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Departamento de Matemáticas, Universidad Autónoma de Madrid,
Campus de Cantoblanco, E-28049 Madrid, Spain

E-mail: razvan.iagar@uam.es

PHILIPPE LAURENÇOT
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We study the large-time behaviour of solutions of the evolution equation involving nonlinear
diffusion and gradient absorption,

∂tu−∆pu+ |∇u|
q
= 0.

We consider the problem for x ∈ RN and t > 0 with nonnegative and compactly supported initial
data. We take the exponent p > 2 which corresponds to slow p-Laplacian diffusion. The main feature
of the paper is that the exponent q takes the critical value q = p − 1, which leads to interesting
asymptotics. This is due to the fact that in this case both the Hamilton–Jacobi term |∇u|q and the
diffusive term∆pu have a similar size for large times. The study performed in this paper shows that a
delicate asymptotic equilibrium occurs, so that the large-time behaviour of solutions is described by a
rescaled version of a suitable self-similar solution of the Hamilton–Jacobi equation |∇W |p−1

= W ,
with logarithmic time corrections. The asymptotic rescaled profile is a kind of sandpile with a cusp
on top, and it is independent of the space dimension.
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1. Introduction and main results

In this paper we deal with the Cauchy problem associated to the diffusion-absorption equation

∂tu−∆pu+ |∇u|
q
= 0, (t, x) ∈ Q, (1.1)

posed in Q := (0,∞)× RN with initial data

u(0, x) = u0(x) > 0, x ∈ RN , (1.2)

c© European Mathematical Society 2011
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where the p-Laplacian operator is defined as usual by ∆pu := div(|∇u|p−2
∇u). To be specific we

take p > 2, which implies finite speed of propagation, and we consider nonnegative weak solutions
u > 0 with compactly supported initial data u0 such that

u0 ∈ W
1,∞(RN ), u0 > 0, supp(u0) ⊂ B(0, R0), u0 6≡ 0, (1.3)

for some R0 > 0. Known properties of the equation ensure that its solutions will be compactly
supported with respect to the space variable for every time t > 0. The goal of the paper is to
describe in detail the asymptotic behaviour of the solutions as t →∞.

The equation (1.1) has been studied by various authors for different values of the parameters
p > 2 and q > 1 as a model of linear or nonlinear diffusion with gradient-dependent absorption:
see [8, 9, 11, 12, 15] for the semilinear case p = 2, and [1, 7, 16, 20] for the quasilinear case p > 2.
It has been shown that the large-time behaviour of this initial-value problem depends on the relative
influence of the diffusion and absorption terms and leads to a classification into the following ranges
of q:

(i) When q > q2 := p−N/(N+1) the large-time behaviour is purely diffusive and the first order
absorption term disappears in the limit t → ∞; this is a case of asymptotic simplification in
the sense of [21].

(ii) For q1 := p − 1 < q < q2 there is a behaviour given by a certain balance of diffusion and
absorption in the form of a self-similar solution, its existence being established in [20]; there
is no asymptotic simplification.

(iii) For 1 < q < p − 1 the last two authors have recently shown in [16] that the main term is the
absorption term, leading to a separate-variables asymptotic behaviour, with diffusion playing a
secondary role. We thus have asymptotic simplification, now with absorption as the dominating
effect.

The two critical cases q = q2 and q = q1 represent limit behaviours, and as is often the case in
such situations, they give rise to interesting dynamics due to the curious interaction of two effects
of similar strength. Such situations usually lead to phenomena called resonances in mechanics,
with interesting nontrivial mathematical analysis. Such interesting behaviour has been shown in
particular in [11] for q = q2, in the linear case p = 2, with the result that logarithmic factors
modify the purely diffusive behaviour found for q > q2. A similar situation is expected to be met
when p > 2 and q = q2.

We devote this paper to the other limit case, q = q1 = p − 1 when p > 2, the latter condition
guaranteeing that q > 1. In that case the diffusion and the first order term have similar asymptotic
size and logarithmic corrections appear in the asymptotic rates. The mathematical analysis that we
perform below is strongly tied to a good knowledge of the expansion of the support of the solution,
or in other words, the location of the free boundary, which happens to be approximately a sphere of
radius |x| ∼ C log t for large times t . From now on, we assume that

q = q1 = p − 1.

1.1 Bounds in suitable norms

Studying the large time behaviour of solutions and interfaces of our problem relies on suitable
precise estimates. The time expansion of the support and the time decay of solutions to the Cauchy
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problem (1.1)–(1.2) with nonnegative and compactly supported initial data have recently been
investigated in [7]. The following results are proved:

PROPOSITION 1.1 Consider an initial condition u0 satisfying (1.3) (and q = p − 1). The Cauchy
problem (1.1)–(1.2) has a unique nonnegative viscosity solution

u ∈ BC([0,∞)× RN ) ∩ L∞(0,∞;W 1,∞(RN ))

which satisfies

0 6 u(t, x) 6 ‖u0‖∞, (t, x) ∈ Q, (1.4)
‖∇u(t)‖∞ 6 ‖∇u0‖∞, t > 0, (1.5)

supp(u(t)) ⊂ B(0, C1 log t) for all t > 2, (1.6)

together with the norm estimates

‖u(t)‖1 6 C2t
−1/(p−2)(log t)(p(N+1)−2N−1)/(p−2) for all t > 2, (1.7)

‖u(t)‖∞ 6 C2t
−1/(p−2)(log t)(p−1)/(p−2) for all t > 2, (1.8)

‖∇u(t)‖∞ 6 C2t
−1/(p−2)(log t)1/(p−2) for all t > 2, (1.9)

for some positive constants C1 and C2 depending only on p, N , and u0.

Here and below, BC([0,∞) × RN ) denotes the space of bounded continuous functions on
[0,∞) × RN and ‖ · ‖r denotes the Lr(RN )-norm for r ∈ [1,∞]. As we shall see, these bounds
will be very useful. The well-posedness of (1.1)–(1.2) and the properties (1.4), (1.6), and (1.7) are
established in [7, Theorems 1.1 & 1.6, Corollary 1.7], while (1.8) and (1.9) follow from (1.7) and
[7, Proposition 1.4]. We will also use the notation r+ = max{r, 0} for the positive part of the real
number r .

1.2 Main results

We next describe the main contribution of this paper. As already mentioned, our goal is to study the
asymptotic behaviour of the solution u of the resonant problem (1.1) with p > 2 and q = p − 1,
and with compactly supported and nonnegative initial data. Moreover, since the equation has the
property of finite speed of propagation, it is natural to raise the question about how the interface and
the support of the solution expand in time. We also answer this question in the present paper.

Asymptotic behaviour. The main result is the following:

THEOREM 1.1 Let u be the solution of the Cauchy problem (1.1)–(1.2) with u0 as in (1.3). Then
u decays in time like O(t−1/(p−2)(log t)(p−1)/(p−2)) and the support spreads in space like O(log t)
as t →∞. More precisely, we have the limit

lim
t→∞

sup
x∈RN

∣∣∣∣ cpt
1/(p−2)

(log t)(p−1)/(p−2) u(t, x)−

(
1−

(p − 2)|x|
log t

)(p−1)/(p−2)

+

∣∣∣∣ = 0, (1.10)

with precise constant
cp = (p − 2)1/(p−2)(p − 1)(p−1)/(p−2).
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In the proof, the expression of the asymptotic profile is obtained after a complicated time scaling
of u and x in the form of uniform limit

t1/(p−2)

(log t)(p−1)/(p−2) u(t, x)→ (p − 2)−p/(p−2)W((p − 2)x/log t), (1.11)

where the function

W(x) :=
(
p − 2
p − 1

(1− |x|)+

)(p−1)/(p−2)

(1.12)

is the unique viscosity solution to the stationary form of the rescaled problem, which is

|∇W |p−1
−W = 0 in B(0, 1), W = 0 on ∂B(0, 1), W > 0 in B(0, 1). (1.13)

Let us notice that, as is usual in resonance cases, the limit profile is not a self-similar solution, but
it introduces logarithmic corrections to a self-similar, separate-variables profile (which in our case
is t−1/(p−2)(p − 2)−p/(p−2)W((p − 2)x)). The uniqueness of W as viscosity solution of (1.13) is
important in the proof and follows from [13].

In accordance with (1.10), we show that the shape of the support of u(t) gets closer to a ball
while expanding as time goes by. This is in sharp contrast with the situation described in [16] for
(1.1) in the intermediate range q ∈ (1, p−1), p > 2, where the positivity set stays bounded and can
have a very general shape. When q = p−1, the diffusion thus acts in three directions: the scaling is
different, the support grows unboundedly in time, and the geometry of the positivity set simplifies.
Another remarkable consequence of the diffusion-absorption interplay is that the asymptotic profile
is radially symmetric and does not depend on the space dimension.

We devote Section 4 to the proof of Theorem 1.1. For the proof, we use a precise estimate for the
propagation of the positivity set, described below. Another tool is the existence of a large family of
subsolutions having a special, explicit form and allowing for a theoretical argument with viscosity
solutions to finish the proof.

Propagation of the positivity set. We denote the positivity set and its maximal expansion radius by

Pu(t) := {x ∈ RN : u(t, x) > 0}, γ (t) = sup{|x| : x ∈ Pu(t)} (1.14)

respectively. Then:

THEOREM 1.2 Under the above notations and assumptions, we have

lim
t→∞

γ (t)

log t
=

1
p − 2

.

Moreover, the free boundary of u has the same speed of expansion in any given direction ω ∈ RN
with |ω| = 1.

In fact, we give more precise estimates for the expansion of the positivity region, obtained via
comparison with some well-chosen travelling waves. The proof of Theorem 1.2 is given in Section 3.
It is worth pointing out here that, while the assumption of compact support for u0 is of utmost
importance for Theorems 1.1 and 1.2 to hold, the size of the support of u0 is irrelevant for large
times and plays no role in the description of the asymptotic state.
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Two scalings. In order to prove the two theorems, we have to perform two different scaling steps.
The first scaling, described in formula (2.2) below, is the natural one corresponding to standard
scaling invariance; such a scaling has also been used in [16] in the case q ∈ (1, p− 1) to obtain the
correct scale of the solutions. But for q = p − 1, we observe that a grow-up phenomenon appears,
which is typical for resonance cases: the effect of the resonance implies that the rescaled solution
does not stabilize in time; on the contrary, it grows and becomes unbounded in infinite time. That
is why we need a second scaling, given by the new functions w and y defined in (4.1) and (4.2),
which is less natural but turns out to be adapted to our problem: it takes into account the logarithmic
corrections (suggested by the a priori estimates of Proposition 1.1, which turn out to be sharp), and
it is adapted to the size of the grow-up phenomenon; thus, in the rescaled variables we can describe
the real form and behaviour of the solution.

2. Scaling variables I

We recall that p > 2 and q = p − 1. We introduce a first set of self-similar variables; we keep the
space variable x and introduce logarithmic time

τ :=
1

p − 2
ln(1+ (p − 2)t), (2.1)

as well as the new unknown function v = v(τ, x) defined by

u(t, x) = (1+ (p − 2)t)−1/(p−2)v(τ, x), (t, x) ∈ [0,∞)× RN . (2.2)

Clearly, v solves the rescaled equation

∂τv −∆pv + |∇v|
q
− v = 0, (τ, x) ∈ Q, (2.3)

with the same initial condition
v(0) = u0, x ∈ RN . (2.4)

We next translate the a priori bounds (1.7), (1.8), and (1.9) in terms of the rescaled function v: there
is C3 > 0 depending only on p, N , and u0 such that

‖v(τ)‖1

τ (p(N+1)−2N−1)/(p−2) +
‖v(τ)‖∞

τ (p−1)/(p−2) +
‖∇v(τ)‖∞

τ 1/(p−2) 6 C3 for τ > 1. (2.5)

2.1 The positivity set: time monotonicity

We define the positivity set Pv(τ ) of the function v at time τ > 0 by

Pv(τ ) := {x ∈ RN : v(τ, x) > 0}. (2.6)

PROPOSITION 2.1 For τ1 ∈ [0,∞) and τ2 ∈ (τ1,∞) we have

Pv(τ1) ⊆ Pv(τ2) and
⋃
τ>0

Pv(τ ) = RN . (2.7)

In addition, for each x ∈ RN there are Tx > 0 and εx > 0 such that

v(τ, x) > εxτ
(p−1)/(p−2) for τ > Tx . (2.8)
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The proof relies on the availability of suitable subsolutions which we describe next.

LEMMA 2.1 Define two positive real numbers Rp and Tp by

Rp :=
p − 2

2p(p − 1)
and Tp :=

2(p − 1)
p − 2

(2+ 2p−1(N + p − 2)).

If R ∈ (0, Rp] and T > Tp, the function sR,T given by

sR,T (τ, x) :=
p − 2

R(p − 1)
(T + τ)(p−1)/(p−2)

(
R2
−
|x|2

(T + τ)2

)(p−1)/(p−2)

+

, (τ, x) ∈ Q,

is a (viscosity) subsolution to (2.3).

Proof. We have sR,T (τ, x) = (T + τ)(p−1)/(p−2)σ(ξ) with ξ := x/(T + τ) and σ(ξ) :=
(p − 2)(R2

− |ξ |2)
(p−1)/(p−2)
+ /(R(p − 1)). Since p − 1 > p − 2 > 0, we observe that σ and

|∇σ |p−2
∇σ both belong to C1(RN ). Therefore,

L(τ, x) := R(T + τ)−(p−1)/(p−2)
{∂τ sR,T −∆psR,T + |∇sR,T |

p−1
− sR,T }

is well-defined for (τ, x) ∈ [0,∞)× RN and

L(τ, x) =
R

T + τ

{
p − 1
p − 2

σ(ξ)− ξ · ∇σ(ξ)−∆pσ(ξ)

}
+ R|∇σ(ξ)|p−1

− Rσ(ξ)

= (R2
− |ξ |2)

(p−1)/(p−2)
+

{
1

T + τ
(1+ 2p−1(N + p − 2)

|ξ |p−2

Rp−2 )

}
+ (R2

− |ξ |2)
(p−1)/(p−2)
+

{
2

T + τ

|ξ |2

R2 − |ξ |2

(
1−

2p−1(p − 1)
p − 2

|ξ |p−2

Rp−2

)}
+ (R2

− |ξ |2)
(p−1)/(p−2)
+

{
2p−1 |ξ |

p−1

Rp−2 −
p − 2
p − 1

}
6 (R2

− |ξ |2)
(p−1)/(p−2)
+

{
1+ 2p−1(N + p − 2)

T
+ 2p−1R −

p − 2
p − 1

}
+ (R2

− |ξ |2)
(p−1)/(p−2)
+

{
2

T + τ

|ξ |2

R2 − |ξ |2

(
1−

2p−1(p − 1)
p − 2

|ξ |p−2

Rp−2

)
+

}
.

We next note that

1−
2p−1(p − 1)
p − 2

|ξ |p−2

Rp−2 6 0 if |ξ | > R/2,

so that the last term of the right-hand side of the previous inequality is bounded from above by
2(R2

− |ξ |2)
(p−1)/(p−2)
+ /(3T ). Consequently, owing to the choice of R and T ,

L(τ, x) 6 (R2
− |ξ |2)

(p−1)/(p−2)
+

{
1+ 2p−1(N + p − 2)

Tp
+ 2p−1Rp −

p − 2
p − 1

+
2

3Tp

}
6 0,

whence the claim. 2
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Proof of Proposition 2.1. (i) Fix τ1 > 0 and x1 ∈ Pv(τ1). Owing to the continuity of x 7→ v(τ1, x)

there are δ > 0 and r1 > 0 such that v(τ1, x) > δ for x ∈ B(x1, r1). Take now R > 0 small enough
such that R < min {r1, Rp} and satisfying

R <
r1

Tp + τ1
and

p − 2
p − 1

(Tp + τ1)
(p−1)/(p−2)Rp/(p−2) 6 δ,

the parameters Rp and Tp being defined in Lemma 2.1. Then we have sR,Tp (τ1, x − x1) = 0 6
v(τ1, x) if |x − x1| > R (Tp + τ1), while

sR,Tp (τ1, x − x1) 6
p − 2

R(p − 1)
(Tp + τ1)

(p−1)/(p−2) R(2p−2)/(p−2) 6 δ 6 v(τ1, x)

if |x − x1| 6 R(Tp + τ1) as R(Tp + τ1) 6 r1. Moreover, if τ2 > τ1, τ ∈ [τ1, τ2] and x ∈
∂B(x1, R(Tp + τ2)), then sR,Tp (τ, x − x1) = 0 6 v(τ, x). Recalling that sR,Tp is a subsolution to
(2.3) by Lemma 2.1, we infer from the comparison principle that sR,Tp (τ, x − x1) 6 v(τ, x) for
(τ, x) ∈ [τ1, τ2] × B(x1, R(Tp + τ2)). As sR,Tp (τ, x − x1) = 0 6 v(τ, x) for τ ∈ [τ1, τ2] and
x 6∈ B(x1, R(Tp + τ2)) we actually have sR,Tp (τ, x − x1) 6 v(τ, x) for (τ, x) ∈ [τ1, τ2] × RN .
Since τ2 > τ1 is arbitrary and neither R nor Tp depends on τ2, we end up with

sR,Tp (τ, x − x1) 6 v(τ, x), (τ, x) ∈ [τ1,∞)× RN . (2.9)

A first consequence of (2.9) is that, if τ2 > τ1, then v(τ2, x1) > sR,Tp (τ2, 0) > 0 so that x1 also
belongs to Pv(τ2).

Next, given x ∈ RN , we have x ∈ B(x1, R(Tp + τ)) for τ large enough, and it follows from
(2.9) that v(τ, x) > sR,Tp (τ, x − x1) > 0 for τ large enough. Consequently, x belongs to Pv(τ ) for
τ large enough, which proves the second assertion of (2.7).

(ii) Consider x0 ∈ RN . According to (2.7) there is τ0 large enough such that x0 ∈ Pv(τ0).
Arguing as in the proof of (2.7), we may find r0 small enough (depending on x0) such that
sr0,Tp (τ, x − x0) 6 v(τ, x) for (τ, x) ∈ [τ0,∞)× RN . Consequently,

v(τ, x0) >
p − 2

r0(p − 1)
(Tp + τ)

(p−1)/(p−2)r
(2p−2)/(p−2)
0 >

p − 2
p − 1

r
p/(p−2)
0 τ (p−1)/(p−2),

which gives the lower bound (2.8). 2

COROLLARY 2.1 Assume that u0(0) > 0. Then there is r∗ > 0 such that

v(τ, x) >
(p − 2)
r∗(p − 1)

(1+ τ)(p−1)/(p−2)
(
r2
∗ −

|x|2

(1+ τ)2

)(p−1)/(p−2)

+

, (τ, x) ∈ Q. (2.10)

Proof. Arguing as in the proof of (2.7) and using the positivity of u0(0), we find r∗ > 0 small
enough such that sr∗,Tp (τ, x) 6 v(τ, x) for (τ, x) ∈ Q. Since Tp > 1, the previous inequality
implies (2.10). 2

2.2 Eventual radial symmetry

We prove the following classical monotonicity lemma (see [3, Proposition 2.1] for instance).
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LEMMA 2.2 If x ∈ RN and r > 0 satisfy |x| > 2R0 and r < |x| − 2R0, then

v(τ, x) 6 inf
|y|=r

v(τ, y) for τ > 0. (2.11)

Here, R0 is the radius of the initial ball defined in (1.3).

Proof. The proof relies on Aleksandrov’s reflection principle. Let (x, r) ∈ RN × (0,∞) fulfil the
assumptions and consider y ∈ RN such that |y| = r . Let H be the hyperplane of points of RN
which are equidistant from x and y:

H :=
{
z ∈ RN :

〈
z−

x + y

2
, x − y

〉
= 0

}
.

Introducing

H− :=
{
z ∈ RN :

〈
z−

x + y

2
, x − y

〉
6 0

}
and

ṽ(τ, z) := v
(
τ, z− 2

〈
z−

x + y

2
, x − y

〉
x − y

|x − y|2

)
, (τ, z) ∈ Q,

it readily follows from the rotational and translational invariance of (2.3) that ṽ also solves (2.3). In
addition, y ∈ H− and Pv(0) ⊆ B(0, R0) ⊆ H− by (1.3). Now, on the one hand, if z ∈ H−, then

z− 2
〈
z−

x + y

2
, x − y

〉
x − y

|x − y|2
6∈ H−

and ṽ(0, z) = 0 6 v(0, z). On the other hand, if z ∈ H = ∂H− and τ > 0, we clearly have
ṽ(τ, z) = v(τ, z). We can thus apply the comparison principle to (2.3) on (0,∞)×H− and conclude
that

ṽ(τ, z) 6 v(τ, z), (τ, z) ∈ [0,∞)×H−. (2.12)

Recalling that y ∈ H−, we infer from (2.12) that v(τ, y) > ṽ(τ, y) = v(τ, x) for τ > 0, which is
the expected result. 2

REMARK 2.1 Although Lemma 2.2 will not be used in the main proofs, this is an interesting result
for the qualitative theory, since it shows that the dynamics symmetrizes the solution.

3. Propagation of the positivity set

We next turn to the speed of expansion of the positivity set Pv of v and put

%(τ) := sup{|x| : x ∈ Pv(τ )}, (3.1)

so that Pv(τ ) ⊆ B(0, %(τ )) for τ > 0. The purpose of this section is to prove that the expansion
speed %(τ) of Pv(τ ) is asymptotically equal to τ , in other words,

lim
τ→∞

%(τ)

τ
= 1,

and, more precisely, to prove Theorem 1.2.
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The proof relies on the existence of “nice” travelling wave solutions of (2.3), which may be
used as subsolutions and supersolutions for the Cauchy problem (2.3)–(2.4). The construction of
such travelling waves is inspired by the technique used in the so-called KPP problems [14], which
has developed a wide literature; see, e.g., [2], [22] for applications to porous media, and [18] for
blow-up problems. We thus begin with a phase-plane analysis, proving the existence of the desired
travelling waves.

3.1 Travelling wave analysis for N = 1

We look for travelling waves of the form

v(τ, x) = f (z), z = x − cτ, c > 0,

solving (2.3) in dimension N = 1. Then the profile f solves the ordinary differential equation

−cf ′ − (|f ′|p−2f ′)′ + |f ′|p−1
− f = 0. (3.2)

We are actually only interested in travelling waves which present an interface, that is, f vanishes
for z sufficiently large. As we shall see below, the profile f is nonmonotone in general, but is
nonnegative and decreasing near the interface. We transform (3.2) into a first order system, by
introducing the notation U = f and V = −f ′. We arrive at{

(p − 1)|V |p−2U ′ = −(p − 1)|V |p−2V,

(p − 1)|V |p−2V ′ = −cV − |V |p−1
+ U,

(3.3)

where, for the orbits, the term (p − 1)|V |p−2 on the right-hand side has no influence (since we
work with dV/dU ) and can be ignored after a change of the time variable. We next perform the
phase-plane analysis of the system (3.3).

Local analysis in the plane. The system (3.3) has a unique critical point, P = (0, 0), and the
Jacobian matrix J (0, 0) at this point is given by

J (0, 0) =
(

0 0
1 −c

)
with eigenvalues λ1 = 0 and λ2 = −c, and corresponding eigenvectors e1 = (c, 1) and e2 = (0, 1).
By a careful analysis, we notice that the centre manifold at P is tangent to e1, and is asymptotically
stable. It follows that P is a stable node for every c > 0. There is a unique orbit entering P and
tangent to e2, forming the stable manifold; its local behaviour is U(z) ∼ C(−z)(p−1)/(p−2) as
z→ 0, hence this orbit contains all the travelling waves with velocity c and having an interface. By
standard theory (see, e.g., [17]), all the other orbits approach the centre manifold, tangent to e1, and
exhibit exponential decay, but no interface: U(z) ∼ e−cz as z→∞.

Local analysis at infinity. We investigate the behaviour of the system when U is very large. For
monotone travelling waves, we make the following inversion of the plane:

Z =
1
U
, W =

|V |p−2V

U
,
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and we are interested in the local behaviour near Z = 0. After straightforward calculations, (3.3)
becomes{

Z′ = Z(2p−3)/(p−1)W |W |−(p−2)/(p−1),

W ′ = Z(p−2)/(p−1)
|W |p/(p−1)

− cZ(p−2)/(p−1)W |W |−(p−2)/(p−1)
+ 1− |W |.

(3.4)

We find two critical points with Z = 0, namely Q1 = (0, 1) and Q2 = (0,−1). We will analyze
onlyQ1, i.e. the decreasing travelling waves. Let us also remark that, in the second equation of (3.4),
the terms with Z are dominated by 1−|W | nearQ1 andQ2, hence we can study the local behaviour
by using the approximate equation only with 1− |W | on the right-hand side. The linearization near
Q1 has eigenvalues λ1 = 0 and λ2 = −1, and the centre manifold, which is tangent to the line
W = 1, is unstable. Hence, the point Q1 behaves like a saddle, and the orbits which are interesting
for our study are those going out of Q1. These orbits are tangent to W = 1, and in the original
system they satisfy U ∼ V p−1, hence, by integration,

U(z) ∼ |z|(p−1)/(p−2) as z→−∞,

and are decreasing. The local analysis around Q2 is similar, but not interesting for our goals.
Let us notice that not all solutions passing through a point in the first quadrant come from Q1.

Indeed, the orbits touching the curveU = cV+V p−1 change monotonicity as functions V = V (U),
hence they have previously reached the axis V = 0, meaning a change of monotonicity as f = f (z),
and they enter through this change in the first quadrant. Analyzing the curve U = cV + V p−1, we
observe that it connects in the phase-plane the points P = (0, 0) and Q1, being tangent at Q1 to
the axis W = 1. In particular, there exist nonmonotone solutions, and this is the object we are
interested in.

Global behaviour. This is now not difficult to establish, by merging the previous local analysis
with the following important remarks:

(a) The evolution of the system (3.3) with respect to the parameter c is monotone. Indeed, we
calculate

d
dc

(
dV
dU

)
=

1
(p − 1)|V |p−2 > 0.

(b) There exists an explicit family of travelling wave solutions with speed c = 1:

f1,K(z) =

(
p − 2
p − 1

)(p−1)/(p−2)

(K − z)
(p−1)/(p−2)
+ , K > 0. (3.5)

This function is obviously decreasing and exhibits an interface at z = K . It is immediate to
check that this orbit satisfies U = V p−1, hence it comes from the point Q1 along the centre
manifold of it, and it enters P , being the unique orbit entering P and tangent to the eigenvector
e2 = (0, 1) (unique for c = 1), as discussed above.

(c) Moreover, the vectors of the direction field of (3.3) over the curve U = V p−1 (which gives
the explicit orbit (3.5)) have the same direction. Indeed, the normal vector to this curve is
(1,−(p − 1)V p−2) and we calculate

(1,−(p − 1)V p−2) · (−(p − 1)V p−1,−cV − V p−1
+ U) = (p − 1)(c − 1)V p−1.

For c = 1 we obtain the explicit trajectory, and for c < 1, the above scalar product is negative,
hence all these vectors have the same direction, contrary to (1,−(p − 1)V p−2). For c > 1, all
these vectors have the same direction as V .
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Since we are interested only in travelling waves with an interface, we analyze only the unique
(for c fixed) orbit entering P = (0, 0) tangent to e2 = (0, 1). For c = 1, it is explicit and connects
P and Q1 in the first quadrant. We draw the phase-plane for c = 1 in Figure 1 below; it is clear that
the explicit connection will not change sign and monotonicity.
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FIG. 1. Phase portrait around the origin for c = 1. Experiment for p = 3, N = 1.

By remarks (a) and (c) above, it follows that for c < 1, this unique orbit escapes from Q1,
hence it should cross at some point the curve U = cV + V p−1 (which still connects P = (0, 0)
and Q1); as explained before, this orbit previously had a change of sign (crossing the axis U = 0)
and then a change of monotonicity (crossing the axis V = 0). In particular, we can say that the
explicit orbit (3.5) is a separatrix between the monotone and the nonmonotone orbits. We draw the
local phase portrait for c < 1, around the origin, in Figure 2 below. We gather the discussion above
in the following result.
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FIG. 2. Phase portrait around the origin for c < 1. Experiment for p = 3, N = 1, c = 0.9.
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LEMMA 3.1 (i) For any c ∈ (0, 1) and K > 0, there exists a unique travelling wave solution
f̄c,K(z) = f̄c,K(x − cτ) of (2.3) in dimension N = 1, having an interface at z = K (that is,
f̄c,K(z) = 0 for z > K) and moving with speed c. In addition, f̄c,K(z) = f̄c,0(z − K) for
z ∈ R.

(ii) For c = 1 and for any K > 0, there exists a unique nonnegative travelling wave f1,K(z) =

f1,K(x − τ) of (2.3) in dimension N = 1 with interface at z = K , having the explicit formula

f1,K(x − τ) =

(
p − 2
p − 1

)(p−1)/(p−2)

(K + τ − x)
(p−1)/(p−2)
+ . (3.6)

Here again, f1,K(z) = f1,0(z−K) for z ∈ R.
(iii) For any c > 1 and K > 0, there exists a unique travelling wave solution fc,K = fc,K(x − cτ)

of (2.3) in dimensionN = 1 with interface at z = K and moving with speed c. Moreover, fc,K
is nonnegative and nonincreasing, and fc,K(z) = fc,0(z−K) for z ∈ R.

Compactly supported subsolutions for 0 < c < 1. We are looking for nonnegative and compactly
supported subsolutions travelling with any speed 0 < c < 1. These subsolutions are constructed in
the following way: from the analysis above, we know that, given c ∈ (0, 1) and K > 0, there are
two points zc,K ∈ (−∞,K) and z̃c,K ∈ (zc,K ,K) such that

zc,K := inf {z ∈ (−∞,K) : f̄c,K > 0 in (z,K)} > −∞,

and
f̄ ′c,K > 0 in (zc,K , z̃c,K) and f̄ ′c,K < 0 in (z̃c,K ,K).

We then define

fc,K(z) =

{
f̄c,K(z) for zc,K 6 z 6 K,

0 elsewhere.
(3.7)

In other words, we consider the positive hump of the graph of fc,K located between its last change
of sign and the interface. It is immediate to check that fc,K is a compactly supported subsolution
to (2.3) in dimension N = 1, and that it has an increasing part until reaching its maximum at z̃c,K ,
and then decreases to the interface point K . The notation fc,K will designate these subsolutions if
0 < c < 1 and the solutions to (2.3) in dimension N = 1 given by Lemma 3.1 if c > 1.

3.2 Construction of subsolutions in dimension N > 1

We turn to equation (2.3) posed in dimension N > 1 for which we aim at constructing some special
subsolutions having an interface that moves out in all directions with a given velocity c < 1. The
construction is based on the travelling waves fc,K identified in the previous subsection. The first
attempt is to try the form V (τ, x) = fc,K(|x| − cτ), c ∈ (0, 1), which satisfies

∂τV −∆pV + |∇V |
p−1
− V

= −cf ′c,K − (|f
′

c,K |
p−2f ′c,K)

′
+ |f ′c,K |

p−1
− fc,K −

N − 1
|x|
|f ′c,K |

p−2f ′c,K

6 −
N − 1
|x|
|f ′c,K |

p−2f ′c,K .
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Thus, V is a subsolution of (2.3) in the region of Q where f ′c,K > 0. We therefore have to modify
the profile in the decreasing part of fc,K and we proceed as follows.

Travelling wave solutions to a modified equation in dimension N = 1. For α ∈ (0, 1/2), we
consider the following perturbation of (2.3):

∂τ ζ − ∂x(|∂xζ |
p−2∂xζ )+ |∂xζ |

p−1
− α |∂xζ |

p−2∂xζ − ζ = 0, (t, x) ∈ (0,∞)× R, (3.8)

and look for travelling wave solutions ζ(τ, x) = g(x − cτ). Then g solves

−cg′ − (|g′|p−2g′)′ + |g′|p−1
− α|g′|p−2g′ − g = 0. (3.9)

The phase-plane analysis for (3.9) is similar to that of (3.2), with the difference that an extra term
−α |V |p−2V appears on the right-hand side of the second equation in (3.3). This is only reflected
in the analysis at infinity, where the pointQ1 changes into (0, 1/(1+α)) and the explicit separatrix
is obtained for c = 1/(1+ α) < 1. In particular, we have the following analogue of Lemma 3.1(i).

LEMMA 3.2 For any α > 0 sufficiently small, c ∈ (0, 1/(1+α)) andK > 0, there exists a unique
travelling wave solution gc,K,α(z) = gc,K,α(x − cτ) of (3.8) having an interface at z = K and
moving with speed c. In addition, gc,K,α(z) = gc,0,α(z − K) for z ∈ R and there are two points
zc,K,α ∈ (−∞,K) and z̃c,K,α ∈ (zc,K,α,K) such that

zc,K,α := inf {z ∈ (−∞,K) : gc,K,α > 0 in (z,K)} > −∞,

and
g′c,K,α > 0 in (zc,K,α, z̃c,K,α) and g′c,K,α < 0 in (z̃c,K,α,K).

Setting
Mc,α := sup

z∈[zc,0,α,0]
gc,0,α(z),

we notice that

zc,K,α = zc,0,α +K, z̃c,K,α = z̃c,0,α +K, sup
z∈[zc,K,α,K]

gc,K,α(z) = Mc,α. (3.10)

If we now put V (τ, x) = gc,K,α(|x| − cτ), we calculate that

∂τV −∆pV + |∇V |
p−1
− V =

(
α −

N − 1
|x|

)
(|g′c,K,α|

p−2g′c,K,α)(|x| − cτ),

and it is a subsolution where g′c,K,α 6 0 and α > (N − 1)/|x|. Matching these two conditions turns
out to be possible as we show now.

Fix c ∈ (1/2, 1) and αc := (1− c)/(1+ c) and define

τ0(c) := max{2(N − 1)/αc − 2z̃c,0,αc ,−z̃c,0,αc/c} > 2(N − 1)/αc, (3.11)

the point z̃c,0,αc ∈ (−∞, 0) being defined in Lemma 3.2. Then c < 1/(1 + αc) and, for K > 0,
τ > τ0(c), and |x| > z̃c,K,αc + cτ = z̃c,0,αc +K + cτ , we have

N − 1
|x|

6
N − 1

z̃c,0,αc + cτ0(c)
6

2(N − 1)
2z̃c,0,αc + τ0(c)

6 αc,
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and

g′c,K,αc (|x| − cτ) < 0 if z̃c,K,αc + cτ 6 |x| < K + cτ,

g′c,K,αc (|x| − cτ) = 0 if K + cτ 6 |x|.

Consequently, for c ∈ (1/2, 1), αc = (1 − c)/(1 + c), and K > 0, the function V defined by
V (τ, x) = gc,K,αc (|x| − cτ) is a subsolution to (2.3) for τ > τ0(c) and |x| > z̃c,K,αc + cτ .
Observing that any positive constant is a subsolution to (2.3), we construct a compactly supported
subsolution vc,K to (2.3) by setting

vc,K(τ, x) :=
{
Mc,αc if 0 6 |x| < z̃c,K,αc + cτ,

gc,K,αc (|x| − cτ) if |x| > z̃c,K,αc + cτ,
(3.12)

for τ > τ0(c). It is easy to check that the function vc,K is a subsolution to (2.3) in [τ0(c),∞)×RN .
It will be used for comparison from below, as indicated in the next subsection.

3.3 Proof of Theorem 1.2

We conclude the proof of Theorem 1.2 by a comparison argument, using the subsolutions and
supersolutions constructed in the previous subsections. First, we identify a class of solutions of
(2.3) that is representative for the general solutions.

We say that a function V = V (τ, x) is radially nonincreasing if V (τ, ·) is radially symmetric
for all τ , and it is nonincreasing in the radial variable r := |x|. For example, the subsolutions vc,K
are radially nonincreasing. The next results show that the class of radially nonincreasing solutions
of (2.3) is sufficient for our aims.

LEMMA 3.3 Let u0 = u0(r) be a radially nonincreasing function satisfying (1.3). Then the
solution v of (2.3) with initial condition u0 is also radially nonincreasing.

Proof. The radial symmetry of the solution v follows from the invariance of the equation (2.3) with
respect to rotations. We now write the equation satisfied by ξ = ∂rv, obtained by differentiating
(2.3) with respect to r:

∂tξ − ∂
2
r (|ξ |

p−2ξ)−
N − 1
r

∂r(|ξ |
p−2ξ)+

N − 1
r2 |ξ |

p−2ξ + (p − 1)|ξ |p−3ξ∂rξ − ξ = 0,

which is a parabolic equation (of porous medium type) and satisfies a maximum principle. Since
0 is a solution to the above equation, the derivative ξ = ∂rv remains nonpositive if it is initially
nonpositive, and it follows that v is radially nonincreasing. 2

We are now in a position to end the proof of Theorem 1.2 for radially nonincreasing initial data.
More precisely, we have the following upper and lower bounds for %(τ) defined in (3.1), the support
of v(τ) being included in the ball B(0, %(τ )).

LEMMA 3.4 Let u0 = u0(r) be a radially nonincreasing function satisfying (1.3) and denote by v
the solution of (2.3) with initial condition u0. For any c ∈ (1/2, 1), there exists τ1(c) > 0 such that,
for any τ > τ1(c),

1+ c(τ − τ1(c)) 6 %(τ) 6 R0 +
p − 1
p − 2

‖u0‖
(p−2)/(p−1)
∞ + τ. (3.13)

In particular, %(τ)/τ → 1 as τ →∞.
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Proof. The upper bound follows by comparison with the explicit travelling wave solutions (3.6).
More precisely, we define

R1 := R0 +
p − 1
p − 2

‖u0‖
(p−2)/(p−1)
∞ (3.14)

and consider the function v(τ, x) = f1,R1(x1 − τ), which is a solution of (2.3) by Lemma 3.1. If
x = (xi)16i6N ∈ RN is such that x1 > R0, then |x| > R0 and u0(x) = 0 6 v(0, x), while if
x1 6 R0,

u0(x) 6 ‖u0‖∞ 6

(
p − 2
p − 1

)(p−1)/(p−2)

(R1 − R0)
(p−1)/(p−2)

6

(
p − 2
p − 1

)(p−1)/(p−2)

(R1 − x1)
(p−1)/(p−2)

= v(0, x).

The comparison principle then entails that v(τ, x) 6 v(τ, x) for (τ, x) ∈ [0,∞)×RN , from which
we conclude that Pv(τ ) ⊆ {x ∈ RN : x1 6 R1 + τ }. Owing to the rotational invariance of (2.3), we
actually have Pv(τ ) ⊆ {x ∈ RN : 〈x, ω〉 6 R1 + τ } for every ω ∈ SN−1 and τ > 0, and thus

Pv(τ ) ⊆ B(0, R1 + τ). (3.15)

The lower bound follows from comparison with the subsolutions constructed in (3.12). Fix c ∈
(1/2, 1) and put r1 := 1+cτ0(c), τ0(c) being defined by (3.11). Since v(τ) is radially nonincreasing
for all τ > 0 by Lemma 3.3, we infer from Proposition 2.1 that, for x ∈ B(0, r1) and τ > Tr1 ,

v(τ, x) > v(τ, r1x/|x|) > εr1τ
(p−1)/(p−2).

Define
τ1(c) := max{τ0(c), Tr1 , (Mc,(1−c)/(1+c)/εr1)

(p−2)/(p−1)
}

so that the previous inequality and the properties of vc,1 defined in (3.12) guarantee that

v(τ1(c), x) > Mc,(1−c)/(1+c) > vc,1(τ0(c), x), x ∈ B(0, r1).

Since vc,1(τ0(c), x) = 0 for x 6∈ B(0, r1), we also have v(τ1(c), x) > vc,1(τ0(c), x) for
x 6∈ B(0, r1). Recalling that vc,1 is a subsolution to (2.3) in (τ0(c),∞) × RN , we infer from the
comparison principle that

v(τ + τ1(c), x) > vc,1(τ + τ0(c), x), (τ, x) ∈ Q. (3.16)

Consequently, v(τ + τ1(c), x) > 0 if x ∈ B(0, r1 + cτ), whence

B(0, 1+ c(τ + τ0(c)− τ1(c))) ⊂ Pv(t), τ > τ1(c). (3.17)

This readily implies that

%(τ) > 1+ c(τ + τ0(c)− τ1(c)) > 1+ c(τ − τ1(c)), τ > τ1(c).

In particular, we deduce from (3.15) and (3.17) that

lim inf
τ→∞

%(τ)

τ
> c for any c ∈ (1/2, 1) and lim sup

τ→∞

%(τ)

τ
6 1,

which implies that %(τ)/τ → 1 as τ →∞. 2
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Reverting the rescaling and coming back to the notation with t = (e(p−2)τ
− 1)/(p − 2) and

γ (t) = %(τ), we find the result of Theorem 1.2 for radially nonincreasing inital data. The extension
to arbitrary initial data satisfying (1.3) is performed in Section 5. Moreover, we notice that the speed
is the same in any direction ω ∈ SN−1, as stated.

4. Proof of Theorem 1.1

4.1 Scaling variables II

According to Proposition 2.1, as τ → ∞ the solution v to (2.3), (2.4) expands in space and grows
unboundedly in time. In order to take into account such phenomena, we next introduce a further
scaling of the space variable

y :=
x

1+ τ
, (4.1)

together with the new unknown function w = w(τ, y) defined by

v(τ, x) = (1+ τ)(p−1)/(p−2)w

(
τ,

x

1+ τ

)
, (τ, x) ∈ [0,∞)× RN . (4.2)

It follows from (2.3) and (2.4) that w solves

∂τw −
1

1+ τ

(
∆pw + y · ∇w −

p − 1
p − 2

w

)
+ |∇w|p−1

− w = 0, (τ, y) ∈ Q, (4.3)

with the same initial condition
w(0) = u0, y ∈ RN . (4.4)

Throughout this section, besides (1.3), we assume that u0 is radially nonincreasing. In particular,
u0(0) > 0. We gather several properties of w in the next lemma.

LEMMA 4.1 There is a positive constant C4 depending only on p, N , and u0 such that

‖w(τ)‖1 + ‖w(τ)‖∞ + ‖∇w(τ)‖∞ 6 C4, τ > 0, (4.5)

w(τ, y) >
1
C4
(r2
∗ − |y|

2)
(p−1)/(p−2)
+ , (τ, y) ∈ Q, (4.6)

the radius r∗ being defined in Corollary 2.1. Moreover,

Pw(τ ) := {y ∈ RN : w(τ, y) > 0} ⊆ B
(

0, 1+
R1

1+ τ

)
(4.7)

for τ > 0 where R1 is defined by (3.14). In addition, for any c ∈ (1/2, 1),

B

(
0, c −

τ1(c)

1+ τ

)
⊂ Pw(τ ) for τ > τ1(c), (4.8)

the time τ1(c) > 0 being defined in Lemma 3.4.

Proof. The estimates (4.5) and (4.6) readily follow from (2.5) and (2.10), while (4.7) is a
consequence of (3.15). The assertion about the ball B(0, c− τ1(c)/(1+ τ)) follows from (3.17). 2
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At this point, (4.3) indicates that w(τ) behaves as τ →∞ as the solution w̃ to the Hamilton–Jacobi
equation ∂τ w̃+|∇w̃|p−1

−w̃ = 0 inQwhich is known to converge to a stationary solution uniquely
determined by the limit of the support of w̃(τ ) as τ → ∞ (see, e.g., [15, Theorem A.2]). As an
intermediate step, we thus have to identify the limit of the support of w(τ) as τ → ∞. Thanks to
(4.7), we already know that it is included in B(0, 1) but the information in (4.8) is yet too weak
to exclude the vanishing of w(τ) outside a ball of radius smaller than one. To complete the proof
of Theorem 1.1 for radially nonincreasing initial data, we show first that the asymptotic limit is
supported exactly in the ball B(0, 1). Then we use a viscosity technique, the same that has been
used in the previous paper [16] to establish the convergence to the expected stationary solution.

4.2 Proof of Theorem 1.1: N = 1

We first consider the one-dimensional case N = 1 and divide the proof into several technical steps.

Step 1. A special family of subsolutions. Given c ∈ (1/2, 1), we have

v(τ, x) > vc,1(τ + τ0(c)− τ1(c), x), (τ, x) ∈ [τ1(c),∞)× R,

by (3.16), the times τ0(c) and τ1(c) being defined in (3.11) and Lemma 3.4, respectively. Then

w(τ, y) > wc(τ, y) :=
1

(1+ τ)(p−1)/(p−2) vc,1(τ + τ0(c)− τ1(c), y(1+ τ)) (4.9)

for (τ, y) ∈ [τ1(c),∞)× R.

Step 2. An explicit family of supersolutions. Let us introduce the following family of functions:

FR(τ, y) =

(
p − 2
p − 1

)(p−1)/p−2)(
τ + R

τ + 1
− |y|

)(p−1)/(p−2)

+

, (τ, y) ∈ Q. (4.10)

We easily see by direct calculation that FR is a classical solution of (4.3) for y 6= 0, and for all
parameter values R > 0. However, near y = 0, it is only a supersolution both in the weak and the
viscosity sense. The latter is straightforward to verify using the definition of viscosity subsolutions
and supersolutions with jets, as in the classical survey [10]. Let us mention at this point that these
functions can be used in a comparison argument to give an alternative proof of (4.7).

REMARK 4.1 This family of functions arises naturally if we think about asymptotics. Indeed, as
already mentioned, we formally expect that the asymptotic profiles of (4.3) should be given by
solutions of the stationary Hamilton–Jacobi equation

|∇w̃|p−1
− w̃ = 0, (4.11)

supported in some ball B(0, R), that is,

HR(y) :=
(
p − 2
p − 1

)(p−1)/(p−2)

(R − |y|)
(p−1)/(p−2)
+ , y ∈ R.

Making then the “ansatz” that, for large times, the solution of (4.3) should behave in a similar way
to its limit, we write

w(τ, y) ∼

(
p − 2
p − 1

)(p−1)/(p−2)

(C(τ)− |y|)
(p−1)/(p−2)
+ .

Integrating the resulting ordinary differential equation for C(τ), we arrive at the family of explicit
exact profiles FR given by (4.10).
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Step 3. Constructing suitable subsolutions. We now face the problem of finding suitable
subsolutions with similar behaviour. Since the FR’s are classical solutions to (4.3) except at y = 0,
we expect to be able to construct also a family of subsolutions based on them. To this end, we
consider the “damped” family FR,ϑ,β defined by

FR,ϑ,β(τ, y) := ϑ
(
p − 2
p − 1

)(p−1)/(p−2)(
β(τ + R)

τ + 1
− |y|

)(p−1)/(p−2)

+

, (τ, y) ∈ Q, (4.12)

for parameters R ∈ (0, 1), ϑ ∈ (0, 1], and β ∈ (1/2, 1]. Observe that, since (p − 1)/(p − 2) > 1,
FR,ϑ,β and |∇FR,ϑ,β |p−2

∇FR,ϑ,β both belong to C1([0,∞) × (R \ {0})). For ϑ ∈ (0, 1), β ∈
(1/2, 1], τ > 0 and y 6= 0, we calculate

∂τFR,ϑ,β −
1

1+ τ

(
∆pFR,ϑ,β + y · ∇FR,ϑ,β −

p − 1
p − 2

FR,ϑ,β

)
+ |∇FR,ϑ,β |

p−1
− FR,ϑ,β

= ϑβ
1− R
(1+ τ)2

F
1/(p−1)
R,1,β −

ϑ

1+ τ

(
ϑp−2

−
β(τ + R)

τ + 1

)
F

1/(p−1)
R,1,β − ϑ(1− ϑp−2)FR,1,β

= ϑ

(
β − ϑp−2

1+ τ
− (1− ϑp−2)F

(p−2)/(p−1)
R,1,β

)
F

1/(p−1)
R,1,β

6 ϑ(1− ϑp−2)F
1/(p−1)
R,1,β

[
1

1+ τ
−
p − 2
p − 1

(
β(τ + R)

τ + 1
− |y|

)]
.

Analyzing the sign of the last expression and taking into account that ϑ ∈ (0, 1), we find that FR,ϑ,β
has the following properties:

FR,ϑ,β is a classical subsolution to (4.3) in
{(τ, y) ∈ Q : τ > τ2(R, β), 0 < |y| 6 KR,β(τ )}

(4.13)

with

τ2(R, β) :=
p − 1
β(p − 2)

− R and KR,β(τ ) :=
β(τ + R)

τ + 1
−
p − 1
p − 2

1
τ + 1

, (4.14)

and
FR,ϑ,β vanishes for |y| >

β(τ + R)

τ + 1
and τ > 0. (4.15)

Let us notice here that both the edge of the support of FR,ϑ,β and the constant KR,β(τ ), where the
behaviour changes, do not depend on ϑ . While the two properties (4.13) and (4.15) are suitable
for our purpose, the function FR,ϑ,β does not behave in a suitable way near y = 0 (where it is a
viscosity supersolution) and in an asymptotically small region near the edge of its support (where
it is a classical supersolution). However, we already have a positive bound from below for w in a
small neighbourhood of y = 0 by (4.6), which allows us to remedy the first bad property of FR,ϑ,β .
More precisely, we infer from (4.6) that

w(τ, y) > C5 :=
1
C4

(
3r2
∗

4

)(p−1)/(p−2)

> 0, (τ, y) ∈ [0,∞)× B(0, r∗/2),

whence
w(τ, y) > ϑ > FR,ϑ,β(τ, y), (τ, y) ∈ [0,∞)× B(0, r∗/2), (4.16)
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provided that
0 < ϑ < min {1, C5}. (4.17)

Consider next
τ > τ2(R, β) and KR,β(τ ) 6 |y| 6

β(τ + R)

τ + 1
.

Then

FR,ϑ,β(τ, y) 6 ϑ

(
p − 2
p − 1

)(p−1)/(p−2)(
p − 1
p − 2

1
1+ τ

)(p−1)/(p−2)

=
ϑ

(1+ τ)(p−1)/(p−2) . (4.18)

Now, if c ∈ (β, 1), we have

|y|(1+ τ) 6 β(τ + R) 6 z̃c,1,(1−c)/(1+c) + c(τ + τ0(c)− τ1(c))

as soon as

τ > τ3(c, R, β) :=
βR + c(τ1(c)− τ0(c))− z̃c,1,(1−c)/(1+c)

c − β
. (4.19)

In that case,

wc(τ, y) =
1

(1+ τ)(p−1)/(p−2) vc,1(τ + τ0(c)− τ1(c), y(1+ τ)) =
Mc,(1−c)/(1+c)

(1+ τ)(p−1)/(p−2)

according to the properties (3.12) of vc,1. Recalling (4.9) and (4.18) we realize that

FR,ϑ,β(τ, y) 6 wc(τ, y) 6 w(τ, y), KR,β(τ ) 6 |y| 6
β(τ + R)

τ + 1
, (4.20)

provided

c ∈ (β, 1), ϑ < min{1,Mc,(1−c)/(1+c)}, τ > max{τ1(c), τ2(R, β), τ3(c, R, β)}. (4.21)

After this preparation, we are in a position to establish a positive lower bound for w on the ball
B(0, 1− ε) for any ε ∈ (0, 1/4). Indeed, we fix ε ∈ (0, 1/4), choose c = 1− ε, R = β = 1− 2ε,
and define

τ4(ε) := max{τ1(1− ε)/ε, τ2(1− 2ε, 1− 2ε), τ3(1− ε, 1− 2ε, 1− 2ε)}.

As τ4(ε) > τ1(1−ε)/ε, (4.8) guarantees thatB(0, 1−2ε) ⊂ Pw(τ4(ε)) and there is thusmε ∈ (0, 1)
such that

w(τ4(ε), y) > mε, y ∈ B(0, 1− 2ε). (4.22)

Now, for ϑ ∈ (0, 1) satisfying

0 < ϑ < min{mε, C5,M1−ε,ε/(2−ε)} (4.23)

we infer from (4.14), (4.16), (4.17), and (4.20)–(4.22) that

F1−2ε,ϑ,1−2ε(τ, y) 6 w(τ, y), |y| ∈ {r∗/2,K1−2ε,1−2ε(τ )}, τ > τ4(ε),
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and

F1−2ε,ϑ,1−2ε(τ4(ε), y) 6 ϑ 6 mε 6 w(τ4(ε), y), r∗/2 6 |y| 6 K1−2ε,1−2ε(τ4(ε)) 6 1− 2ε.

It then follows from (4.3), (4.13), and the comparison principle that

F1−2ε,ϑ,1−2ε(τ, y) 6 w(τ, y), r∗/2 6 |y| 6 K1−2ε,1−2ε(τ ), τ > τ4(ε).

Recalling (4.15), (4.16), and (4.20), we have thus established that

F1−2ε,ϑ,1−2ε(τ, y) 6 w(τ, y), τ ∈ [τ4(ε),∞)× R, (4.24)

for all ϑ ∈ (0, 1) satisfying (4.23).

Step 4. Positive lower bound. For ε ∈ (0, 1/4), fix ϑε ∈ (0, 1) satisfying (4.23). According to
(4.24), we have, for τ > τ4(ε)+ 1 and y ∈ B(0, 1− 3ε),

w(τ, y) > ϑε

(
p − 2
p − 1

)(p−1)/(p−2)(
(1− 2ε)(τ + 1− 2ε)

τ + 1
− |y|

)(p−1)/(p−2)

+

> ϑε

(
p − 2
p − 1

)(p−1)/(p−2)(
ε(τ − 1+ 4ε)

τ + 1

)(p−1)/(p−2)

+

> µε := ϑε

(
2(p − 2)ε2

p − 1

)(p−1)/(p−2)

> 0.

We have thus proved that, for all ε ∈ (0, 1/4), there are µε > 0 and τ5(ε) := τ4(ε)+ 1 such that

0 < µε 6 w(τ, y), (τ, y) ∈ [τ5(ε),∞)× B(0, 1− 3ε). (4.25)

Step 5. Convergence. Viscosity argument. To complete the proof, we use an argument relying
on the theory of viscosity solutions in a similar way to [16] for the subcritical case of (1.1) with
q ∈ (1, p − 1). We thus employ the technique of half-relaxed limits [6] in the same fashion as in
[19, Section 3] and [16]. To this end, we pass to the logarithmic time and introduce the new variable
s := log(1+ τ) along with the new unknown function

w(τ, y) = ω(log (1+ τ), y), (τ, y) ∈ [0,∞)× R.

Then ∂τw(τ, y) = e−s∂sω(s, y) and it follows from (4.3) and (4.4) that ω solves

e−s
(
∂sω −∆pω − y · ∇ω +

p − 1
p − 2

ω

)
+ |∇ω|p−1

− ω = 0, (s, y) ∈ Q, (4.26)

with initial condition ω(0) = u0. We readily infer from Lemma 4.1 that

‖ω(s)‖1 + ‖ω(s)‖∞ + ‖∇ω(s)‖∞ 6 C4, s > 0, (4.27)

ω(s, y) = 0 for s > 0 and |y| > 1+ R1e
−s . (4.28)

We next introduce the half-relaxed limits

ω∗(y) := lim inf
(σ,z,λ)→(s,y,∞)

ω(λ+ σ, z) and ω∗(y) := lim sup
(σ,z,λ)→(s,y,∞)

ω(λ+ σ, z),
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for (s, y) ∈ Q, which are well-defined according to the uniform bounds in (4.27) and indeed do not
depend on s > 0. Then the definition of ω∗ and ω∗ clearly ensures that

0 6 ω∗(y) 6 ω∗(y) for y ∈ R, (4.29)

while the uniform bounds (4.27) and the Rademacher theorem warrant that ω∗ and ω∗ both belong
to W 1,∞(R). Finally, by Proposition 6.1 applied to (4.26), ω∗ and ω∗ are a viscosity supersolution
and a viscosity subsolution, respectively, to the Hamilton–Jacobi equation

H(ζ,∇ζ ) := |∇ζ |p−1
− ζ = 0 in R. (4.30)

Our aim now is to show that ω∗ > ω∗ in R (which implies that ω∗ = ω∗ by (4.29)). Since ω∗

and ω∗ are a subsolution and a supersolution to (4.30), respectively, such an inequality would follow
from a comparison principle which cannot be applied yet without further information on ω∗ and ω∗.
We actually need to prove the following two facts:

(a) ω∗(y) = ω∗(y) = 0 if |y| > 1,
(b) ω∗(y) > ω∗(y) > 0 if y ∈ B(0, 1),

and then to follow the technique used in [16] to conclude that ω∗ = ω∗ and identify the limit.
To prove (a), take y ∈ R with |y| > 1. We then deduce from (4.28) that there exists s1(y) > 0

such that ω(s, y) = 0 for s > s1(y). Pick sequences (σn)n>1, (λn)n>1, and (zn)n>1 such that
σn→ 0, λn→∞, zn→ y, and ω(σn+ λn, zn)→ ω∗(y). On the one hand, there exists n1(y) > 0
such that σn + λn > s1(y) for any n > n1(y); hence ω(σn + λn, y) = 0 for any n > n1(y). On the
other hand, we can write

|ω(σn + λn, zn)− ω(σn + λn, y)| 6 |y − zn| ‖∇ω(σn + λn)‖∞ 6 C4|y − zn| → 0,

hence ω∗(y) = 0 = ω∗(y) for any y ∈ R with |y| > 1. In addition, since ω∗ and ω∗ are continuous,
it follows that ω∗ = ω∗ = 0 also for |y| = 1, proving (a).

To prove (b), take y ∈ B(0, 1). Then there exists ε ∈ (0, 1/4) such that y ∈ B(0, 1− 4ε). Since
1 − 3ε > 1 − 4ε, there is r2(y) > 0 such that B(y, r2(y)) ⊂ B(0, 1 − 3ε) and we deduce from
(4.25) that there exists s2(ε) := log(τ5(ε) + 1) > 0 such that ω(s, z) > µε for any s > s2(ε)

and z ∈ B(y, r2(y)). We now pick sequences (σn)n>1, (λn)n>1 and (zn)n>1 such that σn → 0,
λn → ∞, zn → y, and ω(σn + λn, zn) → ω∗(y). Then there exists again n2(y) > 0 such that
σn + λn > s2(y) and zn ∈ B(y, r2(y)) for any n > n2(y). Consequently, ω(σn + λn, zn) > µε for
any n > n2(y). This readily implies that ω∗(y) > ω∗(y) > µε > 0, hence (b) is proved.

Following [16] we introduce

W∗(y) =
p − 1
p − 2

ω∗(y)
(p−2)/(p−1), W ∗(y) =

p − 1
p − 2

ω∗(y)(p−2)/(p−1), (4.31)

for any y ∈ B(0, 1). From Proposition 6.2, it follows that W∗ and W ∗ are respectively a viscosity
supersolution and a viscosity subsolution of the eikonal equation

|∇ζ | = 1 in B(0, 1),

with boundary conditions W ∗(y) = W∗(y) = 0 for |y| = 1, and are both positive in B(0, 1). Using
the comparison principle of Ishii [13], we find that W ∗(y) 6 W∗(y), hence they should be equal by
(4.29). It follows that ω∗ = ω∗ = W in B(0, 1), where W is the unique viscosity solution to (1.13),

|∇W |p−1
−W = 0 in B(0, 1), W = 0 on ∂B(0, 1),
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which is positive in B(0, 1) and actually explicit and given by

W(x) :=
(
p − 2
p − 1

(1− |x|)+

)(p−1)/(p−2)

,

as stated in Theorem 1.1. In addition, the equality ω∗ = ω∗ and (4.28) entail the convergence of
ω(s) as s → ∞ towards W in L∞(R) by Lemma 4.1 in [5] or Lemma V.1.9 in [4]. We end the
proof by reverting the two scaling steps and arriving in this way at (1.10). 2

4.3 Proof of Theorem 1.1: N > 2

We now prove Theorem 1.1 for radially nonincreasing initial data in dimension N > 2. We follow
the same steps as in dimension N = 1, and we only indicate the main differences. These are mainly
due to the appearance of the new term

N − 1
r
|∂rw|

p−2∂rw, r = |y|, (4.32)

in the radial form of the p-Laplacian term. As we shall see, performing carefully the same steps
as for dimension N = 1, we find that this term does not change anything in an essential way. We
follow the same division into steps as in the case N = 1.

Step 1. Thanks to the construction in Section 3.2, this step is the same as in dimension N = 1.

Step 2. Due to the appearance of the extra term (4.32) in the radial form of (4.3), we check by direct
calculation that, in dimension N > 2, the function FR given by (4.10) is now a strict supersolution
to (4.3) in Q. Indeed, for y 6= 0,

∂τFR −
1

1+ τ

(
∆pFR + y · ∇FR −

p − 1
p − 2

FR

)
+ |∇FR|

p−1
− FR =

N − 1
(1+ τ)|y|

FR.

Moreover, its singularity at y = 0 is now stronger. This seems to introduce a new difficulty, but we
will see that it can be handled by the same perturbation techniques. Let us notice at this moment
that FR can be used for upper bounds in the same way as in the case N = 1, and that FR still solves
the limit Hamilton–Jacobi equation (4.11).

Step 3. In order to construct subsolutions starting from the family of functions FR , we follow again
the ideas of the case N = 1. The calculations will be different in some points. We again consider
the damped family FR,ϑ,β defined in (4.12) for R ∈ (0, 1), ϑ ∈ (0, 1), and β ∈ (1/2, 1]. For y 6= 0
we have

Y := ∂τFR,ϑ,β −
1

1+ τ

(
∆pFR,ϑ,β + y · ∇FR,ϑ,β −

p − 1
p − 2

FR,ϑ,β

)
+ |∇FR,ϑ,β |

p−1
− FR,ϑ,β

= ϑF
1/(p−1)
R,1,β

[
β − ϑp−2

1+ τ
+
(N − 1)ϑp−2

(1+ τ)|y|
F
(p−2)/(p−1)
R,1,β − (1− ϑp−2)F

(p−2)/(p−1)
R,1,β

]
.

At this point, we further assume that |y| > r∗/2, the radius r∗ being defined in Corollary 2.1, and
that

ϑp−2 6
(1− β)r∗
2(N − 1)

. (4.33)
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Since FR,1,β 6 1, we obtain

Y 6 ϑF
1/(p−1)
R,1,β

[
β − ϑp−2

1+ τ
+

2(N − 1)ϑp−2

(1+ τ)r∗
− (1− ϑp−2)F

(p−2)/(p−1)
R,1,β

]
6 ϑ(1− ϑp−2)F

1/(p−1)
R,1,β

[
1

1+ τ
−
p − 2
p − 1

(
β(τ + R)

τ + 1
− |y|

)]
,

from which we conclude that

FR,ϑ,β is a classical subsolution to (4.3) in
{(τ, y) ∈ Q : τ > τ2(R, β), r∗/2 < |y| 6 KR,β(τ )},

(4.34)

where τ2(R, β) and KR,β(τ ) are still given by (4.14). We now proceed as in the one-dimensional
case to establish (4.24) for all ϑ ∈ (0, 1) satisfying (4.23) along with

ϑp−2 6
εr∗

N − 1
,

for (4.33) to be satisfied.

Steps 4 & 5. The final steps of the proof are similar to the one-dimensional case. 2

5. Arbitrary initial data

So far, we have proved Theorems 1.1 and 1.2 for radially nonincreasing initial data satisfying (1.3).
We now extend these two results to general initial data satisfying (1.3).

Proof of Theorems 1.1 and 1.2. Since u0 6≡ 0, there are x0 ∈ RN , r0 > 0, and η0 > 0 such
that u0(x) > 2η0 for x ∈ B(x0, r0). Then there exists a radially nonincreasing initial condition ũ0
satisfying (1.3) but with support in B(0, r0) and such that ‖ũ0‖∞ 6 η0 and ũ0(x) 6 u0(x − x0)

for x ∈ RN . Similarly, there is a radially nonincreasing initial condition Ũ0 satisfying (1.3) but with
support in B(0, R̃0) for some R̃0 > R0 and such that Ũ0(x) > ‖u0‖∞ for x ∈ B(0, R0). Denoting
by ũ and Ũ the solutions to (1.1) with initial conditions ũ0 and Ũ0, respectively, the comparison
principle and the translation invariance of (1.1) ensure that

ũ(t, x + x0) 6 u(t, x) 6 Ũ (t, x), (t, x) ∈ Q. (5.1)

Moreover, since∣∣∣∣(1−
(p − 2)|x + x0|

log t

)(p−1)/(p−2)

+

−

(
1−

(p − 2)|x|
log t

)(p−1)/(p−2)

+

∣∣∣∣ 6
(p − 1)|x0|

log t
,

and since Theorems 1.1 and 1.2 apply to both ũ and Ũ , the expected results follow from (5.1). 2

Appendix. Some results about viscosity solutions

We state, for the sake of completeness, some standard results in the theory of viscosity solutions,
that we use in the proof of Theorem 1.1. The first one concerns the “viscosity” limit of a family of
small perturbations and can be found in [5, Theorem 4.1].
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PROPOSITION 6.1 Let uε be a viscosity subsolution (resp. a viscosity supersolution) of the
equation

Hε(x, uε,∇uε,D
2uε) = 0 in RN ,

where Hε is uniformly bounded in all variables and degenerate elliptic. Suppose that {uε} is a
uniformly bounded family of functions. Then

u∗(x) := lim sup
(y,ε)→(x,0)

uε(y) (6.1)

is a subsolution of the equation
H∗(x, u,∇u,D

2u) = 0. (6.2)

In the same way,
u∗(x) := lim inf

(y,ε)→(x,0)
uε(y)

is a supersolution of H ∗(x, u,∇u,D2u) = 0. Here, H∗ and H ∗ are constructed in the same way as
u∗ and u∗.

In other words, this result can be applied to asymptotically small perturbations of a known
equation, as in Section 4.

We also use the following result:

PROPOSITION 6.2 Let u ∈ C(Ω) be a viscosity solution of

H(x, u,∇u) = 0 in Ω, (6.3)

where Ω ⊂ RN and H is a continuous function. If Φ ∈ C1(R) is an increasing function, then
v = Φ(u) is a viscosity solution of

H(x,Φ−1(v(x)), (Φ−1)′(v(x))∇v(x)) = 0. (6.4)

The same result holds true for subsolutions and supersolutions and can be found in [5]. In partic-
ular, we use this result in order to pass from the Hamilton–Jacobi equation |∇u|p−1

− u = 0 to the
standard eikonal equation |∇v| = 1. Finally, we also use the (now standard) comparison principle
for viscosity subsolutions and supersolutions of the eikonal equation, that can be found in [13].
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