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A semidiscrete scheme for a one-dimensional Cahn–Hilliard equation
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We analyze a semidiscrete scheme for the Cahn–Hilliard equation in one space dimension, when the
interface length parameter is equal to zero. We prove convergence of the scheme for a suitable class
of initial data, and we identify the limit equation. We also characterize the long-time behavior of the
limit solutions.
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1. Introduction

Motivated by several models in phase transitions and image processing, Cahn–Hilliard type
equations have been extensively studied in recent years. In one space dimension, a typical example
is

ut =
1
2
(W ′(ux))x in [0, 1]× [0, T ], (1.1)

where ux is the derivative of a Lipschitz continuous, one-periodic function u : [0, 1] → R and W
is the nonconvex energy density W(p) = 1

4 (p
2
− 1)2 (double well potential). Equation (1.1) is the

formal L2-gradient flow of the functional

E[u] :=
1
2

∫ 1

0
W(ux) dx. (1.2)

Notice that, by the change of variables v = ux , equation (1.1) reduces to

vt =
1
2
(W ′(v))xx in [0, 1]× [0, T ], (1.3)

which corresponds to the H−1-gradient flow of (1.2). We point out that, due to the nonconvexity
of W , equations (1.1) and (1.3) are not well-posed.

In this paper, we deal with the semidiscrete problem

duh

dt
= D+W ′(D−uh) in [0, 1]× [0, T ],

uh(·, 0) = uh on [0, 1]× {0},
(1.4)
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where h > 0 is the grid size, D+, D− are the difference quotients defined in Definition 2.1
below, and uh is the discretization of a piecewise-smooth function with nondifferentiability points
a1, . . . , am. We consider (1.4) coupled with the periodic boundary conditions

uh(0, t) = uh(1, t) on {0, 1} × [0, T ],

D−uh(0, t) = D−uh(1, t) on {0, 1} × [0, T ].
(1.5)

In Proposition 2.4 we show that, if the initial datum satisfies

1
√

3
6 |D−h u

h
| 6 α :=

1
2

(
√

3+
1
√

3

)
in

m−1⋃
j=1

[ahj , a
h
j+1], (1.6)

then this property holds for all times t > 0. This assumption guarantees that the backward-parabolic
zone, which is unstable for the evolution, consists of a finite number of points where the derivative
ux jumps from a region of (local) convexity of W to another one. We believe that weakening
assumption (1.6) is an important but difficult task, and may lead to new interesting phenomena.
We refer to the end of Section 3.1 for a discussion of this issue.

The main result of this paper, proved in Section 3, is the convergence of solutions to (1.4) and
(1.5), as h → 0, for initial data satisfying (1.6). We point out that, even under this simplifying
assumption on initial data, we could find in the literature three different notions of solution to (1.1),
which we briefly review for the reader’s convenience. An important consequence of this work is
that the regularization of (1.1) by means of a spatial semidiscrete scheme produces in the limit a
solution which coincides with the one proposed by Plotnikov in [13], and further analyzed by Evans
and Portilheiro in [8].

There is no classical theory for solutions of forward-backward parabolic equations like (1.1)
and (1.3), apart from some results on special solutions (see for instance [11] and references therein).
However, several notions of weak solution have been proposed:

1. In [5] the author defines an implicit variational scheme for the functional (1.2) which gives in the
limit a solution to

ut =
1
2
(W ∗∗

′
(ux))x in [0, 1]× [0, T ],

where W ∗∗ is the convexified potential

W ∗∗ = max{f 6 W : f is convex}.

2. In [4] the following fourth-order regularization of (1.1) is considered:

ut = −εuxxxx +W
′(ux)x (1.7)

and the author conjectures the existence of a pointwise limit as ε → 0. The dynamics of this
regularization for small ε, which is quite involved and has at least three relevant scales, was
studied in [14, 1], where the asymptotic behavior as t →∞ is also discussed.

3. In [13] the author considers the regularization

ut = εutxx +W
′(ux)x, (1.8)

proving the convergence, as ε→ 0, to a measure-valued solution to (1.1). In [8] further properties
of such limit solutions are discussed, with particular emphasis on a hysteresis phenomenon which
also appears in our scheme.
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Our approach is different from the ones mentioned above: instead of studying continuous
regularizations, we perform a spatial semidiscretization using the standard finite element method.
In Section 2, we discuss the properties of the Cauchy problem for the semidiscrete scheme (see
(2.5)) and provide suitable assumptions on initial data under which solutions are stable. One expects
convergence of the scheme to classical solutions of (1.1) at least when the gradient of the initial
datum takes values in the forward parabolic region, and we confirm this expectation with the
only restriction that the gradient is not too large (see (1.6)). This is an advantage with respect to
variational methods like the implicit scheme discussed in [5], which selects a local minimum of
(1.2) and automatically forces all 1-Lipschitz functions not to move. Convergence of the scheme
as the grid size h goes to zero is proved in Section 3, where we also identify the limit problem.
We point out that our limit problem coincides with the limit of the continuous regularization (1.8),
but not with the regularization (1.7). Finally, in Section 3.2 we prove the existence of a unique
asymptotic state of the solution u, as t →+∞, whose derivative assumes precisely two values.

In order to keep the focus on the analytical aspects of the problem, we will not discuss the
optimal convergence rate of the scheme, or provide numerical simulations. We address the interested
reader to [1, 6] for numerical simulations in the one-dimensional case, and to [9] for higher
dimensions. A finite element discretization of a simplified granular material model related to (1.1)
was performed in [15] (see also [7]), where the authors study the limit profiles as t → +∞ of the
discrete solutions.

2. Spatial semidiscretization

Let I := [0, 1] and let {h, . . . , Nh} be a uniform grid on I with grid size h = 1/N , where N ∈ N.
Since we will work with 1-periodic functions, we identify the node 0 with the node N , hence
N + i with i. We denote by PL(I) the N -dimensional vector subspace of W 1,∞(I), consisting of all
continuous functions u : I→ R, with u(0) = u(1), which are linear on the intervals ((i − 1)h, ih)
for all i ∈ {1, . . . , N}. We also let PC(I) be theN -dimensional vector subspace of L2(I) of all right-
continuous piecewise-constant functions on the grid. Letting ui := u(ih), we can identify u ∈ PL(I)
(resp. u ∈ PC(I)) with the vector uh := (u1, . . . , uN ). Both PL(I) and PC(I) are endowed with the
norms

‖uh‖L∞(I) := max{|ui | : i = 1, . . . , N}, ‖uh‖2
L2
h(I)

:= h
N∑
i=1

u2
i .

Notice that ‖uh‖L2
h(I)
= ‖uh‖L2(I) for all u ∈ PC(I), and

‖uh‖L2(I) 6 ‖uh‖L2
h(I)

6
√

3‖uh‖L2(I) ∀u ∈ PL(I). (2.1)

DEFINITION 2.1 We define the mapD− : PL(I)→ PC(I) and its adjointD+ : PC(I)→ PL(I) as

(D−uh)i =
ui − ui−1

h
, (D+w)i =

wi+1 − w1

h
, i ∈ {1, . . . , N}.

With this notation, the space discretization of (1.1) can be expressed by the following system of
ODEs on PL(I):

dui
dt
= −

1
h

∂F
∂ui
=

1
h

(
W ′
(
ui+1 − ui

h

)
−W ′

(
ui − ui−1

h

))
= (D+W ′(D−u))i (2.2)

for all i ∈ {1, . . . , N}, with periodic boundary conditions.
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We now introduce the class of initial data for (1.1) which we will consider in this paper.

ASSUMPTION 2.1 Let {aj }mj=1 ∈ (0, 1), with a1 < · · · < am. We shall consider initial u ∈
W 1,∞(I) ∩ C1(I \ {a1, . . . , am}) such that u(0) = u(1) and ux(0) = ux(1).

REMARK 2.1 Notice that, if u solves

ut = W
′(ux)x in I× [0,+∞),

u(0, t) = u(1, t) on ∂I× [0,+∞),
ux(0, t) = ux(1, t) on ∂I× [0,+∞),

(2.3)

then v = ux solves
vt = W

′(v)xx in I× [0,+∞),
v(0) = v(1) on ∂I× [0,+∞),

vx(0, t) = vx(1, t) on ∂I× [0,+∞).
(2.4)

Conversely, if v = ux solves (2.4) and
∫

I v dx = 0, then u solves (2.3). To get the full equivalence,
i.e. for

∫
I v dx = c, it is enough to replace the second line in (2.3) with u(0, t) = u(1, t) + c . For

simplicity of presentation, we restrict to the case c = 0.

ASSUMPTION 2.2 Let u be as in Assumption 2.1. We denote by ah1 , . . . , a
h
m the grid points

corresponding to the nondifferentiability points of u, that is, ai ∈ [ahi , a
h
i +h) for all i ∈ {1, . . . , N}.

For the discrete initial data uh ∈ PL(I) we require

‖uh − u‖L∞(I) −−−→
h→0

0, ‖D−uh − ux‖L1(I) −−−→
h→0

0, ‖D−uh‖L∞(I) 6 C,

for some C > 0 independent of h.

The Cauchy problem corresponding to (2.2) is

duh

dt
= D+W ′(D−uh) in I× [0, T ],

uh(0, t) = uh(1, t) on ∂I× [0, T ],

D−uh(0, t) = D−uh(1, t) on ∂I× [0, T ],

uh(·, 0) = uh on I× {0},

(2.5)

where uh ∈ PL(I) denotes the discrete initial datum with the properties listed in Assumption
2.2. Note that, due to the smoothness of W , the scheme (2.5) admits a unique solution uh ∈
C∞([0, t0],PL(I)) for a suitable t0 > 0. Moreover, by direct integration we get∫

I
uh(x, t) dx =

∫
I
uh(x) dx. (2.6)

In many cases, it will be useful to work with the system governing the evolution of the spatial
derivative of uh(x, t).
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PROPOSITION 2.1 Let uh ∈ PL(I) be a discrete initial datum for (2.5) satisfying Assumption 2.2.
If uh(x, t) is a solution to the Cauchy problem (2.5), then vh := D−uh is a solution to the following
system of ODEs:

dvh

dt
= D−D+W ′(vh) in I× [0, T ],

vh(0, t) = vh(1, t) on ∂I× [0, T ],

D−vh(0, t) = D−vh(1, t) on ∂I× [0, T ],

vh(·, 0) = D−uh on I× {0}.

(2.7)
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FIG. 1. Left: the graph of the potential W ; right: the graph of its derivative.

2.1 A priori estimates

We denote by α > 1 the real number such that W ′(α) = α3
− α = W ′(−1/

√
3); see Figure 1. Let

us denote byM(t) := maxi=1,...,N vi(t) and m(t) := mini=1,...,N vi(t) the maximum and minimum
of the nodal values of v, respectively.

The following result will be needed in Proposition 2.2; the proof can be found in [2, Lemmas
5.1 and 5.2].

LEMMA 2.1 Let v1, . . . , vN be real differentiable functions in an interval [0, T ). Define M(t) :=
maxi=1,...,N vi(t). Then M(t) is continuous, right-differentiable in [0, T ) and

d
dt+

M(t) = max
i=1,...,N

{
d

dt+
vi(t) : vi(t) = M(t)

}
∀t ∈ [0, T ).

PROPOSITION 2.2 (L∞ estimate) Let uh(t) be solutions of the discrete Cauchy problem (2.5) with
initial data uh satisfying Assumption 2.2. Then

‖vh(t)‖L∞(I) 6 c ∀t ∈ [0,∞), (2.8)

‖uh(t)‖L∞(I) 6 c ∀t ∈ [0,∞), (2.9)

where the constant c > 0 is independent of h.
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Proof. At time t = 0, the statement follows directly from the assumptions on the initial data.

Step 1. Let us first prove (2.8). We will show that maxi |vi(t)| is nonincreasing whenever it is
greater than α. We distinguish two cases.

Case 1: maxi |vi(t)| = M(t) > α. As M(t) is a solution to (2.7), by Lemma 2.1 we have

d
dt+

M(t) = max
i=1,...,N

{
d

dt+
vi(t) : vi(t) = M(t)

}
= max
i: vi (t)=M(t)

D−D+W ′(vi)

=
1
h2 max

i: vi (t)=M(t)
(W ′(vi+1)− 2W ′(M)+W ′(vi−1)).

From M > α and M > vi±1 we then get

W ′(M(t)) > max{W ′(vi−1),W
′(vi+1)}.

Hence
max

i: vi (t)=M(t)

dvi
dt+

6 0, (2.10)

which gives the upper bound

max
i=1,...,N

vi(t) 6 max
i=1,...,N

{α,max
i
vi(0)}. (2.11)

Case 2: maxi |vi(t)| = −m(t) > α. Reasoning as above we obtain

min
i=1,...,N

vi(t) > min
i=1,...,N

{−α,min
i
vi(0)}. (2.12)

Putting together (2.11) and (2.12), we finally get

‖vh(t)‖L∞(I) 6 max{α, ‖D−uh‖L∞(I)} ∀t ∈ [0,∞),

which is (2.8).

Step 2. Estimate (2.9) now follows directly from (2.6) and (2.8). 2

THEOREM 2.1 (Global existence of discrete solutions) Assume that the initial datum uh ∈ PL(I)
in (2.5) satisfies the periodic boundary conditions uh(0) = uh(1). Then the Cauchy problem (2.5)
admits a unique global solution uh ∈ C∞([0,+∞),PL(I)).

Proof. As noted before, there exists a solution uh ∈ C∞([0, t0],PL(I)), for some t0 > 0.
Proposition 2.2 guarantees L∞ bounds on both uh(t) and its discrete derivative vh(t), which are
uniform in time. As a consequence, the solution to the Cauchy problem can be extended for all
times t ∈ [0,+∞). 2

PROPOSITION 2.3 (Energy decreasing property) Let uh(x, t) be the solution of (2.5) with an
initial datum uh satisfying Assumption 2.2. Define the discrete energy

Eh(t) := E[uh(·, t)] := h
N∑
i=1

W(D−ui(t)). (2.13)

Then
d
dt
E[uh(·, t)] = −‖uht ‖

2
L2
h(I)

6 0. (2.14)
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Proof. Keeping in mind the periodic boundary conditions, we compute

d
dt
E[uh(·, t)] =h

N∑
i=1

W ′(D−ui)∂t (D
−ui)+W

′(D−uN )∂tuN −W
′(D−u0)∂tu0

=− h

N∑
i=1

D+W
′

(D−uh)i∂tui = −‖u
h
t (·, t)‖

2
L2
h(I)

6 0. 2

As a consequence, we have
Eh(t) 6 Eh(0) 6 C ∀t > 0, (2.15)

as the discrete initial datum is bounded in W 1,∞(I) uniformly in h, by Assumption 2.2.

COROLLARY 2.1 (Hölder continuity) Let uh be initial data satisfying Assumption 2.2. Then the
solutions uh of (2.5) are uniformly bounded in C1/2([0, T );L2

h(I)).

Proof. Let 0 6 t1 < t2 < +∞. We have to show ‖uh(t1) − uh(t2)‖L2
h

6 c|t2 − t1|
1/2 for some

constant c > 0 independent of h. Using Hölder’s inequality and (2.15), we get

‖uh(t1)− u
h(t2)‖L2

h(I)
6 |t2 − t1|

1/2(Eh(t1)− E
h(t2))

1/2 6
√
Eh(0)|t2 − t1|1/2. 2

The following corollary will be an important ingredient in the convergence proof.

COROLLARY 2.2 Let uh(x, t) be solutions to the Cauchy problem (2.5) with initial data uh

satisfying Assumption 2.2. Then d
dt u

h
∈ L2([0,∞), L2

h(I)), i.e.∫
∞

0

∥∥∥∥ d
dt
uh(·, t)

∥∥∥∥2

L2
h(I)

dt 6 Eh(0) 6 c, (2.16)

where the constant c is independent of h.

Proof. Recalling (2.14) we have

Eh(0)− Eh(t) =
∫ t

0
‖uht (·, τ )‖

2
L2
h(I)

dτ ∀t > 0.

As Eh(0) 6 C by Assumption 2.2, the conclusion follows by letting t →+∞. 2

2.2 The stability estimate

We shall make another assumption on the initial data uh which guarantees the stability of the
solution to (2.5): we take initial data u ∈ W 1,∞(I) as in Assumption 2.1 which further satisfy

1/
√

3 6 (−1)j+1ux(x) 6 α ∀x ∈ (aj−1, aj ), j ∈ {1, . . . , m}. (2.17)

Note that (2.17) implies in particular that m is even and ux takes values only in the regions where
the potential W is convex.

We point out that a similar assumption was made in [3] for the Perona–Malik equation.
We now formulate the discrete analog of (2.17).
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ASSUMPTION 2.3 Let α be as above and let uh ∈ PL(I) be discrete initial data satisfying
Assumption 2.2, with ah1 , . . . , a

h
m the grid points corresponding to the nondifferentiability points

of u. We require that uh satisfies

1/
√

3 6 (−1)j+1D−ui 6 α ∀ih ∈ (ahj−1, a
h
j ], j ∈ {1, . . . , m}. (2.18)

PROPOSITION 2.4 (Stability estimate) Let uh be solutions to (2.5) with initial data uh satisfying
Assumptions 2.2 and 2.3. Then uh satisfies

1/
√

3 6 (−1)j+1D−ui(t) 6 α ∀ih ∈ (ahj−1, a
h
j ], j ∈ {1, . . . , m}, t > 0. (2.19)

Proof. Fix j ∈ {1, . . . , m}. Without loss of generality we can assume that uh is increasing on
[ahj h, a

h
j+1h], that is, vi(0) = D−ui ∈ [1/

√
3, α] in [ahj h, a

h
j+1h]. We let

m(t) := min
i=1,...,N

vi(t), M(t) := max
i=1,...,N

vi(t),

and distinguish two cases:

Case 1: M(t) = α for some t > 0. By Lemma 2.1 and (2.7) we have

d
dt+

M(t) = max
i: vi (t)=M(t)

d
dt+

vi(t) = max
i: vi (t)=M(t)

D−D+W ′(vi)

=
1
h2 max

i: vi (t)=M(t)
(W ′(vi+1)− 2W ′(M)+W ′(vi−1)) 6 0, (2.20)

where we have used the fact that W ′(α) > W ′(x) for all x 6 α.

Case 2: m(t) = 1/
√

3 for some t > 0. As above, we have

d
dt+

m(t) = min
i: vi (t)=m(t)

d
dt+

vi(t) = min
i: vi (t)=m(t)

D−D+W ′(vi)

=
1
h2 min

i: vi (t)=m(t)
(W ′(vi+1)− 2W ′(M)+W ′(vi−1)) > 0, (2.21)

where we have used the fact that W ′(1/
√

3) 6 W ′(x) for all x > −α.
The conclusion follows from (2.20) and (2.21). 2

3. Convergence of the scheme

PROPOSITION 3.1 Let the initial data uh satisfy Assumption 2.2. Then the solutions uh converge,
up to a subsequence as h → 0, to a limit function u ∈ C(I × [0,+∞)), uniformly on compact
subsets of I× [0,+∞).

Proof. By (2.1), Proposition 2.2 and Corollary 2.2 we know that the solutions uh are uniformly
bounded inXT := H 1([0, T ], L2(I))∩L∞([0, T ],W 1,∞(I)) for all T > 0. The conclusion follows
from the compact embedding of XT into C(I× [0, T ]) [3]. 2

Recalling Proposition 2.4 and reasoning exactly as in [12, Proposition 3.3], we obtain the following
estimate.



CAHN–HILLIARD EQUATION 335

LEMMA 3.1 Let uh(t) be a solution to the Cauchy problem (2.5) with initial data uh satisfying
Assumptions 2.2 and 2.3. Then, for every open set I1 ⊂⊂ I \ {a1, . . . , am}, there exists a constant
c = c(I1) such that for h small enough∥∥∥∥ d

dt
uh(t)

∥∥∥∥2

L2
h(I1)

6 Eh(0)
(

1
t
+ c

)
∀t > 0. (3.1)

PROPOSITION 3.2 Let uh be initial data satisfying Assumptions 2.2 and 2.3, and let uh be
the corresponding solutions to the Cauchy problem (2.5). Then, for any compact subset K of
I \ {a1, . . . , am} and for every t > 0, there exists a function ψ ∈ H 1(K) such that

W ′(vh)→ ψ uniformly on K (up to a subsequence).

Proof. AsW ′(vh) is uniformly bounded in L∞(I) by Assumption 2.3, up to a suitable subsequence
we have

W ′(D−uh)→ ψ weakly∗ in L∞(K).

Moreover, by (2.1) and Lemma 3.1, d
dt u

h
= D+W ′(D−uh) is uniformly bounded in L2(I). The

conclusion then follows from the Arzelà–Ascoli Theorem. 2

Proposition 3.2 allows us to obtain the strong convergence of D−uh, which is needed to pass to the
limit in the nonlinear problem (2.5).

PROPOSITION 3.3 Let uh(t) be solutions to the Cauchy problem (2.5) with initial data uh

satisfying Assumptions 2.2 and 2.3. Then, up to a subsequence as h→ 0,

D−uh→ ux a.e. on I× [0,+∞) (3.2)

and
W ′(D−uh)→ W ′(ux) in L2

loc(I× [0,+∞)). (3.3)

Proof. By Propositions 2.2 and 3.1 we have

D−uh→ ux weakly∗ in L∞(I) for every t > 0. (3.4)

LetK be as in Proposition 3.2. AsW ′ is invertible on [−α,−1/
√

3] and [1/
√

3, α], Proposition 3.2
implies

D−uh(t) = (W ′)−1(W ′(D−uh(t)))→ ux(t) uniformly on K

for all t > 0, which gives (3.2). Claim (3.3) then follows from (3.2) and Lebesgue’s Theorem. 2

3.1 The limit problem

THEOREM 3.1 Let u ∈ W 1,∞(I) be an initial datum satisfying Assumptions 2.1 and (2.17). Let uh

be finite element discretizations of u satisfying Assumptions 2.2 and 2.3, let uh be the corresponding
solutions to (2.5), and let u ∈ C(I × [0,+∞)) be the limit of uh, as h → 0, given by Proposition
3.1. Then u is the unique solution to the following PDE:

(i) ut = W
′(ux)x in (I \ {a1, . . . , am})× [0,+∞),

(ii) W ′(u−x ) = W
′(u+x ) on {a1, . . . , am} × [0,+∞),

(iii) u− = u+ on {a1, . . . , am} × [0,+∞),
(iv) u(0) = u at I× {0},

(3.5)
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where we set

u± := lim
x→a±j

u(x), u±x := lim
x→a±j

ux(x).

In particular W ′(ux) ∈ C(I× [0,+∞)) and u ∈ C∞((I \ {a1, . . . , am})× (0,+∞)).

Proof. Multiplying by ϕ ∈ C1
0(I× [0,+∞)) the first equation in (2.5), after an integration by parts

we get ∫
∞

0

∫
I
uhϕt dx dt =

∫
∞

0

∫
I
W ′(D−uh)D−ϕ dx dt. (3.6)

As uh→ u locally uniformly on I×[0,+∞) by Proposition 3.1, andW ′(D−uh)D−ϕ→ W ′(ux)ϕx
in L2(I× [0,+∞)) by Proposition 3.3, we can pass to the limit in (3.6):∫

∞

0

∫
I
uϕt dx dt =

∫
∞

0

∫
I
W ′(ux)ϕx dx dt. (3.7)

Since ut ∈ L2(I× [0,+∞)), (3.7) implies W ′(ux) ∈ L2([0,+∞),H 1(I)), so that we can integrate
by parts and obtain ∫

∞

0

∫
I
utϕ dx dt =

∫
∞

0

∫
I
W ′(ux)xϕ dx dt, (3.8)

which proves statement (i). Equalities (ii) and (iii) follow from the continuity of W ′(ux) and u,
respectively. 2

REMARK 3.1 Problem (3.9) is equivalent to the limit problem derived in [13, 8] for the
regularization (1.8). On the other hand, due to the numerical simulations performed in [1], it is
expected to be different from the limit problem corresponding to the Cahn–Hilliard regularization
(1.7) discussed in [4, 14].

COROLLARY 3.1 If u satisfies (3.5), then v = ux = limh→0 v
h is the unique solution to the

following PDE:

vt = W
′(v)xx in (I \ {a1, . . . , am})× [0,+∞),

W ′(v−) = W ′(v+) on {a1, . . . , am} × [0,+∞),

W ′(v)−x = W
′(v)+x on {a1, . . . , am} × [0,+∞),

v(0) = ux on (I \ {a1, . . . , am})× {0}.

(3.9)

Passing to the limit in (2.16) as h → 0, we obtain an integral estimate on the time derivative
of u.

PROPOSITION 3.4 Let u be as in Theorem 3.1. We have ut ∈ L2(I× (0,+∞)) and∫
I×(0,∞)

(
du
dt
(x, t)

)2

dx dt = E[u].

Let us briefly discuss the new phenomena which may occur if one tries to weaken Assumption
(2.17). We first observe that the energy balance condition (3.5)(ii) must be satisfied by any limit of
the semidiscrete scheme.
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1. If the lower bound |ūx | > 1/
√

3 is violated, there are intervals of the domain I where the
derivative of the solution belongs to the nonconvex region of the potential W . This leads
to instability and one expects the onset of a microstructure, due to rapid oscillations of the
derivative. However, in contrast to other regularizations, such oscillations do not seem able to
stop the evolution [10].

2. If the upper bound |ūx | 6 α is violated, then also the lower bound cannot hold for positive times,
due to the energy balance condition (3.5)(ii). In this case one expects that the jump points of the
derivative aj move in time and a hysteresis phenomenon occurs, as discussed in [8].

3.2 Long-time behavior

THEOREM 3.2 Let u be a solution of (3.5). Then there exists a unique limit

u∞(x) := lim
t→+∞

u(t, x), x ∈ I,

which is given by the piecewise linear solution to

(i) W ′((u∞)x)x = 0 in I \ {a1, . . . , am},

(ii) W ′((u∞)
−
x ) = W

′((u∞)
+
x ) on {a1, . . . , am},

(iii) u−∞ = u
+
∞ on {a1, . . . , am}.

(3.10)

Proof. We divide the proof into three steps.

Step 1 (Existence of u∞). By Proposition 3.4, there exists a sequence of times tn → +∞ such
that ∫ tn+1

tn

‖ut‖
2
L2(I) dt → 0. (3.11)

We now define a sequence wn of solutions to (3.5) in the following way:

wn(x, t) := u(x, tn + t), t ∈ [0, 1].

From (3.11) we have ∫ 1

0
‖wnt ‖

2
L2(I) dt −−−→

n→∞
0, (3.12)

whencewn→ w ∈ H 1([0, 1], L2(I))∩L∞([0, 1],W 1,∞(I))withwt ≡ 0, that is, the limit function
w = u∞ does not depend on t .

Step 2 (Limit equation). As every wn solves (3.5), from (3.7) we get∫ 1

0

∫
I
W ′(wnx )ϕx dx dt = 0

for all test functions ϕ ∈ C1(I) independent of t . Passing to the limit as n → ∞ and recalling
(3.12), we get (i) and (ii), while (iii) follows from the Lipschitz continuity of w.

We now show that wx is a piecewise constant function which assumes exactly two values,
p− and p+. Indeed, (3.10)(i) implies that, for all j ∈ {1, . . . , m}, there exists pj ∈ [−α,−1/

√
3]∪

[1/
√

3, α] such that W ′(wx) ≡ pj . Moreover, from condition (ii) we know that

W ′(pi) = W
′(pj ) ∀i, j ∈ {1, . . . , m}. (3.13)
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Since W ′ is monotone in the intervals [−α,−1/
√

3] and [1/
√

3, α], for all p ∈ [1/
√

3, α] there
exists only one value p̃ ∈ [−α,−1/

√
3] such that

W ′(p) = W ′(p̃). (3.14)

The claim then follows from (3.13) and (3.14).

Step 3 (Uniqueness). Once we know that wx assumes precisely two values p− < p+, with
p− ∈ [−α,−1/

√
3] and p+ ∈ [1/

√
3, α], the uniqueness of such values follows by direct

integration. More precisely, assuming without loss of generality wx = p+ > 0 on [0, a1] and
recalling (3.10)(iii), we have

0 = w(1)− w(0) = σ(p+), (3.15)

where

σ(p) := p

m/2−1∑
`=0

(a2`+1 − a2`)+ p̃

m/2∑
k=1

(a2k − a2k−1), p ∈ [1/
√

3, α].

Since σ is strictly increasing on [1/
√

3, α], equation (3.15) uniquely determines the value of p+,
and consequently of p−. 2
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