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We consider a one-phase free boundary problem with variable coefficients and nonzero right hand
side. We prove that flat free boundaries are C1,α using a different approach than the classical
supconvolution method of Caffarelli. We use this result to deduce that Lipschitz free boundaries
are C1,α .

1. Introduction

Consider the following one-phase free boundary problem with variable coefficients and nonzero
right hand side: 

∑
i,j

aij (x)uij = f in Ω+(u) := {x ∈ Ω : u(x) > 0},

|∇u| = g on F(u) := ∂Ω+(u) ∩Ω,
(1.1)

with Ω a bounded domain in Rn, the coefficients aij ∈ C0,β(Ω), f ∈ C(Ω) ∩ L∞(Ω), and
g ∈ C0,β(Ω), g > 0.

In this paper we are concerned with the regularity of the set F(u), called the free boundary of u.
There is an extensive literature on the regularity of the free boundary for this type of problem when
f ≡ 0. In the case of the Laplace operator, Caffarelli proved in his pioneer work [C1] that Lipschitz
free boundaries are C1,α , while in [C2] he showed that “flat” free boundaries are Lipschitz. The
key step of the method in [C1, C2] consists in finding a family of comparison subsolutions using
supconvolutions on balls of variable radii.

Higher regularity of the free boundary follows from the classical work of Kinderlehrer and
Nirenberg [KN].

Regularity results in the spirit of [C1, C2] have been subsequently proved for more general
operators. In [W1, W2] Wang considered concave fully nonlinear uniformly elliptic operators of
the form F(D2u). The work [C1] was extended by Feldman [F1, F2] to a class of nonconcave fully
nonlinear uniformly elliptic operators of the typeF(D2u,Du) and to certain nonisotropic problems.
For operators with variable coefficients regularity results are proved in the work of Cerruti, Ferrari
and Salsa [CFS], and Ferrari and Salsa [FS1, FS2]. Also, Ferrari and then Argiolas and Ferrari
in [Fe, AF] considered a class of fully nonlinear operators of the form F(D2u, x) with Hölder
dependence on x.

The results cited above follow the guidelines of [C1, C2]. One purpose of this paper is to provide
a different method of proving that flat free boundaries areC1,α . The approach we use is quite flexible
since it easily applies to more general nonlinear operators, even degenerate ones, and it also applies
to two-phase problems.

In particular, when dealing with operators with variable coefficients we easily deduce that
Lipschitz free boundaries are C1,α. In fact our flatness result allows us to use a blow-up argument
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and reduce the problem to the case of constant coefficients operators. Our strategy is largely inspired
by the work of Savin [S].

We now state our main results (for the precise definition of viscosity solutions we refer the
reader to Section 2). We assume that the matrix (aij (x)) is positive definite.

THEOREM 1.1 (Flatness implies C1,α) Let u be a viscosity solution to (1.1) in B1. Assume that
0 ∈ F(u), g(0) = 1 and aij (0) = δij . There exists a universal constant ε̄ > 0 such that, if the graph
of u is ε̄-flat in B1, i.e.

(xn − ε̄)
+ 6 u(x) 6 (xn + ε̄)

+, x ∈ B1, (1.2)

and
[aij ]C0,β (B1)

6 ε̄, ‖f ‖L∞(B1) 6 ε̄, [g]C0,β (B1)
6 ε̄, (1.3)

then F(u) is C1,α in B1/2.

THEOREM 1.2 (Lipschitz implies C1,α) Let u be a viscosity solution to (1.1). Assume that 0 ∈
F(u) and g(0) > 0. If F(u) is a Lipschitz graph in a neighborhood of 0, then F(u) is C1,α in a
(smaller) neighborhood of 0.

In the theorem above, the size of the neighborhood where F(u) is C1,α depends on the radius ρ
of the ball Bρ where F(u) is Lipschitz, on the Lipschitz norm of F(u), on [aij ]C0,β (Bρ )

, ‖g‖C0,β (Bρ )
,

and ‖f ‖L∞(Bρ ).
We remark that the assumptions on the coefficients aij (x) in Theorem 1.1 can be weakened to a

Cordes–Nirenberg type condition

‖aij − δij‖L∞(B1) 6 δ(n).

As already pointed out, our strategy of the proof of Theorem 1.1 is inspired by [S]. The main
idea is to show that the graph of u enjoys an “improvement of flatness” property, that is, if the graph
of u oscillates ε away from a hyperplane in B1, then in Br0 it oscillates εr0/2 away from possibly
a different hyperplane. The key tool in proving this property will be a Harnack type inequality for
solutions to a one-phase free boundary problem.

Theorem 1.2 will follow via a blow-up argument from Theorem 1.1 and the classical theory
in [C1].

The problem (1.1), in which a right hand side appears, is not specifically dealt with in any of
the previous cited works. Our interest in this problem arises in connection with the question of the
regularity of the free surface which occurs in the classical hydrodynamical problem for traveling
two-dimensional gravity water-waves with vorticity. There has been considerable interest in this
problem in recent years, starting with the systematic study of Constantin and Strauss [CS].

The physical situation is the following: a traveling wave of an incompressible, inviscid, heavy
fluid moves with constant speed over a horizontal surface. Since the fluid is incompressible, the flow
can be described by a stream function u which solves the following free boundary problem (in 2D):

∆u = −γ (u) in Ω := {(x, y) ∈ R2 : 0 < u(x, y) < B},

u = B on y = 0,

|∇u|2 + 2gy = Q on S := {u = 0},

with B, g fixed constants, γ a given vorticity function and Q a parameter. Of special interest are
those free boundaries which are given by the graph of a function y = ψ(x). In the regions where ψ
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is decreasing (resp. increasing) the free boundary is Lipschitz with respect to the direction e1 + e2
(resp. e2 − e1) and moreover Q− 2gy > 0. As a consequence of Theorem 1.2, the free boundary is
smooth in these regions.

The free boundary is not expected to be smooth at the so-called stagnation points where
Q = 2gy. At such points, the profile of an irrotational wave (γ ≡ 0) has a corner with included
angle of 120◦. This was conjectured by Stokes and it was proved by Amick, Fraenkel, and Toland
[AFT], and by Plotnikov [P]. The case γ 6= 0 was investigated by Varvaruca in [V] and recently by
Varvaruca and Weiss in [VW].

The paper is organized as follows. In Section 2 we introduce notation and definitions and we
prove a regularity result for viscosity solutions to a Neumann problem which we will use in the
proof of Theorem 1.1. Next, in Section 3, we present the statement of our Harnack inequality and we
exhibit its proof. In Section 4, we state and prove the “improvement of flatness” lemma. Finally, in
Section 5, we provide the proofs of Theorems 1.1 and 1.2. We conclude the paper with an Appendix
in which we prove the standard Lipschitz continuity and nondegeneracy of solutions to a one-phase
free boundary problem.

2. Preliminaries

In this section we provide notation and definitions used throughout the paper. We also present an
auxiliary result which will be used in the proof of our main Theorem 1.1.

Notation. For any continuous function u : Ω ⊂ Rn→ R we denote

Ω+(u) := {x ∈ Ω : u(x) > 0}, F (u) := ∂Ω+(u) ∩Ω.

We refer to the set F(u) as the free boundary of u, while Ω+(u) is its positive phase (or side).

We now state the definition of viscosity solution to the problem under consideration, that is,
∑
i,j

aij (x)uij = f in Ω+(u),

|∇u| = g on F(u).
(2.1)

Here Ω is a bounded domain in Rn, aij ∈ C0,β(Ω), f ∈ C(Ω) ∩ L∞(Ω), g ∈ C0,β(Ω), and
g > 0.

First we need the following standard notion.

DEFINITION 2.1 Given u, ϕ ∈ C(Ω), we say that ϕ touches u from below (resp. above) at x0 ∈ Ω

if u(x0) = ϕ(x0) and

u(x) > ϕ(x) (resp. u(x) 6 ϕ(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that ϕ touches u strictly from below (resp. above).

DEFINITION 2.2 Let u be a nonnegative continuous function in Ω . We say that u is a viscosity
solution to (2.1) in Ω if the following conditions are satisfied:

(i)
∑
i,j aij (x)uij = f in Ω+(u) in the viscosity sense, i.e. if ϕ ∈ C2(Ω+(u)) touches u from

below (resp. above) at x0 ∈ Ω
+(u) then∑

i,j

aij (x0)ϕij (x0) 6 f (x0) (resp.
∑
i,j

aij (x0)ϕij (x0) > f (x0)).
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(ii) If ϕ ∈ C2(Ω) and ϕ+ touches u from below (resp. above) at x0 ∈ F(u) and |∇ϕ|(x0) 6= 0 then

|∇ϕ|(x0) 6 g(x0) (resp. |∇ϕ|(x0) > g(x0)).

Viscosity solutions are introduced to be able to use comparison techniques. To this end, we will
need the following notion of comparison subsolution/supersolution.

DEFINITION 2.3 Let v ∈ C2(Ω). We say that v is a strict (comparison) subsolution (resp.
supersolution) to (2.1) in Ω if the following conditions are satisfied:

(i)
∑
i,j aij (x)vij > f (x) (resp. < f (x)) in Ω+(v).

(ii) If x0 ∈ F(v), then

|∇v|(x0) > g(x0) (resp. 0 < |∇v|(x0) < g(x0)).

Notice that, by the implicit function theorem, if v is a strict subsolution/supersolution then F(v)
is a C2 hypersurface.

The following lemma is an immediate consequence of the definitions above.

LEMMA 2.4 Let u, v be respectively a solution and a strict subsolution to (2.1) in Ω . If u > v+

in Ω then u > v+ in Ω+(v) ∪ F(v).

Notation. Hereafter Bρ(x0) ⊂ Rn denotes the open ball of radius ρ centered at x0, and Bρ =
Bρ(0). A positive constant depending only on the dimension n is called a universal constant. We
often use c, ci to denote small universal constants, and C,Ci to denote large universal constants.

Our main Theorem 1.1 will follow from the regularity properties of solutions to the classical
Neumann problem for the Laplace operator. Precisely, we consider the following boundary value
problem: {

∆ũ = 0 in Bρ ∩ {xn > 0},
ũn = 0 on Bρ ∩ {xn = 0}.

(2.2)

We use the notion of viscosity solution to (2.2). For completeness (and for lack of references),
we recall standard notions and we prove regularity of viscosity solutions.

DEFINITION 2.5 Let ũ be a continuous function on Bρ ∩ {xn > 0}. We say that ũ is a viscosity
solution to (2.2) if given a quadratic polynomial P(x) touching ũ from below (resp. above) at
x̄ ∈ Bρ ∩ {xn > 0},

(i) if x̄ ∈ Bρ ∩ {xn > 0} then ∆P 6 0 (resp. ∆P > 0), i.e. ũ is harmonic in the viscosity sense;
(ii) if x̄ ∈ Bρ ∩ {xn = 0} then Pn(x̄) 6 0 (resp. Pn(x̄) > 0).

REMARK Notice that in the definition above we can choose polynomials P that touch ũ strictly
from below/above (replace P by Pη(x) = P(x)− η(xn − x̄n)2 and then let η go to 0).

Also, it suffices to verify that (ii) holds for polynomials P̃ with ∆P̃ > 0. Indeed, let P touch ũ
from below at x̄. Then

P̃ = P − η(xn − x̄n)+ C(η)(xn − x̄n)
2

touches ũ from below at x̄ (for a sufficiently small constant η > 0 and a large constant C > 0
depending on η) and satisfies

∆P̃ > 0, P̃n(x̄) = Pn(x̄)− η.
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If (ii) holds for strictly subharmonic polynomials, we get P̃n(x̄) 6 η, which by letting η go to 0
implies Pn(x̄) 6 0.

LEMMA 2.6 Let ũ be a viscosity solution to (2.2). Then ũ is a classical solution to (2.2). In
particular, ũ ∈ C∞(Bρ ∩ {xn > 0}).

Proof. Let

u∗(x) =

{
ũ(x) if x ∈ Bρ ∩ {xn > 0},
ũ(x′,−xn) if x ∈ Bρ ∩ {xn < 0},

where x′ = (x1, . . . , xn−1).

We claim that u∗ is harmonic (in the viscosity sense), and hence smooth, in Bρ . Indeed, let P
be a polynomial touching u∗ at x̄ ∈ Bρ strictly from below. We need to show that ∆P 6 0. Clearly,
we only need to consider the case when x̄ ∈ {xn = 0}.

Consider the polynomial

S(x) =
P(x)+ P(x′,−xn)

2
.

Then
∆S = ∆P, Sn(x

′, 0) = 0. (2.3)

Also, S still touches u∗ strictly from below at x̄. Now, consider the family of polynomials

Sε = S + εxn, ε > 0.

For ε small Sε will touch u∗ from below at some point xε.
If xε belongs to {xn = 0}, since Sε touches ũ from below at xε and ũn(x′, 0) = 0 in the viscosity

sense, we obtain
(Sε)n(x

′
ε, 0) 6 0, i.e. Sn(x

′
ε, 0)+ ε 6 0,

contradicting (2.3).
Thus xε ∈ Bρ \ {xn = 0} and hence ∆S = ∆P 6 0.
In conclusion, u∗ is harmonic in Bρ and our statement immediately follows. 2

3. A Harnack inequality

In this section we will prove a Harnack type inequality for a solution u to our problem
∑
i,j

aij (x)uij = f in Ω+(u),

|∇u| = g on F(u),
(3.1)

under the assumption (0 < ε < 1)

‖f ‖L∞(Ω) 6 ε2, ‖g − 1‖L∞(Ω) 6 ε2, ‖aij − δij‖L∞(Ω) 6 ε. (3.2)

This theorem roughly says that if the graph of u oscillates εr away from x+n in Br , then
it oscillates (1 − c)εr in Br/20. A corollary of this theorem will be a key tool in the proof of
Theorem 1.1.
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THEOREM 3.1 (Harnack inequality) There exists a universal constant ε̄ such that if u solves (3.1)–
(3.2), and for some point x0 ∈ Ω

+(u) ∪ F(u),

(xn + a0)
+ 6 u(x) 6 (xn + b0)

+ in Br(x0) ⊂ Ω (3.3)

with
b0 − a0 6 εr, ε 6 ε̄,

then
(xn + a1)

+ 6 u(x) 6 (xn + b1)
+ in Br/20(x0)

with
a0 6 a1 6 b1 6 b0, b1 − a1 6 (1− c)εr,

and 0 < c < 1 universal.

From this statement we immediately get the desired corollary to be used in the proof of our main
result. Precisely, if u satisfies (3.3) with r = 1, then we can apply the Harnack inequality repeatedly
to obtain

(xn + am)
+ 6 u(x) 6 (xn + bm)

+ in B20−m(x0)

with
bm − am 6 (1− c)mε

for all m’s such that
(1− c)m20mε 6 ε̄.

This implies that for all such m’s, the oscillation of the function

ũε(x) =
u(x)− xn

ε

in (Ω+(u) ∪ F(u)) ∩ Br(x0), r = 20−m, is less than (1− c)m = 20−γm = rγ . Thus, the following
corollary holds.

COROLLARY 3.2 Let u be a solution to (3.1)–(3.2) satisfying (3.3) for r = 1. Then in B1(x0),
ũε has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e. for all x ∈ (Ω+(u)∪
F(u)) ∩ B1(x0) with |x − x0| > ε/ε̄,

|ũε(x)− ũε(x0)| 6 C|x − x0|
γ .

The proof of the Harnack inequality relies on the following lemma.

LEMMA 3.3 There exists a universal constant ε̄ > 0 such that if u is a solution to (3.1)–(3.2) in B1
with 0 < ε 6 ε̄ and u satisfies

p(x)+ 6 u(x) 6 (p(x)+ ε)+, x ∈ B1, p(x) = xn + σ, |σ | < 1/10, (3.4)

then if at x̄ = 1
5en,

u(x̄) > (p(x̄)+ ε/2)+, (3.5)

then
u > (p + cε)+ in B1/2 (3.6)
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for some 0 < c < 1. Analogously, if

u(x̄) 6 (p(x̄)+ ε/2)+,

then
u 6 (p + (1− c)ε)+ in B1/2.

Proof. We prove the first statement. Clearly, from (3.4),

u > p in B1. (3.7)

Let
w = c(|x − x̄|−γ − (3/4)−γ )

be defined in the closure of the annulus

A := B3/4(x̄) \ B1/20(x̄).

The constant c is such that w satisfies the boundary conditions{
w = 0 on ∂B3/4(x̄),

w = 1 on ∂B1/20(x̄).

Also, since ‖aij − δij‖L∞(B1) 6 ε the matrix (aij ) is uniformly elliptic and we can choose the
constant γ universal so that ∑

i,j

aij (x)wij > δ > 0 in A,

with δ universal. Extend w to be equal to 1 on B1/20(x̄).

Notice that since |σ | < 1/10 using (3.7) we get

B1/10(x̄) ⊂ B
+

1 (u). (3.8)

Also,
B1/2 ⊂⊂ B3/4(x̄) ⊂⊂ B1.

Since in view of (3.7)–(3.8), u − p > 0 and solves a uniformly elliptic equation in B1/10(x̄)

with right-hand side f , we can apply the Harnack inequality to obtain

u(x)− p(x) > c(u(x̄)− p(x̄))− C‖f ‖L∞ in B1/20(x̄). (3.9)

From (3.5) and the first inequality in (3.2) we conclude that (for ε small enough)

u− p > cε − Cε2 > c0ε in B1/20(x̄). (3.10)

Now set
v(x) = p(x)+ c0ε(w(x)− 1), x ∈ B3/4(x̄), (3.11)

and for t > 0,
vt (x) = v(x)+ t, x ∈ B3/4(x̄).
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Notice that ∑
ij

aij (x)(vt )ij > c0δε > ε2 in A.

According to (3.7) and the definition of vt we have

v0(x) = v(x) 6 p(x) 6 u(x), x ∈ B3/4(x̄).

Let t̄ be the largest t > 0 such that

vt (x) 6 u(x) in B3/4(x̄).

We want to show that t̄ > c0ε. Then, using the definition (3.11) of v(x) we get

u(x) > v(x)+ t̄ > p(x)+ c0εw(x)

and hence, since on B1/2 ⊂ B3/4(x̄) one has w(x) > c2 for some universal constant c2, we obtain

u(x)− p(x) > cε on B1/2

as desired.
Suppose t̄ < c0ε. Then at some x̃ ∈ B3/4(x̄) we have

vt̄ (x̃) = u(x̃).

We show that such a touching point can only occur on B1/20(x̄). Indeed, since w ≡ 0 on ∂B3/4(x̄),
from the definition of vt we get

vt̄ (x) = p(x)− c0ε + t̄ on ∂B3/4(x̄).

Using that t̄ < c0ε together with the fact that u > p we then obtain

vt̄ < u on ∂B3/4(x̄).

We now show that x̃ cannot belong to the annulus A. As already observed,∑
ij

aij (x)(vt̄ )ij > ε2 in A

and also
|∇vt̄ | > |vn| = |1+ c0εwn| in A. (3.12)

We claim that
wn(x) > c1 on {vt̄ 6 0} ∩ A,

for a universal constant c1.

Indeed, since w is radially symmetric,

wn(x) = |∇w(x)|νx · en, x ∈ A,
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where νx is the unit direction of x− x̄. Clearly from the formula for w we get |∇w| > c on A. Also,
νx · en is bounded below in the region {vt̄ 6 0} ∩ A, since for ε small enough,

{vt̄ 6 0} ∩ A ⊂ {p 6 c0ε} = {xn 6 −σ + c0ε} ⊂ {xn < 3/20},

and x̄ = 1
5en.

Hence, from (3.12) we deduce that

|∇vt̄ | > 1+ c2ε on {vt̄ 6 0} ∩ A.

In particular, for ε small enough and in view of the second inequality in (3.2),

|∇vt̄ |(x) > 1+ ε2 > g(x) for x ∈ A ∩ F(vt̄ ).

Thus, vt̄ is a strict subsolution to (3.1) in A and according to Lemma 2.4 since u solves (3.1) in B1,
x̃ cannot belong to A. Therefore, x̃ ∈ B1/20(x̄) and

u(x̃) = vt̄ (x̃) 6 p(x̃)+ t̄ < p(x̃)+ c0ε,

which implies
u(x̃)− p(x̃) < c0ε,

contradicting (3.10).
The second statement follows by a similar argument. 2

We are now ready to give the proof of the Harnack inequality.

Proof of Theorem 3.1. Assume without loss of generality

x0 = 0, r = 1.

According to (3.3),
p(x)+ 6 u(x) 6 (p(x)+ ε)+ in B1

with p(x) = xn + a0. If |a0| < 1/10 then we can apply the previous Lemma 3.3, and the desired
statement immediately follows.

Now suppose otherwise. If a0 < −1/10, then (for ε small) 0 belongs to the zero phase of
(p(x)+ ε)+, which implies that 0 also belongs to the zero phase of u, a contradiction.

If a0 > 1/10 then B1/10 ⊂ B+1 (u), and the conclusion follows by the classical Harnack
inequality in B1/10 as long as ε is small enough. 2

4. Improvement of flatness

In this section we present the main “improvement of flatness” lemma, from which Theorem 1.1 will
easily follow via an iterative argument.

LEMMA 4.1 (Improvement of flatness) Let u be a solution to (3.1)–(3.2) in B1 satisfying

(xn − ε)
+ 6 u(x) 6 (xn + ε)

+ for x ∈ B1, (4.1)

and with 0 ∈ F(u). If 0 < r 6 r0 for r0 a universal constant and 0 < ε 6 ε0 for some ε0 depending
on r , then

(x · ν − rε/2)+ 6 u(x) 6 (x · ν + rε/2)+ for x ∈ Br , (4.2)

with |ν| = 1 and |ν − en| 6 Cε2 for a universal constant C.
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Proof. We divide the proof into three steps. We use the following notation:

Ωρ(u) := (B+1 (u) ∪ F(u)) ∩ Bρ .

Step 1: Compactness. Fix r 6 r0 with r0 universal (the precise r0 will be given in Step 3). Assume
for contradiction that we can find a sequence εk → 0 and a sequence uk of solutions to (3.1) in B1
with coefficients akij , right hand side fk and free boundary condition gk satisfying (3.2), such that
uk satisfies (4.1), i.e.

(xn − εk)
+ 6 uk(x) 6 (xn + εk)

+ for x ∈ B1, 0 ∈ F(uk), (4.3)

but it does not satisfy the conclusion (4.2) of the lemma.
Set

ũk(x) =
uk(x)− xn

εk
, x ∈ Ω1(uk).

Then (4.3) gives
−1 6 ũk(x) 6 1 for x ∈ Ω1(uk). (4.4)

From Corollary 3.2, it follows that the function ũk satisfies

|ũk(x)− ũk(y)| 6 C|x − y|γ (4.5)

for C universal and
|x − y| > εk/ε̄, x, y ∈ Ω1/2(uk).

From (4.3) it clearly follows that F(uk) converges to B1 ∩ {xn = 0} in the Hausdorff distance. This
fact and (4.5) together with Ascoli–Arzelà give that as εk → 0 the graphs of the ũk over Ω1/2(uk)

converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous
function ũ over B1/2 ∩ {xn > 0}.

Step 2: Limiting solution. We now show that ũ solves{
∆ũ = 0 in B1/2 ∩ {xn > 0},
ũn = 0 on B1/2 ∩ {xn = 0},

(4.6)

in the sense of Definition 2.5.
Let P(x) be a quadratic polynomial touching ũ at x̄ ∈ B1/2 ∩ {xn > 0} strictly from below. We

need to show that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P(x̄) 6 0;
(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) 6 0.

Since ũk → ũ in the sense specified above, there exist points xk ∈ Ω1/2(uk), xk → x̄, and
constants ck → 0 such that

P(xk)+ ck = ũk(xk) (4.7)

and
ũk > P + ck in a neighborhood of xk. (4.8)

From the definition of ũk , (4.7) and (4.8) read

uk(xk) = Q(xk)
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and
uk(x) > Q(x) in a neighborhood of xk

where
Q(x) = εk(P (x)+ ck)+ xn.

We now distinguish two cases.
(i) If x̄ ∈ B1/2 ∩ {xn > 0} then xk ∈ B+1/2(uk) (for k large) and hence, since Q touches uk from

below at xk , we get ∑
i,j

akij (xk)Qij = εk
∑
i,j

akij (xk)Pij 6 fk(xk) 6 ε2
k .

Thus, in view of the last inequality in (3.2),

∆P =
∑
i,j

(δij − a
k
ij (xk))Pij +

∑
i,j

akij (xk)Pij 6 Cεk.

Passing to the limit as k→+∞ we conclude that ∆P 6 0 as desired.
(ii) If x̄ ∈ B1/2 ∩ {xn = 0}, as observed in the Remark following Definition 2.5, we can assume

that ∆P > 0. We claim that for k large enough, xk ∈ F(uk). Otherwise xkn ∈ B
+

1 (ukn) for a
subsequence kn→∞ and as in case (i),

∆P 6 Cεkn .

Letting kn→∞ we contradict the fact that P is strictly subharmonic. Thus xk ∈ F(uk) for k large.
Now notice that

∇Q = εk∇P + en,

thus, for k large, |∇Q| > 0. Since Q+ touches uk from below,

|∇Q|(xk) 6 gk(xk) 6 1+ ε2
k ,

which gives
|∇Q|2(xk) = ε

2
k |∇P |

2(xk)+ 1+ 2εkPn(xk) 6 1+ 3ε2
k ,

and thus (after division by εk)

εk|∇P |
2(xk)− 3εk + 2Pn(xk) 6 0.

Passing to the limit as k→+∞ we obtain Pn(x̄) 6 0 as desired.

Step 3: Improvement of flatness. From the previous step, ũ solves (4.6) and from (4.4),

−1 6 ũ 6 1 in B1/2 ∩ {xn > 0}.

From Lemma 2.6 and the bound above we find that, for the given r ,

|ũ(x)− ũ(0)−∇ũ(0) · x| 6 C0r
2 in Br ∩ {xn > 0},

for a universal constant C0. In particular, since 0 ∈ F(ũ) and also ũn(0) = 0, we obtain

x′ · ν̃ − C0r
2 6 ũ(x) 6 x′ · ν̃ + C0r

2 in Br ∩ {xn > 0},
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with ν̃i = ũi(0), i = 1, . . . , n − 1, |ν̃| 6 C̃, C̃ a universal constant. Therefore, for k large enough
we get

x′ · ν̃ − C1r
2 6 ũk(x) 6 x′ · ν̃ + C1r

2 in Ωr(uk).

From the definition of ũk the inequality above reads

εkx
′
· ν̃ + xn − εkC1r

2 6 uk 6 εkx
′
· ν̃ + xn + εkC1r

2 in Ωr(uk). (4.9)

Set

ν =
(εk ν̃, 1)√
ε2
k + 1

.

Since, for k large, 1 6
√
ε2
k + 1 6 1+ ε2

k/2, we deduce from (4.9) that

x · ν − ε2
kr/2− C1r

2εk 6 uk 6 x · ν + ε2
kr/2+ C1r

2εk in Ωr(uk).

In particular, if r0 is such that C1r0 6 1/4 and also k is large enough so that εk 6 1/2 we obtain

x · ν − εkr/2 6 uk 6 x · ν + εkr/2 in Ωr(uk),

which together with (4.3) implies that

(x · ν − εkr/2)+ 6 uk 6 (x · ν + εkr/2)+ in Br .

Thus the uk satisfy the conclusion of the lemma, and we have reached a contradiction. 2

5. The proofs of Theorems 1.1 and 1.2

In this section we finally present the proofs of our main theorems.

Proof of Theorem 1.1. Let u be a viscosity solution to (1.1) in B1 with 0 ∈ F(u), g(0) = 1 and
aij (0) = δij . Consider the sequence of rescalings

uk(x) :=
u(ρkx)

ρk
, x ∈ B1,

with ρk = r̄k, k = 0, 1, . . . , for a fixed r̄ such that

r̄β 6 1/4, r̄ 6 r0,

with r0 the universal constant of Lemma 4.1.
Each uk solves (1.1) in B1 with coefficients akij (x) = aij (ρkx), right hand side fk(x) :=

ρkf (ρkx), and free boundary condition gk(x) := g(ρkx). For the chosen r̄ , by taking ε̄ = ε0(r̄)
2

the assumption (3.2) holds for ε = εk := 2−kε0(r̄). Indeed, in B1, in view of (1.3),

|fk(x)| 6 ‖f ‖L∞ρk 6 ε̄r̄k 6 ε2
k ,

|gk(x)− 1| = |g(ρkx)− g(0)| 6 [g]0,βρ
β
k 6 ε̄r̄kβ 6 ε2

k ,

|akij (x)− δij | = |aij (ρkx)− aij (0)| 6 [aij ]0,βρ
β
k 6 ε̄r̄kβ 6 εk.
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The hypothesis (1.2) guarantees that for k = 0 also the flatness assumption (4.1) in Lemma 4.1
is satisfied by u0. Then it easily follows by induction on k and Lemma 4.1 that each uk is εk-flat
in B1 in the sense of (4.1). Now, a standard iteration argument gives the desired statement. 2

Proof of Theorem 1.2. Let u be a viscosity solution to (1.1) with 0 ∈ F(u) and g(0) > 0. Without
loss of generality, assume g(0) = 1. Also, for simplicity we take aij (0) = δij .

Consider the blow-up sequence

uk := uδk (x) = u(δkx)/δk,

with δk → 0 as k→∞. As in the previous theorem, each uk solves (1.1) with coefficients akij (x) =
aij (δkx), right hand side fk(x) := δkf (δkx), and free boundary condition gk(x) := g(δkx). For k
large, the assumption (1.3) is satisfied for the universal constant ε̄. In fact, in B1,

|fk(x)| = δk|f (δkx)| 6 δk‖f ‖L∞ 6 ε̄,

|gk(x)− 1| = |gk(x)− g(0)| 6 [gk]0,β = δ
β
k [g]0,β 6 ε̄,

|akij (x)− δij | = |aij (δkx)− aij (0)| 6 [aij (δkx)]0,β = δ
β
k [aij ]0,β 6 ε̄.

Thus, using nondegeneracy and uniform Lipschitz continuity of the uk’s (see Appendix for a proof
of these properties), standard arguments (see for example [AC]) imply that (up to extracting a
subsequence):

(i) uk → u0 < 1,
(ii) ∂{uk > 0} → ∂{u0 > 0} locally in the Hausdorff distance,

for a globally defined function u0 : Rn → R. The blow-up limit u0 is a global solution to the free
boundary problem {

∆u0 = 0 in {u0 > 0},
|∇u0| = 1 on F(u0),

(5.1)

and since F(u) is a Lipschitz graph in a neighborhood of 0 we also see from (i)–(ii) that F(u0) is
Lipschitz continuous. Thus, it follows from [C1] that u0 is a so-called one-plane solution, i.e. (up
to rotations) u0 = x

+
n . Combining the facts above, one concludes that for all k large enough, uk is

ε̄-flat say in B1, i.e.
(xn − ε̄)

+ 6 uk(x) 6 (xn + ε̄)
+, x ∈ B1.

Thus uk satisfies the assumptions of Theorem 1.1, and our conclusion follows. 2

6. Appendix

We sketch here the proof of a standard result, that is, Lipschitz continuity and nondegeneracy of a
solution u to (3.1)–(3.2).

LEMMA 6.1 Let u be a solution to (3.1)–(3.2) with ε 6 ε̃ a universal constant. If F(u) ∩ B1 6= ∅

and F(u) is a Lipschitz graph in B2, then u is Lipschitz and nondegenerate in B+1 (u), i.e.

c0d(z) 6 u(z) 6 C0d(z) for all z ∈ B+1 (u),

with d(z) = dist(z, F (u)) and c0, C0 universal constants.
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Proof. Assume without loss of generality that 0 ∈ B+1 (u) and set d := d(0).
Consider the rescaled function

ũ(x) = u(dx)/d, x ∈ B1.

Clearly ũ still satisfies (1.1) in B1 with coefficients ãij (x) = aij (dx), right hand side f̃ (x) =
df (dx) and free boundary condition g̃(x) = g(dx). Since d 6 1, the assumption (3.2) holds. We
wish to show that

c0 6 ũ(0) 6 C0.

Assume for contradiction that ũ(0) > C0, with C0 to be made precise later.
To construct a subsolution, we use the same function as in Lemma 3.3. Precisely, let

G(x) = C(|x|−γ − 1)

be defined on the closure of the annulus B1 \ B1/2. In view of the uniform ellipticity of the
coefficients, we can choose γ large universal so that (for ε small)∑

ij

ãijGij > ε2 on B1 \ B1/2

and we can choose C so that
G = 1 on ∂B1/2.

By the Harnack inequality (see (3.9)), using the contradiction hypothesis we get (for ε small)

ũ > cũ(0) on B1/2.

Thus, by the maximum principle,

ũ(x) > v(x) = cũ(0)G(x) on B1 \ B1/2.

Hence at the point z where d(0) is achieved we have

|∇v|(z) 6 g(z) 6 1+ ε2 6 2,

which contradicts ũ(0) > C0 if C0 is large enough.
To prove the lower bound, let

G̃(x) = η(1−G(x))

with η (depending on γ ) such that

|∇G̃| < 1− ε2 on ∂B1/2.

Assume without loss of generality that F(u) is a Lipschitz graph in the xn direction with
Lipschitz constant equal to 1. We translate the graph of G̃ by −4en. Notice that it is above the
graph of ũ since ũ ≡ 0 in B1(−4en). We slide the graph of G̃ in the en direction till we touch the
graph of ũ. Since G̃ is a strict supersolution to our free boundary problem, the touching point z̃ can
occur only on the η level set with d̃ := d(z̃, F (u)) 6 1. From the first part, ũ is Lipschitz continuous
and hence ũ(z̃) = η 6 Cd̃. Thus

C−1η 6 d̃ 6 1,
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that is, d̃ is comparable to 1. Since F(u) is Lipschitz we can connect 0 and z̃ with a chain of
intersecting balls included in the positive side of ũ with radii comparable to 1. The number of balls
is bounded by a universal constant. Then we can apply the Harnack inequality to obtain (for ε small)

ũ(0) > cũ(z̃) = c0,

as desired. 2
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