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We introduce a useful and relatively easy to check condition, local simplicity, which provides
significantly more structure to sets of finite perimeter, while not being too restrictive. Local simplicity
holds for minimizers in a wide variety of variational problems in materials science, biology, image
processing, oncology, and other fields. We prove several regularity and structural properties of
locally simple sets and their boundaries, including a vital decomposition theorem that in our setting
strengthens the conclusion of theorems of H. Federer and L. Ambrosio, V. Caselles, S. Masnou,
and J.-M. Morel. We establish strong connections between topology and sets of finite perimeter, so
that ordinary notions of openness, closedness, and connectedness may be readily used in the finite
perimeter setting.

We apply these results to an image reconstruction procedure from image processing, L1 TV-
minimization. The density ratio bounds computed to establish local simplicity are themselves of
practical importance, as they provide concrete, easy to compute criteria to check simulations against.
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1. Introduction

Sets of locally finite perimeter, those whose characteristic functions have locally bounded variation,
have become a natural setting in which to study many problems involving surfaces and interfaces, in
areas such as materials science, fluid mechanics, surface physics, image processing, oncology, and
computer vision (see, for example, [1], [2], [3], [5]–[9], [11], [12], [14]–[20], [23], [27], [28], [30],
[31], [33], [38]–[40], and the many references cited therein). They are general enough to adequately
model complex physical phenomena with singularities, they have useful local approximation
properties, and they satisfy vital compactness results which do not hold for classes of sets having
smooth boundaries.

Working in the context of sets of finite perimeter, while often desirable, introduces various
technical difficulties as a consequence of their general nature. Their reduced boundaries may contain
elaborate filigree structures even to the extent that the boundary closures have infinite volume (see
Example 9). Typically in sharp interface models we would at the very least like the boundary
closures to be (n− 1)-dimensional.

Also, in a fundamental sense the measure-theoretic and topological aspects of a set are
incompatible. Measure-theoretic aspects of a set, such as its reduced boundary, are generally
unaltered if we make changes on a set having Ln measure zero. At the other extreme, whether or
not a set is open, closed, or connected can depend significantly on a single point, and so substantial
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care needs to be taken if we are to try to use these and other topological ideas when working in the
finite perimeter setting from geometric measure theory.

Yet, these topological concepts are vital for theoretical and computational analysis in various
fields. Indeed, the importance of connectedness in image processing was a strong motivating factor
for L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel. In their paper [8], they specialized
H. Federer’s notion of indecomposable integral currents ([25, 4.2.25])—the measure-theoretic
analogues of connected sets—to the context of sets of finite perimeter. In that setting they established
results analogous to the usual topological theorems concerning connectedness, so that topology-like
connectedness arguments could be imitated in the finite perimeter setting, and so that operations
in image processing that used connectedness in that setting could be rigorously studied and
justified.

Of particular importance is their Decomposition Theorem ([8, Theorem 1]), the specialization
of ([25, 4.2.25]) to the finite perimeter setting, in which they use a new argument to show that
any set of finite perimeter may be uniquely decomposed as a countable union of disjoint, maximal
indecomposable sets in such a way that the perimeter of the set is the sum of the perimeters of its
indecomposable parts.

Our primary motivation was to find somewhat unrestrictive conditions under which sets of
finite perimeter would be measure-theoretically and topologically compatible, in order to help with
theoretical analysis, strengthen and justify computational analysis, and generally facilitate the use
of sets of finite perimeter in applications.

Since sets of finite perimeter are essentially defined only up to a set having Ln measure zero,
we will pick specific representatives from each class by choosing those points with n-dimensional
density equal to one. Thus, we will often work with Int(K) = {x ∈ Rn : Θn(K, x) = 1} instead
of K, and with Ext(K) = Int(Rn \ K) instead of Rn \ K. Practically speaking, there is no loss
of generality in doing this since K and Int(K) differ at most on a set having Ln measure 0, and
similarly for Rn \ K and Ext(K). Also, they all have the same reduced boundaries and the same
measure-theoretic boundaries (see Theorem 2).

Still, Int(K) and Ext(K) can be quite complicated objects. The key condition which strongly
links their topological and measure-theoretic properties seems to be local simplicity, defined in
Section 3. Local simplicity (see Definition 4) is general enough to hold for a wide variety of
variational problems involving sets and their boundaries. It allows us to establish strong connections
between topology and sets of finite perimeter. Many topological results and constructions that
are desirable for applications, but which do not hold for general sets of finite perimeter, may be
employed in both theoretical and computational analyses once we verify that local simplicity holds
for a given application.

The defining condition for local simplicity involves continuous lower and upper bounds to n-
dimensional density ratios to keep the densities away from 0 and 1. Such conditions (with constant
bounds) have been established for a variety of minimization problems (see, for example, [5], [10],
[17], [30], and [40]), generally as an intermediate step in trying to establish additional structural and
regularity results.

Example 14 gives some indication of how important local simplicity is if we want the measure-
theoretic and topological boundaries of Int(K) to be the same. In that example, the n-dimensional
density fails to stay away from 0 and 1 at just a single point, and ∂top(Int(K)) 6= ∂M(Int(K)).

We establish several partial regularity and structural results for locally simple sets (Theorems
7, 8, and 10, and Proposition 15). We also show that, in the setting of locally simple sets, we get
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agreement among several different notions of boundary, both measure-theoretic and topological
(Theorem 11 and Remark 12).

We give fundamental results concerning measure-theoretic and topological notions of
connectedness (Theorem 17 and Proposition 18). We also establish a decomposition theorem
(Theorem 6), expressing measure-theoretic interiors and exteriors of locally simple sets uniquely
as countable unions of disjoint, open connected sets, and we show that the perimeter of the set
is the sum of the perimeters of the components. We also show that, for locally simple sets, our
decomposition agrees exactly with that of [8, Theorem 1]. Our result therefore allows us to make
use of theorems and constructions from [8] as well.

Previously, H. Federer ([25, 4.2.25]) and L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel
([8]) had established related results, decomposing an arbitrary set of finite perimeter into pairwise
disjoint, maximal indecomposable parts.

Finally, as an example application we consider the method of L1 TV-minimization, a variational
method for image reconstruction related to the popular ROF model of L. Rudin, S. Osher, and
E. Fatemi [35]. L1 TV-minimization is a well-known method, first considered in a discrete setting
by S. Alliney and M. Nikolova (see, for example, [4] and [34]), and later in a continuous setting for
n > 2 by T. Chan and S. Esedoglu [20], W. Allard ([1], [2], [3]), and others.

We show that, under reasonable and quite general conditions, super-level sets Ey = {u > y}

associated with L1 TV-minimizers u are locally simple (Theorems 23 and 25). These results imply
that Ey has each of the regularity and structural properties given in Sections 3 and 4.

We proceed by deriving explicit continuous lower and upper bounds for the n-dimensional
density ratios Θn(Ey, x, r) at points x ∈ ∂Ey . These computed bounds are also of practical value,
since they can be used to try to eliminate some noise or uncertainty in the images and since they can
also be used to test computer implementations of the L1 TV-minimization procedure.

2. Notation and BV functions

We will measure volume and surface area in Rn (for n > 2) with n-dimensional Lebesgue
measure Ln and (n − 1)-dimensional Hausdorff measure Hn−1, respectively. We let B(p, r) and
U(p, r) denote, respectively, the closed and open balls in Rn with center p and radius r, and we set
α(n) = Ln(B(0, 1)), where 0 = (0, . . . , 0) is the origin in Rn. If A,B ⊂ Rn and 0 6 m 6 n, we
write A ⊂m B (i.e., “A isHm almost contained in B”) whenHm(A\B) = 0. If A,B ⊂ Rn, A4B
denotes the symmetric difference of A and B: A4B = (A \B)∪ (B \A); also, we write A =m B
providedHm(A4B) = 0. IfA ⊂ Rn is Ln measurable, we let χA denote the characteristic function
of A, taking the value 1 inside A and the value 0 outside A.

Given a point p ∈ Rn and a unit vector u ∈ Rn, we define the open half-spaces H+(p, u) =
{x : (x − p) · u > 0} and H−(p, u) = {x : (x − p) · u < 0}. We call a set countable if it is finite or
countably infinite.

If A ⊂ Rn, A denotes the closure of A in Rn. When A ⊂ Rn, we let ∂topA = A ∩ Rn \ A
denote the topological boundary of A. We note that x ∈ ∂topA if and only if for each r > 0 we have
U(x, r) ∩ A 6= ∅ and U(x, r) ∩ (Rn \ A) 6= ∅.

If X ⊂ Rn is Hm measurable (1 6 m 6 n) and p ∈ Rn, the m-dimensional density of X at p is

Θm(X, p) = lim
R→0+

Hm(X ∩ B(p,R))

α(m)Rm
,

provided the limit exists. When X ⊂ Rn is Ln measurable, p ∈ Rn, and R > 0, we define the
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n-dimensional density ratio of X at p in B(p,R) as

Θn(X, p,R) = Ln(X ∩ B(p,R))/Ln(B(p,R)),

and we observe that Θn(X, p) = limR→0+ Θ
n(X, p,R), provided the limit exists.

If X ⊂ Rn is Ln measurable and 0 6 d 6 1, we let Xd = {p ∈ Rn : Θn(X, p) = d} denote
the set of points at which X has density d, and we let Int(X) = X1 and Ext(X) = X0 denote
the measure-theoretic interior and measure-theoretic exterior of X, respectively. We let ∂MX =
Rn \ (Int(X) ∪ Ext(X)) denote the measure-theoretic boundary of X.

If X ⊂ Rn and p ∈ Rn, the vector u ∈ Rn is called a measure-theoretic exterior unit normal to
X at p in the sense of Federer (cf. [24], [25, 4.5.5]) provided |u| = 1, Θn(H+(p, u) ∩X, p) = 0,
and Θn(H−(p, u) \ X, p) = 0. If no such u exists, we define nX(p) = 0, while if such a u exists
it is necessarily unique ([24, Theorem 3.4]) and we define nX(p) = u.

Whenever K is an Ln measurable subset of Rn we let ∂K denote the reduced boundary of K
(see [21]–[23]) in the sense of De Giorgi. Whenever K is Ln measurable and p ∈ ∂K, nK(p) is a
unit vector. If K and L are Ln measurable subsets of Rn with Ln(K 4 L) = 0, then ∂K = ∂L.

Whenever K ⊂ Rn is Ln measurable, p ∈ ∂K, and R > 0,

Θn−1(∂K, p,R) =
Hn−1(∂K ∩ B(p,R))

α(n− 1)Rn−1

is the (n− 1)-dimensional density ratio of ∂K at p in B(p,R).
Throughout the paper,Ω will denote an open subset of Rn. Let u ∈ L1

loc(Ω).Whenever U ⊂ Ω
is open, we define the total variation of u in U as follows:

TV(u, U) = sup
φ∈C1

c (U,Rn)
|φ(x)|61 for all x∈U

{∫
x∈U

u(x) divφ(x) dLnx
}
. (1)

We can extend TV(u, ·) to be a Borel measure on Ω by setting

TV(u,E) = inf{TV(u, U) : U is an open set containing E}

for any Borel set E in Ω. Then TV(u, ·) is a Radon measure on Ω if and only if TV(u,K) < ∞
for all compact K ⊂ Ω. We note that, if u ∈ C1(Ω), then integration by parts gives TV(u,Ω) =∫
Ω
|∇u| dLn.
We let

BV(Ω) = {f : f ∈ L1(Ω), and TV(f,Ω) <∞}

denote the space of functions of bounded variation in Ω, and we let

BVloc(Ω) = {f : f ∈ L1
loc(Ω), and TV(f,K) <∞ for all compact K ⊂ Ω}

be the space of functions of locally bounded variation in Ω.
When A is an Ln measurable subset of Rn, we let P(A,Ω) = TV(χA,Ω) be the perimeter

of A in Ω; also, we say that A has finite perimeter in Ω provided P(A,Ω) < ∞, and we say
that A has locally finite perimeter in Ω provided χA ∈ BVloc(Ω). When Ω = Rn, we write
P(A) = P(A,Rn), and we let P denote the collection of all Ln measurable sets A ⊂ Rn having
finite perimeter in Rn. We have P(A) = Hn−1(∂A) <∞ whenever A ∈ P (see [22]).
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If A ⊂ Rn is Lebesgue measurable and has locally finite perimeter in Rn, we let [A] be the
multiplicity one integral n-current associated with A, defined (cf. [7, 3.1.4], [1, Definition 2.1])
according to

[A](w) =
∫
x∈A

〈e1 ∧ · · · ∧ en, w(x)〉 dLnx (2)

for each C∞ differential n-form w with compact support. We will not discuss integral currents here
in detail—see [25], [33], [29], or [7] for more details.

spt [A] is the smallest closed set Q such that

(sptw) ∩Q = ∅ ⇒ [A](w) = 0 (3)

whenever w is a smooth differential n-form with compact support ([25, 4.1.1], [33, 4.2]). For
convenience we state and prove the following elementary result, which is used several times in
this paper.

PROPOSITION 1 SupposeK is a Lebesgue measurable subset of Rn having locally finite perimeter.
Then ∂K ⊂ spt [K].

Proof. Suppose x ∈ ∂K \ spt [K], and let r > 0 be such that U(x, r) ∩ spt [K] = ∅. We can
find r ′ ∈ (0, r) so that U(x, r ′) ∩ K is very nearly a half-ball, and we can then easily construct a
C∞ differential n-form w, with compact support contained inside B(x, r ′), for which [K](w) > 0,
contradicting the definition of spt [K] as given in (3). Therefore ∂K ⊂ spt [K] and the result follows
by taking closures. 2

BV functions are intermediate between Sobolev functions and L1 functions. Specifically, we
have the inclusions

W
1,1
loc (Ω) ⊂ BVloc(Ω) ⊂ L

1
loc(Ω) and W 1,1(Ω) ⊂ BV(Ω) ⊂ L1(Ω).

BV functions are more suitable than Sobolev functions for many image processing and materials
science applications since, for instance, they include characteristic functions of fairly general subsets
of Rn. For example, if K is a bounded, Ln measurable subset of Rn, then χK ∈ BV(Rn) if and
only if K ∈ P. By contrast, W 1,1(Ω) does not contain characteristic functions of bounded, Ln
measurable subsets of Rn having C2 boundary (see [26, 1.4]). Also, unlike W 1,1(Ω), spaces of BV
functions have useful compactness properties essential for variational problems (cf. [9, Theorem
3.23]). Some excellent references that treat sets of finite perimeter and functions of bounded
variation in detail are [1], [9], [15], [23], [26], [28], and [31].

It is often preferable to work with Int(K) and Ext(K) instead of K and Rn \ K. Indeed,
Example 5 shows that the topological boundary of K can be quite difficult to control; yet, we
will find (see Theorem 11) that the topological boundaries of Int(K) and Ext(K) agree with their
measure-theoretic boundaries when K is locally simple. Theorem 2 shows that we may work with
Int(K) and Ext(K) instead of K and Rn \K without loss of generality.

THEOREM 2 (On interiors, exteriors, and boundaries) Suppose K ∈ P. Then

(i) Ln(K 4 Int(K)) = 0.
(ii) Ln((Rn \K)4 Ext(K)) = 0.

(iii) ∂(Int(K)) = ∂K = ∂(Rn \K) = ∂(Ext(K)), and in particular

P(Int(K)) = P(K) = P(Rn \K) = P(Ext(K)).
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(iv) ∂M(Int(K)) = ∂MK = ∂M(Rn \K) = ∂M(Ext(K)).
(v) ∂K ⊂ K1/2

⊂ ∂MK.

(vi) Hn−1(∂MK \ ∂K) = 0 and ∂K =n−1 K
1/2
=n−1 ∂

MK.

(vii) Hn−1(Rn \ (Int(K) ∪ ∂K ∪ Ext(K))) = 0.

Proof. The Lebesgue Differentiation Theorem implies that Ln(K \ Int(K)) = 0, and [25, 2.9.11]
shows that Ln(Int(K) \ K) = 0 if and only if K is Ln measurable. Since K is Ln measurable,
(i) holds. (ii) follows by applying the same argument to Rn \K instead ofK. That ∂K = ∂(Rn \K)
follows immediately from the definitions (see [25, 4.5.5] and [25, 4.5.6]). The first and third
equalities in (iii) follow from (i) and (ii), respectively. The equalities for perimeter follow from
these results and from [26, Remark 1.7(iii)]. Next, we compute

∂M(Rn \K) = Rn \ (Int(Rn \K) ∪ Ext(Rn \K)) = Rn \ (Ext(K) ∪ Int(K)) = ∂MK.

Whenever X, Y ∈ P and Ln(X 4 Y ) = 0, we can conclude that Int(Y ) = Int(X) and Ext(Y ) =
Ext(X) since Ln(Y ∩ U(x,R)) = Ln(X ∩ U(x,R)) for each R. Letting X = Int(K) and Y = K,
we have Int(X) = Int(K), and Ext(X) = Ext(K), so that

∂MX = Rn \ (Int(X) ∪ Ext(X)) = Rn \ (Int(K) ∪ Ext(K)) = ∂MK.

We obtain ∂M(Ext(K)) = ∂M(Rn \K) similarly, and (iv) follows.
If p ∈ ∂K, then K has a measure-theoretic exterior unit normal, nK(p), satisfying

Θn(H+(p, nK(p))∩K, p) = 0 andΘn(H−(p, nK(p))\K, p) = 0 ([25, 4.5.5]), soΘn(K, p) =

Θn(Rn \K, p) = 1/2, and thus p ∈ K1/2. Any p ∈ K1/2 has density 1/2, hence not 0 or 1, so the
second inclusion in (v) follows. The assertion that Hn−1(∂MK \ ∂K) = 0 is simply [23, Lemma
1(ii)]. The second statement of (vi) follows from the first and from (v); and (vii) follows from [25,
4.5.6]. 2

We will make use of the following standard result several times throughout this paper (see, for
example, [28, Corollary 3.7.14]).

THEOREM 3 (Relative isoperimetric inequality) There exists a constant C(n), depending only
on n, with the following property. Suppose A is an Ln measurable subset of Rn having locally
finite perimeter. Suppose U is any open ball in Rn. Then

min{Ln(A ∩ U),Ln((Rn \ A) ∩ U)}(n−1)/n 6 C(n)P (A,U).

3. Local simplicity

The following density ratio condition will be indispensable in precluding pathological boundary
behavior and in helping to establish additional regularity for boundaries of sets having locally finite
perimeter. It is frequently satisfied by minimizers to problems involving perimeter. See, for example,
[5], [7], [10], [16], [17], [26], [30], [33], and [40] for the general method of establishing density
ratio conditions. Typically, the conditions in the literature involve the functions a(x), A(x), and
δ(x) from Definition 4 being constant, so that the density ratio bounds are uniform. We establish
our results in the more general setting of continuous density ratio bounds, a setting which is more
suitable if, for instance, the sets are unbounded.
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DEFINITION 4 A set K ∈ P is called locally simple, and we write K ∈ PLS, provided ∂K 6= ∅
and there exist continuous functions δ, a,A : Rn→ [0,∞) such that δ(x) > 0 for all x ∈ ∂K and

0 < a(x) 6 Θn(K, x, R) 6 A(x) < 1 (4)

whenever x ∈ ∂K and 0 < R < δ(x).

In this paper, we will frequently work with Int(K) and Ext(K). The reason is that the condition
K ∈ PLS is not strong enough by itself to get control over topological boundaries, as demonstrated
by the following simple example in the plane.

EXAMPLE 5 Let C be a Jordan curve contained in an open ball U in the plane. Suppose
H2(C) = 0, and let K = U \ C. Then ∂topK may have infinite length, even though K ∈ PLS.

However, we will be able to get a lot of control over ∂top(Int(K)) and ∂top(Ext(K)) (see
Theorems 10 and 11) when K ∈ PLS.

We will first show that, when K ∈ PLS, the sets Int(K) and Ext(K) are open, and each may be
decomposed in a unique way into countably many pairwise disjoint, open connected components
whose perimeters add up to P(K). Thus, we derive the same useful decomposition formulas (5)
and (6) as H. Federer ([25, 4.2.25]) and L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel
([8, Theorem 1]), except in our case the sets in the decomposition are open and connected in the
usual topological sense. Since any open, connected set with finite perimeter is indecomposable ([8,
Theorem 1]—also, see Section 4), our decompositions in Theorem 6 are also decompositions into
indecomposable sets, so that when working with locally simple sets we may make use of theorems
and constructions from [8] as well.

THEOREM 6 (On decompositions in PLS) Suppose K ∈ PLS. Then

(i) Int(K) = {x : Θn(K, x) = 1} is open.
(ii) There exists a unique, countable collection {U1, U2, . . .} of pairwise disjoint, open connected

sets Ui ⊂ Rn, the connected components of Int(K), such that Int(K) =
⋃
i Ui . Moreover,

each Ui has finite perimeter, and

P(K) =
∑
i

P(Ui). (5)

(iii) Ext(K) = {x : Θn(K, x) = 0} is open.
(iv) There exists a unique, countable collection {V1, V2, . . .} of pairwise disjoint, open connected

sets Vi ⊂ Rn, the connected components of Ext(K), such that Ext(K) =
⋃
i Vi . Moreover,

each Vi has finite perimeter, and

P(K) =
∑
i

P(Vi). (6)

(v) ∂MK is closed.

Proof. Let δ, a, and A be as in Definition 4. Suppose x ∈ Int(K). To prove (i), we will construct
an r > 0 such that any z ∈ U(x, r) is also in Int(K). Since Θn(K, x, R)+Θn(Rn \K, x,R) = 1,
we also have

0 < 1− A(x) 6 Θn(Rn \K, x,R) 6 1− a(x) < 1 (7)
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whenever x ∈ ∂K and 0 < R < δ(x). If we had x ∈ ∂K = ∂(Rn \K), then (7) would imply

lim sup
R→0+

Θn(Rn \K, x,R) > 1− A(x) > 0,

so that Θn(Rn \K, x) 6= 0, contradicting x ∈ Int(K). Therefore, x /∈ ∂K.
We now define D = dist(x, ∂K) > 0. Since x ∈ Int(K), there exists an r ∈ (0,D) such that

Ln(K∩U(x, r)) > 0. If we were to haveLn((Rn\K)∩U(x, r)) > 0, then the relative isoperimetric
inequality (Theorem 3) would giveHn−1(∂K ∩U(x, r)) > 0, so that dist(x, ∂K) 6 dist(x, ∂K) <
r < D, a contradiction. Thus, Ln((Rn \ K) ∩ U(x, r)) = 0. Now, if z ∈ U(x, r), then we have
Ln(K ∩ U(z, r ′)) = α(n)(r ′)n whenever r ′ ∈ (0, r − |z − x|), so that Θn(K, z) = 1 and thus
z ∈ Int(K), so (i) follows.

Since any open set in Rn can be uniquely expressed (apart from the order of the sets, of course)
as a countable union of pairwise disjoint, open connected sets, the first part of (ii) holds. Now
consider connected components Ui and Uj (with i 6= j ) of Int(K). If x ∈ ∂Ui ∩ ∂Uj , then for each
positive integer k we have

Θn(Uk, x) =

{
1/2 if k = i or k = j,
0 otherwise.

(8)

On the other hand, x ∈ ∂Ui ∩∂Uj impliesΘn(K, x) = 1, so that x ∈ Int(K). It follows that x ∈ Uq
for some positive integer q. This implies Θn(Uq , x) = 1, which contradicts (8). In particular, we
have Hn−1(∂Ui ∩ ∂Uj ) = 0 whenever 1 6 i 6= j <∞, so that (since U1 and U2 are disjoint)

P(U1 ∪ U2) = P(U1)+ P(U2)− 2Hn−1(∂U1 ∩ ∂U2) = P(U1)+ P(U2).

An easy induction argument gives P(
⋃N
i=1 Ui) =

∑N
i=1 P(Ui) for any positive integer N.

Whenever N > 1, let XN =
⋃N
i=1 Ui, and YN =

⋃
∞

i=N+1 Ui = K \XN . Then for each N > 1,

∂XN ∩ ∂YN = ∂
( N⋃
i=1

Ui

)
∩ ∂

( ∞⋃
i=N+1

Ui

)
⊂n−1

( N⋃
i=1

∂Ui

)
∩

( ∞⋃
i=N+1

∂Ui

)
⊂

⋃
i 6=j

∂Ui ∩ ∂Uj ,

so that Hn−1(∂XN ∩ ∂YN ) = 0. Since XN and YN are disjoint, we then have

P(K) = P(XN )+ P(YN )− 2Hn−1(∂XN ∩ ∂YN ) =

N∑
i=1

P(Ui)+ P(YN ),

whenever N > 1, which implies in particular that
∑N
i=1 P(Ui) is bounded above by P(K) for

any N. Thus,
∑
∞

i=1 P(Ui) 6 P(K). Subadditivity of perimeter implies P(K) 6
∑
∞

i=1 P(Ui), so
(ii) is established.

WheneverK ∈ PLS, we also have Rn \K ∈ PLS, so we may apply (i) withK there replaced by
Rn \K to deduce that Ext(K) = Int(Rn \K) is open, as claimed in (iii). Item (iv) follows similarly,
by applying (ii) with K there replaced by Rn \ K, since P(Rn \ K) = P(K); and (v) follows at
once from (i), (iii), and the definition of ∂MK. 2

Sets in PLS have continuous (n− 1)-dimensional density ratio bounds as well.

THEOREM 7 (On (n− 1)-dimensional density ratio bounds) Suppose K ∈ PLS, and let δ be as in
Definition 4. Then there exists a continuous function f : Rn→ [0,∞) such thatΘn−1(∂K, x,R) >
f (x) > 0 whenever x ∈ ∂K and 0 < R < δ(x).
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Proof. The existence of f follows from the bounds (4) together with the relative isoperimetric
inequality (Theorem 3). 2

We now establish that locally simple sets of finite perimeter have boundaries which are not too wild.

THEOREM 8 (On boundary closures) Suppose K ∈ PLS. Then

(i) Hn−1(∂K \ ∂K) = 0.
(ii) ∂K has Hausdorff dimension n− 1.

Proof. Let δ and f be as in Theorem 7. Then

lim sup
R→0+

Θn−1(∂K, x,R) > f (x) > 0

whenever x ∈ ∂K (and in particular whenever x ∈ ∂K \ ∂K). It follows from [25, 2.10.19(4)] and
[25, 2.10.6] thatΘn−1(∂K, x) = 0 forHn−1 almost all x ∈ Rn\∂K (and therefore forHn−1 almost
all x ∈ ∂K \ ∂K in particular), so Hn−1(∂K \ ∂K) = 0, as claimed in (i). Since K ∈ PLS, we
have Ln(K) > 0 and Ln(Rn \K) > 0, so the relative isoperimetric inequality (Theorem 3) implies
Hn−1(∂K) > 0. Also, Hn−1(∂K) = P(K) <∞, so (ii) holds. 2

The topological boundary of a set of finite perimeter can be much larger than the reduced boundary;
it can even have infinite volume and surface area, as the following example from [26] shows.

EXAMPLE 9 ([26, 1.10]) Let {xi}∞i=0 be the countably infinite set of all points in Rn having rational
coordinates, and let E =

⋃
∞

i=0 U(xi, 2−i). Then Ln(E) 6 α(n)/(1 − 2−n) and Hn−1(∂E) =

P(E) 6 nα(n)/(1− 2−(n−1)) <∞, so E ∈ P. However, since the rational points are dense in Rn,
we have E = Rn, and so ∂topE = E ∩ Rn \ E = Rn \ E, so that Ln(∂topE) = ∞ and of course
Hn−1(∂topE) = ∞.

However, when K ∈ PLS we can prove a very useful result relating topological boundaries
and reduced boundaries. Int(K) will have an (n− 1)-dimensional topological boundary, which will
coincide exactly with ∂K (Theorem 10) and exactly with the measure-theoretic boundary of Int(K)
(Theorem 11).

THEOREM 10 (On topological boundaries) LetK ∈ P. Then ∂top(Int(K)) = ∂top(Ext(K)) = ∂K.
If K ∈ PLS, each of these has Hausdorff dimension n− 1, contains ∂K, and differs from ∂K (if at
all) in a set having Hn−1 measure 0.

Proof. First, suppose x ∈ ∂K. Then for any r > 0,we haveLn(K∩U(x, r)) > 0 andLn((Rn\K)∩
U(x, r)) > 0. This first condition and Theorem 2(i) imply that Int(K) ∩ U(x, r) 6= ∅. The second
condition and Theorem 2(ii) imply that Ext(K)∩U(x, r) 6= ∅, so that (Rn \ Int(K))∩U(x, r) 6= ∅.
It follows that x ∈ ∂top(Int(K)). Thus, ∂K ⊂ ∂top(Int(K)), since x was arbitrary, and so ∂K ⊂
∂top(Int(K)).

Now suppose x ∈ ∂top(Int(K)). For any r > 0, U(x, r) ∩ Int(K) 6= ∅ and U(x, r) ∩

(Rn \ Int(K)) 6= ∅. The first of these conditions implies there exists a point y ∈ U(x, r) ∩ Int(K).
By Theorem 6(i), Int(K) is open. Thus,U(y, r ′) ⊂ U(x, r)∩Int(K) for some suitably small r ′ > 0,
and so Theorem 2(i) implies Ln(K ∩ U(x, r)) > 0.

Next, we will show that Ln((Rn \ K) ∩ U(x, r)) > 0. Suppose, to the contrary, that
Ln((Rn \ K) ∩ U(x, r)) = 0, so that Ln(K ∩ U(x, r)) = α(n)rn. Then Θn(K, y) = 1 for each
y ∈ U(x, r), which implies U(x, r) ⊂ Int(K), so U(x, r) ∩ (Rn \ Int(K)) = ∅, a contradiction.
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SinceLn(K∩U(x, r)) > 0 andLn((Rn\K)∩U(x, r)) > 0, the relative isoperimetric inequality
(Theorem 3) implies Hn−1(∂K ∩ U(x, r)) > 0, so that dist(x, ∂K) < r. Since r was arbitrary, we
conclude that x ∈ ∂K, which completes the proof that ∂top(Int(K)) = ∂K. Using this result withK
replaced by Rn \K, we get

∂top(Ext(K)) = ∂top(Int(Rn \K)) = ∂(Rn \K) = ∂K.

The other stated claims follow at once from Theorem 8. 2

We now show that several different notions of boundary from the literature agree for locally simple
sets.

THEOREM 11 (On various notions of boundary) Suppose K ∈ PLS. Then

∂M(Int(K)) = ∂M(Ext(K)) = ∂MK = ∂MK = K1/2

= ∂K = ∂top(Int(K)) = ∂top(Ext(K)).

In particular, the measure-theoretic and topological boundaries of Int(K) (and also of Ext(K)) are
precisely the same. This common boundary has Hausdorff dimension n−1, contains ∂K, and differs
from ∂K (if at all) in a set having Hn−1 measure 0.

Proof. ∂M(Int(K)) = ∂M(Ext(K)) = ∂MK, because of Theorem 2. Because Int(K) and
Ext(K) are open (Theorem 6), ∂MK is closed, so the third equality holds. The sixth and seventh
equalities were shown in Theorem 10. We will now show that the measure-theoretic and topological
boundaries of Int(K) are the same, which is equivalent (by the work above) to showing that
∂MK = ∂top(Int(K)).

CLAIM 1 ∂MK ⊂ ∂K.

Proof of Claim 1. Since ∂K is closed, it suffices to show that ∂MK ⊂ ∂K, which is equivalent to
Rn \ ∂K ⊂ Rn \ ∂MK = Int(K) ∪ Ext(K). Suppose x /∈ ∂K. Since Rn \ ∂K is open, U(x, r) ⊂
Rn \ ∂K for some r > 0, and soHn−1(∂K ∩U(x, r)) = 0. By the relative isoperimetric inequality
(Theorem 3), this implies that either Ln(K ∩ U(x, r)) = 0 or Ln((Rn \ K) ∩ U(x, r)) = 0;
otherwise it would follow that Hn−1(∂K ∩ U(x, r)) > 0. In case Ln(K ∩ U(x, r)) = 0, we have
Ln((Rn \ K) ∩ U(x, r)) = α(n)rn, so at each point of U(x, r) the n-density of Rn \ K is 1, so
x ∈ U(x, r) ⊂ Ext(K) ⊂ Rn \ ∂MK. Similarly, in case Ln((Rn \ K) ∩ U(x, r)) = 0, we deduce
x ∈ Int(K) ⊂ Rn \ ∂MK. 2

CLAIM 2 ∂MK = ∂top(Int(K)).
Proof of Claim 2. Suppose x ∈ ∂MK. Since K ∈ PLS, there exist continuous functions δ, a,A :
Rn→ [0,∞) such that δ(x) > 0 for all x ∈ ∂K and

0 < a(x) 6 Θn(K, x, r) 6 A(x) < 1 (9)

whenever x ∈ ∂K and 0 < r < δ(x). By Claim 1, x ∈ ∂K, so (9) implies that Ln(K∩U(x, r)) > 0
and Ln((Rn \K) ∩U(x, r)) > 0 for all r > 0. By Theorem 2, for any r > 0 we have Ln(Int(K) ∩
U(x, r)) > 0 and Ln(Ext(K) ∩ U(x, r)) > 0, and so it follows that U(x, r) contains points in
Int(K) and in Rn \ Int(K) for each r > 0, so that x ∈ ∂top(Int(K)).

To complete the proof of the claim, we will show that ∂top(Int(K)) ⊂ ∂MK. Using the fact
that ∂MK is closed, and taking complements, this is equivalent to showing that Int(K) ∪ Ext(K) ⊂
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Rn \ ∂top(Int(K)). Suppose x ∈ Int(K). Since Int(K) is open, there exists an r > 0 such that
U(x, r) ⊂ Int(K). It follows that x /∈ ∂top(Int(K)), since otherwise each U(x, r) would contain
points inside and outside Int(K). Since Ext(K) is also open, x ∈ Ext(K) implies U(x, r) ⊂ Ext(K)
for some r > 0, which implies x /∈ ∂top(Int(K)) as before. 2

It remains to show that K1/2 is also equal to the other boundary terms. This follows from the fact
that ∂K = ∂MK, because of Theorem 2(v). 2

REMARK 12 (Other boundaries) Of course, ∂K and K1/2 need not be closed, even if K ∈ PLS—
simply take K to be a cube. However, if ∂K is closed for some K ∈ PLS then ∂K and K1/2 are
each equal to the various boundary terms in Theorem 11, as are ∂(Int(K)) and ∂(Ext(K)) because
of Theorem 2.

If we use K instead of Int(K), the topological boundary may not equal the measure-theoretic
boundary, even if K ∈ PLS, as the following example shows.

EXAMPLE 13 TakeK to be a closed ball minus its center; the center is part of ∂topK but is not part
of ∂MK (since in fact it is in Int(K)), so ∂topK 6= ∂

MK even though ∂topK is closed and K ∈ PLS.

The next example suggests the importance of local simplicity if we want topological and
measure-theoretic boundaries to be the same. In the example, ∂top(Int(K)) 6= ∂M(Int(K)) even
though the n-dimensional density of K fails to stay away from 0 and 1 only at a single point, the
origin.

EXAMPLE 14 Let Q1 be the open cube in Rn with edge length 2, with faces perpendicular to
the axes, and centered at (−1, 0, . . . , 0). Let Q2 be the open cube in Rn with edge length 2, with
faces perpendicular to the axes, and centered at (1, 0, . . . , 0). Let U1 and U2 be the open unit balls
inscribed in Q1 and Q2, respectively, and let K = U1 ∪ U2. Then Int(K) = U1 ∪ U2 ∪ {0}, where
0 is the origin. We note that 0 ∈ ∂top(Int(K)) but 0 /∈ ∂M(Int(K)), since 0 ∈ Int(K) = Int(Int(K)).

Theorem 11 allows us to strengthen the conclusion of Theorem 2(vii), if the set is locally simple.
The following result justifies intuitive arguments in which we think of a set in Rn as having an open
interior, an open exterior, and a closed, (n− 1)-dimensional boundary.

PROPOSITION 15 (On partitions by a set in PLS) Each K ∈ PLS partitions Rn exactly into an
open interior, Int(K), an open exterior, Ext(K), and a closed (n− 1)-dimensional boundary, ∂K.

Proof. The result follows at once from the definition of ∂MK, and from the fact that ∂K = ∂MK
when K ∈ PLS. 2

4. Connectedness and indecomposability

In this section we will compare the topological notion of connectedness with the measure-theoretic
notion of indecomposability, introduced by H. Federer ([25, 4.2.25]) in the context of integral
currents, and specialized to sets of finite perimeter by L. Ambrosio, V. Caselles, S. Masnou, and
J.-M. Morel in [8].

DEFINITION 16 ([8]) A set K ∈ P is indecomposable provided K cannot be written as K =
A ∪ B, where A ∩ B = ∅, Ln(A) > 0, Ln(B) > 0, and P(K) = P(A)+ P(B).
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The integral current [K] (see (2)) is indecomposable in the sense of [25, 4.2.25] if and only
if the set K is indecomposable. Neither indecomposability nor connectedness implies the other in
general, as the following theorem shows.

THEOREM 17 (On connectedness and indecomposability) Regardless of whether a set K ∈ P is
connected or not, it may be indecomposable or decomposable. This remains true even if we further
require K ∈ PLS.

Proof. Let Q1,Q2, U1, and U2 be as in Example 14. Each of the four sets below is in PLS.

Indecomposable Decomposable

Connected U(0, 1) U1 ∪ U2 ∪ {0}
Not connected Q1 ∪Q2 U(0, 1) ∪ U((5, 0, . . . , 0), 1) 2

L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel showed that, for open subsets of Rn
having finite perimeter, connectedness does imply indecomposability ([8, Proposition 2]), but not
conversely, as their example of an open disk minus its diameter demonstrates.

Indecomposable sets need not be equal (even mod Ln negligible sets) to open, connected sets
(see [8, Example 2]). The following very general proposition shows that the situation is quite
different for disconnected sets.

PROPOSITION 18 (Equivalence to disconnected sets) Suppose K is any Lebesgue measurable
subset of Rn. Then there exists a disconnected set K∗ ⊂ Rn such that K =n K∗.

Proof. If Ln(K) = 0, we can take K∗ to be any set consisting of two distinct points in Rn. If
Ln(K) > 0, then there exist p, q ∈ K with p 6= q. Let H be the hyperplane orthogonal to and
bisecting pq. Then K∗ = K \H is disconnected and satisfies K =n K∗. 2

Next, we will compare our decomposition theorem, Theorem 6, with the theorems of H. Federer
([25, 4.2.25]) and L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel ([8, Theorem 1]). Since any
open, connected set with finite perimeter is indecomposable ([8, Theorem 1]), our decompositions
in Theorem 6 are also decompositions into indecomposable sets. For comparison purposes, we will
essentially quote [8, Theorem 1], changing the notation so as to agree with our own.

THEOREM 19 (On decompositions in P; [25, 4.2.25], [8, Theorem 1]) Suppose E ∈ P. Then
there exists a unique countable family, CCM(E), of pairwise disjoint indecomposable sets {Ei}i∈I
such that Ln(Ei) > 0 for each i, and P(E) =

∑
i P(Ei). Moreover, Hn−1(Int(E) \

⋃
i Int(Ei))

= 0, and the Ei’s are maximal indecomposable sets, i.e., any indecomposable set F ⊂ E is Hn

almost contained in some set Ei .

We now show that, for locally simple sets, their decomposition theorems and ours give the same
decomposition, i.e., the decompositions into sets of finite perimeter will also be decompositions into
open, connected sets.

THEOREM 20 (On the equivalence of decompositions) Suppose K ∈ PLS. Let {U1, U2, . . .} and
{V1, V2, . . .} be the (unique) countable, pairwise disjoint collections of open, connected sets defined
in Theorem 6(ii) and (iv) respectively. Then CCM(Int(K)) = {U1, U2, . . .}, and CCM(Ext(K)) =
{V1, V2, . . .}.

Proof. According to Theorem 2 of [8], the collection of connected components and the collection
of maximal indecomposable sets of an open set A ⊂ Rn are the same provided Hn−1(∂topA) =
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Hn−1(∂MA). It suffices to show that this condition is satisfied when A = Int(K) and when A =
Ext(K) for K ∈ PLS. We calculate

Hn−1(∂top(Int(K))) = Hn−1(∂K) (Theorem 10)

= Hn−1(∂K) (Theorem 8(i))

= Hn−1(∂(Int(K))) (Theorem 2(iii))

= Hn−1(∂M(Int(K))) (Theorem 2(vi)).

Replacing K by Rn \K above gives Hn−1(∂top(Ext(K))) = Hn−1(∂M(Ext(K))). 2

5. Locally simple sets and L1 TV-minimization

Variational methods have become increasingly popular in image processing. The ROF model of L.
Rudin, S. Osher, and E. Fatemi [35] has been particularly successful, and it has led to a considerable
amount of related research in the last two decades.

In the ROF model, we have an open connected set Ω ⊂ Rn (n > 2) with Lipschitz boundary,
and a possibly noisy image s ∈ L2(Ω). The goal is to obtain a reconstructed image u ∈ L2(Ω)

which is “close” to s in some sense, and which is less noisy than s. Let

E∗λ(u) = TV(u,Ω)+ λ
∫
Ω

(u− s)2 dLn (10)

whenever λ > 0. The energy E∗λ(u) is lower semicontinuous and strictly convex, and E∗λ(u) has a
unique minimizer for each λ.

The integral in the second summand in (10) is called the fidelity term, as it is a measure of
deviation of u from s. Large values of λ result in reconstructed images u which are quite close to s
but which may not be too regular. Small values of λ result in images u that more closely resemble
TV-minimizers, so they are more regular but may be rather different from s. Thus, λ determines the
trade-off between fidelity and regularity; the method is therefore quite flexible and adaptable.

The ROF model has drawbacks, however, such as loss of contrast even for noise-free, texture-
free images in the plane. For example, if s = χD, where D = {x ∈ R2 : |x| 6 r} for some r > 0,
then u = 0 if λ 6 1/r while u = (1 − (λr)−1)χD if λ > 1/r (cf. [20]). We cannot recover the
original image s no matter which value of λ we use.

Subsequently, many variants and extensions of the model have been considered, in both discrete
and continuous settings, theoretically and computationally. One such model is L1 TV-minimization,
considered by S. Alliney and M. Nikolova (see, for example, [4] and [34]) in a discrete setting, and
later considered by T. Chan and S. Esedoglu [20] and subsequently by W. Allard (see, for example,
[1]) in a continuous setting for n > 2.We will restrict our attention hereafter to the continuous case,
with n > 2, and we will primarily adopt the notation of W. Allard from [1].

In L1 TV-minimization, the L2 norm fidelity term in E∗λ(u) above is replaced by an eponymous
L1 norm fidelity term, so that the energy to be minimized is

Eλ(u) = TV(u,Ω)+ λ
∫
Ω

|u− s| dLn, (11)

where λ > 0.
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The change from an L2 norm to an L1 norm results in major qualitative differences between
the two procedures. For instance, consider the disk example above, in which s = χD. Using L1

TV-minimization, we get unique solutions unless λ = 2/r; specifically, u = 0 if λ < 2/r, and
u = s if λ > 2/r. However, if λ = 2/r then u = cs is a solution for each c ∈ [0, 1] (see [20]).

This simple example highlights advantages and disadvantages of L1 TV-minimization, as
compared to the ROF model. There are advantages with regard to maintaining contrast but
disadvantages concerning uniqueness and stability of solutions: as this example demonstrates,
slight perturbations of λ may result in sudden and major changes in u, for critical values of λ.
The lack of uniqueness is due to the lack of strict convexity of Eλ(u). Depending on the
application, however, lack of uniqueness may be considered a feature of the model rather than a
drawback.

For an open subset Ω of Rn, we let

I (Ω) = {f : f ∈ L1(Ω) ∩ L∞(Ω), f (x) > 0 for all x ∈ Ω} (12)

denote our collection of admissible observed images s, as in [1].
Whenever f ∈ L1

loc(Ω) and K ⊂ Ω is compact, we define (cf. [1, 1.1])

k(f,K) = {g : g ∈ L1
loc(Ω), and {g 6= f } ⊂n K},

k(f ) =
⋃
{k(f,K) : K ⊂ Ω and K is compact}.

Whenever s ∈ I (Ω), we let

mloc
λ (s,Ω) = {u : u ∈ I (Ω), TV(u,Ω) <∞, and Eλ(u) 6 Eλ(f ) ∀f ∈ I (Ω) ∩ k(u)} (13)

denote the collection of local L1 TV-minimizers for s in Ω. We will investigate the local simplicity
of the super-level sets Ey = {u > y}, where u is an L1 TV-minimizer for an initial (possibly noisy)
image s ∈ I (Ω).

For 0 6 λ <∞ we define Bλ(Ω) to be the set of all f in BVloc(Ω) such that, for each compact
K ⊂ Ω (cf. [1, 1.5]),

TV(f,K) 6 TV(g,K)+ λ
∫
Ω

|f − g| dLn whenever g ∈ k(f,K).

We similarly define Cλ(Ω) to be the set of all Ln measurable subsets A of Ω such that χA ∈
BVloc(Ω) and, for each compact K ⊂ Ω (cf. [1, 1.5]),

TV(χA,K) 6 TV(χB ,K)+ λ
∫
Ω

|χA − χB | dLn whenever B ⊂ Ω with χB ∈ k(χA,K).

Whenever A is an Ln measurable subset of Ω, we have ([1, Theorem 5.3(iv)])

A ∈ Cλ(Ω) ⇔ χA ∈ Bλ(Ω). (14)

We now show that super-level sets and sub-level sets of L1 TV-minimizers satisfy continuous lower
density ratio bounds.
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LEMMA 21 (Lower density ratio bounds for L1 TV-minimizers)
Assumptions:

(a) n > 2.
(b) Ω is a non-empty open subset of Rn.
(c) s ∈ I (Ω) is an initial (possibly noisy) image.
(d) λ ∈ (0,∞).
(e) u ∈ mloc

λ (s,Ω) is an L1 TV-minimizer for s in Ω.
(f) For each y ∈ R, let Ey = {u > y}, and let [Ey] be the multiplicity one integral n-current

associated with Ey, as defined by (2).

Conclusions: For any y ∈ R,

(i) If a ∈ spt [Ey], then for all r ∈ (0, dist(a, Rn \Ω)), we have

(1+ λr)Ln(Ey ∩ U(a, r)) > e−λr ·
α(n− 1)

n
rn. (15)

(ii) If a ∈ spt [Ω \ Ey], then for all r ∈ (0, dist(a,Rn \Ω)), we have

(1+ λr)Ln((Ω \ Ey) ∩ U(a, r)) > e−λr ·
α(n− 1)

n
rn. (16)

Proof. If a ∈ Rn \ Ω then both conclusions hold vacuously, so we hereafter suppose a ∈ Ω. For
the case of L1 TV-minimization, we apply Proposition 1.1 of [1] with ε = 1/λ there to deduce that
u ∈ Bλ(Ω). Therefore,Ey = {u > y} ∈ Cλ(Ω) by [1, Theorem 5.3(i)]. In particular, the hypotheses
of Theorem 5.4 of [1] are satisfied with D there replaced by Ey . The bound (15) is the one given in
Theorem 5.4(v) of [1], whenever a ∈ Ω ∩ spt [Ey] and 0 < r < dist(a, Rn \Ω).

Since Ey ∈ Cλ(Ω), (14) implies χEy ∈ Bλ(Ω). We next apply Theorem 5.1 of [1] to deduce
that χΩ\Ey = 1 − χEy ∈ Bλ(Ω), so that Ω \ Ey ∈ Cλ(Ω). This enables us to use Theorem 5.4(v)
of [1] with D there replaced by Ω \ Ey to deduce (ii). 2

The next lemma ensures that the upper and lower density ratio bounds (19) and (20) will be strictly
between 0 and 1 when x ∈ ∂Ey, as required for local simplicity of Ey .

LEMMA 22 For any integer n > 2, and for any non-negative real numbers λ and r, we define

b(λ, r) =
α(n− 1)
nα(n)

·
e−λr

1+ λr
. (17)

If λ > 0 then b(λ, r) is strictly decreasing as a function of r, while if r > 0 then b(λ, r) is strictly
decreasing as a function of λ; moreover, for all λ, r > 0 we have

0 < b(λ, r) 6
α(n− 1)
nα(n)

<
1
2
. (18)

Proof. The first claims hold since the function f (x) = e−x/(1 + x) satisfies f ′(x) < 0 for all
x > 0, and the first two inequalities of (18) hold since 0 < f (x) 6 1 when x > 0. Because the area
integrand is strictly convex, if we replace a unit ball in Rn by a half-ball (by intersecting the ball
with a half-space passing through its center), the surface area must decrease. Thus, the surface area
change α(n−1)−(1/2)nα(n)must be negative, and this implies the rightmost inequality of (18). 2
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We can now establish the local simplicity of the sets Ey = {u > y}, for L1 TV-minimizers u. We
will treat the cases Ω = Rn and Ω 6= Rn separately since our proofs and our upper and lower
density ratio bounds will differ.

THEOREM 23 (Super-level sets of L1 TV-minimizers in Rn are locally simple) Suppose that as-
sumptions (a)–(f) of Lemma 21 hold with Ω = Rn. Then for each y ∈ R either ∂Ey = ∅ or
Ey is locally simple. In the latter case, Ey has each of the regularity and structural properties given
in Sections 3 and 4, and for each θ > 0 the set Ey also satisfies

0 < b(λ, θ) 6 Θn(Ey, x, r) 6 1− b(λ, θ) < 1 (19)

whenever x ∈ ∂Ey and 0 < r < θ. Here, b is the function from (17).

Proof. Suppose θ > 0 and ∂Ey 6= ∅. We will show that Ey satisfies Definition 4 with δ(x) ≡ θ,
a(x) ≡ b(λ, θ), and A(x) ≡ 1− b(λ, θ) for all x ∈ Rn. (18) guarantees that 0 < a(x) < A(x) < 1
whenever x ∈ ∂Ey and 0 < r < δ(x).

In the proof of Lemma 21 we showed that for all y ∈ R the set Ey is in Cλ(Ω), so that in
particular Ey is a Lebesgue measurable subset of Ω having locally finite perimeter. This allows us
to apply Proposition 1, together with (15) and Lemma 22, to deduce that

Θn(Ey, x, r) =
Ln(Ey ∩ U(x, r))

α(n)rn
> b(λ, r) > b(λ, θ) > 0

whenever x ∈ ∂Ey and 0 < r < θ. Similarly, Proposition 1, (16), and Lemma 22 imply that

Θn(Rn \ Ey, x, r) =
Ln((Rn \ Ey) ∩ U(x, r))

α(n)rn
> b(λ, r) > b(λ, θ) > 0

whenever x ∈ ∂(Rn \ Ey) = ∂Ey and 0 < r < θ. For such x and r we thus have

Θn(Ey, x, r) = 1−Θn(Rn \ Ey, x, r) < 1− b(λ, θ) < 1. 2

EXAMPLE 24 Consider one of the most common cases in applications: n = 2. We have b(λ, θ) =
(1/π)f (λθ),where f (x) = e−x/(1+x). For any λ > 0 we can have the density ratiosΘn(Ey, x, r)

uniformly bounded (approximately) between 1/π and 1− 1/π if we take θ to be sufficiently small.
Provided our resolution is large enough, taking θ to be small is not a problem.

When λ > 0 and θ > 0 are fixed, Theorem 23 gives constant lower and upper bounds to the n-
dimensional density ratiosΘn(Ey, x, r) at points x ∈ ∂Ey, out to radius θ. Since Theorem 23 holds
for any size scale θ, we can use it for several different values of θ, chosen for instance according to
the size of the noise or of various features of interest.

We now consider arbitrary non-empty open subsets Ω of Rn, with Ω 6= Rn. We need to keep
∂Ey away from ∂Ω, which may in general be highly irregular.

THEOREM 25 (Super-level sets of L1 TV-minimizers in Ω are locally simple) Suppose that as-
sumptions (a)–(f) of Lemma 21 hold, and also Ω 6= Rn. Then, for each y ∈ R for which
spt [Ey] ⊂ Ω, either ∂Ey = ∅ or Ey is locally simple. In the latter case, Ey has each of the
regularity and structural properties given in Sections 3 and 4, and Ey also satisfies

0 < b(λ, δ(x)) 6 Θn(Ey, x, r) 6 1− b(λ, δ(x)) < 1 (20)

whenever x ∈ ∂Ey and 0 < r < δ(x). Here, b is the function from (17), and δ(x) = dist(x,Rn \Ω)
for all x ∈ Rn.
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Proof. Suppose y satisfies spt [Ey] ⊂ Ω and that ∂Ey 6= ∅. We will show that Ey satisfies
Definition 4 with δ, a, and A defined for all x ∈ Rn by δ(x) = dist(x,Rn \Ω), a(x) = b(λ, δ(x)),
and A(x) = 1− b(λ, δ(x)).

By Proposition 1, ∂Ey ⊂ spt [Ey] ⊂ Ω, so that ∂Ey and Rn \ Ω are disjoint closed sets. It
follows that δ(x) > 0 for each x ∈ ∂Ey, as required. δ is Lipschitz with Lip δ = 1, so in particular
it is continuous on Rn, and therefore so are a and A.

As in the proof of Theorem 23, Ey ∈ Cλ(Ω) for each y ∈ R. It follows from Proposition 1, (15),
and Lemma 22 that

Θn(Ey, x, r) =
Ln(Ey ∩ U(x, r))

α(n)rn
> b(λ, r) > b(λ, δ(x)) > 0

whenever x ∈ ∂Ey and 0 < r < δ(x). Similarly, Proposition 1, (16), and Lemma 22 imply that

Θn(Rn \ Ey, x, r) =
Ln((Rn \ Ey) ∩ U(x, r))

α(n)rn
> b(λ, r) > b(λ, δ(x)) > 0

whenever x ∈ ∂(Rn \ Ey) = ∂Ey and 0 < r < δ(x). Finally, for such x and r we have

Θn(Ey, x, r) = 1−Θn(Rn \ Ey, x, r) < 1− b(λ, δ(x)) < 1. 2

REMARK 26 When Ω is bounded, as is often the case in applications, ∂Ey is compact. So, when
spt [Ey] ⊂ Ω, there exists a constant c(y) > 0 such that δ(x) > c(y) for all x ∈ ∂Ey . In particular,
the density ratio bounds from Theorem 25 hold at least out to the uniform radius c(y) at each
x ∈ ∂Ey .

Because b(λ, r) is decreasing as a function of λ, for fixed r, in both Theorem 23 and Theorem
25 we get tighter density ratio bounds if we decrease λ. This makes practical and intuitive sense
since, when λ decreases, the function u tries harder to minimize total variation, so we expect more
regularity.

For other regularity results, concerning smoothness and curvature bounds, see [1]–[3].

6. Conclusion

Local simplicity is a quite general condition, satisfied by many variational problems in the finite
perimeter or BV setting, in fields such as materials science, biology, image processing, and
oncology. It implies some weak regularity results, as given in Sections 3 and 4. Locally simple
sets have many properties—measure-theoretic, topological, and structural—which are desirable for
both theory and applications. For example, when K ∈ PLS the topological boundary of Int(K),
the measure-theoretic boundary of Int(K), and the closure of the reduced boundary of Int(K)
agree exactly, and each is an (n − 1)-dimensional closed set; this common boundary partitions
the rest of Rn into an open interior, Int(K), and an open exterior, Ext(K). When K ∈ PLS, the
usual decomposition of Int(K) into connected components and the decomposition of Int(K) into
maximal indecomposable sets coincide, so that standard results about connectedness from topology
and results about indecomposability from [25] and from [8] may all be used.

The explicit density ratio bounds one establishes to verify that local simplicity holds are of
practical value as well. Since they provide concrete criteria which minimizers must satisfy if the
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computational scheme is correct, they can be used, for example, to check the accuracy of computer
implementations of variational procedures, or even (as in the case of L1 TV-minimization) to
eliminate some noise or uncertainty in the minimizers.
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