ∈ (x3, x4). (2.7)

Then |ux(x, t)| < 1 for every (x, t) ∈ (x3, x4)× [0, T ).

The conclusion of Theorem 2.1 is the same as in [15, Theorem 4.2] and [12, Theorem 3.3]. The
new proof presented in this paper allows us to eliminate both the technical assumptions on the initial
condition required in [15], and assumption (2.4) which was essential in [12]. This new approach is
also independent of boundary conditions.

Our second result concerns the radial case. Let r := |x| be the radial variable, and let u(r, t) be
a radial solution. In this case (1.1) becomes

ut = (ϕ′(ur))r + (n− 1)
ϕ′(ur)
r

, (2.8)

where n is the space dimension. From now on we assume for simplicity that n = 2. The general
case is completely analogous.

THEOREM 2.2 Let ϕ ∈ C∞(R) be a function satisfying (2.1) through (2.4). Let 0 < r1 6 r3 <

r4 6 r2 and T > 0 be real numbers. Let u ∈ C1((r1, r2) × [0, T )) be a function satisfying (2.8)
(with n = 2) in (r1, r2)× [0, T ), and

|ur(r, 0)| < 1 ∀r ∈ (r3, r4).
Let k0 := r−1

2
√

2ϕ′(1)|ϕ′′′(1)|, and set

D := {(r, t) ∈ (r1, r2)× [0, T ) : r3 − k0t < r < r4 + k0t}. (2.9)

Then |ur(r, t)| < 1 for every (r, t) ∈ D.

In other words, this result says that in the radial case the subcritical region expands with a rate
which is bounded from below by a positive constant k0. Figure 3 shows the shape of the set D. The
slope of the slanted lines depends on k0. It is clear that when t > (r2 − r1)/k0 every nonempty
initial subcritical region (r3, r4) has invaded the whole interval (r1, r2).

The third result concerns the nonexistence of global-in-time C1 radial solutions if the gradient
of the initial condition is too large. We point out that this result is independent of the boundary
conditions.

THEOREM 2.3 Let ϕ ∈ C∞(R) be a function satisfying (2.1) through (2.4). Let 0 6 r1 < r3 <

r4 < r5 < r2 and T > 0 be real numbers, and let u ∈ C1((r1, r2) × [0, T )) be a solution of (2.8)
(with n = 2) such that

|ur(r3, 0)| < 1, |ur(r5, 0)| < 1, ur(r4, 0) > 1+ r2(r2 − r1)
r2

1

√
ϕ′(1)

2|ϕ′′′(1)| . (2.10)

Then
T 6

r2(r2 − r1)√
2ϕ′(1)|ϕ′′′(1)| . (2.11)
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The above result is an extension to the radial case of the nonexistence result in dimension one
(first proved in [15, Theorem 3.2] with some technical assumptions on u0, afterwards removed
in [12, Theorem 5.1]). A first difference is that in dimension one the gradient is just required to
exceed somewhere the threshold σ = 1, while here the gradient is required to be large enough
somewhere (if not, global solutions may exist, as shown in [11]). The second difference concerns
quantitative aspects, namely estimates on the life span of the solution. In dimension one it was
proved in [12] that T 6 2PM(u0), which is a bound of the life span in terms of the initial energy.
Here the bound (2.11) depends only on the geometry of the domain and on the nonlinearity.

Our last result in this paper is a counterexample to the expansion of subcritical regions for
nonradial solutions. Note that the condition we impose on the initial condition u0 depends only on
the Taylor expansion of u0 of order 3 in a neighborhood of the origin.

THEOREM 2.4 Let ϕ ∈ C∞(R) be a function such that ϕ′(1) > 0 and ϕ′′(1) = 0. Let Ω ⊆ R2 be
any open set such that (0, 0) ∈ Ω . Let u0 : Ω → R be any function of class C3 such that

u0(x, y) =
√

2
2
x +
√

2
2
y + k1x

2 + k2y
2 + h1x

3 + h2y
3 + o((x2 + y2)3/2) (2.12)

as (x, y)→ (0, 0). This clearly implies that |∇u0(0, 0)| = 1. Then one can choose the parameters
k1, k2, h1, h2 in such a way that the following two conclusions simultaneously hold true.

(1) There exist δ > 0, a > 0, and a convex function g : (−δ, δ) → (−a, a), with g(0) = 0, such
that for each (x, y) in the rectangle (−δ, δ)× (−a, a) we have the implications

|∇u0(x, y)| < 1 ⇔ y < g(x),

|∇u0(x, y)| = 1 ⇔ y = g(x),
|∇u0(x, y)| > 1 ⇔ y > g(x).

(2) Let T > 0, and let u ∈ C2(Ω × [0, T )) be a function satisfying (2.5) and the initial condition
u(x, y, 0) = u0(x, y) for every (x, y) ∈ Ω . Then there exists t0 ∈ (0, T ) such that

|∇u(0, 0, t)| > 1 ∀t ∈ (0, t0).
Figure 1 clarifies the conclusions of Theorem 2.4 above. Statement (1) says that at time t = 0

the origin lies in the interface y = g(x) which separates the subcritical and the (locally convex)

subcritical

supercritical

y = g(x)

δ−δ

−a

a

t = 0

subcritical

supercritical

δ−δ

−a

a

t ∈ (0, t0)

FIG. 1. At time t = 0 the origin lies in the critical region y = g(x), for subsequent times t ∈ (0, t0) the supercritical region
has invaded a neighborhood of the origin.
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supercritical region. Statement (2) implies that for t ∈ (0, t0) the origin (hence also a neighborhood
of the origin) has been absorbed by the supercritical region.

2.2 Heuristics

In this section we present simple “proofs” of Theorems 2.1 and 2.2.
Let us start with Theorem 2.1. Let us assume that u is smooth enough, and that one component

of the interface between the subcritical and supercritical regions is represented by a smooth curve
(α(t), t). Just to fix ideas, let us assume that the subcritical region lies on the left of the interface,
where x < α(t). Taking the time derivative of the relation ux(α(t), t) = 1 we obtain

0 = uxx(α(t), t)α′(t)+ uxt (α(t), t) = uxxα′(t)+ ϕ′′(ux)uxxx + ϕ′′′(ux)u2
xx,

where all the partial derivatives of u in the last line are computed at the point (α(t), t). Recalling
that ϕ′′(ux(α(t), t)) = 0, we therefore have

α′(t) = −ϕ′′′(1)uxx(α(t), t).
Now ϕ′′′(1) 6 0, and uxx(α(t), t) > 0 because the subcritical region lies on the left of r = α(t).
We have thus proved that α′(t) > 0, hence the subcritical region tends to expand.

This “proof” is not rigorous for several reasons: we assumed that u is of class C3, we assumed
that the interface is a smooth curve, we divided by uxx which could be 0. Nevertheless we believe
that this simple argument is quite explicative.

Let us now consider Theorem 2.2. As before, we assume that the interface is given by a smooth
curve (α(t), t), the subcritical region being on the left. Taking the time derivative of the relation
ur(α(t), t) = 1 we obtain

0 = urr(α(t), t)α′(t)+ urt (α(t), t)
= urrα′(t)+ ϕ′′(ur)urrr + ϕ′′′(ur)u2

rr +
ϕ′′(ur)
α(t)

urr − ϕ
′(ur)
α2(t)

,

where all the partial derivatives of u in the last line are computed at the point (α(t), t). Recalling
that ϕ′′(ur(α(t), t)) = 0, we have therefore

α′(t) = ϕ′(1)
α2(t)

· 1
urr
− ϕ′′′(1)urr = ϕ′(1)

α2(t)
· 1
urr
+ |ϕ′′′(1)|urr .

Applying the inequality between the arithmetic and geometric means, we thus obtain

α′(t) >
2
√
ϕ′(1)|ϕ′′′(1)|
α(t)

>
2
√
ϕ′(1)|ϕ′′′(1)|

r2
.

This “proves” that the subcritical region expands with a rate which is bounded from below by a
positive constant. The value of this constant is quite similar to the constant k0 of Theorem 2.2.

2.3 Free boundary problems

Our proofs of Theorems 2.1 and 2.2 rely on the following two results for free boundary problems
involving degenerate and nonlipschitz parabolic equations. We state them independently because
they could be interesting in themselves.
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THEOREM 2.5 Let x1 6 x3 < x4 6 x2, and let c0 > 0 and T > 0 be real numbers. Let g :
(0, c0)→ (0,+∞) be a continuous function. Let v : (x1, x2)× [0, T )→ R be a function such that

(v1) v is continuous in (x1, x2)× [0, T );
(v2) v(x, t) > 0 for every (x, t) ∈ (x1, x2)× [0, T );
(v3) v(x, 0) > 0 for every x ∈ (x3, x4);
(v4) the partial derivative vx(x, t) exists for every (x, t) ∈ (x1, x2)× (0, T );
(v5) setting

P := {(x, t) ∈ (x1, x2)× (0, T ) : 0 < v(x, t) < c0},
we have v ∈ C2,1(P), and

vt (x, t) = g(v(x, t))vxx(x, t) ∀(x, t) ∈ P.
Then v(x, t) > 0 for every (x, t) ∈ (x3, x4)× [0, T ).

THEOREM 2.6 Let r1 6 r3 < r4 6 r2, and let c0, c1, T , G, A be positive real numbers. Let
g : (0, c0)→ (0,+∞) be a continuous function such that

lim
σ→0+

g(σ )√
σ
= G. (2.13)

Let f : (r1, r2) × (0, T ) × [−c1, c1]2 → R be a function such that f (r, t, 0, 0) = 0 uniformly in
(r, t), namely

lim
σ→0+

sup{|f (r, t, p, q)| : (r, t, p, q) ∈ (r1, r2)× (0, T )× [−σ, σ ]2} = 0. (2.14)

Let v : (r1, r2)× [0, T )→ R be a function such that

(v1) v is continuous in (r1, r2)× [0, T );
(v2) v(r, t) > 0 for every (r, t) ∈ (r1, r2)× [0, T );
(v3) v(r, 0) > 0 for every r ∈ (r3, r4);
(v4) the partial derivative vr(r, t) exists for every (r, t) ∈ (r1, r2)× (0, T );
(v5) setting

P := {(r, t) ∈ (r1, r2)× (0, T ) : 0 < v(r, t) < c0},
we have v ∈ C2,1(P), and

vt > g(v){vrr + f (r, t, v, vr)+ A} ∀(r, t) ∈ P. (2.15)

Finally, let D be the set defined as in (2.9) with k0 := G√A. Then v(r, t) > 0 for every (r, t) ∈ D.

3. Proofs

3.1 Proof of Theorem 2.1

We limit ourselves to proving that ux(x, t) < 1 for every (x, t) ∈ (x3, x4) × [0, T ). The proof of
the symmetric inequality ux(x, t) > −1 is completely analogous.

Let us introduce some notation. Let us consider any function h ∈ C1(R)which is nondecreasing
and such that h(σ) = ϕ′(σ ) for every σ ∈ [0, 1], h(σ) = ϕ′(1) for every σ > 1, and h(σ) is constant



114 M. GHISI AND M. GOBBINO

1

−1

ϕ′(σ )

1

−0.5

h(σ)

ϕ′(1)

ϕ′′(0)

g(σ )

FIG. 2. Typical graphs of ϕ′, h, and g.

for σ 6 −1/2. Figure 2 shows the typical graph of such a function h. Note that condition (2.2) is
essential for the C1 regularity of h.

The function h, as well as the function ϕ′, is invertible as a function from (0, 1) to (0, ϕ′(1)).
We can therefore define g : (0, ϕ′(1))→ R by setting

g(σ ) := ϕ′′(h−1(ϕ′(1)− σ)) ∀σ ∈ (0, ϕ′(1)).
It is not difficult to see that the function g is well defined, positive, and continuous (but not Lipschitz
continuous). In the case of the Perona–Malik equation with some computations one finds that
g(σ ) = (σ − σ 2)1/2 + 2(σ − σ 2). Its graph is shown in Figure 2.

Let us finally set

v(x, t) := ϕ′(1)− h(ux(x, t)) ∀(x, t) ∈ (x1, x2)× [0, T ).

We claim that g and v satisfy the assumptions of Theorem 2.5. If we prove this claim, then we
can conclude that v(x, t) > 0 in (x3, x4)× [0, T ). This is equivalent to h(ux(x, t)) < ϕ′(1), which
in turn is equivalent ux(x, t) < 1 in the same region.

So we only need to show that v fulfils assumptions (v1) through (v5) of Theorem 2.5.

Properties (v1) through (v3). The continuity of v easily follows from the continuity of h and ux .
Moreover v(x, t) > 0 in (x1, x2)× [0, T ) because h(σ) 6 ϕ′(1) for every σ ∈ R. Due to (2.7) and
the fact that ϕ′(σ ) < ϕ′(1) when σ < 1, we see that v satisfies (v3).

Property (v4). It is well known that u is of class C∞ where |ux(x, t)| 6= 1 (because of the standard
interior regularity theory for parabolic equations). Therefore the existence of the partial derivative
vx(x, t) is trivial when |ux(x, t)| 6= 1. The existence of vx(x, t) is also trivial when ux(x, t) = −1
because h(σ) is constant for σ 6 1/2.

Let us now consider a point (x0, t0) with ux(x0, t0) = 1. We claim that at this point vx(x0, t0)

exists and is equal to 0. Let us assume that this is not the case. Then there exists a sequence δk → 0
such that ∣∣∣∣v(x0 + δk, t0)− v(x0, t0))

δk

∣∣∣∣ > ν > 0 ∀k ∈ N. (3.1)

Up to subsequences, we can always assume that either ux(x0 + δk, t0) > 1 for every k ∈ N,
or ux(x0 + δk, t0) 6 1 for every k ∈ N. In the first case the fraction in (3.1) is always 0, which
is incompatible with the condition stated therein. In the second case the fraction in (3.1) can be
rewritten as

−h(ux(x0 + δk, t0))− h(ux(x0, t0))

δk
= −ϕ

′(ux(x0 + δk, t0))− ϕ′(ux(x0, t0))

δk
.
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When δk → 0, this quotient tends to (ϕ′(ux))x(x0, t0), and we know that this derivative exists
because u is a solution of (2.6) of class C1. In order to find a contradiction, it is enough to show
that this derivative is equal to 0, and this is true because it is the derivative at x = x0 of the function
x 7→ ϕ′(ux(x, t0)), which attains its maximum for x = x0.

Property (v5). Let us set

P := {(x, t) ∈ (x1, x2)× (0, T ) : 0 < v(x, t) < ϕ′(1)}. (3.2)

From the properties of h it follows that 0 < ux(x, t) < 1 in P , hence u is of class C∞ in P . Since
h and ϕ′ coincide in (0, 1), we therefore have

vt = −h′(ux)uxt = −h′(ux)(ϕ′(ux))xx = −ϕ′′(ux)(h(ux))xx = ϕ′′(ux)(−h(ux))xx
= ϕ′′(ux)(ϕ′(1)− h(ux))xx = ϕ′′(ux)vxx

in P . Moreover in P we can express ux as a function of v as ux = h−1(ϕ′(1)− v). In conclusion

vt = ϕ′′(ux)vxx = ϕ′′(h−1(ϕ′(1)− v))vxx = g(v)vxx,
which proves that v satisfies (v5).

3.2 Proof of Theorem 2.2

The argument is similar to the proof of Theorem 2.1. We define h, g, and v as in that proof, and we
claim that the assumptions of Theorem 2.6 are satisfied.

Properties of g. As in the proof of Theorem 2.1 it is quite easy to show that g : (0, ϕ′(1)) →
(0,+∞) is a continuous function. It remains to compute the limit in (2.13). Since we deal with
positive functions, we can square the numerator and the denominator. Applying the change of
variable τ := h−1(ϕ′(1)− σ) and de L’Hôpital’s rule, we therefore have

lim
σ→0+

[g(σ )]2

σ
= lim
σ→0+

[ϕ′′(h−1(ϕ′(1)− σ))]2

σ
= lim
τ→1−

[ϕ′′(τ )]2

ϕ′(1)− ϕ′(τ )
= lim
τ→1−

2ϕ′′(τ )ϕ′′′(τ )
−ϕ′′(τ ) = −2ϕ′′′(1) = 2|ϕ′′′(1)|,

which proves (2.13) with G := √2|ϕ′′′(1)|.

Properties of v. The proof of (v1) through (v4) is analogous to the proof of the corresponding
properties in Theorem 2.1. In order to prove (v5), let us consider the set P defined in analogy with
(3.2). As in the previous case we have 0 < ur(r, t) < 1 in this set, hence v is regular and satisfies

vt = −h′(ur)urt = −ϕ′′(ur)
[
(ϕ′(ur))r + ϕ

′(ur)
r

]
r

. (3.3)

Once again ϕ′′(ur) = ϕ′′(h−1(ϕ′(1)− v)) = g(v). Moreover[
(ϕ′(ur))r + ϕ

′(ur)
r

]
r

= (ϕ′(ur))rr + (ϕ
′(ur))r
r

− ϕ
′(ur)
r2 = −vrr − vr

r
− ϕ

′(1)
r2 +

v

r2 .
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Plugging these identities into (3.3) we obtain

vt = g(v)
{
vrr + vr

r
− v

r2 +
ϕ′(1)
r2

}
> g(v){vrr + f (r, t, v, vr)+ A},

where

f (r, t, p, q) := q

r
− p

r2 , A := ϕ′(1)
r2

2
.

We have thus proved that v satisfies the differential inequality (2.15) in P with a constant A > 0
and a function f (r, t, p, q) satisfying (2.14).

Conclusion. From Theorem 2.6 we deduce that v is positive in the region D defined by (2.9) with
k0 = G

√
A = r−1

2
√

2ϕ′(1)|ϕ′′′(1)|, which in turn implies that ur < 1 in the same region. The proof
of the symmetric inequality ur > −1 is completely analogous.

3.3 Proof of Theorem 2.3

Assume that there exists a solution with

T > T0 := r2(r2 − r1)√
2ϕ′(1)|ϕ′′′(1)| .

Set
M(t) := max{ur(r, t) : r ∈ [r3, r5]} ∀t ∈ [0, T ).

Due to the first two inequalities in (2.10) we know that the subcritical region is nonempty at time
t = 0. Applying Theorem 2.2 we find that the subcritical region expands, and coincides with the
whole interval (r1, r2) as soon as

t >
r2 − r1
k0

= T0.

In particular this means that
M(T0) 6 1. (3.4)

On the other hand we claim that

M(t) > M(0)− ϕ
′(1)
r2

1
t ∀t ∈ [0, T0]. (3.5)

If we prove this claim, then setting t = T0 and exploiting the last inequality in (2.10), we find that

M(T0) > M(0)− ϕ
′(1)
r2

1
T0

> 1+ r2(r2 − r1)
r2

1

√
ϕ′(1)

2|ϕ′′′(1)| −
ϕ′(1)
r2

1
· r2(r2 − r1)√

2ϕ′(1)|ϕ′′′(1)| = 1,

which contradicts (3.4).
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Proof of (3.5). The argument is similar to the usual comparison principles. Setting for simplicity
v(r, t) := ur(r, t), we find that v is a solution of

vt = ϕ′′(v)vrr + ϕ′′′(v)v2
r +

ϕ′′(v)
r

vr − ϕ
′(v)
r2 (3.6)

in the subset of (r1, r2)× [0, T ) where |v| 6= 1. Let us set

w(t) := M(0)− ε − ϕ
′(1)
r2

1
t ∀t ∈ [0, T0], (3.7)

where ε > 0 is small enough so that w(T0) > 1, hence w(t) > 1 for every t ∈ [0, T0]. We claim
that

M(t) > w(t) ∀t ∈ [0, T0], (3.8)

from which (3.5) follows by letting ε→ 0+. Let us assume for contradiction that M(t) < w(t) for
some t ∈ [0, T0], and set

t0 := inf{t ∈ [0, T0] : v(r, t) < w(t) ∀r ∈ [r3, r5]}.
Since M(0) > w(0), we have t0 > 0. Moreover, due to the continuity of v and w, there exists
r0 ∈ [r3, r5] such that v(r0, t0) = w(t0), and

v(r, t0)− w(t0) 6 0 ∀r ∈ [r3, r5].

Since subcritical regions do not shrink, we have v(r3, t0) < 1 and v(r5, t0) < 1, while w(t0) > 1.
This shows in particular that r0 6= r3 and r0 6= r5. Now we know that r0 is a maximum point for the
function r 7→ v(r, t0)− w(t0), and r0 is contained in the open interval (r3, r5), hence

vr(r0, t0) = 0 and vrr(r0, t0) 6 0. (3.9)

Let us now consider time derivatives. Since v(r0, t0) = w(t0) > 1, we can use (3.6). Exploiting
also (3.7) and (3.9) we obtain

vt (r0, t0)− wt (t0) = ϕ′′(v(r0, t0))vrr(r0, t0)− ϕ
′(v)
r2

0
+ ϕ

′(1)
r2

1
> ϕ′′(v(r0, t0))vrr(r0, t0).

Since ϕ′′(v(r0, t0)) 6 0, we conclude that

vt (r0, t0)− wt (t0) > ϕ′′(v(r0, t0))vrr(r0, t0) > 0.

This implies that v(r0, t)−w(t) > 0 for every t in a suitable right-hand neighborhood of t0, which
contradicts the definition of t0.

3.4 Proof of Theorem 2.4

Let us set
k1 := n, k2 := 1, h1 := n3, h2 := −n2. (3.10)

We claim that statements (1) and (2) of Theorem 2.4 hold true provided that n is large enough.
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Statement (1). Let us set for simplicity v0(x, y) := |∇u0(x, y)|2. Let us assume that

v0y(0, 0) > 0. (3.11)

Then the implicit function theorem implies that the set v0(x, y) > 1 can be represented, in a
neighborhood of (0, 0), as y > g(x), where g is a suitable function defined in a neighborhood
of x = 0. Such a function satisfies

g(0) = 0, g′(0) = −v0x(0, 0)
v0y(0, 0)

,

g′′(0) = − 1

v3
0y
{v2

0xv0yy + v2
0yv0xx − 2v0xv0yv0xy}, (3.12)

where in (3.12) all partial derivatives of v0 are computed at (0, 0). In particular g is convex in a
neighborhood of 0 if the right-hand side of (3.12) is positive.

From (2.12) we see that, up to higher order terms,

u0x(x, y) =
√

2
2
+ 2k1x + 3h1x

2, u0y(x, y) =
√

2
2
+ 2k2y + 3h2y

2,

hence
v0(x, y) = 1+ 2

√
2(k1x + k2y)+ (4k2

1 + 3
√

2h1)x
2 + (4k2

2 + 3
√

2h2)y
2.

All the derivatives appearing in (3.11) and (3.12) can be easily computed. It follows that
condition (3.11) is equivalent to k2 > 0, while g′′(0) > 0 if and only if

8k2
1k

2
2 + 3
√

2(k2
1h2 + k2

2h1) < 0.

Both conditions are satisfied if the values of the parameters are given by (3.10) and n is large enough.

Statement (2). Let us set for simplicity v(x, y, t) := |∇u(x, y, t)|2. The statement will be proved
if we show that

vt = 2uxutx + 2uyuty > 0

at (x, y, t) = (0, 0, 0). We can then deduce the value of vt (0, 0, 0) from the Taylor expansion of
u0(x, y).

In order to compute ut , we recall that ut = Ψ1x + Ψ2y , where

Ψ1 := ϕ′((u2
x + u2

y)
1/2)

ux

(u2
x + u2

y)
1/2 , Ψ2 := ϕ′((u2

x + u2
y)

1/2)
uy

(u2
x + u2

y)
1/2 .

With some computations we obtain, up to higher order terms,

(u2
x + u2

y)
1/2 = 1+√2(k1x + k2y)+

[
k2

1 +
3
√

2
2
h1

]
x2 +

[
k2

2 +
3
√

2
2
h2

]
y2 − 2k1k2xy,

hence
ϕ′((u2

x + u2
y)

1/2) = ϕ′(1)+ (k1x + k2y)
2ϕ′′′(1),



PERONA–MALIK EQUATION 119

and therefore

Ψ1 =
√

2
2
ϕ′(1)+ ϕ′(1)(k1x − k2y)+ 1

2
[3ϕ′(1)(h1 −

√
2 k2

1)+
√

2ϕ′′′(1)k2
1]x2

+ 1
2

[ϕ′(1)(
√

2 k2
2 − 3h2)+

√
2ϕ′′′(1)k2

2]y2 +√2(ϕ′(1)+ ϕ′′′(1))k1k2xy.

The expression for Ψ2 is symmetric. It follows that, up to higher order terms,

ut (x, y, 0) = (k1 + k2)ϕ
′(1)

+{(3h1 +
√

2 k1(k2 − 3k1))ϕ
′(1)+√2ϕ′′′(1)k1(k1 + k2)}x

+{(3h2 +
√

2 k2(k1 − 3k2))ϕ
′(1)+√2ϕ′′′(1)k2(k1 + k2)}y,

hence

vt (0, 0, 0) = ϕ′(1){3√2(h1 + h2)+ 4k1k2 − 6k2
1 − 6k2

2} + 2ϕ′′′(1)(k1 + k2)
2.

From this expression it is easy to see that vt (0, 0, 0) > 0 if the values of the parameters are given
by (3.10) and n is large enough.

3.5 Proof of Theorem 2.5

Let x? ∈ (x3, x4) be any point. We have to prove that

v(x?, t) > 0 ∀t ∈ [0, T ). (3.13)

To this end we fix some notation. First of all we choose real numbers x5 and x6 such that
x3 < x5 < x? < x6 < x4. Then we consider the functions

ψ(x) := (x − x5)(x6 − x), w(x, t) := e−λt (δ2ψ(x)+ δψ2(x)),

where λ and δ are positive parameters. We claim that when λ is large enough and δ is small enough
we have

v(x, t) > w(x, t) ∀(x, t) ∈ [x5, x6]× [0, T ). (3.14)

Since w is positive in (x5, x6)× [0, T ), and x? ∈ (x5, x6), this is enough to prove (3.13). In order to
prove (3.14) we first establish some properties of w.

Properties of w. Let us show that w has the following properties:

(w1) w ∈ C∞([x5, x6]× [0,+∞));
(w2) w(x, t) > 0 for every (x, t) ∈ (x5, x6)× [0,+∞);
(w3) wx(x5, t) = δ2e−λtψ ′(x5) > 0 for every t > 0;
(w4) wx(x6, t) = δ2e−λtψ ′(x6) < 0 for every t > 0;
(w5) if δ is small enough, then w(x, 0) < v(x, 0) for every x ∈ [x5, x6];
(w6) if δ is small enough, then w(x, t) < c0 for every (x, t) ∈ (x5, x6)× [0,+∞);
(w7) if δ is small enough and λ is large enough, then

wt (x, t) < g(w(x, t))wxx(x, t) ∀(x, t) ∈ (x5, x6)× [0,+∞). (3.15)
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Properties (w1) through (w4) easily follow from the definition of w and ψ . Property (w5)
follows from the fact that the infimum of v(x, 0) over x ∈ [x5, x6] is strictly positive due to (v3).
Property (w6) is almost trivial. To prove (w7) we recall that ψ ′′(x) = −2, hence

wt (x, t) = −λe−λt (δ2ψ(x)+ δψ2(x)), wxx(x, t) = e−λt (2δ[ψ ′(x)]2 − 4δψ(x)− 2δ2).

After plugging these identities in (3.15), it remains to prove that

−λ(δψ + ψ2) < g(w)(2[ψ ′]2 − 4ψ − 2δ) ∀(x, t) ∈ (x5, x6)× [0,+∞). (3.16)

To this end we fix once for all two real numbers x7 and x8 such that x5 < x7 < x8 < x6, and

inf{2[ψ ′(x)]2 − 4ψ(x) : x ∈ [x5, x7] ∪ [x8, x6]} > 0.

This is possible because at the endpoints of the interval [x5, x6] one has ψ = 0 and ψ ′ 6= 0. Now we
distinguish two cases. When x ∈ [x5, x7]∪ [x8, x6] the left-hand side of (3.16) is negative, while the
right-hand side is positive provided that δ is small enough, independently of x. When x ∈ [x7, x8]
the right-hand side may be negative, but also the left-hand side is strictly negative because in this
interval ψ is bounded from below by a positive constant. In other words, in [x7, x8] × [0,+∞)
inequality (3.16) holds true if we choose

λ > sup
{
g(w(x, t))(4ψ(x)+ 2δ)

δψ(x)+ ψ2(x)
: (x, t) ∈ [x7, x8]× [0,+∞)

}
.

We point out that the supremum is finite. This completes the proof of (3.16).

Proof of (3.14). Let us choose δ, λ > 0 such that w satisfies (w1) through (w7). Now we argue
more or less as in the proof of the classical comparison results. Let us assume that (3.14) is not true,
and let us set

t0 := inf{t ∈ [0, T ) : ∃x ∈ [x5, x6] such that v(x, t)− w(x, t) < 0}.
From (w5) we have t0 > 0. Moreover, from the definition of t0 it follows that

v(x, t)− w(x, t) > 0 ∀(x, t) ∈ [x5, x6]× [0, t0]. (3.17)

Finally, from the continuity of v andw we deduce that there exists x0 ∈ [x5, x6] such that v(x0, t0)−
w(x0, t0) = 0.

We claim that x0 6= x5. Indeed let us assume for contradiction that x0 = x5. Then w(x0, t0) = 0,
hence also v(x0, t0) = 0. By (v2) it follows that x0 is a minimum point for the function x 7→ v(x, t0).
By (v4) we therefore have vx(x0, t0) = 0. Keeping (w3) in mind, we deduce that

(v − w)x(x0, t0) = vx(x0, t0)− wx(x0, t0) < 0. (3.18)

On the other hand, from (3.17) we know that also x0 = x5 is a minimum point for the function
x 7→ v(x, t0) − w(x, t0) restricted to the interval [x5, x6]. Since the minimum point is the left
endpoint of the interval, we deduce that (v − w)x(x0, t0) > 0, which contradicts (3.18).

In a symmetric way we prove that x0 6= x6. So we are left with the case t0 > 0 and x0 ∈ (x5, x6).
In this case by (w2) and (w6) we have 0 < v(x0, t0) = w(x0, t0) < c0, hence both v and w are
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smooth in a neighborhood of this point and satisfy (v5) and (w7), respectively. In particular, since
x0 is always a minimum point of the function x 7→ v(x, t0) − w(x, t0), and now x0 ∈ (x5, x6), we
have

vx(x0, t0) = wx(x0, t0) and vxx(x0, t0) > wxx(x0, t0). (3.19)

Let us now consider the time derivatives. On the one hand, (v−w)t (x0, t0) 6 0 from (3.17). On
the other hand, from (v5), (w7), and (3.19) we have

(v − w)t (x0, t0) > g(v(x0, t0))vxx(x0, t0)− g(w(x0, t0))wxx(x0, t0)

= g(w(x0, t0))(vxx(x0, t0)− wxx(x0, t0)) > 0.

This rules out the last case and completes the proof of (3.14).

3.6 Proof of Theorem 2.6

The strategy is similar to the proof of Theorem 2.5. The main difference is that in this case we have
to cope with moving domains.

Let (r?, t?) be any point of D. We have to prove that

v(r?, t?) > 0. (3.20)

To this end we fix some notation. First of all it is not difficult to see that there exist real numbers
r5, r6, k such that

|k| < G
√
A, r1 < r5 + kt? < r? < r6 + kt? < r2.

Then we consider the set

D? := {(r, t) ∈ (r1, r2)× [0, T ) : t 6 t?, r5 + kt 6 r 6 r6 + kt} ⊆ D.
We refer to Figure 3 for a representation of D? (corresponding in that case to some k < 0) and its
relation to (r?, t?) and D. Note that the slope of the slanted lines bounding D? is larger than the
slope of the slanted lines limiting D. This is just because |k| < G

√
A.

r1 r3 r4 r2

t = 0

t = T

t

r

D

b

r1 r3 r4r5 r6 r2

D⋆
D

(r⋆, t⋆)

FIG. 3. The sets D and D?.

Due to this inequality, there exists ε0 ∈ (0,min{1,G,A/2}) such that

|k| < (1− ε0)(G− ε0)
√
A− 2ε0. (3.21)

From now on, ε0 is a fixed positive constant. Due to (2.13) there also exists c2 ∈ (0, c0) such that

g(σ ) > (G− ε0)
√
σ ∀σ ∈ (0, c2). (3.22)
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Finally we consider the functions

ψ(r) := (r − r5)(r6 − r), w(r, t) := δ3ψ(r − kt)+ δ[ψ(r − kt)]3/2,

where δ is a positive parameter. We claim that when δ is small enough we have

v(r, t) > w(r, t) ∀(r, t) ∈ D?. (3.23)

This inequality, applied with (r, t) = (r?, t?), implies (3.20). In order to prove (3.23) we first
establish some properties of w.

Properties of w. Let Int(D?) denote the set of points (r, t) ∈ D? with r5 + kt < r < r6 + kt . Let
us show that w has the following properties:

(w1) w ∈ C1(D?) ∩ C∞(Int(D?));
(w2) w(r, t) > 0 for every (r, t) ∈ Int(D?);
(w3) wr(r5 + kt, t) = δ3ψ ′(r5) > 0 for every t ∈ [0, t?];
(w4) wr(r6 + kt, t) = δ3ψ ′(r6) < 0 for every t ∈ [0, t?];
(w5) if δ is small enough, then w(r, 0) < v(r, 0) for every r ∈ [r5, r6];
(w6) if δ is small enough, then w(r, t) < c2 for every (r, t) ∈ D?;
(w7) if δ is small enough, then

wt < g(w){wrr + f (r, t, w,wr)+ A} ∀(r, t) ∈ Int(D?). (3.24)

Properties (w1) through (w4) easily follow from the definition of w and ψ . Property (w5)
follows from the fact that the infimum of v(r, 0) over r ∈ [r5, r6] is strictly positive due to (v3).
Property (w6) is almost trivial. To prove (w7) we recall that ψ ′′(r) = −2, hence (for simplicity we
set y := r − kt , and we observe that y ∈ [r5, r6])

wt (r, t) = −kδ3ψ ′(y)− 3
2
kδ[ψ(y)]1/2ψ ′(y),

wr(r, t) = δ3ψ ′(y)+ 3
2
δ[ψ(y)]1/2ψ ′(y),

wrr(r, t) = −2δ3 − 3δ[ψ(y)]1/2 + 3
4
δ[ψ(y)]−1/2[ψ ′(y)]2.

When δ → 0+ we see that w and wr tend to zero uniformly in D?. Thanks to (2.14) we therefore
have

|f (r, t, w(r, t), wr(r, t))| 6 ε0 ∀(r, t) ∈ D?,
provided that δ is small enough. In an analogous way we also have

wrr(r, t) >
3
4
δ[ψ(y)]−1/2[ψ ′(y)]2 − ε0

provided that δ is small enough. It follows that

wrr + f (r, t, w,wr)+ A > A− 2ε0 + 3
4
δ[ψ(y)]−1/2[ψ ′(y)]2 > 0
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in Int(D?). Moreover, from (3.22), (w2) and (w6) we have

g(w(r, t)) > (G− ε0)
√
w(r, t) ∀(r, t) ∈ Int(D?),

and in conclusion

g(w){wrr + f (r, t, w,wr)+ A} > (G− ε0)
√
w

{
A− 2ε0 + 3

4
δ

[ψ ′(y)]2

[ψ(y)]1/2

}
.

Therefore inequality (3.24) is proved if we show that

δ3|kψ ′| + 3
2
δ|kψ ′|√ψ 6 (G− ε0)

√
δ3ψ + δ[ψ]3/2

{
A− 2ε0 + 3

4
δ

[ψ ′]2
√
ψ

}
, (3.25)

where the argument of ψ and ψ ′ is any y ∈ (r5, r6). Let us consider the right-hand side of (3.25)
multiplied by 1 − ε0. Applying the inequality between the arithmetic and geometric means, and
recalling (3.21), we obtain

(1− ε0) · (right-hand side) > (1− ε0)(G− ε0)

√
δ[ψ]3/2 ·

{
A− 2ε0 + 3

4
δ

[ψ ′]2
√
ψ

}
> (1− ε0)(G− ε0)

√
δ[ψ]3/2 · 2

[
(A− 2ε0) · 3

4
δ

[ψ ′]2
√
ψ

]1/2

= (1− ε0)(G− ε0)
√
A− 2ε0 · δ|ψ ′|

√
ψ · √3 >

3
2
δ|kψ ′|√ψ.

In order to prove (3.25) it is therefore enough to show that

δ3|kψ ′| 6 ε0(G− ε0)

√
δ3ψ + δ[ψ]3/2

{
A− 2ε0 + 3

4
δ

[ψ ′]2
√
ψ

}
,

which in turn is true if we show that

δ3/2|kψ ′| 6 ε0(G− ε0)
√
ψ

{
A− 2ε0 + 3

4
δ

[ψ ′]2
√
ψ

}
.

To this end, we fix once for all two real numbers r7 and r8 such that

r5 < r7 <
r5 + r6

2
< r8 < r6.

When y ∈ (r5, r7] ∪ [r8, r6) we see that |ψ ′(y)| is bounded from below by a positive constant.
Therefore

δ3/2|kψ ′(y)| 6 ε0(G− ε0)
3
4
δ[ψ ′(y)]2

provided that δ is small enough. When y ∈ [r7, r8] we see that ψ(y) is bounded from below by a
positive constant, hence in this case

δ3/2|kψ ′(y)| 6 ε0(G− ε0)(A− 2ε0)
√
ψ(y)
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provided that δ is small enough. This completes the proof of (3.25) and shows that w satisfies (w7)
whenever δ is small enough.

Proof of (3.23). The argument is analogous to the proof of the corresponding inequality in
Theorem 2.5. Let us choose δ > 0 such that w satisfies (w1) through (w7). Let us assume that
(3.23) is not true, and let us set

t0 := inf{t ∈ [0, t?] : ∃r ∈ [r5 + kt, r6 + kt] such that v(r, t)− w(r, t) < 0}.
From (w5) we have t0 > 0. Moreover, from the definition of t0 we have

v(r, t)− w(r, t) > 0 ∀(r, t) ∈ D? with t 6 t0. (3.26)

Finally, due to the continuity of v and w, we also deduce that there exists r0 ∈ [r5 + kt0, r6 + kt0]
such that v(r0, t0)− w(r0, t0) = 0.

We claim that r0 6= r5 + kt0. Indeed let us assume for contradiction that r0 = r5 + kt0. Then
w(r0, t0) = 0, hence also v(r0, t0) = 0. By (v2) it follows that r0 is a minimum point for the function
r 7→ v(r, t0). By (v4) we therefore have vr(r0, t0) = 0. Taking (w3) into account, we deduce that

(v − w)r(r0, t0) = vr(r0, t0)− wr(r0, t0) < 0. (3.27)

On the other hand, from (3.26) we also know that r0 = r5+ kt0 is a minimum point for the function
r 7→ v(r, t0)−w(r, t0) restricted to the interval [r5+ kt0, r6+ kt0]. Since the minimum point is the
left endpoint of the interval, we deduce that (v − w)r(r0, t0) > 0, which contradicts (3.27).

In a symmetric way we prove that r0 6= r6 + kt0. So we are left with the case in which t0 > 0
and r0 ∈ (r5 + kt0, r6 + kt0). In this case 0 < v(r0, t0) = w(r0, t0) < c2, hence both v and w are
smooth in a neighborhood of this point and satisfy (v5) and (w7), respectively. In particular, since
r0 is always a minimum point of the function r 7→ v(r, t0) − w(r, t0), and now r0 is in the interior
of the interval (r5 + kt0, r6 + kt0), we have

vr(r0, t0) = wr(r0, t0) and vrr(r0, t0) > wrr(r0, t0). (3.28)

Let us now consider the time derivatives. On the one hand, (v−w)t (r0, t0) 6 0 from (3.26). On
the other hand, from (v5), (w7), and (3.28), at the point (r0, t0) we have

(v − w)t > g(v){vrr + f (r, t, v, vr)+ A} − g(w){wrr + f (r, t, w,wr)+ A}
= g(w){vrr + f (r, t, w,wr)+ A} − g(w){wrr + f (r, t, w,wr)+ A}
= g(w)(vrr − wrr) > 0.

This rules out the last case and completes the proof of (3.23).
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