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The effective energy in the Allen–Cahn model with deformation
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The sharp interface limit of a diffuse interface theory of phase transitions is considered in static
situations. The diffuse interface model is of the Allen–Cahn type with deformation, with a parameter
ε measuring the width of the interface. Equilibrium states of a given elongation and a given interface
width are considered and the asymptotics as ε → 0 of the equilibrium energy is determined. The
interface energy is defined as the excess energy over the corresponding two-phase state with a sharp
interface without the interface energy. It is shown that to within the term of order o(ε) the interface
energy is equal to σε where the coefficient σ is given by a new formula that involves the mechanical
contribution to the total energy. Also the corresponding equilibrium states are determined and shown
to converge to a sharp interface state as ε→ 0.

2010 Mathematics Subject Classification: 74A50, 49Q20.

Keywords: Phase transitions; diffuse and sharp phase interface; interfacial energy.

1. Introduction

By the Allen–Cahn model with deformation we mean a model of a phase transformation in a solid
which in addition to the displacement of the body introduces an extra scalar field φ called the phase
field. The phase field is an internal state variable which takes different values in the two phases of
the body and which changes continuously but steeply across the phase interface, which is therefore
“diffuse.” Throughout the paper, we consider the 1-dimensional static case in which the body is
an interval (0, 1) of material points x and the displacement u is given by a scalar valued function
u = u(x) of the scalar variable x. The displacement u gives rise to the strain e(x) = u′(x) where
the prime denotes differentiation with respect to x.

The evolution equation for this model is a generalization of the Allen–Cahn equation [1].
States of the body are determined by the displacement u over the body and the phase field φ

over the body. The total energy of the state (u, φ) is given by

Fε(u, φ) =

∫ 1

0
[ε2φ′2(x)/2+ f (u′(x), φ(x))] dx; (1.1)

here ε is a small parameter that will eventually tend to 0 and f is a given function of the indicated
variables called the coarse grain energy. It will be seen that the quadratic term in the integrand gives
rise to the interfacial energy which is approximatively proportional to ε. Setting formally ε = 0
gives a theory in which the interfacial energy is neglected.

For a given strain e, the value of φ corresponding to the pure phase of the strain e is determined
by pointwise minimization of f (e, φ) with respect to φ. For the two-phase system it is appropriate
to assume that for a given e there are exactly two local minima φi(e), i = 1 or 2, one of which
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is an absolute minimum. The absolute minimum indicates the stable phase corresponding to the
strain e just mentioned, while the nonabsolute local minimum corresponds to the unstable phase
complementary to the stable phase. A point x ∈ (0, 1) is in phase i where i = 1 or 2 if φ(x) is close
to the value φi(e(x)). One can introduce the energy fi of phase i by

fi(e) = f (e, φi(e))

where i = 1 or 2 and e runs over the set of all reals. Typically each of the functions fi describes a
potential well. The minimum energy

w(e) = min{f1(e), f2(e)}

is typically a double well potential as shown in Figure 1.1.

w

E1 E2 e

FIG. 1.1

Given the elongation λ, the equilibrium state is obtained by seeking the infimum

Eε(λ) = inf{Fε(u, φ) : the state (u, φ) satisfies u(0) = 0, u(1) = λ}. (1.2)

Conditions will be given below under which the infimum is a minimum. The state (u, φ) which
realizes the infimum is the equilibrium state under the given elongation.

In the present paper, we examine the properties of the function Eε(λ) and the minimizers in
(1.2) for ε → 0. It turns out that for small values of ε > 0, the typical shape of the function Eε(·)
is shown by the bold line in Figure 1.2. This is justified by considering first the energy of the theory
with ε = 0 and then the theory with ε > 0 as follows.

In Figure 1.2, the line segment [A1, A2] is the part of the common tangent to the graph of w.
The graph of the convex envelope wco of w consists of the graph of w outside the segment (E1, E2)

while on that segment the graph of w is replaced by the segment [A1, A2]. Setting ε = 0 and
using definition (1.2) one obtains the well known common tangent construction of the gibbsian
thermostatics saying

E0(λ) = w
co(λ)

for all elongations λ. The underlying interpretation is that for λ outside the interval (E1, E2) the
minimum is achieved by the single-phase homogeneous state of strain λ which represents the pure
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FIG. 1.2

phase. For λ ∈ (E1, E2) the infimum is realized by a two-phase state which mixes specific amounts
of the pure phase states A1 and A2 so as to satisfy the constraint that the elongation be λ. The above
mentioned amounts are linear (affine) functions of λ and the resulting minimum energy is linear
(affine) in (E1, E2).

If ε > 0 is small then the infimum energy is realized on homogeneous single-phase states for
λ outside the interval (E1, E2) while the bold line inside the interval (E1, E2) corresponds to a
mixture of two-phase states satisfying the elongation constraint and bearing the interfacial energy
which shifts the graph above the common tangent segment, as will be shown in the present paper.
Furthermore, the homogeneous single-phase states minimize the energy slightly beyond the point
A1 and slightly before the pointA2 as the two-phase state has a higher energy due to the contribution
of the interface.

We define the interfacial energy corresponding to the parameter ε as the excess energy over
the energy wco(λ) of the theory with ε = 0. The main result of the paper says that under natural
assumptions the interfacial energy of a two-phase equilibrium state is asymptotically linear in ε for
ε→ 0. More precisely it will be proved that for any ε > 0 and λ ∈ R we have

Eε(λ) =

{
w(λ) if λ /∈ (E1, E2),

wco(λ)+ εσ + o(ε, λ) if λ ∈ (E1, E2),
(1.3)

where σ > 0 is a constant given by an explicit formula in terms of f (see (2.8) below) and

o(ε, λ)/ε→ 0 as ε→ 0 for any λ ∈ (E1, E2).

Moreover, the equilibrium states of a given elongation will be described explicitly for any ε > 0
and it will be proved that for ε→ 0 and λ ∈ (E1, E2) they approach the mixture of two pure phase
states separated by a sharp interface corresponding to ε = 0. These results show that for ε > 0 the
present theory approximates that with the sharp interface which bears the energy of magnitude εσ.

The scaling with respect to ε as in (1.1) and the above interpretation is different from the one
adopted in the literature so far. In the absence of deformation the standard scaling amounts to dealing
with the sequence of functionals

Hε(φ) =

∫ 1

0
[εφ′2(x)/2+ h(φ(x))/ε] dx
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where h is a nonnegative double well potential vanishing only at ±1. The relationship between the
theory with ε > 0 and its sharp interface limit is well understood both in the dynamical situations
(see [2], [4], [10] and the references therein) and statical situations [8], [9], in any dimension. The
main static result asserts that the gamma limit of Hε is proportional to the area of the interface, with
coefficient σ given by

σ =

∫ 1

−1

√
2h(η) dη. (1.4)

The interpretation is that in the limit the state is a mixture of the states φ = ±1 with definite relative
weights. Introducing the energy

Fε(φ) = εHε(φ) =

∫ 1

0
[ε2φ′2(x)/2+ h(φ(x))] dx

we obtain the scaling similar to (1.1) and the above mentioned gamma limit can be rephrased as the
assertion that

Fε(φ) = εσ × the area of the interface+ o(ε, φ)

with
o(ε, φ)/ε→ 0 as ε→ 0 for any φ.

This form of the result is analogous to (1.3)2.
In the theory with deformation Leo, Lowengrub & Jou [7], Fried & Gurtin [5], and Garcke [6]

consider the following sequence of functionals:

Hε(u, φ) =

∫ 1

0
[εφ′2(x)/2+ h(φ(x))/ε + f (e(x), φ(x))] dx (1.5)

for ε > 0, where h is a double well potential with minima at ±1, f is the coarse grain energy, and
e is the strain tensor. (Bodies of arbitrary dimension n > 1 are considered in the cited papers.) It
turns out that the limit of Hε is proportional to the area of the (sharp) interface with the coefficient
given by (1.4). We observe that the limit is identical to the case neglecting the deformation, with
the coefficient σ independent of f. In contrast, the coefficient σ as in (1.3)2 [equation (2.8) below]
depends on f in an essential way. The separation of variables as in (1.5) seems to be hard to motivate
in view of the results of the present paper.

2. Assumptions

Any pair (u, φ) ∈ H := W 1,2((0, 1),R2) is referred to as state; then u is interpreted as the
displacement and φ as a phase field. For ε > 0, we define the energy of the state (u, φ) by

Fε(u, φ) =

∫ 1

0
[ε2φ′2(x)/2+ f (u′(x), φ(x))] dx (2.1)

where f : R2
→ R is a given twice continuously differentiable function subject to Hypotheses

H1–H4 listed below. These hypotheses imply that the right hand side of (2.1) defines an absolutely
convergent integral. For a given λ ∈ R we define the collection of states

D(λ) = {(u, φ) ∈ W 1,2((0, 1),R2) : u(0) = 0, u(1) = λ}
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of elongation λ and the effective energy corresponding to the elongation λ, the main object of the
present paper, by

Eε(λ) = inf{Fε(u, φ) : (u, φ) ∈ D(λ)} (2.2)

for every ε > 0.
We denote the generic variable of f by (e, η) ∈ R2 with e the small strain and define the

response function for the stress by
ŝ = Def

where Def denotes the derivative of f with respect to its first argument e. We furthermore put

p̂ = Dηf

where Dηf denotes the derivative of f with respect to its second argument η.
We make the following four hypotheses:

H1. For each φ ∈ R the function f (·, φ) is strictly convex in the sense that ŝ(·, φ) is strictly
increasing; moreover, the range of ŝ(·, φ) is R.

H2. There exist constants cj , j = 1, . . . , 4, with c1 > 0, such that

c1(e
2
+ η2)+ c2 6 f (e, η) 6 c3(e

2
+ η2)+ c4, (2.3)

|ŝ(e, η)| + |p̂(e, η)| 6 c3(e
2
+ η2)+ c4 (2.4)

for all (e, η) ∈ R2.

H3. There exist numbers S,G and points (Ei, Φi) ∈ R2, i = 1, 2, with E1 < E2, Φ1 < Φ2, such
that

f (e, η) > G+ Se (2.5)

for all (e, η) ∈ R2, with equality holding if and only if (e, η) = (Ei, Φi) for some i = 1, 2.
H4. The function w : R→ R defined by

w(e) = min{f (e, η) : η ∈ R}, e ∈ R,

[with the minimum existing by (2.3)1], is continuously differentiable at E1 and E2, and the
restrictions of w to the intervals (−∞, E1] and [E2,∞) are convex.

Here H1 is the basic convexity assumption. It will be seen that H1 in conjunction with the form
of the integral in (2.1) and the coercivity assumption (2.3)1 guarantee that the infimum in (2.2) is
achieved. The corresponding minimizer is the equilibrium state of the given elongation. The role
of the coercivity in H2 has already been commented on; the quadratic growth conditions in H2
guarantee that the minimizer in (2.2) satisfies the Euler–Lagrange equations, which is our main tool
in analysing the asymptotic behavior of the model for ε → 0. Condition H3 says that the plane
P = {(e, η, z) : (e, η) ∈ R2 and z = G + Se} is the tangent hyperplane to the graph of f which
touches that graph at exactly two points, viz., at (Ei, Φi) for i = 1, 2, and moreover, the graph
of f is ‘above’ P. The points (Ei, Φi) are obtained by the common tangent construction. They
represent the phases that can coexist in a single state in the theory with ε = 0. It will be seen that
for λ ∈ (E1, E2) the equilibrium state of elongation λ corresponding to ε→ 0 aprroaches a simple
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two-phase state with phases (Ei, Φi) present in amounts that lead to the total elongation λ. Finally,
H4 is a simple assumption that guarantees that the convex envelope wco of w is given by

wco(e) =

{
w(e) if e ∈ R \ (E1, E2),

G+ Se if e ∈ [E1, E2], (2.6)

for e ∈ R (see Remark 4.1 below). The functionwco is the infimum energy for ε = 0 by the common
tangent construction of gibbsian thermostatics.

Hypothesis H1 allows us to define the Gibbs function g : R2
→ R by

g(s, φ) = f (ẽ(s, φ), φ)− sẽ(s, φ)

for every (s, φ) ∈ R2 where ẽ(s, φ) is the unique point with ŝ(ẽ(s, φ), φ) = s. We note that

p̂(ẽ(s, φ), φ) = Dφg(s, φ). (2.7)

By Remark 4.1 below, the function Q : R→ R defined by

Q(η) = g(S, η)−G, η ∈ R,

is nonnegative (and vanishes at E1 and E2). We can thus define the interface constant σ by

σ :=
∫ Φ2

Φ1

√
2Q(η) dη. (2.8)

3. The main results

The following three theorems, the main results of this paper, show that for ε → 0 the diffuse
interface model can be approximated by the sharp interface model with interface energy εσ. The
proofs are given in Section 4.

THEOREM 3.1 If λ ∈ R and ε > 0 then

Eε(λ) =

{
w(λ) if λ /∈ (E1, E2),

wco(λ)+ εσ + o(ε, λ) if λ ∈ (E1, E2),
(3.1)

where
o(ε, λ)/ε→ 0 as ε→ 0 for any λ ∈ (E1, E2).

Moreover,
wco(λ) < Eε(λ) 6 min{w(λ),wco(λ)+ εσ } (3.2)

for λ ∈ (E1, E2).

Thus if λ is outside the Maxwell interval (E1, E2), the effective energy E(λ) coincides with
w(λ); this value of E(λ) corresponds to a homogeneous state (u, φ) ∈ D(λ) in which the strain u′

is λ and φ is constant, delivering the minimum value of f (λ, φ). On the other hand, if λ ∈ (E1, E2)

then the effective energy E(λ) is above the maxwellian value wco(λ), but is bounded as in (3.2) and
asymptotically for ε → 0 is given by (3.1)2. This corresponds to creation of a two-phase state in
which the strain is ' E1 on a region of length r and ' E2 on a region of length 1− r , where

rE1 + (1− r)E2 = λ, (3.3)

separated by a single interface of energy εσ.
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The following result gives an explicit description of the states minimizing the right hand side of
(2.2):

THEOREM 3.2 For each λ ∈ R and ε > 0 there exists a (u, φ) such that

Fε(u, φ) = Eε(λ) and (u, φ) ∈ D(λ)

and one of the following two possibilities occurs:

(i) φ is constant; then (u(x), φ(x)) = (λx, φ̂) for all x ∈ (0, 1) where φ̂ is such that w(λ) =
f (λ, φ̂) and

Eε(λ) = w(λ);

(ii) there exists a minimizer with φ is strictly increasing; then there exists s ∈ R such that with
α := φ(0), β := φ(1) the function q(·) := g(s, ·)− g(s, α) is positive on (α, β),

x/ε =

∫ φ(x)

α

dη
√

2q(η)
, u(x)/ε =

∫ φ(x)

α

ẽ(s, η) dη
√

2q(η)
(3.4)

for every x ∈ [0, 1], and

Eε(λ) = g(s, α)+ sλ+ ε

∫ β

α

√
2q(η) dη. (3.5)

If λ ∈ R \ (E1, E2) then (i) occurs; if λ ∈ (E1, E2) and

ε < (w(λ)− wco(λ))/σ (3.6)

then (ii) occurs.

Thus every minimizer (u, φ) is such that either the strain u′ and φ are constant with φ delivering
a minimum of f (λ, φ) or else it can be chosen such that φ is strictly increasing and (3.4) holds with
some s ∈ R. We note that if (u, φ) is a minimizer and (ū, φ̄) is defined by

ū(x) = −u(1− x)+ λ, φ̄(x) = φ(1− x), x ∈ (0, 1),

then (ū, φ̄) ∈ D(λ) and Fε(u, φ) = Fε(ū, φ̄) and hence (ū, φ̄) is also a minimizer; if φ is increasing
then φ̄ is decreasing and vice versa. The minimizers (u, φ) with u′ and φ constant occur for λ
outside the Maxwell interval (E1, E2); on the other hand if λ ∈ (E1, E2) and ε is sufficiently small
in the sense of (3.6), then necessarily the minimizers are of the type described in (ii); these have the
interface of energy εσ as described above.

Finally, the following result shows that for λ ∈ (E1, E2) and ε → 0 the minimizers approach
a two-phase state with the values of strain and phase field equal to (E1, Φ1) and (E2, Φ2) on the
intervals [0, r) and (r, 1] where r is given by (3.3).

THEOREM 3.3 Let λ ∈ (E1, E2) be fixed and for each ε > 0 satisfying (3.6) let (uε, φε) be a
minimizer in the sense that

Eε(λ) = Fε(uε, φε) and (uε, φε) ∈ D(λ) (3.7)

such that φε is an increasing function; then

(u′ε(x), φε(x))→

{
(E1, Φ1) if 0 6 x < r,

(E2, Φ2) if r < x 6 1,

as ε→ 0 where r is determined by (3.3).
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4. Proofs

REMARK 4.1 We have

w(Ei) = G+ SEi, g(S,Φi) = G, i = 1, 2, (4.1)

the convex envelope wco of w is given by (2.6),

f (e, η)−G− Se > Q(η) > 0 (4.2)

for any (e, η) ∈ R2, and Q vanishes only at Φ1 and Φ2.

Proof. From (2.5) we deduce that f (Ei, φ) > G+SEi for any φ, with equality holding if and only
if φ = Φi . Hence f (Ei, φ) > f (Ei, Φi) = G+ SEi for all φ, from which w(Ei) = f (Ei, Φi) =
G+ SEi , which proves (4.1)1. From (2.5) we deduce that if i ∈ {1, 2} then

f (e,Φi) > w(e) > G+ Se

for all e ∈ R, with equalities holding throughout if e = Ei . It follows by differentiation that
Dew(Ei) = Def (Ei, Φi) = S and hence also ẽ(S,Φi) = Ei . The definition of g then gives (4.1)2.
To prove (2.6), let c : R→ R be given by

c(e) =

w(e) if e < E1,

G+ Se if e ∈ [E1, E2],
w(e) if e > E2,

(4.3)

for e ∈ R, and note that c is convex since the three regimes of (4.3) define a convex function on the
intervals specified in (4.3) and the limits of these functions and of their derivatives at Ei from the
two sides of Ei coincide. Hence also the right hand side of (2.6) is a convex function; this function
clearly does not exceed w and is the largest convex function that does not exceed w; thus (2.6)
holds. Further, if φ ∈ R then

g(S, φ) = f (ẽ(S, φ), φ)− Sẽ(S, φ) > G

by (2.5), with equality holding only if (ẽ(S, φ), φ) = (Ei, Φi) for some i = 1, 2, i.e., only if φ = Φi
for some i = 1, 2; thus Q is nonnegative and vanishes only if φ = Φi for some i = 1, 2. Finally,
to prove (4.2)1, we note that the function f (·, φ) is convex at ẽ(S, φ) and since ŝ(ẽ(S, φ), φ) = S,
the convexity inequality reads

f (e, η) > f (ẽ(S, φ), φ)+ S(e − ẽ(S, φ)) = g(S, φ)+ Se;

a rearrangement gives (4.2)1. 2

Proof of (3.1)1. If λ ∈ R and (u, φ) ∈ D(λ) then

Fε(u, φ) >
∫ 1

0
f (u′(x), φ(x)) dx >

∫ 1

0
w(u′(x)) dx >

∫ 1

0
wco(u′(x)) dx > wco(λ)

by Jensen’s inequality and the conditions u(0) = 0, u(1) = λ; taking the infimum over all
(u, φ) ∈ D(λ) we obtain Eε(λ) > wco(λ) for every λ ∈ R. On the other hand let (u, φ) ∈ D(λ) be
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defined by u(x) = λx, φ(x) = φ̂ for every x ∈ (0, 1) where φ̂ is such that f (λ, φ̂) = w(λ). Then
Fε(u, φ) = f (λ, φ̂) = w(λ) and hence Eε(λ) 6 w(λ). To summarize, we have

wco(λ) 6 Eε(λ) 6 w(λ) (4.4)

for every λ ∈ R. If λ ∈ R \ (E1, E2) then wco(λ) = w(λ) by (2.6) and thus we have (3.1)1. 2

Proof of (3.2). Let λ ∈ (E1, E2). By Remark 4.1 the functionQ is nonnegative and vanishes only
at Φ1, Φ2. Let θ0 ∈ (Φ1, Φ2) be arbitrary. Using Q(Φi) = Q′(Φi) = 0 for i = 1, 2 one finds that∫ θ0

Φ1

dη
√

2Q(η)
=

∫ Φ2

θ0

dη
√

2Q(η)
= ∞, (4.5)

which implies that there exists an increasing function θ : R→ (Φ1, Φ2) such that

t =

∫ θ(t)

θ0

dη
√

2Q(η)
(4.6)

for every t ∈ R. We have

θ(t)→ Φ1 as t →−∞, θ(t)→ Φ2 as t →∞ (4.7)

by (4.5), and differentiating (4.6) using Q(θ(t)) > 0 one finds that θ is continuously differentiable
and satisfies

θ ′2(t) = 2Q(θ(t)) (4.8)

for every t ∈ R. Integrating using (4.7) we obtain∫
R
θ ′2(t) dt =

∫
R

√
2Q(θ(t))θ ′(t) dt =

∫ Φ2

Φ1

√
2Q(η) dη = σ.

Next note that there exists an r ∈ R such that∫ 1

0
ẽ(S, θ((x − r)/ε)) dx = λ (4.9)

since the integral is a continuous function of r and it converges to E1 as r → −∞ and to E2 as
r →∞ by (4.7). Let (u, φ) ∈ H be defined by

φ(x) = θ((x − r)/ε), u(x) =

∫ x

0
ẽ(S, φ(y)) dy, x ∈ (0, 1);

we have (u, φ) ∈ D(λ) by (4.9). Furthermore,

ε2φ′2(x)/2 = Q(φ(x))

as a consequence of (4.8); from u′(x) = ẽ(S, φ(x)) we obtain

f (u′(x), φ(x)) = g(S, φ(x))+ Su′(x) = ε2φ′2(x)/2+G+ Su′(x).
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Hence

Fε(u, φ) =

∫ 1

0
[ε2φ′2ε (x)+ Su

′(x)] dx +G =
∫ 1

0
ε2φ′2ε (x) dx + wco(λ)

where we have used that Sλ+G = wco(λ) by (2.6). Estimating∫ 1

0
ε2φ′2ε (x) dx =

∫ 1/ε

0
εθ ′2(t − r) dt 6

∫
R
εθ ′2(t − r) dt = εσ

we obtain
Eε(λ) 6 Fε(u, φ) 6 wco(λ)+ εσ.

Combining with (4.4) we obtain (3.2) with the nonstrict inequality sign in the left inequality. Let us
show that the equality wco(λ) = Eε(λ) cannot hold. Indeed, assuming this equality and referring to
Theorem 3.2 (to be proved below independently of the present argument), we find (u, φ) ∈ D(λ)
such that ∫ 1

0
[φ′2(x)/2+ f (u′(x), φ(x))] dx = wco(λ) ≡

∫ 1

0
[G+ Su′(x)] dx,

i.e., ∫ 1

0
[φ′2(x)/2+ f (u′(x), φ(x))−G− Su′(x)] dx = 0.

Since the term f (u′(x), φ(x))−G− Su′(x) is nonnegative for a.e. x ∈ (0, 1) by (2.5), we deduce
that

φ′2(x) = 0, f (u′(x), φ(x))−G− Su′(x) = 0

for a.e. x ∈ (0, 1), which in turn implies that φ is constant, and (u′(x), φ) ∈ {(Ei, Φi) : i = 1, 2} for
a.e. x ∈ (0, 1) by (2.5). Thus φ = Φi and u′(x) = Ei for some i ∈ {1, 2}. But then

∫ 1
0 u
′(x) dx =

Ei 6= λ in contradiction with (u, φ) ∈ D(λ). 2

Proof of Theorem 3.2. To prove the existence of a minimizer, let ε > 0 and λ be fixed and let
(uk, φk) ∈ D(λ) be a minimizing sequence in the sense that Fε(uk, φk)→ Eε(λ) as k→∞. From
the coercivity [see (2.3)1] we deduce that the L2(0, 1) norms of the sequences φk, φ′k and u′k are
bounded; since uk(0) = 0, we deduce that also the L2 norm of uk is bounded. Thus passing to a
subsequence (not relabelled) we can assume that

(uk, φk) ⇀ (u, φ) in W 1,2((0, 1),R2)

for some (u, φ) ∈ D(λ). As a consequence,

(uk, φk)→ (u, φ) in L2((0, 1),R2).

The integrand in (2.1) is convex in (u′, φ′) by Assumption H1, and as the hypotheses of the
lowersemicontinuity theorem [3, Theorem 3.23] are satisfied, we have

Eε(λ) = lim
k→∞

Fε(uk, φk) > Fε(u, φ) > Eε(λ),

and thus (u, φ) is a minimizer.



EFFECTIVE ENERGY IN ALLEN–CAHN MODEL 265

Let (u, φ) ∈ D(λ) be any minimizer. Hypothesis H2 implies via [3, Theorem 3.37] that (u, φ)
satisfies the weak form of the Euler–Lagrange equations∫ 1

0
ŝ(u′(x), φ(x))v′(x) dx = 0, (4.10)∫ 1

0
[ε2φ′(x)ψ ′(x)+ p̂(u′(x), φ(x))ψ(x)] dx = 0 (4.11)

for every v ∈ C1
0(0, 1) and every ψ ∈ C1([0, 1]), where (4.11) follows for ψ ∈ C1

0(0, 1) directly
from [3, Theorem 3.37] and generally for ψ ∈ C1([0, 1]) by a straightforward extension of the
proof of [3, Theorem 3.37]. Equation (4.10) implies that there exists an s ∈ R such that

s = ŝ(u′(x), φ(x)), u′(x) = ẽ(s, φ(x)) (4.12)

for a.e. x ∈ (0, 1). Integrating by parts, we rewrite the second condition as∫ 1

0

(
ε2φ′(x)−

∫ x

0
p̂(u′(y), φ(y)) dy

)
ψ ′(x) dx + ψ(1)

∫ 1

0
p̂(u′(y), φ(y)) dy = 0.

The arbitrariness of ψ ∈ C1([0, 1]) then gives

ε2φ′(x) =

∫ x

0
p̂(u′(y), φ(y)) dy (4.13)

for a.e. x ∈ (0, 1) and ∫ 1

0
p̂(u′(y), φ(y)) dy = 0.

From (4.12)2 and the continuity of φ we deduce that u ∈ C1([0, 1]) and with this knowledge (4.13)
implies that φ ∈ C2([0, 1]),

ε2φ′′(x) = p̂(u′(x), φ(x)) (4.14)

for every x ∈ [0, 1] and
φ′(0) = φ′(1) = 0. (4.15)

The condition φ ∈ C2([0, 1]) and (4.12)2 finally imply u ∈ C2([0, 1]). Hence the Euler–Lagrange
equations hold in the classical sense and this in turn yields the first integral

ε2φ′2(x)/2 = f (u′(x), φ(x))− su′(x)−G0 ≡ g(s, φ(x))−G0 (4.16)

for x ∈ [0, 1] where G0 is a constant. By (4.15), G0 satisfies g(s, α) − G0 = g(s, β) − G0 = 0;
this gives

g(s, α) = g(s, β)

and (4.16) reduces to
ε2φ′2(x)/2 = g(s, φ(x))− g(s, α). (4.17)

If φ is constant then the condition of minimization gives assertion (i).
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Assume that (u, φ) is a minimizer with a nonconstant φ. Thus there exists a point y ∈ (0, 1)
such that φ′(y) 6= 0; assume for definiteness that φ′(y) > 0. Introduce the sets N+, N−, and N0 by

N± := {x ∈ [0, 1] : ±φ′(x) > 0}, N0 := {x ∈ [0, 1] : φ′(x) = 0};

note that the sets N± are open, N0 is closed, and

φ′(x) = ±
√

2q(φ(x))/ε (4.18)

if x ∈ N±. We prove that N+ = (0, 1), N− = ∅ and N0 = {0, 1}. Let J = (a, b) ⊂ (0, 1) be the
component ofN+ which contains y. The assertions above will be proved if we show that J = (0, 1).
To see this, put γ = φ(a), δ = φ(b); (4.17) shows that q is positive on (γ, δ) and q(γ ) = q(δ) = 0.
The integration of (4.18) gives

x − a = ε

∫ φ(x)

γ

dη
√

2q(η)
, (4.19)

and hence b − a = ∆ where

∆ = ε

∫ δ

γ

dη
√

2q(η)
. (4.20)

From the finiteness of the integral (4.20) we deduce that q ′(δ) 6= 0 since otherwise the Taylor
expansion of q at δ shows that the integral would diverge at least as

∫ δ
γ

dt/(δ − t). Moreover, since
q(ψ) > 0 for all ψ < δ sufficiently close to δ, we have q ′(δ) < 0. Recalling that φ is twice
continuously differentiable, from (4.18) with the plus sign we deduce that φ′′(b) = q ′(δ)/2 is
negative.

Now we distinguish the cases b = 1 and b < 1. The first case is trivial from the analysis that
follows, so let us consider the second, b < 1. Then the solution φ exists for all x > b sufficiently
close to b. The conditions φ′(b) = 0 and φ′′(b) < 0 then imply that φ has a strict local maximum
at x = b and therefore φ(x) < δ and φ′(x) < 0 for all x > b sufficiently close to b. Thus we
have (4.18) with the minus sign for the indicated values of x.Moreover q > 0 everywhere on (γ, δ)
and thus (4.17) tells us that φ′ is different from 0 and therefore does not change its sign as long as
φ(x) exists and φ(x) > γ. Hence we have (4.18) with the minus sign. Thus the subinterval (a, b)
of (0, 1) with the positive sign of φ′ is followed by a subinterval (b, c) with the negative sign of φ′.
Equation (4.18) then shows that φ(b − ξ) = φ(b + ξ) for all ξ ∈ (0, b − a). The above properties
of N± and N0 and the conditions φ′(0) = φ′(1) = 0 show that the interval (0, 1) is divided into m
intervals of equal length such that the sign of φ′ alternates on these intervals, and moreover, φ is the
restriction of an even periodic class 2 function on R of period 2/m with φ′(0) = 0. Let us prove
that m = 1. Assuming m > 1, we will construct (ū, φ̄) ∈ D(λ) such that

Fε(u, φ) > Fε(ū, φ̄). (4.21)

Indeed, from (4.12)2 we see that also u′ is the restriction of a periodic class 1 function of period
2/m and hence ∫ 1/m

0
φ′2(x) dx =

∫ 1

0
φ′2(x) dx/m,

∫ 1/m

0
u′(x) dx = λ/m. (4.22)
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Let now (ū, φ̄) be defined by

ū(x) = mu(x/m), φ̄(x) = φ(x/m), x ∈ (0, 1).

Then (4.22) gives (ū, φ̄) ∈ D(λ) and∫ 1

0
f (ū′(x), φ̄(x)) dx =

∫ 1

0
f (u′(x), φ(x)) dx,

while ∫ 1

0
φ̄′2(x) dx =

∫ 1

0
φ′2(x) dx/m2 <

∫ 1

0
φ′2(x) dx

and hence we have (4.21). This proves that (u, φ) is not a minimizer unless m = 1. Thus we see
that if (u, φ) is a minimizer with φ nonconstant then either φ′ > 0 everywhere on (0, 1), or φ′ < 0
everywhere on (0, 1). We can assume φ′ > 0; then (4.19) reduces to (3.4)1. The integration of
(4.12)2 and the conditions u(0) = 0, u(1) = λ give

λ =

∫ 1

0
ẽ(s, φ(x)) dx, (4.23)

which reduces to (3.4)2 by making the change of variables x 7→ φ. To prove (3.5), we note that
(4.12)1 gives

f (u′, φ) = g(s, φ)+ sẽ(s, φ) = q(φ)+ g(s, φ(0))+ sẽ(s, φ)

and hence

Fε(u, φ) =

∫ 1

0
2q(φ(x)) dx + g(s, φ(0))+ sλ

by (4.17) and (4.23). The formula (3.5) follows from∫ 1

0
2q(φ(x)) dx = ε

∫ 1

0

√
2q(φ(x))φ′(x) dx = ε

∫ β

α

√
2q(η) dη.

This completes the proof of (ii).
If λ ∈ R \ (E1, E2) then the pair (u, φ) described in item (i) is a minimizer by (3.1)1 and

one easily finds that any other state (u, φ) ∈ D(λ) has Fε(u, φ) > w(λ). If λ ∈ (E1, E2) and
ε > 0 satisfies (3.6) then the state (u, φ) with u′, φ constant as in item (i) has Fε(u, φ) = w(λ) and
assuming E(λ) = w(λ) contradicts (3.2); thus the case described in item (ii) necessarily occurs. 2

REMARK 4.2 Let π, ρ be, respectively, the smallest and the largest point in the interval (Φ1, Φ2)

for which Q attains a maximum on [Φ1, Φ2] (π = ρ not excluded) and let ηk and ek be two
sequences.

(i) IfQ(ηk)→ 0 and ηk 6 π for all large k then ηk → Φ1; ifQ(ηk)→ 0 and ηk > ρ for all large
k then ηk → Φ2.

(ii) If f (ek, ηk) − G − Sek → 0 and ηk → Φ1 then ek → E1; if f (ek, ηk) − G − Sek → 0 and
ηk → Φ2 then ek → E2.
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Proof. (i) By (2.3)1 we have

g(s, η) = f (ẽ(s, η))− sẽ(s, η) > c1(ẽ
2(s, η)+ η2)+ c2 − sẽ(s, η) > c1η

2
+ c̄2

for any (s, η) ∈ R2 where c̄2 is the minimum of e 7→ c1e
2
− se on R and hence

Q(η) > c1η
2
+ c̄3 (4.24)

for all η ∈ R and some c1, c̄3 with c1 > 0. Let ηk be a sequence withQ(ηk)→ 0 and ηk 6 π for all
large k; we now prove that ηk → Φ1. For a contradiction, assume that ηk contains a subsequence,
not relabelled, such that |ηk − Φ1| > δ for all k and some δ > 0. From Q(ηk)→ 0 and (4.24) we
deduce that ηk is a bounded sequence and thus it contains a subsequence, not relabelled, such that
ηk → η̄ for some η̄ ∈ R. Then Q(ηk) → 0 and ηk 6 π give Q(η̄) = 0 and η̄ 6 π. Since Q is
positive on (−∞, Φ1)∪ (Φ1, π] and vanishes only atΦ1, this implies that η̄ = Φ1, in contradiction
with the starting assumption. The second assertion of (i) is proved similarly.

(ii) From (2.3)1 we obtain

f (e, η)−G− Se > c̄1(e
2
+ η2)+ c̄2 (4.25)

for all (e, η) ∈ R2 and some c̄1 > 0, c̄2 ∈ R. We prove that if f (ek, ηk) − G − Sek → 0 and
ηk → Φ1 then ek → E1 by a reasoning as in case (i). Namely, if for some subsequence we have
|ek − E1| > δ for all k and some δ > 0, then the sequence ek is bounded by (4.25) and thus
it contains a subsequence such that ek → ē for some ē; then f (ek, ηk) − G − Sek → 0 gives
f (ē, Φ1)−G− Sē = 0 and so ē = E1 by (2.5). The second assertion of (ii) is proved similarly. 2

Proof of Theorem 3.3. We prove first that

φε(x)→

{
Φ1 if 0 6 x < r,

Φ2 if r < x 6 1. (4.26)

Suppose that there exists a sequence εk → 0 and a point y with 0 6 y < r such that |φk(y)− Φ1|

> δ for all k and some δ > 0, where we write φk := φεk and uk := uεk . We shall successively
extract subsequences of φk without relabelling until we obtain a subsequence with φk(y) → Φ1;

this contradiction will prove (4.26)1; a similar argument proves (4.26)2.
Thus let φk be as above. From (3.2) we deduce that Fεk (uk, φk)→ wco(λ) ≡

∫ 1
0 [G+Su′k(x)] dx

and ∫ 1

0
[f (u′k(x), φk(x))−G− Su

′

k(x)] dx → 0;

the integrand is nonnegative by (2.5) and thus by extracting a subsequence, we have

f (u′k(x), φk(x))−G− Su
′

k(x)→ 0 (4.27)

for a.e. x ∈ (0, 1), which by (4.2)1 also implies

Q(φk(x))→ 0 (4.28)

for a.e. x ∈ (0, 1). Let π, ρ be as in Remark 4.2, let

sk = sup{x ∈ [0, 1] : φk(z) 6 π for every z ∈ (0, x]},
tk = inf{x ∈ [0, 1] : φk(z) > ρ for every z ∈ [x, 1)},
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and note that since φk is increasing, 0 6 sk 6 tk 6 1. Passing to a subsequence if necessary, we
assume that sk → s and tk → t for some s, t with 0 6 s 6 t 6 1. We have Q(φk(x))→ 0 for a.e.
x ∈ [0, 1] and φk(x) < π for every x ∈ [0, s) and all sufficiently large k, and φk(x) > ρ for every
x ∈ (t, 1] and all sufficiently large k; hence

φk(x)→

{
Φ1 for a.e. x ∈ [0, s),
Φ2 for a.e. x ∈ (t, 1], (4.29)

by Remark 4.2(i). Since the function Q is strictly positive on [π, ρ], we have Q(φk(x)) > c > 0
for every x ∈ (s, t) and every k sufficiently large; if s < t, this is inconsistent with (4.28); we
thus conclude that s = t. Moreover, since φk are increasing functions, one deduces that the a.e.
convergence in (4.29) can be replaced by convergence everywhere. Thus letting m = s = t we
conclude that

φk(x)→

{
Φ1 if 0 6 x < m,

Φ2 if m < x 6 1. (4.30)

Combining (4.30) with (4.27) we obtain

u′k(x)→

{
E1 if 0 6 x < m,

E2 if m < x 6 1, (4.31)

by Remark 4.2(ii), also using the continuity of u′k. Taking the limit in
∫ 1

0 u
′

k(x) dx = λ then gives
mE1 + (1 − m)E2 = λ, and a comparison with (3.3) shows that m = r. Then (4.30) implies
φk(y)→ Φ1, a contradiction; this proves (4.26).

We finally prove that

u′ε(x)→

{
E1 if 0 6 x < r,

E2 if r < x 6 1. (4.32)

Suppose that there exists a sequence εk → 0 and a point y with 0 6 y < r such that |u′k(y)−E1| > δ

for all k and some δ > 0. Then for a subsequence we have (4.30) and (4.31) with m = r, in
particular, u′k(y)→ E1; a contradiction proving (4.32)1. A similar argument proves (4.32)2. 2

Proof of (3.1)2. Let ε satisfy (3.6) and let (uε, φε) be a minimizer in the sense of (3.7) with φε an
increasing function. Inserting e = u′ε(x), η = φε(x) in (4.2)1 and integrating using the condition∫ 1

0 u
′
ε(x) dx = λ we obtain∫ 1

0
f (u′ε(x), φε(x)) dx − wco(λ) >

∫ 1

0
Q(φε(x)) dx.

Then

Fε(uε, φε)− w
co(λ) >

∫ 1

0
[ε2φ′2ε (x)/2+Q(φε(x))] dx > ε

∫ φε(1)

φε(0)

√
2Q(η) dη

where we have used
ε2φ′2ε (x)/2+Q(φε(x)) > ε

√
2Q(φε(x))φ′ε(x)

since a2
+ b2 > 2|a| |b|. Combining with (3.2) we thus obtain

εσ > Fε(uε, φε)− w
co(λ) > ε

∫ φε(1)

φε(0)

√
2Q(η) dη,
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and the proof of (3.1)2 is completed by noting that∫ φε(1)

φε(0)

√
2Q(η) dη→ σ

as ε→ 0 since φε(0)→ Φ1 and φε(1)→ Φ2 by Theorem 3.3. 2
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