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Interface conditions for limits of the Navier–Stokes–Korteweg model
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We study the behaviour of the pressure across phase boundaries in liquid-vapour flows. As
mathematical model, we consider the static version of the Navier–Stokes–Korteweg model, which
belongs to the class of diffuse interface models. From this static equation, a formula for the pressure
jump across the phase interface can be derived. If we perform the sharp interface limit, we see that
the resulting interface condition for the pressure seems to be inconsistent with classical results of
hydrodynamics. Therefore we will present two approaches to recover the results of hydrodynamics
in the sharp interface limit at least for special situations.
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1. The Navier–Stokes–Korteweg model

In this paper, we consider a mathematical model for liquid-vapour flows including phase transitions
which was proposed by Korteweg already in 1901 [Kor01] and which is known as the Navier–
Stokes–Korteweg model. It is an extension of the compressible Navier–Stokes equations and given
by the following system:

∂tρ +∇ · (ρv) = 0,

∂t (ρv)+∇ · (ρvv
t
+ p(ρ)I) = µ∆v + γ ε2ρ∇∆ρ.

(1)

These equations describe a fluid model for one component, where ρ, v, p(ρ), vt , I and µ

denote the density, the velocity, the pressure, the transpose of v, the identity matrix and the
viscosity of liquid/vapour respectively. Compared to the original Navier–Stokes equations, the
system (1) contains the term γ ε2ρ∇∆ρ, which is supposed to model capillarity effects close to
phase transitions, where γ > 0 is a material constant and ε > 0 is a small value related to the
thickness of the interface. The conservation of energy is omitted in (1). The pressure p, as a function
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FIG. 1. Graphs of the total free energy density and the pressure.

of the density ρ, is defined by
p(ρ) = ρ2ψ ′(ρ). (2)

Here, ψ is a smooth function of ρ and ρψ(ρ) is the total free energy density, which has the form of
a double well potential (see Figure 1). The values β1 and β2 are the Maxwell points, at which the
tangent line of ρψ(ρ) is equal to the difference quotient and ∂2ρψ(ρ)

∂ρ2

∣∣
ρ=βi

> 0 for i ∈ {1, 2}. The
Maxwell line l, l(ρ) = d0ρ + d1 with d0, d1 ∈ R, satisfies

l(βi) = βiψ(βi) and l′(βi) =
∂ρψ(ρ)

∂ρ

∣∣∣∣
ρ=βi

, i = 1, 2. (3)

Different phases of the fluid are characterized by the size of ρ. If ρ 6 α1 we are in the vapour phase
and if ρ > α2 we are in the liquid phase. The equation (2) is known as the van der Waals equation
of state.

For a rigorous derivation of the system (1) one has to consider the equations for conservation
of mass, momentum and energy and the equation for the entropy production (second law of
thermodynamics). Special conditions for the stress tensor, which appears in the equations for
conservation of momentum and energy, ensure that the entropy production is nonnegative (cf.
[Di07], [An96] and [DK07]). This leads to the Navier–Stokes–Korteweg model. Then, omitting
the equation for the energy, we end up with (1).

The mathematical model (1) for the static case can be described alternatively as follows. First
we fix some notation:

Ω ⊂ Rn : bounded domain with Lipschitz boundary,

W̃ (ρ) : free energy density (double well) = ρψ(ρ),

Ẽ0(ρ) : total energy.

For a moment let us consider the minimizers of

Ẽ0(ρ) =

∫
Ω

W̃ (ρ) dx (4)

under the constraint ∫
Ω

ρ dx = m (conservation of mass) (5)

for a two-phase fluid at rest.
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We define W(ρ) := ρψ(ρ)− l(ρ) and

E0(ρ) :=
∫
Ω

W(ρ(x)) dx. (6)

Then the functionals Ẽ0(ρ) and E0(ρ) differ with respect to mass conservation only in the constant
m̃ = d0m+ d1|Ω| and have therefore the same minimizers. All functions ρ with

ρ(x) = β1 for x ∈ Ω1, ρ(x) = β2 for x ∈ Ω2,

such that Ω1 ∪ Ω2 = Ω , Ω1 ∩ Ω2 = ∅, |Ω1|β1 + |Ω2|β2 = m are minimizers of (4) under mass
conservation.

Clearly, since (4) involves no minimal area property for the surface of the interface, there are
infinitely many ways to distribute mass of the densities β1 and β2 in the domain Ω so that (5) is
satisfied. In addition, energy contributions due to surface tension or the curvature of the interface
are not included in (4).

In order to penalize the occurrence of free boundaries between the phases, already van der Waals
[Wa94] proposed to add a term of the form∫

Ω

γ ε2 |∇ρ|
2

2
dx, ε > 0 small,

in (4) and to consider instead of (4), (5) or (6), (5) the following variational problem:

Minimize the functional J̃ε : H 1(Ω)→ R defined by

J̃ε(ρ) =

∫
Ω

(
W̃ (ρ)+ γ ε2 |∇ρ|

2

2

)
dx (total energy) (7)

under the constraint
∫
Ω
ρ dx = m (conservation of mass).

It is easy to see that the Euler–Lagrange equation for this variational problem is

W̃ ′(ρ) = γ ε2∆ρ + λε, (8)

where λε is the Lagrange multiplier corresponding to the mass constraint, which satisfies the relation
λε = d0 + O(ε) as ε → 0 (see [LM89]). Taking the gradient of both sides in (8) and multiplying
with ρ implies

ρW̃ ′′(ρ)∇ρ = γ ε2ρ∇∆ρ. (9)

The definition of W̃ and a simple calculation using (2) shows that p′(ρ) = ρW̃ ′′(ρ). Therefore, we
get from (9)

∇p(ρ) = γ ε2ρ∇∆ρ. (10)

This together with the mass constraint gives the static form of (1).
The mathematical model for the dynamical case ∂tv 6= 0 can be obtained as follows (see [Ro06]

and [Se59]): The Lagrangian is given by

L(ρ, v) :=
1
2
ρ|v|2 − W̃ (ρ)−

γ ε2

2
|∇ρ|2
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and the Euler–Lagrange equation for the action functional∫ T

0

∫
R3
L(ρ(x, t), v(x, t)) dx dt

with respect to the constraint ∂tρ +∇ · (ρv) = 0 has the form

∂tv + v∇v = ∇(−W̃
′(ρ)+ γ ε2∆ρ).

Due to p′(ρ) = ρW̃ ′′(ρ) and conservation of mass we obtain

∂t (ρv)+∇ · (ρvv
t
+ p(ρ)I) = γ ε2ρ∇∆ρ.

Adding some scaled viscosity yields the equation of momentum of (1).
In [BDD07], the authors investigate the Cauchy problem for the nondissipative isothermal

case of (1) in multiple space dimensions (Euler–Korteweg problem). They prove wellposedness
of the Cauchy problem, where the third order term γ ε2ρ∇∆ρ in (1) may even depend nonlinearly
on ρ, i.e. ρ∇(K(ρ)4ρ + 1

2K
′(ρ)|∇ρ|2) with a capillarity function K . The corresponding one-

dimensional isothermal, inviscid initial value problem has been considered in [BDD06]. Danchin
and Desjardins establish global existence and uniqueness of solutions close to a stable equilibrium
and furthermore local in time existence for (1). The existence of global weak solutions for periodic
boundary conditions without any smallness assumptions on the data has been shown in [BDL03].
Global existence results for weak solutions of (1) in 1-D with µ = 0 and γ = 0 are available in
[AC08]. Kotschote [Kot06] considers existence of solutions for the corresponding initial boundary
value problem to (1).

The system (1) can also be considered as a diffusive-dispersive regularization. The analytical
and numerical background for the diffusive-dispersive regularizations for scalar conservation laws
with nonconvex flux functions is the main subject in [HL00] and [HL97].

Different approaches to modelling two phase flows with phase transitions are considered in
[Tr94], [SB04] and [LT98]. Truskinovsky [Tr94] studies a system of conservation laws as a simple
model for one-dimensional isothermal elastodynamics without body forces and constant reference
density. In this system, the usual nonconvex stress is extended by viscous and capillary stresses
and hence a model with phase transitions is obtained. For travelling wave solutions, the limiting
behaviour can be controlled when the viscosity and the capillarity coefficient tend to zero. The
system reduces to an overdetermined boundary value problem of second order on the whole real
axis. Kinetic relations are then derived, which give the desired information on the admissible
boundary values. In [SB04], a diffuse interface model is derived for the direct simulation of two-
phase flows with surface tension, phase change and different viscosities in the two phases. To
this end, the authors use a set averaging procedure on an atomic scale. A further approach to
the modelling of two phase flows with phase transitions can be found in [LT98], where a system
of Navier–Stokes–Cahn–Hilliard type is considered. This system is in some sense a physically
motivated regularization of the Euler equations. A quasi-incompressible version of the Navier–
Stokes–Cahn–Hilliard equations is also investigated in [LT98].

In this paper, we study the behaviour of the pressure across the interface. Since a rigorous theory
of this question is not available and difficult to establish, we concentrate on the static version of (1).
In particular, we investigate the behaviour of the pressure in the sharp interface limit, i.e. if the
interfacial thickness ε tends to 0. In Section 2, we quote some recent results for the diffuse phase



NAVIER–STOKES–KORTEWEG MODEL 243

field model considered in Section 1. These results show that the difference of the pressures on both
sides of the interface is continuous if ε→ 0. This seems to contradict the classical result of Young
and Laplace (cf. [Yo1805, Fi86, LL91]), which states that the difference of the pressures on both
sides of the interface is proportional to the mean curvature of the interface. For this reason, we study
jump conditions for critical points of a related sharp interface model with surface tension. We prove
in a BV -setting that for critical points the difference of the pressure is proportional to the mean
curvature (see Theorem 5). Then we show that we obtain this jump relation for the pressure from
the diffuse phase field model in the sharp interface limit if we use either a scaled surface tension
or a modified definition of the pressure on the basis of a special scaling of the free energy density
(see Section 4). In this context, we will see that the scaling/capillarity quantity γ ε2 can be related
to the Mach number under certain conditions. Using this dependence, we achieve an asymptotic
expansion of p in the Mach number M , i.e. p = p0 + p1M + p2M

2
+ O(M3), and the expected

jump condition for p2 (see Section 3). Jamet et al. try in [JLCD01] to overcome the problem for the
pressure conditions by introducing a modified free energy density. However, they do not establish a
thermodynamical consistent approach.

2. Phase transitions and sharp interface conditions

We denote the space of functions of bounded variation by BV (Ω). The symbol ∂∗S stands for the
reduced boundary of a Borel set S ⊂ Ω with finite perimeter PΩ(S), i.e.

PΩ(S) :=
∫
Ω

d|DχS | = Hn−1(∂∗S), χS : characteristic function of S,

where Hn−1 is the (n − 1)-dimensional Hausdorff measure on Rn. For details we refer to [Giu84]
and [AFP00]. As before we consider the variational problem (assume that γ = 1):

Minimize the functional Jε : H 1(Ω)→ [0,∞) defined by

Jε(ρ) =

∫
Ω

(
W(ρ(x))+

ε2

2
|∇ρ(x)|2

)
dx (11)

under the constraint
∫
Ω
ρ(x) dx = m.

Note that Jε and J̃ε (see (7)) differ only in the constant m̃ = d0m+ d1|Ω| under mass conservation
and have the same minimizers.

The term (ε2/2)|∇ρ(x)|2 in (11) penalizes the occurrence of large interfaces. In particular,
minimizers of (11) try to minimize the interfacial area. This phenomenon and the following
asymptotic properties have been shown by Modica:

THEOREM 1 ([Mo87]) Let β1|Ω| 6 m 6 β2|Ω|, where β1, β2 are the Maxwell points
(cf. Figure 1). In addition, let ρε be a global minimizer of (11) with

∫
Ω
ρε dx = m. Then the

following statements are satisfied:

(a) There exists a sequence (εk)k , εk > 0, with limk→∞ εk = 0 such that the corresponding
sequence (ρεk )k of global minimizers ρεk converges in L1(Ω) as k→∞.

(b) If ρεj → ρ0 in L1(Ω) as j → ∞ then ρ0(x) = β1 or ρ0(x) = β2 for a.e. x ∈ Ω , where
β1|A| + β2|Ω\A| = m and A := {x ∈ Ω : ρ0(x) = β1}.
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(c) The set A is a solution of the following geometric variational problem:

PΩ(A) = min
{
PΩ(F ) : F ⊂ Ω, |F | =

β2|Ω| −m

β2 − β1

}
.

(d) If ρεj → ρ0 in L1(Ω) as j →∞ then the energy Jεj satisfies

Jεj (ρεj ) =

∫
Ω

(
W(ρεj )+

ε2
j

2
|∇ρεj |

2
)

dx = c0PΩ(A)εj + o(εj )

with c0 :=
∫ β2
β1

√
2W(t) dt .

REMARK 2 Roughly speaking, item (c) of Theorem 1 expresses the fact that the boundary ∂A ofA
has minimal area since it can be shown by the theory of minimal surfaces that the reduced boundary
∂∗A is smooth and Hn−1((∂A\∂∗A) ∩Ω) = 0 (cf. [Giu84]).

From Theorem 1 we conclude that the energy Jε converges to E0 (see (6)) as ε → 0 in the
sense of Γ -convergence. This implies that there is no contribution of interfacial energy in the sharp
interface limit. In addition, we infer from the following theorem that the pressure p across the
interface is continuous in the limit ε→ 0.

In what follows, we denote by km the mean curvature (times n − 1) of the interface I between
liquid and vapour. The mean curvature is given by the sum of the principal curvatures with the sign
convention that km is positive if I is curved in the direction of the outer unit normal ν of the region
with the lower density.

THEOREM 3 (see [DK07]) Let items (a) and (b) of Theorem 1 be satisfied. Furthermore, let
U ⊂⊂ A and V ⊂⊂ Ω\Ā be open sets and ψ ∈ C3(R). Then

ρεk (x) = ρ
0(x)+ ρ1(x)εk + o(εk), k→∞,

for x ∈ U ∪ V with ρ0(x) = β1 if x ∈ U , ρ0(x) = β2 if x ∈ V and ρ1(x) = − c0(n−1)km
W ′′(ρ0(x))(β2−β1)

,

where the mean curvature km of I = ∂∗A is constant. Moreover,

p(ρεk (x2))− p(ρεk (x1)) = −c0kmεk + o(εk) (12)

for x1 ∈ U and x2 ∈ V as k→∞.

REMARK 4 Equation (12) implies that for a two-phase system the pressure p− of the enclosed
phase is always higher than the pressure p+ of the surrounding phase (see Figure 2).

FIG. 2. Pressure condition p− > p+.
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Theorem 3 seems to be inconsistent with classical results of hydrodynamics (cf. [Yo1805, Fi86,
LL91]), i.e. the pressure has to satisfy the Young–Laplace equation

[p]+− = p+ − p− = −σ̂ km (13)

at the interface I , where [·]+− denotes the jump of the quantity in brackets across the interface and
σ̂ is a constant surface tension. The corresponding interface condition for the dynamical case with
phase transitions is

p+ − p− = −σ̂ km − [ρ(vν − vI )2]+− +
[
µ
∂vν

∂ν

]+
−

, (14)

where vν := v · ν and vI is the velocity of the interface I (see [GCNB07, formula (13)]).
In order to illuminate this apparent controversy and to get more insight into jump conditions

across the interface, we study necessary conditions for minimizers of a related sharp interface
functional including surface tension.

THEOREM 5 LetΩ ⊂ Rn be a bounded domain with Lipschitz boundary and let ρ ∈ BV (Ω) such
that the reduced boundary of A = {x ∈ Ω : ρ(x) 6 a} ( Ω is a C2 boundary for a ∈ (α1, α2).
Furthermore, let ρ ∈ W 1,1(A) ∪ W 1,1(Ω\A) with ρ(x) ∈ (0, α1) for x ∈ A (vapour phase) and
ρ(x) ∈ (α2,∞) for x ∈ Ω \ A (liquid phase). Then, any critical point ρ̂ of the energy functional
Ĵ : BV (Ω)→ [0,∞),

Ĵ (ρ) = σ̂

∫
I

dHn−1
+

∫
Ω

ρψ(ρ) dx,
∫
Ω

ρ dx = m, (15)

with I = ∂∗A, σ̂ > 0 and ψ ∈ C3(R), fulfills the condition

p(ρ̂+)− p(ρ̂−) = −σ̂ km on I,

where ρ̂− and ρ̂+ denote the inner and outer traces of ρ̂ on I .

Proof. To obtain the pressure condition we choose variations by means of a one-parameter family
of diffeomorphisms Φ : [−τ0, τ0]×Ω → Ω , given by the initial value problem

Φ(0, x) = x and Φ,τ (τ, x) = ξ(Φ(τ, x))

for x ∈ Ω and τ ∈ [−τ0, τ0], where ξ ∈ C∞c (Ω,Rn) is arbitrary. Then Φ satisfies the following
properties:

(i) Φ(τ, ·) is the inverse of Φ(−τ, ·), i. e. Φ(τ,Φ(−τ, x)) = x. Consequently,

Id = Φ,x(τ,Φ(−τ, x))Φ,x(−τ, x).

(ii)
d

dτ
(|detΦ,x(τ, x)|)

∣∣∣∣
τ=0
= (∇ · ξ)(x).

(iii)
d

dτ

(
(Φ,x(τ, x))

−1)∣∣∣∣
τ=0
= −∇ξ(x).
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We consider for any fixed h ∈ BV (Ω) with
∫
Ω
h dx 6= 0, h(x) ∈ (0, α1) for x ∈ A and h(x) ∈

(α2,∞) for x ∈ Ω \ A,

j (τ, ω) :=
∫
Ω

(
ρ̂(Φ(−τ, y))+ ωh(Φ(−τ, y))

)
dy −m

=

∫
Ω

(ρ̂(x)+ ωh(x))|detΦ,x(τ, x)| dx −m, (τ, ω) ∈ [−τ0, τ0]× R.

Clearly, j (0, 0) = 0. Moreover, j ∈ C1([−τ0, τ0]× R) and

∂j

∂τ
(τ, ω)

∣∣∣∣
τ=0
=

∫
Ω

(ρ̂(x)+ ωh(x))∇ · ξ(x) dx,

∂j

∂ω
(τ, ω) =

∫
Ω

h(x)|detΦ,x(τ, x)| dx with
∂j

∂ω
(0, 0) 6= 0.

By the Implicit Function Theorem, there exists a C1 function η : R→ R with η(0) = 0 such that

j (τ, η(τ )) = 0 (16)

for τ sufficiently small. Without loss of generality we may assume that (16) holds for τ ∈ [−τ0, τ0].
Differentiating (16) gives

∂j

∂τ
(τ, η(τ ))+

∂j

∂ω
(τ, η(τ ))η′(τ ) = 0

for τ ∈ [−τ0, τ0]. Consequently,

η′(0) = −
∂j
∂τ
(0, 0)

∂j
∂ω
(0, 0)

.

We set
ρ̂τ (x) = ρ̂(Φ(−τ, x))+ η(τ)h(Φ(−τ, x)) for τ ∈ [−τ0, τ0]

and may assume

ρ̂τ (x) ∈ (0, a) for x ∈ A and ρ̂τ (x) ∈ (a,∞) for x ∈ Ω \ A,

According to (16), ρ̂τ , τ ∈ [−τ0, τ0], are admissible comparison functions. This implies

0 =
d

dτ
Ĵ (ρ̂τ )

∣∣∣
τ=0

since ρ̂ = ρ̂0.
Next, we determine the above τ -derivative. The first variation of the area integral, i.e.

σ̂
∫
I

dHn−1, is computed in the BV -setting (see for instance [Giu84] and [Gar08]). For
completeness we sketch the arguments. In the following, χ denotes the characteristic function of A.
We define

χ τ (y) = χ(Φ(−τ, y)), y ∈ Ω. (17)

Then,

σ̂

∫
Ω

d|Dχ τ (y)| = σ̂
∫
Ω

d|Dχ(Φ(−τ, y))| = σ̂
∫
Ω

|(Φ,x(τ, x))
−T ν(x)| |detΦ,x(τ, x)| d|Dχ(x)|,
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where ν = −Dχ/|Dχ | is the generalized unit outer normal of A, which is a |Dχ |-measurable
function. From properties (i)–(iii) we conclude that

d
dτ

(∫
Ω

d|Dχ τ |
)∣∣∣∣
τ=0
=

∫
Ω

(∇ · ξ − ν · ∇ξν) d|Dχ |.

Applying the generalized divergence theorem on submanifolds ([AFP00, p. 359]) gives∫
Ω

(∇ · ξ − ν · ∇ξν) d|Dχ | =
∫
I

(∇ · ξ − ν · ∇ξν) dHn−1

=

∫
I

(divI ξ) dHn−1
=

∫
I

(divI ν)(ξ · ν) dHn−1,

where divI denotes the tangential divergence with respect to the interface I .
Now we compute

d
dτ

∫
Ω

ρ̂τψ(ρ̂τ ) dy
∣∣∣∣
τ=0
=

d
dτ

∫
Ω

(ρ̂(x)+ η(τ)h(x))ψ(ρ̂(x)+ η(τ)h(x))|detΦ,x(τ, x)| dx
∣∣∣∣
τ=0

=

∫
Ω

ρ̂(x)ψ(ρ̂(x))∇ · ξ(x) dx +
∫
Ω

∂
(
ρ̂(x)ψ(ρ̂(x))

)
∂ρ̂

η′(0)h(x) dx

=

∫
Ω

ρ̂ψ(ρ̂)∇ · ξ dx −
∫
Ω

∂ρ̂ψ(ρ̂)

∂ρ̂

∫
Ω
ρ̂ ∇ · ξ dx∫
Ω
h dx

h dx

=

∫
Ω

ρ̂ψ(ρ̂)∇ · ξ dx + λ
∫
Ω

ρ̂∇ · ξ dx

with λ = −
∫
Ω
∂ρ̂ψ(ρ̂)

∂ρ̂
h dx/

∫
Ω
h dx. By Green’s formula for BV -functions we derive∫

Ω

(
ρ̂(x)ψ(ρ̂(x))+ λρ̂

)
∇ · ξ dx = −

∫
A

(
∂ρ̂ψ(ρ̂)

∂ρ̂
+ λ

)
∇ρ̂ · ξ dx

−

∫
Ω\A

(
∂ρ̂ψ(ρ̂)

∂ρ̂
+ λ

)
∇ρ̂ · ξ dx

+

∫
I

(
ρ̂−ψ(ρ̂−)− ρ̂+ψ(ρ̂+)+ λ(ρ̂− − ρ̂+)

)
ξ · ν dHn−1.

Thus we conclude that

0 =
d

dτ
Ĵ (ρ̂τ )

∣∣∣∣
τ=0
= σ̂

∫
I

(divI ν)(ξ · ν) dHn−1

−

∫
A

(
∂ρ̂ψ(ρ̂)

∂ρ̂
+ λ

)
∇ρ̂ · ξ dx −

∫
Ω\A

(
∂ρ̂ψ(ρ̂)

∂ρ̂
+ λ

)
∇ρ̂ · ξ dx

+

∫
I

(
ρ̂−ψ(ρ̂−)− (ρ̂+ψ(ρ̂+)+ λ(ρ̂− − ρ̂+)

)
ξ · ν dHn−1.

Since ξ may be arbitrarily chosen we get

∂ρ̂ψ(ρ̂)

∂ρ̂
= −λ for a.e. x ∈ Ω.
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Now, we take arbitrary variations ξ with compact support in the neighbourhood of a point of I to
obtain

σ̂ divI ν = ρ̂+ψ(ρ̂+)− ρ̂−ψ(ρ̂−)+ λ(ρ̂+ − ρ̂−) on I.

Consequently,
[p(ρ̂)]+− = p(ρ̂

+)− p(ρ̂−) = −σ̂ km on I

since km = divI ν and p(ρ) = ρ ∂ρψ(ρ)
∂ρ
− ρψ(ρ). This completes the proof. 2

From Theorem 5, we conclude that minimizers of the energy functional Ĵ satisfy the classical jump
conditions for pressures of hydrodynamics.

3. Zero Mach number limit for the Navier–Stokes–Korteweg equations

In this section, we consider the zero Mach number limit for the compressible Navier–Stokes–
Korteweg system. It turns out that we get the incompressible Navier–Stokes equations in the limit.
For the nondimensionalization of

∂tρ +∇ · (ρv) = 0,
∂t (ρv)+∇ · (ρvv

t )+∇p(ρ) = µ∆v + γ 2ερ∇∆ρ

we choose the following reference quantities: xref, tref, pref, ρref, vref := xref/tref, cref :=
√
pref/ρref,

the Mach number M := vref/cref, the Reynolds number Re := ρrefvrefxref/µ and the capillarity
number λ := ρ2

refγ ε
2/(x2

ref pref). Then the nondimensionalized form of the compressible Navier–
Stokes–Korteweg equations is given by

∂tρ +∇ · (ρv) = 0, (18)

∂t (ρv)+∇ · (ρvv
t )+

1
M2∇p(ρ) =

1
Re
∆v +

λ

M2 ρ∇∆ρ.

The corresponding dimensionless total energy has the form

E(v, ρ) =
∫
Ω

(
M2 ρ

2
v2
+ ρψ(ρ)+

λ

2
|∇ρ|2

)
dx. (19)

Next, we want to concentrate on solutions of (1) for which the scaled energy

1
√
λ
(E(v, ρ)− m̃) =

∫
Ω

(
M2
√
λ

ρ

2
v2
+

1
√
λ
W(ρ)+

√
λ

2
|∇ρ|2

)
dx

is uniformly bounded as λ→ 0. This leads to the condition M4 6 C1λ for some constant C1 > 0
as λ→ 0. Therefore we may take for λ the following ansatz:

λ = C2M
δ

with 0 < δ 6 4 for M � 1, where C2 > 0 is some constant. In the following, we consider for δ the
upper bound. We choose

λ = M4 (20)
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and obtain

∂tρ +∇ · (ρv) = 0,

∂t (ρv)+∇ · (ρvv
t )+

1
M2∇p(ρ) =

1
Re
∆v +M2ρ∇∆ρ. (21)

Now, we formally consider the limit M → 0 and we assume that ρ > 0 and the following
asymptotic expansions hold:

ρ(x, t) = ρ0(x, t)+ ρ1(x, t)M + ρ2(x, t)M
2
+O(M3) for (x, t) ∈ Ω × (0, T ),

v(x, t) = v0(x, t)+ v1(x, t)M + v2(x, t)M
2
+O(M3) for (x, t) ∈ Ω × (0, T ),

(22)

where ρi, vi ∈ C1(Ω × (0, T )), i = 0, 1, 2. Consequently, p may also be expanded in the Mach
number:

p(ρ(x, t)) = p0(ρ0(x, t))+p1(ρ0(x, t), ρ1(x, t))M+p2(ρ0(x, t), ρ1(x, t), ρ2(x, t))M
2
+O(M3).

(23)
The existence of the above asymptotic expansions have been proved rigorously in [KM82] for the
corresponding inviscid systems without capillarity term. For the viscous system, the arguments are
only formal. Inserting the asymptotic expansions of (22) in (21) and comparing terms of the orders
M−2 and M−1, we obtain

∇p0(ρ0(x, t)) = 0 and ∇p1(ρ0(x, t), ρ1(x, t)) = 0.

This shows
p0 = p0(t), ρ0 = ρ0(t) and p1 = p1(t), ρ1 = ρ1(t).

Conservation of mass in the whole set Ω implies
∫
∂Ω
νv0 =

∫
Ω
∇ · v0 = 0. Since∫

Ω

∂tρ0 + ρ0

∫
Ω

∇ · v0 = 0

we have ∂tρ0(t) = 0 and therefore,

ρ0(t) = const and p0(t) = const.

Again, we use ∂tρ0 + ρ0(t)∇ · v0 = 0 in order to obtain

∇ · v0 = 0. (24)

The momentum equation (21) implies for terms of order M0,

ρ0∂tv0 + ρ0∇ · (v0v
t
0)+∇p2 =

1
Re
∆v0. (25)

The equations (24) and (25) are just the incompressible Navier–Stokes equations.

REMARK 6 The pressure which appears in the incompressible Navier–Stokes equations is p2,
while we have p for the compressible equations. The relation between p2 and p is given by (23).
However, since p0 = p0(t) and p1 = p1(t), we could also choose p in (25).
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In order to derive the pressure condition on the interface between the two phases, we only
consider the static case of (21), which is given by

∇p(ρ) = M4ρ∇∆ρ. (26)

This yields, as p′(ρ) = ρW ′′(ρ),
∇W ′(ρ) = M4

∇∆ρ (27)

for ρ > 0.
We remark that equations (19), (20), (26) and (27) are related to (7)–(10). Therefore, we can

apply the same arguments to (27) as in [DK07] to study the pressure behaviour in the limitM → 0.
We obtain

W ′(ρ) = M4∆ρ + λM with λM = −
c0 kmM

2

β2 − β1
. (28)

Consequently, we derive the pressure condition

p(ρ(x2))− p(ρ(x1)) = −c0 kmM
2
+ o(M2), x1 ∈ U ⊂⊂ A, x2 ∈ V ⊂⊂ Ω \ A,

under the assumptions of Theorem 3. Using the asymptotic expansion

p(ρ(x)) = p0(ρ0(x))+ p1(ρ0(x), ρ1(x))M + p2(ρ0(x), ρ1(x), ρ2(x))M
2
+O(M3),

we get

p(ρ(x2))− p(ρ(x1)) =
(
p2(ρ0(x2), ρ1(x2), ρ2(x2))− p2(ρ0(x1), ρ1(x1), ρ2(x1))

)
M2
+ o(M2)

= −c0kmM
2
+ o(M2).

This shows that we have recovered the relation (13) for the pressure p2 at least for the special
scaling of λ as in (20). Notice that we obtain this relation for the pressure p2 (sometimes called
hydrodynamic pressure), which enters the incompressible equation

ρ0∂tv0 + ρ0∇ · (v0v
t
0)+∇p2(ρ) =

1
Re
∆v0. (29)

4. Phase field like scaling

In the following, we propose two different ways of scaling to get by means of Jε (see (11)) a sharp
interface model, which includes surface energy. This, in turn, leads to a nonvanishing jump condition
for the pressure across the interface.

(i) The scaled surface tension σ̂

Phase transitions from the liquid to the vapour phase usually take place in a region of small thickness
and the layer is so small that it can be approximated by a hypersurface (cf. [Yo1805, Fi86, LL91]).
However, this means that, if we replace the small layer of thickness ε between the two media by
a hypersurface, we also have to rescale the surface tension σ . The scaled surface tension, which
occurs in the sharp interface model, is given by σ̂ = σ/ε, i.e. free energy per unit area. Therefore,
if we pass from the phase field model to the sharp interface model, we also have to rescale the
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surface tension and hence the pressure condition. To be more precise, from Theorem 1, we deduce
the following asymptotic behaviour:

J̃ε(ρε) := J (ρε)+ m̃ = c0ε

∫
I

dHn−1
+ m̃+ o(ε)

= c0ε

∫
I

dHn−1
+

∫
A

β1ψ(β1)+

∫
Ω\A

β2ψ(β2)+ o(ε), ε→ 0. (30)

This means that in (30) the surface tension is related to the width ε of the interface, i.e. σ = c0ε.

Hence, the scaled surface tension σ̂ in the corresponding sharp interface functional Ĵ (see (15)) is
given by σ̂ = σ/ε = c0. Analogously, we have to consider the scaled pressure which satisfies the
condition

p(ρεk (x2))− p(ρεk (x1))

ε
= −c0km + o(1), ε→ 0, (31)

under the assumptions of Theorem 3. Condition (31) agrees with the pressure condition for the sharp
interface model:

p(ρ̂+)− p(ρ̂−) = −σ̂ km

(cf. Theorem 5).

(ii) The scaled free energy ρψε(ρ)

Another possibility is to scale already the free energy density in the phase field model to obtain
a nonvanishing contribution of the surface energy in the limit ε → 0. We modify the phase field
energy functional J̃ε in such a way that the structure of the minimizers is kept but the corresponding
limit for ε→ 0 is different from m̃. This can be obtained by a suitable scaling of

W(ρ)+
ε2

2
|∇ρ|2

with some power of ε. In order to get some contribution which is different from 0 and∞ we have
to scale with 1/ε. Therefore we consider

Iε(ρ) :=
1
ε

∫
Ω

(
W(ρ)+

ε2

2
|∇ρ|2

)
dx + m̃→ Minimum. (32)

The limit of the energy Iε for ε → 0 is now c0PΩ(A) + m̃. It turns out that the functional in
(32) satisfies the identities

Iε(ρ) =

∫
Ω

(
1
ε
W(ρ)+

ε

2
|∇ρ|2

)
dx + m̃

=

∫
Ω

(
1
ε
(ρψ(ρ)− l(ρ))+

ε

2
|∇ρ|2

)
dx + d0m+ d1|Ω|

=

∫
Ω

(
1
ε
(ρψ(ρ)− l(ρ))+

ε

2
|∇ρ|2

)
dx +

∫
Ω

l(ρ) dx

=

∫
Ω

(
1
ε
(ρψ(ρ)− l(ρ))+ l(ρ)+

ε

2
|∇ρ|2

)
dx

=

∫
Ω

(
ρψε(ρ)+

ε

2
|∇ρ|2

)
dx (33)
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with ρψε(ρ) defined by

ρψε(ρ) =
1
ε
(ρψ(ρ)− l(ρ))+ l(ρ). (34)

For the following arguments, it is important to notice that the minimizers of Iε and J̃ε are the
same since Iε − m̃ = (1/ε)(J̃ε − m̃), but the values of the minima of Iε are different. The Euler–
Lagrange equation of (33) is given by

∂

∂ρ
(ρψε(ρ))− ε∆ρ = λ̃ε, (35)

where λ̃ε is the Lagrange multiplier with respect to the constraint
∫
Ω
ρ dx = m.

To the scaled energy corresponds the scaled pressure

pε(ρ) := ρ2ψ ′ε(ρ). (36)

We have

pε(ρ) =
1
ε
(p(ρ)+ (1− ε)d1), (37)

where p(ρ) = ρ2ψ ′(ρ) as in (2).
Now let the assumptions of Theorem 3 be satisfied. If x ∈ U ⊂⊂ A or x ∈ V ⊂⊂ Ω \ A then

pε(ρε) converges pointwise in U ∪V for a subsequence as ε→ 0. This can be seen as follows. The
pressure may be rewritten as

pε(ρ) = −ρψε(ρ)+
ρ

ε
W ′(ρ)+ ρd0

= −
1
ε
(ρψ(ρ)− l(ρ))− l(ρ)+

ρ

ε
W ′(ρ)+ ρd0

= −
1
ε
W(ρ)+

ρ

ε
W ′(ρ)− d1.

Since W is twice differentiable and |ρε(x)− βi + c0kmε/(W
′′(βi)(β2 − β1))| = o(ε) in U ∪ V for

i ∈ {1, 2}, we find that (1/ε)W(ρε) and (ρ/ε)W ′(ρε) converge a.e. in U ∪ V as ε→ 0.
In order to see the relation to the static version of the Navier–Stokes–Korteweg equation, we use

equation (35) and the pressure relation

∇pε(ρ) = 2ρ∇ρψ ′ε(ρ)+ ρ
2ψ ′′ε (ρ)∇ρ. (38)

We infer

∇pε(ρ) = ρ∇(ψε(ρ)+ ρψ
′
ε(ρ)) = ρ∇

∂

∂ρ
(ρψε(ρ)) = ερ∇∆ρ. (39)

Equation (39) is the static form of the Navier–Stokes–Korteweg equation for the pressure pε as
defined in (36) with the corresponding energy functional Iε in (32). From Theorem 3 we obtain

p(ρεk (x2))− p(ρεk (x1)) = −c0 kmεk + o(εk)
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for x1 ∈ U and x2 ∈ V as k→∞. Then (37) implies for pε the jump condition

pε(ρ(x2))− pε(ρ(x1)) =
1
ε

(
p(ρ(x2))− p(ρ(x1))

)
= −c0 km + o(1), ε→ 0.

This means that for the pressure pε defined in (36), we obtain the same jump condition as in
[LL91, Fi86] (see equation (13)). While p defined as in (2) is the thermodynamic pressure and
appears in (1), the pressure pε in (36) behaves more “incompressibly”, since small perturbations
for ρ imply large perturbations for the pressure pε(ρ) if ε > 0 is small.
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