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This paper considers a wavelet analogue of the classical Ginzburg–Landau energy, where the H 1

seminorm is replaced by the Besov seminorm defined via an arbitrary regular wavelet. We prove that
functionals of this type Γ -converge to a weighted analogue of the TV functional on characteristic
functions of finite-perimeter sets. The Γ -limiting functional is defined explicitly, in terms of the
wavelet that is used to define the energy. We show that the limiting energy is none other than
the surface tension energy in the 2D Wulff problem and its minimizers are represented by the
corresponding Wulff shapes. This fact as well as the Γ -convergence results are illustrated with a
series of computational examples.

1. Introduction

Fourier analysis provides many elegant approaches to differential operators and related tools in
PDE-based image processing. Our work develops the idea of using a more localized basis than the
Fourier one in the context of variational methods based on diffuse interfaces ([17], [5], [6]). Our
philosophy involves looking for new types of pseudo-differential energy functionals, which inherit
important properties of classical functionals, but leave out the computational drawbacks associated
with the discrete differentiation.

Wavelets appeared in the variational context in a number of works (e.g. [8] and [13]). We use a
well-known characterization of function regularity in terms of the wavelet coefficients, we also take
a widely used PDE-based functional to become a prototype of the new energy we design. However,
our approach is conceptually different from the wavelet-PDE techniques that use wavelets to solve
PDEs numerically [4], [11] as well as those involving differentiation in the wavelet domain [9].
The energy functional we study is entirely “derivative-free” as it is defined; nevertheless, it exhibits
behavior analogous to the ones of energies used in material science and fluid dynamics.

In classical fluid models, an interface between two fluids is treated as infinitely thin and
sharp, and is endowed with properties such as surface tension. Diffuse-interface theories replace
this sharp interface with continuous variations of an order parameter, such as density, in a way
consistent with microscopic theories of the interface. In the inhomogeneous systems which involve
domains of well-defined phases separated by a distinct interface, the diffuse-interface description
assumes the smoothness of the transition between phases and approaches the sharp interface model
asymptotically. At the same time, if used in signal processing applications, diffuse-interface models
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tend to produce results that are oversmoothed compared to the optimal output [7]. The Ginzburg–
Landau energy

GLε(f ) =
ε

2

∫
|∇f (x)|2 dx +

1
4ε

∫
W(f (x)) dx, W(f ) = (f 2

− 1)2, (dGL)

is used in modeling a vast variety of phenomena including second-order phase transitions. The
wavelet Ginzburg–Landau energy, that was introduced in [16], is defined by

WGLε(f ) =
ε

2
|f |2B +

1
4ε

∫
W(f (x)) dx, f ∈ H 1, (dWGL)

where |u|B is a Besov or Besov-type seminorm (described further in 2.1.1), and has a similar
diffusive nature. It also approaches its sharp-interface limit (provided the above seminorm is defined
via a regular compactly supported wavelet) in a similar manner to the classical Ginzburg–Landau
energy.

However, the ways in which the minimizers of WGL and those of GL converge to their sharp
limits are different. The classical GL energy produces minimizers with smooth transitions between
two steady states, where the sharpness/smoothness of such transitions is determined by the interface
width parameter ε. Wavelet based functionals are inherently multiscale and take advantage of
simultaneous space and frequency localization, thus allowing much sharper transitions for the same
values of the interface parameter ε and, at the same time, retaining the regularity of minimizers.
This phenomenon is partially produced by the translation-invariant dyadic wavelet transform ([21],
[10]) used in the WGL energy design to define the B seminorm.

The WGL energy has been shown to have properties easily utilizable in image processing due
to the properties of its minimizers to have relatively narrow interface for comparatively large values
of ε ([16], [7]). As an illustration, let us consider the problem of minimizing the following energy:

E(u) = WGL(u)+ µ‖u− f ‖2
L2(Ω)

. (InpWGL)

It is a reformulation of the WGL minimization under the constraint u(x) = f (x), x ∈ Ω , which
represents a typical problem setting for the variational inpainting. This model’s design focuses on
operating with binary functions, while the problem of image inpainting clearly involves grayscale or
color images. Therefore, the above variational problem applies to each bit of the image separately.
Fig. 1 shows the given image f with significant part missing (a) and the final output (b), synthesized
from the minimizers of (InpWGL) for every bit.

The notion of Γ -convergence was introduced by E. De Giorgi and T. Franzoni in [15], where
it was designed primarily as a notion of convergence for variational functionals on function spaces
(one can find details in [2]). One of the highly convenient tools provided by Γ -convergence is the
fact that minimizers of approximating functionals converge to the minimizer of the limit energy.
This, in particular, is true for diffuse-interface problems that converge to the sharp-interface ones
as the diffuse-interface parameter decreases: for instance, the classical Ginzburg–Landau energy
Γ -converges to the Total Variation seminorm, as was shown by Modica and Mortola in [24]. The
respective minimizers evolve from H 1-regular to piecewise constant functions, thus reducing the
interface width to zero. Another well known and extensively used example of Γ -convergence is
the approximation of the jump-dependent Mumford–Shah functional by elliptic functionals defined
on Sobolev spaces described in [3]. Again, the H 1 minimizers of the approximating functionals
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(a) (b)

FIG. 1. (a) Grayscale image occluded by an artificial grid (about 40% of the pixels are lost). (b) Output of the WGL-based
bitwise inpainting method.

converge to the piecewise-regular minimizers of the approximated energy. Both of the above
variational approximations give certain advantages in numerical handling of the related energy
minimization problems and were used in image processing applications, such as segmentation,
inpainting and more ([22], [19], [18], etc.).

The modified Ginzburg–Landau functional we introduce in this paper is wavelet-based, however,
it inherits many intrinsic properties of energies associated with diffuse interface models. We also
prove the convergence of the Wavelet Ginzburg–Landau energy to a bounded multiple of the TV
seminorm (a weighted TV seminorm) evaluated on the characteristic functions of sets with finite
perimeter. In the general form it can be stated as the following theorem (additional details on the
notions/notations used in the theorem can be found in Section 2.1.1).

THEOREM 1.1 Let ψ be an r-regular (r > 2) compactly supported wavelet and let | · |B denote the
associated Besov seminorm in RN . Extend the definition of the WGL energy to all BV functions by
setting WGLε(u) = ∞ whenever u /∈ H 1. Then

(a)

WGLε(uε)
Γ
→ G∞(u), G∞(u) =

√
2

3
R(u)|u|TV ,

as ε → 0 with respect to the L1 convergence uε → u, uε ∈ H 1 on the set of characteristic
functions u = χE of finite-perimeter sets E ⊂ RN . The variable coefficient R(u) is a limiting
value of the H 1-B seminorm ratio associated with the function u:

R(u) = lim
n→∞

|un|B

|un|H 1
for any sequence {un} ⊂ H 1 with un

L1
→ u.

(b) The limiting energy G∞ has the form

G∞(χE) =

∫
∂E

ρ(En(x), ψ) dl(x),

where En(x) is the normal to ∂E at a point x, ψ is a wavelet used to define the B seminorm, and
ρ is a positive “density” function that depends on En, ψ and N (space dimension).

(c) For every sequence {uε} such that not only uε
L1
→ u but also |uε |TV → |u|TV , the regular

convergence takes place:
WGLε(uε)→ G∞(u) as ε → 0.
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Thus, in all dimensions, the classical surface tension model is recovered. An explicit, 1D
complexity formula for ρ in the case N = 2 is derived in Section 3.3.3.

Our result is partially related to the one proven in [1], where the authors also consider a non-
local anisotropic energy model involving the double-well potential. However, the non-local part of
energy functionals in their study differs from the non-local component of WGL, namely, the Besov
seminorm. The differences can be clearly seen in the respective integral operators as well as in the
scaling with respect to a decreasing positive parameter. Our proof has certain geometric elements
and uses advantages of the wavelet localization.

After proving the main Γ -convergence result we establish the general form of the limiting
functional and express it as a function of the wavelet defining the B seminorm. The limiting
functional, acting on the characteristic functions of sets with finite perimeter, is anisotropic and
matches the role of the surface tension energy in the Wulff problem [26]. Numerical simulations
confirm that the WGL minimizers converge to the minimizers of the respective Wulff problem that
were computed as the convex inner envelope of the energy graph in polar coordinates.

2. WGL energy in a regular wavelet basis

This section proves the general theorem about the Γ -convergence of WGL energy on the set of
characteristic functions of finite-perimeter sets. The proof, essentially, consists of two steps. First,
we establish the relation between the WGL energy and the TV functional, using the classical result
of Γ -convergence and the equivalence between the H 1 and Besov seminorms. In this manner, we
obtain a sufficient condition for the Γ -convergence of the WGL energy to a multiple of the TV
seminorm. It suffices to prove that the H 1-B ratio can be extended to the set of characteristic
functions of finite-perimeter sets by its continuity with respect to L1 convergence. Namely, any
function of the form u = χE , where E ⊂ RN has finite perimeter, should have an associated value

R(u) such that for any sequence un
L1
→ u with {un} ⊂ H 1,

R(u) = lim
n→∞

|un|B

|un|H 1
.

The second part of the proof demonstrates that such an extension of the H 1-B ratio exists and is
a well-defined function, thus establishing the Γ -convergence. We also remark that the Γ -limit of
WGL is, in fact, a weighted TV functional, and describe the source of the weighting function, a
positive density distributed over the set boundary.

2.1 WGL and GL energy functionals

2.1.1 Definitions and facts.

CONVENTIONS The symbol 〈·, ·〉 always denotes the L2 scalar product.
All wavelet functions we consider are, by default, compactly supported. We also assume they

are sufficiently regular for the B1
2,2 (Besov) space to be equivalent to H 1. Namely, we additionally

require that ψ belongs to C2 and has m > 2 vanishing moments ([21], [23]).
Consider an orthonormal wavelet ψ and its scaling function φ. Define the wavelet mode (j, k)

as
ψj,k(x) = 2Nj/2ψ(2jx − k), j = 0, 1, 2, . . . , k ∈ RN ,
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and the wavelet transform of a function f ∈ L2 at the mode (j, k) as

Wf (j, k) = 〈f,ψj,k〉. (WT)

Similarly, let
φj,k(x) = 2Nj/2φ(2jx − k), j = 0, 1, 2, . . . , k ∈ RN .

When discussing multi-dimensional cases, we use ψ as a general notation for wavelet functions,
assuming, wherever needed, summation over all of those. From now on we will be using the semi-
continuous dyadic wavelet transform ([21]), which produces the following decomposition for any
function u ∈ L2:

u(x) =

∫
〈u, φ0,µ〉φ0,µ dµ+

∑
j

∫
〈u,ψj,µ〉ψj,µ dµ. (IWT)

We will also use the following notation for the continuous analogues of projections of an arbitrary
function u ∈ L2 on the wavelet-generated “approximation” or “detail” subspaces Vj or Wj (as
defined in [25]):

PWj u =

∫
〈u,ψj,µ〉ψj,µ dµ,

PVj u =

∫
〈u, φ0,µ〉φ0,µ dµ+

j−1∑
s=0

PWsu.

Whenever we consider functions on finite rectangular domains we will also, without further
adjustment of notation, assume that the wavelet transform is periodized (details of this procedure can
be found in [21] or [25]). Furthermore, while working with compactly supported functions within
the chosen finite domain, one can assume that the periodization of the wavelet transform does not
introduce any specifics related to the exceptional behavior at the domain boundary.

NOTATION Expressions of the form XWj or XV0 , where X is a normed space (L2 or H 1), when
used in the norm (or seminorm) index, imply the following evaluation of the norm (or seminorm):

‖u‖XWj
= ‖〈u,ψj,κ 〉‖X = ‖Wu(j, κ)‖X, ‖u‖XV0

= ‖〈u, φ0,κ 〉‖X,

where κ is the variable with respect to which the norm is taken, and, analogously,

|u|XWj
= |〈u,ψj,κ 〉|X, |u|XV0

= |〈u, φ0,κ 〉|X.

NOTATION a(n) � b(n) as n→ n0 will be used as a short notation for

lim
n→n0

a(n)

b(n)
= 1.

DEFINITION For any function u ∈ L2 define its B seminorm in the discrete form as

|u|B,d. =
( ∞∑
j=0

22j
∑
k

|〈ψj,k, u〉|
2
)1/2

,
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or, alternatively, in the translation-invariant form,

|u|B,t.i. =
( ∞∑
j=0

22j
∫
|〈u,ψj,µ〉|

2 dµ
)1/2

.

These seminorms are evidently equivalent and, according to the above convention, we will be using
the translation-invariant form only, naming it B seminorm for simplicity. Appendix A.2.2 gives
additional details on the relation between the discrete and translation-invariant B seminorms.

Ifψ is an r-regular wavelet, r > 2, theB seminorm coincides with the BesovB1
2,2 seminorm and

is equivalent to the H 1 seminorm on the space H 1([0, 1]N ) (see Appendix A.2.1 for the seminorm
definition in the case of an unbounded domain). In this paper we consider only r-regular wavelets
with r > 2.

NOTATION We will use B as an abbreviation for the set of all functions u for which the B
seminorm is finite endowed with the corresponding norm ‖u‖B =

√
|u|2B + ‖u‖

2
L2 . In other words,

B will denote the BesovB1
2,2 or an analogous Besov-type space depending on the wavelet we choose

to generate the B seminorm.

DEFINITION For any function u ∈ H 1 define its H 1-B ratio as

R(u) =
|u|B

|u|H 1
,

where B is a Besov seminorm generated by an r-regular, r > 2-orthonormal wavelet ψ .

DEFINITION For a function u ∈ L2 define its wavelet Laplacian as the following expression (if it
exists):

∆wu(x) = −

∞∑
j=0

22j
∫
〈ψj,κ , u〉ψj,κ(x) dκ.

Here the integral is taken over all appropriate values of κ as defined by the function’s domain.

DEFINITION (Γ -convergence) A family of functionals {Fε} on a space X Γ -converges to a
functional F as ε → 0 if the following requirements hold:

(i) there exist {un} with un→ u such that

lim sup
n

Fε(un) 6 F(u),

(ii) for any sequence εn→ 0, function g and any function sequence gn→ g in X,

F(g) 6 lim inf
n

Fεn(gn).

An important fact: global minimizers of Fε converge to global minimizers of F (for details see
[12], [14]).
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LEMMA 2.1 (A classical result of Γ -convergence [24], details of which are discussed in [20])
Define a generalization of the GL functional on the set of BV functions:

GL∗ε (u) =

{
GLε(u), u ∈ H 1,

+∞, u ∈ BV \H 1.

Then 3
√

2
GL∗ε Γ -converges to the Total Variation functional as ε → 0.

2.1.2 The role of seminorm equivalence in the Γ -convergence of the wavelet Ginzburg–Landau
energy. First, we are going to establish relations between the GL and WGL energies that appear
due to the H 1/Besov B1

2,2 seminorm equivalence. Then we restate the problem of establishing the
Γ -convergence of WGL so that it takes a more concrete and approachable form. Let B denote a
classical Besov space B1

2,2 with a norm generated by an r-regular wavelet ψ .
Now we will compare the regular and wavelet Ginzburg–Landau energies using the equivalence

of the respective seminorms:
a|u|H 1 6 |u|B 6 b|u|H 1 .

The constants a and b depend on the wavelet ψ . Some remarks about the seminorm equivalence can
be found in Appendix A.2.1.

Substituting the above estimates in the definition of WGL implies

a2ε

2

∫
|∇u|2 dx +

1
4ε

∫
W(u) dx 6 WGLε(u) 6

b2ε

2

∫
|∇u|2 dx +

1
4ε

∫
W(u) dx.

We will use variable rescaling to investigate the asymptotic behavior of the WGL functional. Let
εa = a

2ε, εb = b2ε, ua(x) = u(x/a), ub(x) = u(x/b); then

a2ε

2

∫
|∇u|2 dx +

1
4ε

∫
W(u) dx =

εa

2

∫
|∇u|2 dx +

a2

4εa

∫
W(u) dx

=
εa

2

∫
|∇ua|

2 dx +
1

4εa

∫
W(ua) dx = GLεa (ua).

An analogous statement is true for εb and ub, so

GLεa (ua) 6 WGLε(u) 6 GLεb (ub).

For any sequence v(ε)→ u in L1,

lim inf
εa

GLεa (v
(ε)
a ) >

√
2a
3

∫
|∇(u(x))| dx,

hence,

lim inf
ε

WGLε(v(ε)) >

√
2a
3

∫
|∇(u(x))| dx. (L)

There exists a sequence u(ε)→ u such that

lim sup
εb

GLεb (u
(ε)
b ) 6

√
2b
3

∫
|∇(u(x))| dx.
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Then this sequence also satisfies

lim sup
ε

WGLε(u(ε)) 6

√
2b
3

∫
|∇(u(x))| dx. (H)

Now, if uε
L1
→ u, uε ∈ H 1 and u ∈ BV \ H 1 then, naturally, |uε |H 1 and |uε |B increase to +∞.

However, due to the seminorm equivalence, the ratio R(uε) stays bounded. The above estimates use
the most general values of the equivalence constants a and b, which provide the equivalence on the
entire space. In fact, the argument stays valid after re-assigning

a = lim inf
|uε |B

|uε |H 1
, b = lim sup

|uε |B

|uε |H 1
.

This proves the following sufficient condition for the Γ -convergence of WGL and explains the
origin of the statement (a) in Theorem 1.1.

LEMMA 2.2 Let B the set of all characteristic functions of finite-perimeter sets. If for any element

u ∈ B and any sequence {uε} ⊂ H 1 with u(ε)
L1
→ u the numerical sequence R(uε) converges to the

same limit depending on u, then the WGL functional Γ -converges to a limit defined on B.

An example of a countable set of functions with the same ratio of H 1 and B seminorms is a
wavelet basis generated by a regular wavelet ψ ,

|ψj,k|B

|ψj,k|H 1
=

1
|ψ |H 1

.

REMARK Let us notice that quantifying the ratio of the (semi)norms in the limiting sense is the
main difficulty on the way to proving the Γ -convergence. The main technical part of the theorem’s
proof is, effectively, showing that this limit exists for a special sequence (partial sums of the wavelet
series) and then that the limit is invariant with respect to the choice of the sequence approximating
the characteristic function of a finite-perimeter set in L1.

2.2 The H 1-B ratio defined for characteristic functions of finite-perimeter sets in RN

Let us extend the notion of the H 1-B ratio to the set of characteristic functions of finite-perimeter
sets. By proving that this value exists and is well-defined we will show that part (a) of Theorem 1.1
holds true. For any u = χE , where E ⊂ RN is a finite-perimeter set (|∂E| < ∞) define its H 1-B
ratio R(u) as a limit of such ratios of its wavelet decomposition’s partial sums, provided this limit
exists:

R(u) = lim
J→∞

R(uJ ) = lim
J→∞

|uJ |H 1

|uJ |B
, uJ =

J∑
j=0

∫
〈u,ψj,κ 〉ψj,κ dκ.

Now we will prove that the above limit exists and coincides with such limit of any sequence of
functions in H 1 approximating u in the L1 sense.
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2.2.1 Characteristic function of a hyperplane in RN and its wavelet domain restriction to [0, 1]N .
In order to prove that the H 1-B ratios of partial sums of the above wavelet series representing
a characteristic function u = χE converge, we explore the relation between the projections of
the characteristic function on consecutive wavelet scales. Based on this, we conclude the proof by
showing that the B and H 1 seminorms of respective partial wavelet sums grow asymptotically as
constant multiples of 2J/2, where J is the maximum wavelet scale in the partial sum.

REMARK The partial wavelet sums uJ converge to the function u ∈ BV \H 1, so both |uJ |H 1 and
|uJ |B tend to∞ as J →∞. Therefore, any finite number of terms in the series is negligible for the
purposes of computing the limiting H 1-B ratio. In particular, one can disregard the contribution of
PV0u to |uJ |H 1 and |uJ |B when computing R(u).

We start by considering the characteristic function of a half-space. Even though it does not
belong to L2, its formal wavelet decomposition exists: the wavelet transform at every wavelet
mode is well-defined since we consider a compactly supported wavelet kernel; moreover, the
reconstruction formula (IWT) is locally valid.

DEFINITION 1 Let π be a hyperplane in RN . It divides RN into two half-spaces; let χπ denote the
characteristic function of one of them.

The choice of the half-space is not important since it can only affect the sign of the wavelet
coefficients of the respective characteristic function, which is negligible since we are going to
operate with the squares of those coefficients. This definition is illustrated in Fig. 2.

LEMMA 2.3 The formal wavelet decomposition of χπ has the following special form:

χπ (x) = PV0χπ (x)+

∞∑
j=0

U(2jx), U = PW0χπ .

The wavelet transform of χπ is invariant with respect to translations parallel to the hyperplane: if
Ek − Em is parallel to π , then 〈χπ , ψj,Ek〉 = 〈χπ , ψj, Em〉.

FIG. 2. Illustration to Definition 1 and Lemma 2.3: positions of the compact supports of the dilated and translated wavelet
kernels ψj,k relative to the hyperplane π in R2 suggest that wavelet transform values vary only with respect to the shifts in
the direction of En (normal to the hyperplane).

Proof. Let us compute the wavelet transform of χπ formally with respect to a compactly supported
smooth wavelet ψ . We use the translation-invariant dyadic wavelet transform, hence, one can
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assume that the coordinate origin lies on π and so χπ is homogeneous of degree 0. Then

〈χπ , ψj,k〉 =

∫
χπ (x)2Nj/2ψ(2jx − k) dx =

∫
χπ (x)2−Nj/2ψ(x − k) dx = 2−Nj/2〈χπ , ψ0,k〉.

Therefore, according to (IWT), χπ is written in the needed form. The last part of the statement is
implied, again, by the translation-invariance of the wavelet transform and the linear structure of χπ .
It shows, in particular, that the range of the wavelet transform for this function can be obtained by
translating the wavelet kernel along the direction normal to the hyperplane. 2

The following lemma describes properties of the same function within a finite domain, in particular
[0, 1]N . It is more convenient to consider restrictions of the above function in the wavelet domain
with the purpose of preserving the uniformity of the function structure at each wavelet scale.
According to the remark at the beginning of this section, we also omit the projection on the subspace
V0 in computations related to the H 1-B ratio.

DEFINITION 2 Given a hyperplane π , define f π to be the wavelet-domain restriction of χπ to the
unit cube, assuming the hyperplane intersects it:

f π (x) =

∞∑
j=0

PWj f
π (x), PWj f

π
=

∫
Eκ: κi∈[0,2j ]

〈χπ , ψj,Eκ 〉ψj,Eκ dκ

and its partial wavelet sums

f πJ =

J∑
j=0

∫
Eκ: κi∈[0,2j ]

〈χπ , ψj,Eκ 〉ψj,Eκ dκ.

Figure 3 gives an intuitive illustration to the definition and a numerical example. Here, instead
of the completely self-similar representation as for the half-space, we get one where each next level
has both the variable and the range of translations rescaled, i.e. the same pattern gets shrunk 2j

times in each direction and appears 2j times more often. As the wavelet scale j increases,

|PWj f (x)− PWj (χπχ[0,1]N )|B = o(|PWj f (x)|B)

due to the compact localization of wavelets. Indeed, the above difference consists of only those
wavelet modes whose supports include points from π ∩ ∂[0, 1]N . The conclusion follows from the
fact that the Lebesgue measure of this intersection as a subset of the hyperplane endowed with the
(N − 1)-dimensional Lebesgue measure is zero: µπN−1(π ∩ ∂[0, 1]N ) = 0.

The following lemma describes the asymptotic behavior of the H 1 and B seminorms of f πJ
as J → ∞. Its proof also demonstrates that, for the purposes of computing the H 1-B ratio, one
can perform the differentiation and integration needed to compute those seminorms in the wavelet
domain.

LEMMA 2.4 The functions f πJ (as in Definition 2) satisfy:

(a) |f πJ |
2
B � (2

J+1
− 1)‖f π‖2

L2
W0

,

(b) |f πJ |
2
H 1 � (2J+1

− 1)|f π0 |
2
H 1
W0

as J →∞.
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(a) (b)

FIG. 3. (a) Illustration to Definition 2: supports of ψj,k included and not included in the wavelet-domain restriction to the
unit square. (b) Computational example: the original characteristic function and its wavelet-domain restriction to the unit
square (in the case of Daubechies 4 wavelet).

Proof. 1. Preliminary discussion. An important instrument of this proof is the self-similarity
described in Lemma 2.3 applied to a bounded subset of wavelet transform modes that defines f π :

f πJ =

J∑
j=0

2−Nj/2
∫
〈f π , ψ0,kn〉ψj,k dk, (WF-fπ )

where kn is the projection of the translation vector k on the normal n to the hyperplane π . Here
we disregard the wavelet coefficients near the boundary of supp f π , since they do not affect the
asymptotic behavior of |f π |B or |f π |H 1 (as was remarked after the definition of f π ). Hence we
assume 〈f π , ψj,k〉 = 〈χπ , ψj,k〉 so the proportionality between the coefficients of different levels is
preserved.

This proof will also use the following property of the Fourier transforms of the wavelet and its
scaling function:

|φ̂(ξ)|2 +

∞∑
j=0

|ψ̂(2−j ξ)|2 = 1 for a.e. ξ ∈ RN .

Here the Fourier transform of a function f is assumed to have the form

f̂ (ξ) =

∫
f (x)e−2π ix·ξ dx.

2. Main part of the proof. To prove the statements (a) and (b), we are going to define the values
that actually coincide with the r.h.s. of the respective relations and then show that those values are
asymptotically equivalent to the l.h.s. seminorms. For any function u ∈ RN let

βJ (u) =

J∑
j=0

22j
∫
〈u,ψj,µ〉

2 dµ, ζJ (u) =

J∑
j=0

22j
N∑
i=1

∫
|∂µi 〈u,ψj,µ〉|

2 dµ.

Here ∂µi 〈u,ψj,µ〉 denotes the partial derivative of 〈u,ψj,µ〉, as a function of the continuous
multiindex µ, with respect to its ith component. These derivatives exist due to our regularity
assumption on the wavelet ψ .
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Proof of (a). Let us show that βJ (f π ) is exactly equal to (2J+1
− 1)‖f π‖2

L2
W0

:

βJ (f
π ) =

J∑
j=0

∫
[0,2j ]N

22j
〈f π , ψj,k〉

2dk =

J∑
j=0

∫
[0,1]N

22j
〈f π , ψ0,µ〉

2 dµ = (2J+1
− 1)‖f π‖2

L2
W0

.

The statement (a) of this lemma will be proven once we show that βJ (f π ) is equivalent to the
B seminorm of f πJ as J →∞. Indeed, in terms of the Fourier transforms of f π and ψ ,

βJ (f
π ) =

∫
| ˆf πξ)|2

J∑
j=0

22j
|ψ̂(2−j ξ)|2 dξ,

|f πJ |
2
B =

∫
| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2 ∞∑

j=0

22j
|ψ̂(2−j ξ)|2 dξ.

Let us show that the difference of the above values is o(βJ (u)) as J →∞:

|βJ (f
π )− |f πJ |

2
B | 6

∫
| ˆf π (ξ)|2

J∑
j=0

22j
|ψ̂(2−j ξ)|2

(
1−

( J∑
j=0

|ψ̂(2−j ξ)|2
)2)

dξ

+

∫
| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2 ∞∑
j=J+1

22j
|ψ̂(2−j ξ)|2 dξ

6 2
∫
| ˆf π (ξ)|2

J∑
j=0

22j
|ψ̂(2−j ξ)|2

(
|φ̂(ξ)|2 +

∞∑
j=J+1

|ψ̂(2−j ξ)|2
)

dξ

+

∫
| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2 ∞∑
j=J+1

22j
|ψ̂(2−j ξ)|2 dξ.

Now, recall that we assumedψ to be r-regular with r > 2, soψ ∈ H 2,∆wψ ∈ L2(RN ). Also, since
ψ is compactly supported, so is∆wψ , hence ∆̂wψ ∈ C(RN )∩L2(RN ) and thus ∆̂wψ ∈ L∞(RN ).
Therefore,

ψ̂(ξ)∆̂wψ(ξ) = |ψ̂(ξ)|
2
∞∑
j=0

22j
|ψ̂(2−j ξ)|2 ∈ L∞(RN ).

An analogous statement is true for the scaling function φ. Therefore, we obtain∫
| ˆf π (ξ)|2

J∑
j=0

22j
|ψ̂(2−j ξ)|2|φ̂(ξ)|2 dξ 6 ‖φ̂‖L∞‖∆̂wφ‖L∞‖f

π
‖

2
L2 ,

∫
| ˆf π (ξ)|2

J∑
j=0

22j
|ψ̂(2−j ξ)|2

∞∑
j=J+1

|ψ̂(2−j ξ)|2 dξ

6
∫
| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2 ∞∑
j=J+1

22j
|ψ̂(2−j ξ)|2 dξ,

∫
| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2 ∞∑
j=J+1

22j
|ψ̂(2−j ξ)|2 dξ 6 (J + 1)‖ψ̂‖L∞‖∆̂wψ‖L∞‖f π‖2L2 .
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Hence, the entire expression estimating |βJ (f π )− |f πJ |
2
B | from above is bounded by a function of

order O(J ) as J → ∞, while βJ (u) = O(2J ). So, βJ (f π ) = (2J+1
− 1)‖f π‖2

L2
W0

� |f πJ |
2
B , i.e.

statement (a) is proven.

Proof of (b). We prove statement (b) using the same strategy. Evaluation of ζJ (f π ) with respect
to (WF-f π ) shows that it equals the r.h.s. of relation (b):

ζJ (f
π ) =

J∑
j=0

22j
N∑
i=1

∫
µ∈[0,2j ]N

2−Nj |∂µi 〈f
π , ψ0,µ〉|

2 dµ

=

J∑
j=0

2j
N∑
i=1

∫
µ∈[0,1]N

|∂µi 〈f
π , ψ0,µ〉|

2 dµ = (2J+1
− 1)|f π |2

H 1
W0

.

To prove that ζJ (f π ) is equivalent to |f πJ |
2
H 1 we rewrite both expressions in terms of Fourier

transforms:

ζJ (f
π ) =

J∑
j=0

22j
∫

4π2
|ξ |2| ˆf π (ξ)ψ̂(2−j ξ)|2 dξ,

|f πJ |
2
H 1 =

∫
4π2
|ξ |2| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)2

dξ.

Let us estimate the difference

ζJ (f
π )− |f πJ |

2
H 1 = 4π2

∫
|ξ |2| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)(

1−
J∑
j=0

|ψ̂(2−j ξ)|2
)

dξ

= 4π2
∫
|ξ |2| ˆf π (ξ)|2

( J∑
j=0

|ψ̂(2−j ξ)|2
)(
|φ̂(ξ)|2 +

∞∑
j=J+1

|ψ̂(2−j ξ)|2
)

dξ.

Here both ψ, φ and ∆ψ,∆φ are continuous and compactly supported, hence ψ̂(ξ), φ̂(ξ), ξ2ψ̂(ξ),
ξ2φ̂(ξ) ∈ L∞(RN ) and ∫

|ξ |2| ˆf π (ξ)|2|φ̂(ξ)|2 dξ 6 ‖ξ φ̂(ξ)‖2L∞‖f̂
π
‖

2
L2 ,∫

|ξ |2| ˆf π (ξ)|2
J∑
j=0

|ψ̂(2−j ξ)|2
∞∑

j=J+1

|ψ̂(2−j ξ)|2 dξ

6 ‖∆̂ψ‖
∫
| ˆf π (ξ)|2

J∑
j=0

22j ψ̂(2−j ξ)
∞∑

j=J+1

|ψ̂(2−j ξ)|2 dξ 6 J‖∆̂ψ‖L∞‖∆̂wψ‖L∞‖f
π
‖

2
L2 ,

|ζJ (f
π )− |f πJ |

2
H 1 | 6 O(1)+O(J ), |ζJ (f

π )− |f πJ |
2
H 1 |/ζJ (f

π )→ 0, J →∞.

Hence, ζJ (f π ) = (2J+1
− 1)|f π |H 1

W0
� |f πJ |

2
H 1 . 2
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COROLLARY 1 (from Lemma 2.4) There exist functions ρB and ρH 1 such that for any hyper-
plane π with normal vector Enπ ,

|f πJ |
2
H 1 � 2J sπρ2

H 1(Enπ ), |f πJ |
2
B � 2J sπρ2

B(Enπ ),

where sπ is the (N − 1)-dimensional measure of the part of the hyperplane inside of the unit cube.

Proof. By translation-invariance, the functions f π
′

associated with all hyperplanes π ′ parallel to
π and intersecting the unit cube have the same structure of wavelet decomposition up to a shift
in indices. By Lemma 2.3 the values of the wavelet transform repeat along the hyperplane, while
the total amount of the repeating values Wf π

′

(0, k) is proportional to the area of the hyperplane
enclosed within the unit cube. 2

Using Lemma 2.4 and its corollary, we can define the values ρB and ρH 1 as explicit functions of the
normal to the respective hyperplane.

DEFINITION 3 Take an arbitrary hyperplane π with a normal vector En that intersects the unit cube
[0, 1]N non-trivially, and let the area (the (N − 1)-dimensional measure defined on the hyperplane)
of the cross-section equal s. Restricting the wavelet indices in the same manner as in Definition 2,
define

ρB(En) = s
−1/2
‖f π‖L2

W0
= s−1/2

[ J∑
j=0

∫
κ: 06κi61

|〈χπ , ψ0,κ 〉|
2 dκ

]1/2

,

ρH 1(En) = s
−1/2
|f π |H 1

W0
= s−1/2

[ N∑
i=1

∫
κ: 06κi61

|∂κi 〈f
π , ψj,κ 〉|

2 dκ
]1/2

.

COROLLARY 2 (from Lemma 2.4) Consider a function u that is the restriction of some χπ (x) to
[0, 1]N either spatially or in the modes of its wavelet transform. Then theH 1-B ratio of u exists and
has the form

R(u) =
‖f π‖L2

W0

|f π |H 1
W0

.

The next step is to consider a polyhedral set P in RN and apply the relations derived above to
each of its faces.

2.2.2 H 1-B ratio of characteristic functions of polyhedra generalized for all finite-perimeter sets.
Consider a polyhedron P ⊂ RN with M faces Fi , i = 1, . . . ,M . Let π(Fi), i = 1, . . . ,M , denote
the hyperplanes containing the respective faces and let u = χP .

LEMMA 2.5 The H 1-B ratio of u = χE , where E ⊂ RN is a polyhedron, satisfies

R(u)2 = lim
j→∞

∑
i ρ

2
B(n(Fi))|Fi |∑

i ρ
2
H 1(n(Fi))|Fi |

,

where n(Fi) denotes the normal to the face Fi , and π(Fi) is the hyperplane through Fi .
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Proof. Let us estimate the difference∣∣∣∣∣∣ J∑
j=0

PWj u

∣∣∣2
B
−

∑
i

ρ2
B(n(Fi))|Fi |

∣∣∣,
where ρB(n(Fi)) denotes the normalized B seminorm of the characteristic function of a half-space
separated by the hyperplane π(Fi), restricted to the unit cube (see Lemma 2.4).

To simplify the discussion, let u(Fi ) denote the wavelet-domain restriction of the function u to
the polyhedral face Fi :

u(Fi )(x) =

∞∑
j=0

∫
k∈K(Fi ,j)

〈u,ψj,k〉ψj,k(x) dk,

K(Fi, j) = {k : suppψ(2jx − k) ∩ Fr = ∅, r 6= i}.

We also notice that the wavelet transform of any characteristic function is uniformly bounded:

|〈χE′ , ψj,k〉| 6 2−Nj/2C, C = max
Ω⊂RN

∫
Ω

ψ(x) dx.

By construction, the difference between the partial wavelet sums
∑J
j=0 PWj u and the partial wavelet

sums of auxiliary functions
∑
i

∑J
j=0 PWj u

(Fi ) can possibly have non-zero wavelet transform only
at the modes (j, k) such that suppψj,k intersects at least one of the edges, i.e. intersects

⋃
i ∂Fi non-

trivially. Therefore, the Sobolev and Besov seminorms of this difference can be majorized (up to a
constant multiple) by the product of the upper bound of the coefficients (squared) and the measure
of the set of all wavelet mode indices relevant to the polyhedron edges:∣∣∣ J∑

j=0

PWj u−
∑
i

u
π(Fi )
J

∣∣∣2
B

6 C1

J∑
j=0

22j [2−Nj/2]22(N−2)j
= C1J.

Here we used the fact that the measure of the set of wavelet modes relevant to the edges is
proportional to 2(N−2)j times the total edge length. Thus, C′ depends, besides C, on the total length
of all polyhedral edges.

Furthermore, one observes that u(Fi ) has the structure analogous to the one of f π(Fi )J , only with
the set of wavelet modes restricted to those in a neighborhood of the polyhedral face Fi rather than
to the modes inside the unit cube, hence∣∣∣∣∣∣∑

i

u
π(Fi )
J

∣∣∣2
B
−

∑
i

ρ2
B(n(Fi))|Fi |

∣∣∣ 6 C2J.

Thus, we achieve ∣∣∣∣∣∣ J∑
j=0

PWj u

∣∣∣2
B
−

∑
i

ρ2
B(n(Fi))|Fi |

∣∣∣ 6 O(J ).

Lemma 2.4 implies that the values
∑
i ρ

2
B(n(Fi))|Fi | = O(2J ) dominate the difference we

estimated above as well as an analogous difference of the squares of the H 1 seminorms (also, see
Appendix A.2.3 for a general estimate of this type). This concludes the proof. 2
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The next statement establishes that the H 1-B ratio R is a well-defined function on the set of
characteristic functions of finite-perimeter sets.

LEMMA 2.6 Let un → u in L1, where u = χE and E ⊂ RN is some measurable set. Denote
uJ = PVJ u and unJ = PVJ u

n. Then∣∣∣∣ |unJ |H 1

|unJ |B
−
|uJ |H 1

|uJ |B

∣∣∣∣ 6 O(‖u− un‖L1).

Since the estimate is independent of the scale J , R(u) can be defined via any sequence un→ u

in L1:
R(u) = lim

n→∞

|PVnun|H 1

|PVnun|B
or R(u) = lim

n→∞
R(un).

Proof. Fix an arbitrary scale J . Then∣∣∣∣ |unJ |H 1

|unJ |B
−
|uJ |H 1

|uJ |B

∣∣∣∣ = ∣∣∣∣ (|unJ |H 1 − |uJ |H 1)|unJ |B − (|u
n
J |B − |uJ |B)|u

n
J |H 1

|unJ |B |uJ |B

∣∣∣∣
6
|unJ − uJ |H 1

|uJ |B
+
|unJ − uJ |B |u

n
J |H 1

|unJ |B |uJ |B
6

2|unJ − uJ |B
a|uJ |B

,

where a is the constant from the seminorm equivalence a| · |H 1 6 | · |B 6 b| · |H 1 . Now, since

|unJ − uJ |B 6 O(2J ‖u− un‖L1)

(from the definition of the B seminorm) and |uJ |B = O(2J ) (from Lemma 2.5), we conclude∣∣∣∣ |unJ |H 1

|unJ |B
−
|uJ |H 1

|uJ |B

∣∣∣∣ 6 O(‖u− un‖L1). 2

LEMMA 2.7 The H 1-B ratio exists for any function χE , where E ⊂ RN has finite perimeter. It
satisfies

R(χE)
2
=

∫
∂E
ρ2
B(n(s)) ds∫

∂E
ρ2
H 1(n(s)) ds

.

Proof. Let Pm be a sequence of polyhedra approximating the set E in the sense of the N -

dimensional Lebesgue measure, i.e. χPm
L1
→ χE . By Lemmas 2.6 and 2.5,

R(u) = lim
m→∞

RχPm = lim
m→∞

∫
∂Pm

ρ2
H 1(n̄(x)) ds(x)∫

∂Pm
ρ2
B(n̄(s)) ds(x)

,

where n̄(x) denotes the normal to ∂Pn at the point x ∈ ∂Pm. Since the functions ρB , ρH 1 are
bounded and continuous (because the projection operator PW0 is continuous with respect to rotations
in space, and the densities depend on the 0-th wavelet scale projection only by Lemma 2.4), the
surface integrals converge uniformly with respect to m. Passing to the limit, we get the needed
expression. 2

We have thus proven part (a) of Theorem 1.1 (requiring the most technical details). By Lemma 2.2,
we have proven the Γ -convergence of the WGL energy functionals as ε → 0. The rest of the proof
defines the exact form of the limit as a weighted TV seminorm.

Our next step is to prove part (b) using the fact that the H 1-B ratio, despite its integral form, is
a local functional. This will easily imply part (c) after a few remarks.
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2.2.3 Γ -limit of WGL energy as a weighted surface area functional.

LEMMA 2.8 The Γ -limit of the WGL energy at any function χE , where E ⊂ RN has finite
perimeter, equals

G∞ =

√
3

2
R(χE)|E| =

√
3

2

∫
∂E

ρB(n(x))

ρH 1(n(x))
ds(x),

where n(x) is the normal to ∂E at the point x ∈ ∂E.

Proof. 1. Localization. Since the regular Ginzburg–Landau energy is a local functional, the
theorem about its Γ -convergence is true independently of the spatial domain of the functions under
consideration. Since we use the classical result as the main tool in proving the WGL Γ -convergence,
we can consider the asymptotic behavior of the WGL energy locally. Indeed, we can do that due
to the fact that the wavelet kernels we use are compactly supported and the observation that any
finite number of wavelet scales can be excluded from the Besov seminorm in the WGL expression
without affecting the Γ -limit.

2. Additivity. As discussed above, the Γ -limit of WGL is invariant with respect to the exclusion
from the Besov seminorm of any finite number of wavelet scales or any set of wavelet modes indexed
by a set of measure zero. Therefore, one can locally redefine theB seminorm in the WGL expression
as

|u|2B(ω) =

∫
Ω

(−∆w)u(x)u(x) dx, ∆Ωw u = −

∞∑
j=0

22j
∫
κ: suppψj,κ⊆Ω

〈u,ψj,κ 〉ψj,κ dκ;

then the entire WGL energy can be viewed as a single integral over the domain under study, and
therefore, is additive with respect to any partition of this domain.

3. True for polyhedra. In particular, one concludes that the Γ -limiting energy calculated at some
χP , where P is a polyhedron with faces F1, . . . , FM , can also be expressed as

R(u)|u|TV =
∑
i

ρB(n(Fi))

ρH 1(n(Fi))
|Fi |.

An arbitrary set E, in its turn, can be approximated by a sequence of polyhedra Pn with perimeters

|Pn| converging to the perimeter of E. Then χPn
L1
→ χE and R(χPn) → R(χE). Letting n → ∞

can be viewed as an infinite refinement of the domain partition and leads to the required expression
for the Γ -limit. 2

The last part of Theorem 1.1 statement (c) is obtained by the following argument. As we proved
in Lemma 2.6, the L1 convergence of functions is sufficient for the convergence of the respective
H 1-B ratios. However, it does not imply the convergence of TV seminorm values. One can obtain
an analogous statement about the pointwise limit by making the theorem’s assumptions stronger,
i.e. requiring the TV seminorms to converge as well.

3. The Γ -convergence of the wavelet Ginzburg–Landau energy to the weighted Total
Variation functional in one and two space dimensions

This section describes the WGL energy and the Γ -limiting functional defined on functions of
one and two variables. The distinguishing feature of the one-dimensional case is the fact that
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the WGL converges to a constant multiple of TV, since the characteristic functions of sets in R1

have degenerate boundary. The two-dimensional case is relatively easy to visualize and implement
numerically. We assume that the compactly supported wavelet functions in two dimensions are
obtained as separable products of one-dimensional wavelet and scaling functions. It is the simplest
case that can be considered for numerical implementation supporting the theorem proven in the
previous section. In both cases, the limiting functional is expressed as a function of the wavelet
associated with the B seminorm used in the WGL definition. In 2D it is naturally anisotropic and
matches the role of the surface tension energy in the Wulff problem.

All sets considered in this section are bounded, therefore, can be considered as subsets of the
unit interval or square in one and two dimensions respectively.

3.1 H 1-B ratio of the step function in 1D

Consider the step function S(x) = −χx>0 + χx<0. Notice that S − PV0S has compact support.

LEMMA 3.1 The wavelet decomposition of the step function S(x) = −χx>0 + χx<0 satisfies

S(x)− PV0S(x) =

∞∑
j=0

U(2jx), where U(x) =

∫
Ψ (m)ψ(x −m) dm, Ψ ′(x) = 2ψ(x).

Proof. The self-similar structure of S projected on each wavelet scale follows from its homogeneity
property S(αx) = S(x), α > 0, and was proven in Lemma 2.3 for all space dimensions. To prove
that PW0S(x) =

∫
Ψ (m)ψ(x − m) dm it suffices to compute the respective values of the wavelet

transform of S at the coarsest scale:

c0,k =

∫
S(x)ψ0,k dx =

∫
x<k

ψx −

∫
x>k

ψx = 2
∫
x<k

ψx = Ψ (k).

Inverting the wavelet transform produces the needed expression. 2

Using Theorem 1 and Corollary 2 from Lemma 2.4 we reformulate the above result to obtain the
following theorem.

THEOREM 3.1 In the one-dimensional case the WGL energy Γ -converges to a constant multiple
of TV on the set of characteristic functions u = χE of finite Borel sets E:

WGL∗(uε)
Γ
→ G∞(u) =

√
3|Ψ |L2

2‖ψ ∗ ψ‖L2
|u|TV

as ε → 0, with respect to the convergence uε
L1
→ u, {uε} ⊂ H 1(R).

3.2 Explicit form of the WGL Γ -limit and the H 1-B ratio in 2D

This subsection demonstrates a way to obtain an explicit form of the Γ -limit of WGL on functions of
two variables. Let u(x) = χE(x) be the characteristic function of a set E with finite perimeter. First,
as an intermediate stage, we consider the case when E is a polygon. One can see a straightforward
connection with the one-dimensional energy if the sides of the polygon are parallel to the coordinate
axes. In the general case we determine the connection between the direction of the polygon edges
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and the respective contributions to the B and H 1 seminorms of the partial wavelet sums. We
establish explicit formulas for the Γ -limit of the WGL (and related H 1-B ratio) on characteristic
functions of polygons in terms of the direction and size of the edges and the wavelet that was chosen
to generate the B seminorm.

Here, as before, ψ is the 1D wavelet and φ is the corresponding scaling function. We consider
separable wavelet bases, where the wavelet functions in 2D are obtained as the following cross-
products reflecting the horizontal, vertical and diagonal elements respectively:

ψh(x, y) = ψ(x)φ(y), ψv(x, y) = φ(x)ψ(y), ψd(x, y) = ψ(x)ψ(y).

The respective coefficients will also be superscripted by h, v or d .

LEMMA 3.2 Let E ⊂ [0, 1]2 be a rectangle with sides parallel to those of the unit square. Then

R(χE) = R(S), where S is a unit step function on R1.

Proof. As was shown in the discussion of the general case of polyhedra in RN , the Γ -limit and
the relevant H 1-B ratio are functions of certain values characterizing separate polyhedral faces
(Lemmas 2.5, 2.8). Those values are the “densities” ρB and ρH 1 (Corollary 1 from Lemma 2.4),
and the (N − 1)-dimensional measures of the faces.

The half-planes containing the sides of the rectangle share the same values of ρB and ρH 1 ,
because those are invariant with respect to taking the complementary half-plane as well as to
switching the variables x and y.

Let π be the right half-plane of the coordinate system. Then χπ (x, y) = S(x)I(y) (separable
product of the step function and the identity). The vertical and diagonal components of its wavelet
transform are identically zero, as also is the partial derivative with respect to y. Computing ρB
and ρH 1 according to Definition 3 we find they are equal to the corresponding values for the one-
dimensional step function. 2

3.3 H 1-B ratio as an anisotropic energy functional in two dimensions

In this subsection we find the densities ρB and ρH 1 in the 2D case, using one-dimensional
characteristics of the step function. Moreover, we express those values in formulae of 1D
complexity.

3.3.1 Dependence of the Besov seminorm of a partial wavelet sum of an indicator function on the
shape of the set boundary. Consider a line λ that forms angle β with the horizontal axis and assume
0 < β < π/2 (the case when β = 0, π/2 was described in Lemma 3.2). As we use a separable
wavelet basis, the dependence of the limiting energy on the edge direction is π/2-periodic.

Since this discussion focuses on the translation-invariant (t.i.) Besov seminorm (| · |B,t.i.), one
can without loss of generality assume that λ passes through the coordinate origin. Let π denote one
of the half-planes separated by λ. Then χπ (x, y) = S(y − (tanβ)x).

Using Definition 2 for our case N = 2, let us denote G = f λ0 (i.e. G = PW0f
λ). We proceed

to compute β0(f
λ) via the semi-discrete t.i. dyadic wavelet transform, as an integral of coefficient

squares over the corresponding index set:

‖f λ‖2
L2
W0

=

∫ 1

0

∫ 1

0

∣∣∣∣∫
[0,1]2

S(cosβx + sinβy)ψ (1)(x − k)ψ (2)(y −m) dx dy
∣∣∣∣2 dm dk,
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where ψ (i) equals ψ or φ depending on the desired wavelet orientation, and the notation itself
implies summation over three possible combinations: ψ1 = ψ , ψ2 = φ (horizontal), or ψ1 = φ,
ψ2 = ψ (vertical), or ψ1 = ψ , ψ2 = ψ (diagonal).

Let us find the diagonal, horizontal and vertical components of the energy ‖f λ‖2
L2
W0

using the

above model. Let t := tanβ. Omitted limits of integration below imply that the integration is
performed over the maximum applicable domain.

‖f λdiag‖
2
L2
W0

=

∫∫ ∣∣∣∣∫ ∫
S(y − xt)ψ(x − k)ψ(y −m) dx dy

∣∣∣∣2 dk dm

=

∫ ∣∣∣∣∫∫ S(y − xt)ψ(x)ψ(y − c) dx dy
∣∣∣∣2 dc

=

∫ ∣∣∣∣∫ Ψ (xt − c)ψ(x) dx|2 dc =
∫ ∣∣∣∣∫ Ψ (xt)ψ(x + c/t) dx

∣∣∣∣2 dc

= t

∫ ∣∣∣∣∫ Ψ (xt)ψ(x − c) dx
∣∣∣∣2 dc = t |Ψ (xt)|2

L2
W0

.

Analogously,

‖f λvert‖
2
L2
W0

=

∫ ∣∣∣∣∫∫ S(y − xt)φ(x)ψ(y − c) dx dy
∣∣∣∣2dc = ∫ ∣∣∣∣∫ Ψ (xt + c)φ(x) dy

∣∣∣∣2 dc

=

∫ ∣∣∣∣∫ Ψ (xt)φ(y − c/t) dy
∣∣∣∣2 dc = t |Ψ (xt)|2

L2
V0

.

To compute the horizontal component energy we employ the relation S(y − xt) = −S(x − y/t) to
get

‖f λhor‖
2
L2
W0

=

∫ ∣∣∣∣∫∫ S(x − y/t)ψ(x)φ(y − c) dx dy
∣∣∣∣2 dc

=

∫ ∣∣∣∣∫∫ S(x − y/t)ψ(x)φ(y − c) dx dy
∣∣∣∣2 dc =

∫ ∣∣∣∣∫ Ψ (y/t)φ(y − c) dy
∣∣∣∣2 dc

=

∫ ∣∣∣∣∫ Ψ (y/t)φ(y − c) dy
∣∣∣∣2 dc = |Ψ (y/t)|2

L2
V0

.

The line segment that lies within the unit square has length (cosβ)−1. Therefore, according to
the definition,

ρ2
B(β, ψ) = sinβ ‖Ψ (xt)‖2

L2
W0

+ sinβ ‖Ψ (xt)‖2
L2
V0

+ cosβ ‖Ψ (y/t)‖2
L2
V0

, t = tanβ.

As was mentioned in the proof of Lemma 2.7, ρB is continuous with respect to β. Lemma 3.2
implies

ρ2
B(0, ψ) = ρ

2
B(π/2, ψ) = ‖S‖

2
L2
W0

= ‖Ψ ‖2
L2 ,

which is no contradiction with the continuity of ρB . Indeed, if β → 0 the third term in the sum
representing ρ2

B(β, ψ) approaches ‖Ψ ‖2
L2 while the first two terms converge to 0 as β → 0. If, in

its turn, β → π/2, the second term converges to ‖Ψ ‖2
L2 and the other two terms vanish.
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3.3.2 Dependence of the H 1 seminorm of a partial wavelet sum of an indicator function on the
shape of the set boundary. In order to determine ρH 1 in accordance with Definition 3, we will find
theH 1 seminorm of the functionG = PW0f

λ and show that Aλ∞ = 0. Using the same notation ψ(i)
(which also implies summation over horizontal, vertical and diagonal components of the wavelet
transform) to keep the generalized form of the discussion, consider ∂xG in more detail:

∂xG(x, y) =

∫ 1

0

∫ 1

0

[∫
[0,1]2

S(y−tx)ψ(1)(y−k)ψ(2)(x−m) dx dy
]
ψ(1)(y−k)ψ

′

(2)(x−m) dk dm

=

∫ 1

0

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ(2)(x−m) dx

]
ψ(1)(y−k)∂m(−ψ(2)(x−m)) dk dm

=

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ(2)(x) dx

]
ψ(1)(y−k)ψ(2)(x) dk

−

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ(2)(x−1) dx

]
ψ(1)(y−k)ψ(2)(x−1) dk

−

∫ 1

0

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ

′

(2)(x−m) dx
]
ψ(1)(y−k)ψ(2)(x−m) dk dm

=

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ(2)(x) dx

]
ψ(1)(y−k)ψ(2)(x) dk

−

∫ 1

0

[∫ 1

0
ψ(1)(tx−k)ψ(2)(x−1) dx

]
ψ(1)(y−k)ψ(2)(x−1) dk

+

∫ 1

0

∫ 1

0

[
t

∫ 1

0
ψ(1)(tx−k)ψ(2)(x−m) dx

]
ψ(1)(y−k)ψ(2)(x−m) dk dm. ( dxf0)

Since the boundary terms resulting from the integration by parts in ( dxf0) correspond to a subset
of measure zero in the two-dimensional set of wavelet indices (k,m), those bring no contribution to
the L2 norm of ∂xG:

‖∂xG‖
2
L2 =

∫ 1

0

∫ 1

0

[
t

∫ 1

0
ψ(1)(tx − k)ψ(2)(x −m) dx

]2

dk dm.

Now, analogously to the computation of |G|2B , we will use the fact that the wavelet transform values
are repeated along the lines parallel to the edge. We also recall that the length of the edge inside the
unit square equals (cosβ)−1.

‖∂xG‖
2
L2 = sinβ

∫ 1

0

[
t

∫ 1

0
ψ(tx)ψ(x −m+ k/t) dx

]2

dm dk

+ sinβ
∫ 1

0

[
t

∫ 1

0
ψ(tx)φ(x −m+ k/t) dx

]2

dm dk

+ cosβ
∫ 1

0

[∫ 1

0
ψ(x/t)φ(x − k + tm) dx

]2

dk dm

=
sin3 β

cos2 β
(‖ψ(tx)‖2

L2
W0

+ ‖ψ(tx)‖2
L2
V0

)+ cosβ ‖ψ(x/t)‖2
L2
V0

.
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By a symmetric argument,

‖∂yG‖
2
L2 =

cos3 β

sin2 β
(‖ψ(x/t)‖2

L2
W0

+ ‖ψ(x/t)‖2
L2
V0

)+ sinβ ‖ψ(tx)‖2
L2
V0

.

Therefore,

ρ2
H 1(β, ψ) =

sin3 β

cos2 β
(‖ψ(tx)‖2

L2
W0

+ ‖ψ(tx)‖2
L2
V0

)+ cosβ ‖ψ(x/t)‖2
L2
V0

+
cos3 β

sin2 β
(‖ψ(x/t)‖2

L2
W0

+ ‖ψ(x/t)‖2
L2
V0

)+ sinβ ‖ψ(tx)‖2
L2
V0

=
sin3 β

cos2 β
‖ψ(tx)‖2

L2
W0

+
sinβ

cos2 β
‖ψ(tx)‖2

L2
V0

+
cosβ

sin2 β
‖ψ(x/t)‖2

L2
V0

+
cos3 β

sin2 β
‖ψ(x/t)‖2

L2
W0

.

3.3.3 Conclusions about the Γ -limit of the WGL energy in 2D. The above derivations allow us
to restate the general theorem in the case of R2 using explicit formulae for the components of the
Γ -limiting energy. One acquires a straightforward tool to compute the Γ -limit of WGL on any
characteristic function u = χE of a finite-perimeter set E ⊂ R2. Indeed, both expressions for this
energy:

G∞(u) =

√
3

2
R(u)|u|TV where R(u) =

∫
∂E
ρ2
B(En(x), ψ) dl(x)∫

∂E
ρ2
H 1(En(x), ψ) dl(x)

,

and the alternative one,

G∞(u) =

∫
∂E

ρ(En(x), ψ) dl(x), where ρ =
ρB

ρH 1
,

become explicit formulae after one substitutes

ρ2
H 1(β, ψ) =

sin3 β

cos2 β
‖ψ(tx)‖2

L2
W0

+
sinβ

cos2 β
‖ψ(tx)‖2

L2
V0

+
cosβ

sin2 β
‖ψ(x/t)‖2

L2
V0

+
cos3 β

sin2 β
‖ψ(x/t)‖2

L2
W0

,

ρ2
B(β, ψ) = sinβ ‖Ψ (xt)‖2

L2
W0

+ sinβ ‖Ψ (xt)‖2
L2
V0

+ cosβ ‖Ψ (y/t)‖2
L2
V0

, where t = tanβ.

Numerical application of those formulae and more details on the role of the Γ -limit of the WGL
energy in 2D follow in the next section.

4. Relation of WGL to the Wulff problem

4.1 The Γ -limit of WGL as a surface tension energy in the Wulff problem

In general, the term ‘Wulff problem’ refers to the problem of minimizing the energy of a fixed-
volume object in RN over possible shapes of its (N − 1)-dimensional surface, while the surface
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tension energy is not uniformly distributed. A Wulff shape in 2D can be defined as an equilibrium
minimal surface for a crystal or drop of fixed volume which has the least anisotropic surface energy.

In material science, the free energy of the surface of an isolated bounded crystal depends on the
orientation of the surface with respect to the crystalline lattice. Thus, the total surface free energy is
defined by

∫
f (n(x)) dS(x), where n(x) is the unit normal to the surface element dS(x), f (n) is the

free energy density in the direction n and the integral is taken over the entire surface of the crystal. In
thermodynamic equilibrium, the crystal takes a shape minimizing the surface free energy. A method
for finding the minimizing shape given the energy density f (n) was first proposed by Wulff and is
referred to as Wulff’s theorem. He presented a constructive solution to this minimization problem
based on the geometry of the surface tension. Given a polar plot of the surface tension density,
consider the hyperplanes passing through each point of the surface on this plot orthogonally to the
respective radius-vectors. Then the inner convex envelope of those hyperplanes gives the minimizing
crystal shape, which, rescaled to the needed volume, leads to the solution of the problem [26].

The study of an anisotropic crystal growing in a melt gives rise to an equation relating the normal
velocity of the motion to both the orientation of the crystal and to its curvature. Osher and Merriman
[26] proved that in the case when the outward normal velocity is equal to f (n), for f the surface
tension and n the unit outward normal, the asymptotic growth shape is precisely the Wulff crystal,
appropriately scaled in time. This shape minimizes the surface energy for a given volume.

Recall that the Γ -limit of the WGL energy in RN can be written in the following form (part (c)
of Theorem 1.1):

G∞(u) =

√
3

2

∫
∂E

ρ(En(x), ψ) dl(x),

where ρ = ρB/ρH 1 ∈ [a/b, b/a] by construction and a and b are the H 1-B equivalence constants:
a|u|H 1 6 |u|B 6 b|u|H 1 . Being an integral of some bounded positive density over a closed
(N − 1)-dimensional surface, G∞ can be interpreted as the total free surface energy. It is not
rotation-invariant, thus making the problem essentially anisotropic, analogous to the minimization
of inhomogeneously distributed surface energy. The anisotropy of WGL and hence its Γ -limit arises
from the one of the Besov seminorm. The primary source of anisotropy is the way the wavelet
kernel in R2 is constructed, more precisely, the fact that wavelet functions have specific orientation
in space.

Treating the Γ -limit of WGL as the total energy of the surface, we can approximate the problem
of its minimization by the one of minimizing the WGL instead, as ε → 0. Then the respective WGL
minimizers form a sequence approximating the G∞ minimizer in L1.

Let us consider the WGL-based Wulff problem in 2D. Its aim is to minimize the Γ -limiting
energy (a weighted TV functional) on the set of characteristic functions u = χE of finite-perimeter
sets E ⊂ R2 with fixed area |E| = A.

Consider the approximating problem of minimizing the WGL energy on the set of 2D functions
f : [0, 1]2

→ {0, 1} under the constraint m({x : f (x) = 1}) = A, where 0 < A < 1. Integrating
the constraint into the energy functional subject to minimization, we obtain the problem

u = argmin
ε

2
|f |B2 +

1
4ε

∫
f (x, y)2(f (x, y)− 1)2 dx dy + λ

[∫
f (x, y)2 dx dy − A

]2

.

The next step we take is to introduce a modified WGL energy that allows a degree of freedom in
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handling the anisotropy.

WGLa(f ) =
ε

2
(|f h|B2 + a1|f

v
|B2 + a2|f

d
|B2)+

1
4ε

∫
f (x, y)2(f (x, y)− 1)2 dx dy. (WGLa)

Here a1, a2 > 0, and the indices h, v, d denote the horizontal, vertical and diagonal components
of the wavelet decomposition respectively. The Γ -limit exists in this case for the same reason as
before.

Lemma A.1 in the Appendix implies that minimizers of the modified WGL (or WGLa) energy
with the area constraint are C∞.

4.2 Numerical evidence of Γ -convergence: proximity between energies and between minimizers

As was mentioned in Section 4.1, the Γ -limit of WGL, which we denoted G∞, matches the role
of the surface tension energy. We will consider the WGL energy as a variational approximation to
G∞, compare their values and respective minimizer shapes. In Figs. 4–6, we consider the results of
numerical computations done via the 1D formula (according to Section 3.3.3) coupled with those
of finding the WGL energy minimizers via the gradient descent method in 2D. Each figure contains
four images A-D: (A) the surface tension analogue (the Γ -limit of WGL or modified WGLa based
on a weighted B seminorm) computed via the 1D formula; (B) the corresponding Wulff shape
found by the classical method we described in Section 4.1 (as the convex inner envelope of the lines
tangent to the radius vectors to points of the polar plot of the surface tension); (C) the minimizer of
the modified WGL energy with the area constraint found by the gradient descent simulation in 2D;
(D) matching of the shapes from B and C.

A. B. C.

D.

FIG. 4. A. Wavelet surface tension analogue G∞. B. Wulff shape corresponding to A. C. Numerically obtained minimizer
of the WGL problem with fixed area constraint, image resolution 256 × 256, ε = 1/100, µ = 1. D. Matching B and
C—minimizer shapes match up to a rescaling constant.

Two computational examples below consider energies with variable coefficient in front of the
diagonal component of the Besov seminorm. As the weight of the diagonal coefficient energy
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increases, the numerical convergence slows down making it harder for the approximating WGLa

minimizer to approach the limiting shape in practical computations (see in particular Fig. 5).

A. B. C.

D.

FIG. 5. A. Wavelet surface tension analogue: Γ -limit of WGLa , a1 = 1, a2 = 7. B. Wulff shape corresponding to A.
C. Numerically obtained minimizer of the WGL problem with fixed area constraint, image resolution 256×256, ε = 1/100,
µ = 2. D. Matching B and C: minimizer shapes match up to a rescaling constant (with minor deviations).

A. B. C.

D.

FIG. 6. A. Wavelet surface tension analogue: Γ -limit of WGLa , a1 = 1, a2 = 0.1. B. Wulff shape corresponding to A.
C. Numerically obtained minimizer of the WGL problem with fixed area constraint, image resolution 256× 256, ε = 1/32,
µ = 1/4. D. Matching B and C: minimizer shapes match up to a rescaling constant.
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A. Appendix

A.1 Rescaling of the classical Ginzburg–Landau energy

Recall that the classical Ginzburg–Landau energy is defined as

Eε(u) = ε

∫
|∇u|2 dx +

1
ε

∫
W(u) dx, W(u) = (u2

− 1)2.

We will reformulate the classical result of Lemma 2.1 by introducing variable rescaling. Let u(x) =
v(αx). Then ∫

|∇u(x)|2 dx =
∫
|∇v(y)|2 dy,∫

|∇u| dx =
1
α

∫
|∇v(y)| dy,∫

W(u) dx =
1
α2

∫
W(v(y)) dy.

Rewriting Eε as a function of v produces

Eαε (v) = ε

∫
|∇v|2 dx +

1
α2ε

∫
W(v) dx.

Let us take α =
√

2 and denote

Fε(u) =
1
2
E
√

2
ε (v) =

ε

2

∫
|∇u|2 dx +

1
4ε

∫
W(u) dx.

Then, according to the above statement,

Fε
Γ
→ F(u) =

√
2

3

∫
|∇u| dx.

A.2 Miscellaneous

A.2.1 Remark about the H 1 and B seminorm equivalence. In the main case we consider the
B seminorm as computed via the periodic wavelet transform of a function defined on [0, 1]N .
The periodized scaling function φ is identically 1, therefore, the projection of any function on the
subspace V0 brings no contribution to its H 1 seminorm.

In the case of functions from H 1(RN ) the context of our discussion would require defining the
B seminorm of a function u as

|u|B =

(
|PV0u|

2
H 1 +

∞∑
j=0

22j
∫
|〈u,ψj,µ〉|

2 dµ
)1/2

.

This, however, would not alter the statement of the main theorem or any elements of its proof, since

the term ε|PV0un|
2
H 1 , where un

L1
→ u, does not contribute to the Γ -limit—it converges to 0 as ε → 0

for any sequence un approximating u = χE , E ⊂ RN . The proof is based on the same setting as
described in A.2.3 below.



WAVELET ANALOGUE OF GINZBURG–LANDAU ENERGY 523

A.2.2 Shift-invariant Besov seminorm. We use the semi-continuous wavelet transform with
discrete (dyadic) scaling and continuous translation in space rather than the entirely discrete wavelet
basis decomposition. The corresponding translation-invariant Besov seminorm (| |B,t.i.) can be
easily interpreted in terms of the discrete non-redundant wavelet transform that is used to define
the usual Besov seminorm (| |B,d.). In the argument below we assume all argument shifts to be done
over the periodic domain, i.e. all shifts are circular translations modulo 1.

|u|2B,t.i. =

∫
[0,1]N

|u(x + h)|2B,d. dh =
∫

[0,1]N

∞∑
j=0

22j
2j−1∑
ki=0

∣∣∣∣∫
[0,1]N

u(x + h)ψj,k(x) dx
∣∣∣∣2 dh

=

∞∑
j=0

22j
2j−1∑
ki=0

∫
[0,1]N

∣∣∣∣∫
[0,1]N

u(x)ψj,k+2jh(x) dx
∣∣∣∣2 dh

=

∞∑
j=0

22j2Nj
∫

[0,1]N

∣∣∣∣∫
[0,1]N

u(x)ψj,2jh(x) dx
∣∣∣∣2 dh

=

∑
22j

∫
[0,2j ]N

∣∣∣∣∫ u(x)ψj,η(x) dx
∣∣∣∣2 dη, i = 1, . . . , N.

Our numerical experiments were implemented in Matlab, with the Stationary Wavelet Transform
(swt, swt2) routines serving as a substitute for the semi-continuous wavelet transform used in our
analysis.

In the actual numerical computations the values of h are quantized, thus the translation-invariant
Besov seminorm of a 2D image of size 2N × 2N (rescaled to the domain [0, 1]2) equals

|u|2
B,t.i.{2N×2N } =

N∑
j=0

22j
2j−1∑
ki=0

2−2N
2N−1∑
mi=0

∣∣∣∣∫ u(x)2−Nψj,k+2jm2−N (x) dx
∣∣∣∣2

=

∑
24j2−4N

2j−1∑
ki=0

2N−j−1∑
mi=0

∣∣∣∣∫ u(x)ψj,k+2jm2−N (x) dx
∣∣∣∣2

=

∑
2−4(N−j)

2N−1∑
mi=0

∣∣∣∣∫ u(x)ψj,m2−N (x) dx
∣∣∣∣2, i = 1, 2.

A.2.3 A remark on asymptotics. Very often in this text we encounter situations which can be
reduced to the following statement: the ratio of two expressions expr1 and expr2 depending on the
variable J and growing as O(2J ) as J →∞ stays the same if both the numerator and denominator
are changed by values of order o(2J ) (e.g. O(J ) in Lemma 2.5):

lim
J→∞

expr1 + d1

expr2 + d2
= lim
J→∞

expr1

expr2

provided expr1 = O(2
J ), expr2 = O(2

J ) and d1 = o(2J ), d2 = o(2J ).
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A.3 Regularity of minimizers of the modified WGL energy

We consider minimizers of a modified version of the WGL energy:E(u) = WGL(u)+Λ(u),whose
Euler–Lagrange equation has the following form:

ε2∆wu− u
3
+ u− λ(u)u = 0, λ(u) is a constant with respect to x,

where ∆w denotes the wavelet Laplace operator:

∆wu(x) = −

∞∑
j=0

22j
∫ 2j

0
〈u,ψj,k〉ψj,k(x) dk.

One can prove by a standard compactness argument that the energyE has at least one minimizer.
The following lemma shows that all bounded local minimizers are C∞ smooth.

LEMMA A.1 Let a function u ∈ H 1
∩ L∞ be a solution of the above equation (either on [0, 1]N

with periodic boundary conditions or on RN ). Then u ∈ C∞.

Proof. Let us project this equation on some wavelet mode ψj,k:

(ε222j
− 1+ λ(u))〈u,ψj,k〉 = 〈u3, ψj,k〉.

This implies that the values of the wavelet transformW(u3) are asymptotically proportional to those
of W(∆wu). Now, u3

∈ H 1 because

|u3
|
2
H 1 =

∫
|∇u3(x)|2 dx = 9

∫
|u2(x)∇u(x)|2 dx 6 9‖u‖4L∞ |u|

2
H 1 .

Hence, ∆wu ∈ H 1, i.e. u ∈ H 3. In general, given u ∈ H k
∩ L∞, we have u3

∈ H k , because

|u3
|
2
H k 6 C‖u‖4L∞ |u|

2
H k .

Proceeding to higher order spaces H k and performing each step in the same manner as for k = 1
constitutes the “boot-strapping” argument that proves the lemma. 2
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