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Reconstruction of cracks and material losses by perimeter-like penalizations
and phase-field methods: numerical results
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We numerically implement the variational approach for reconstruction in the inverse crack and
cavity problems developed by one of the authors. The method is based on a suitably adapted free-
discontinuity problem. Its main features are the use of phase-field functions to describe the defects
to be reconstructed and the use of perimeter-like penalizations to regularize the ill-posed problem.

The numerical implementation is based on the solution of the corresponding optimality system by
a gradient method. Numerical simulations are presented to show the validity of the method.

2010 Mathematics Subject Classification: Primary 35R30; Secondary 65N21, 65K10.

Keywords: Inverse problems; cracks; cavities; phase-field; perimeter penalization; optimality system.

1. Introduction and setting of the method

We consider a homogeneous and isotropic conducting body, assumed to be contained in Ω , a
bounded, Lipschitz domain of RN , N > 2. We assume that there exist Ω1, a Lipschitz domain
contained in, and different from, Ω , and a closed set γ ⊂ ∂Ω ∩ ∂Ω1 such that the interior of γ is
not empty and γ has a positive distance fromΩ \Ω1. We assume that γ is known and accessible to
measurements.

In the body some defects might be present, which we assume to be perfectly insulating and
outside Ω1. Namely, we model these defects by a closed set K0 ⊂ Ω such that K0 ∩Ω1 is empty.
A minimal assumption on K0 is that the (N − 1)-dimensional Hausdorff measure of K0 is finite.
We denote by GK0 the connected component of Ω \ K0 containing Ω1, that is, the region of Ω
reachable from γ without crossing K0.

The defects may have different geometrical properties. For instance, we may have, even at the
same time, cracks (either interior or surface-breaking), or material losses (either interior, that is,
cavities, or at the boundary).

We say that a defectK0 is a material loss ifGK0 coincides with the interior of its closure. In this
case no cracks are present and K0 represents the boundary of the material loss. For instance, if the
defect is given by a single cavity σ0 = D0, where D0 is a domain compactly contained in Ω and
such that Ω \ σ0 is connected, then K0 = ∂σ0 and GK0 = Ω \ σ0. The other connected component
of Ω \K0 in this case is simply given by D0. In Figure 1 we illustrate the geometric configuration
in the case when we have at the same time two cracks and one cavity.
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FIG. 1. Geometric configuration.

Let us consider the following experiment. If a current density f0 is applied on γ , then the
electrostatic potential inΩ , u0 = u(f0,K0), is the solution to the following (normalized) Neumann
boundary value problem: 

∆u = 0 in Ω \K0,

∇u · ν = f0 on γ,
∇u · ν = 0 on ∂(Ω \K0) \ γ,∫
γ

u = 0.

(1.1)

The current density is modeled by a function f0 ∈ Ls(γ ), for some constant s > N − 1,
such that

∫
γ
f0 = 0. The electrostatic potential u0 may then be measured on γ . We call such a

measurement g0 = u0|γ and we observe that g0 ∈ L
2(γ ) and

∫
γ
g0 = 0. In this way we obtain

an electrostatic boundary measurement of voltage, g0, and current, f0, type on γ . In mathematical
words, we measure the Cauchy data (g0, f0) of the harmonic function u0 on γ . Clearly, for the
prescribed current f0, the voltage g0 depends on K0. If K0 is unknown, then the measured voltage
g0 may provide information about the unknown defect. In fact, the aim of the inverse problem is to
reconstruct an unknown defectK0 by prescribing one or more current densities f0 and measuring the
corresponding value of the potentials on γ . Such a problem arises, for instance, in non-destructive
evaluation, to determine flaws like cracks or cavities in conducting bodies by non-invasive methods.
We refer to this problem as the inverse crack problem, in the general case. Instead, when we a priori
know that the defect is a material loss, we call it the inverse cavity problem. For results on the inverse
crack problem and related problems, we refer to the review article [7], where uniqueness, stability
and reconstruction results are reviewed. We wish to mention that more recently new numerical
methods have been devised for the reconstruction of cracks, although in the case of perfectly
conducting ones [5, 4].

Here we simply wish to note that a single measurement (that is, performing the experiment
previously described only once) is enough to determine uniquely a material loss, in any dimension.
In the general crack case, instead, one measurement may not be enough, but two suitably chosen
measurements (corresponding to two suitable prescribed current densities) are enough for unique
identification of any kind of defect, at least in the planar case. The prescribed current densities that
give uniqueness in the two-dimensional case are of the following type. We consider three electrode
locations on the boundary. At one of these locations we keep fixed a positive electrode, while the
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negative one is placed alternatively at one of the other two locations. This kind of configuration is
applied in numerical experiments, where four electrode locations are used, each on a different side
of the computational domain. For each measurement, we place the positive electrode at one location
and the negative one at another.

Let us finally remark that if the unknown defect is a priori assumed to be interior (that is,
K0 ⊂ Ω) and if the whole boundary of Ω is accessible and connected, then we may simply take
γ = ∂Ω . This is the assumption we make for numerical experiments.

Our approach to this inverse problem is the following. We observe that u0 is smooth outsideK0,
whereas it may, and generally does, jump across K0. Therefore, starting from the Cauchy data, we
wish to reconstruct the function u0 inΩ , and in particular its discontinuity set J (u0). We notice that
this is not a classical Cauchy problem for u0, since u0 is harmonic in Ω \ K0 with K0 unknown!
Rather, it looks more like a free-discontinuity problem for u0, since its discontinuity set J (u0)

is unknown and it is actually the aim of our reconstruction. If we are able to reconstruct u0 and
J (u0), then we obtain valuable information on K0, given that J (u0) ⊂ K0. Actually, for the inverse
cavity problem, J (u0) determines the whole ∂GK0 . On the contrary, in the inverse crack problem,
it may happen that a crack is not visible for a particular measurement, that is, J (u0) does not detect
the whole ∂GK0 . In this case, we may change the prescribed current density, reconstruct again the
electrostatic potential from its values on γ , and recover another portion of ∂GK0 . The uniqueness
results tell us how many times and with which kind of prescribed current densities we need to repeat
this procedure to fully reconstruct the unknown defect.

The main difficulties in the reconstruction of u0 from its Cauchy data are the following. First of
all, the problem is severely ill-posed, as Cauchy problems for elliptic equations are. Second, since
the potential u0 to be reconstructed is a discontinuous function whose discontinuities are unknown
(actually they are the aim of our reconstruction), the problem is not even linear. Thus all the main
difficulties of the original inverse problem are still present in the reconstruction of u0.

The way to tackle ill-posedness is crucial. In fact, since the boundary data are measured, the
data which are really available are not the exact Cauchy data (g0, f0) but some noisy perturbation
of them.

As mentioned above, rather than a classical Cauchy problem, we consider such a reconstruction
as a free-discontinuity problem for the unknown potential u0. For further details on free-
discontinuity problems and their approximations we refer for instance to [1, 6]. We follow the
variational approach developed in [10, 11] for cracks and material losses, respectively. Such a
method is based on the following two features. The first one is the choice of regularization. In order
to regularize the problem, a perimeter-like penalization is used. Namely, we penalize the (N − 1)-
dimensional measure of the unknown defect K0 (actually of the discontinuity set of the unknown
potential). Second, the discontinuity sets are modeled through phase-field functions.

In this paper we develop the numerics of the approach in [10, 11]. Let us describe in detail the
method we plan to use.

We recall that we have fixed Ω and Ω1, two bounded, Lipschitz domains of RN , N > 2, such
that Ω1 is a proper subset of Ω . We also fix a closed set γ ⊂ ∂Ω ∩ ∂Ω1 such that the interior of γ
is not empty and γ has a positive distance from Ω \Ω1.

Assumptions on the prescribed current density

We fix a constant s > N − 1. The prescribed current density will be denoted by f0 ∈ L
s(γ ); it

satisfies
∫
γ
f0 = 0.
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Assumptions on K0

We assume thatK0 is a closed subset ofΩ such thatK0∩Ω1 is empty. We assume that the (N−1)-
dimensional Hausdorff measure ofK0 is finite and that there exist a constant q > 2 and a constantC,
independent of f0, such that

‖∇u0‖Lq (Ω) 6 C‖f0‖Ls (γ ), (1.2)

where u0 = u(f0,K0) solves (1.1).
The constant q > 2 will be kept fixed throughout the paper and depends on very mild regularity

properties of the defect K0 to be reconstructed. We refer to Proposition 5.2 in [11] for a description
of sufficient conditions under which (1.2) holds. Associated to q, we shall also need a constant q1
defined as follows:

0 < q1 = (q − 2)/(2q) < 1/2.

Assumptions on the boundary data

The measured potential at the boundary will be g0 = u0|γ , where u0 solves (1.1). We notice that
g0 ∈ L

2(γ ) and
∫
γ
g0 = 0. The available noisy data will be (gε, fε) where ε, 0 < ε 6 1/2, denotes

the noise level. We assume that fε belongs to Ls(∂Ω) and satisfies supp(fε) ⊂ γ and
∫
∂Ω
fε = 0,

whereas gε belongs to L2(γ ) and satisfies
∫
γ
gε = 0. We assume that

‖f0 − fε‖Ls (γ ) 6 ε and ‖g0 − gε‖L2(γ ) 6 ε. (1.3)

We shall use the following auxiliary functions.
Let ψ : R → R be a continuous and non-decreasing function such that ψ(0) = 0, ψ(t) > 0

if t > 0, and ψ(1) = 1. We assume that ψ ∈ C1,α(R) for some exponent α, 0 < α 6 1,
and that the C1,α norm of ψ is bounded. Furthermore, we require that for any t 6 0 we have
ψ(t) = ψ(0) = 0, while ψ(t) = ψ(1) = 1 for any t > 1. In particular, ψ ′(0) = ψ ′(1) = 0. For
example, we may set

ψ(t) = −2t3 + 3t2 for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
Finally, for any 0 < ε 6 1/2, we define

ψε = (1− ε2)ψ + ε2.

We introduce a single-well potential V centered at 1, that is, a non-negative continuous function
such that V (t) = 0 if and only if t = 1. We assume that V ∈ C1,α(R) and that its C1,α norm is
bounded. We also require that for any t 6 0 we have V (t) > V (0). Obviously, V (t) > V (1) for
any t > 1. For example, we may choose

V (t) = (t − 1)2/4 for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
We shall also need a double-well potential W centered at 0 and 1, that is, a non-negative

continuous function such thatW(t) = 0 if and only if t ∈ {0, 1}. We assume that alsoW ∈ C1,α(R)
and that its C1,α norm is bounded. Obviously, W(t) > W(0) for any t 6 0, and W(t) > W(1) for
any t > 1. For example, we may choose

W(t) = 9t2(t − 1)2 for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
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We define the spaceH(Ω) = {ṽ ∈ H 1,2(Ω) : ṽ = 0 a.e. in Ω1}. To any ṽ ∈ H(Ω)we associate
the function v = 1− ṽ. We remark that v ∈ H 1,2(Ω) and v = 1 almost everywhere in Ω1.

We finally fix positive tuning parameters a, b and c, and a noise level ε, 0 < ε 6 1/2. All these
constants and the notation will be kept fixed throughout the paper.

The method is the following. We begin from the crack case and we propose to minimize, with
respect to the phase-field variable ṽ ∈ H(Ω) with the constraint 0 6 ṽ 6 1, the functional Fε :
H(Ω)→ R defined as follows. For any ṽ ∈ H(Ω), recalling that v = 1− ṽ, we set

Fε(ṽ) =
a

εq1

∫
γ

|ũε − gε|
2
+ b

∫
Ω

ψε(v)|∇ũε|
2
+
c2

ε

∫
Ω

V (v)+ ε

∫
Ω

|∇v|2. (1.4)

Here ũε = ũε(ṽ) solves 
div(ψε(v)∇ũε) = 0 in Ω,
ψε(v)∇ũε · ν = fε on ∂Ω,∫
γ

ũε = 0.
(1.5)

We notice that the first term is the fidelity term with respect to the measured boundary datum,
the other three terms are the regularization. Here the regularization is based on the so-called
Mumford–Shah functional [9], and its approximation, in the sense of Γ -convergence, by phase-
field functionals due to Ambrosio and Tortorelli [2, 3]. In fact, the last three terms correspond
to the Ambrosio–Tortorelli functional. We recall that in the Ambrosio–Tortorelli approach the
discontinuous function u and its discontinuity set J (u) are replaced, respectively, by a smooth
function u and a smooth phase-field function v. Therefore, the Ambrosio–Tortorelli functional
depends on two independent variables, the state variable u and the phase-field variable v. To have
an easier implementation and faster computations, we use here a formulation depending on a single
variable only, namely the phase-field variable v, with the state variable u depending on the phase-
field variable v through (1.5).

The link with the prescribed boundary datum and with the presence of cracks is through ũε, the
solution of the weighted elliptic equation. We observe that the single-well potential V forces the
phase-field function v = 1 − ṽ to be equal to 1 except in a small region, which is where the crack
should be located. The tuning parameters a, b and c allow one to put more emphasis on one or the
other of the features of the functional. Namely, a controls the match with the Dirichlet datum, b the
smoothness of the reconstructed potential away from its discontinuities, and c the penalization on
the (N−1)-dimensional measure of the discontinuities. Therefore c may be seen as a regularization
parameter.

For the material loss case, we simply replace the single-well potential V with the double-well
potential W . Namely, we define Gε : H(Ω) → R in an analogous way by simply replacing V
with W , that is, for any ṽ ∈ H(Ω), we set

Gε(ṽ) =
a

εq1

∫
γ

|ũε − gε|
2
+ b

∫
Ω

ψε(v)|∇ũε|
2
+
c2

ε

∫
Ω

W(v)+ ε

∫
Ω

|∇v|2. (1.6)

We then minimize the functional Gε with respect to the phase-field variable ṽ ∈ H(Ω) with the
constraint 0 6 ṽ 6 1.

Here we use a more classical perimeter penalization and its approximation, again in the sense
of Γ -convergence, with phase-field functionals due to Modica and Mortola [8]. In fact the last two
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terms are the Modica–Mortola functional, which corresponds to a penalization of the perimeter
of GK0 in Ω . Here the double-well potential W forces the phase-field function v to be either 0
(inside the material loss) or 1 (outside the material loss), with a quick transition between these two
regions. We notice that the single-well potential V forces the phase-field function v to be close to 1
except in a small neighborhood of an (N−1)-dimensional region, that is, a crack or the boundary of
a cavity, whereas the double-well potential allows the phase-field function v to be close to 1 and to
0 on large regions, corresponding respectively to the exterior and the interior of a cavity. Therefore,
the first method is apt for the recovery of crack-like structures while the second may be used for the
recovery of material losses.

Summarizing, we shall minimize the functional Fε when we aim to reconstruct defects such as
cracks, and the functional Gε when we aim to reconstruct material losses. Namely, we wish to solve
numerically the following minimization problems (depending on the properties of the unknown
defect K0):

(i) minFε on H(Ω) with the constraint 0 6 ṽ 6 1 if K0 contains portions of cracks,
(ii) minGε on H(Ω) with the constraint 0 6 ṽ 6 1 if K0 is a material loss defect.

Let us notice that, by the direct method, both these minimum problems admit a solution.
The motivation for using this approach is contained in the convergence analysis developed in

[10, 11]. For what concerns the cavity case, in Theorem 4.2 of [11] it has been proved, essentially
by Γ -convergence techniques, that as the noise level ε goes to 0, a minimizer ṽε to Gε converges to
the characteristic function of K0, provided K0 is a material loss.

For the crack case, in [10] a regularization based on the phase-field functionals due to
Ambrosio and Tortorelli has been introduced. In that formulation, which is amenable to numerical
implementation, the functionals to be minimized depend on two independent variables, the state
variable u and the phase-field variable v. In [10, Theorem 4.6] an analogous convergence result
has been proved for this approach to the inverse crack problem. To have an easier implementation
and faster computations, it would be desirable to have a formulation depending on a single variable
only, namely on the phase-field variable v, and preserving the same convergence properties. This
may be done in a rigorous way only for material losses (see [11]). The idea would be to let the state
variable u depend on the phase-field variable v, for instance through (1.5). This is the approach we
have decided to follow in this paper. In fact our functional Fε is a small modification of the one
used in [10] with the additional constraint that u is linked to v through (1.5). Unfortunately, there
is evidence that for the functional Fε no convergence result holds (see the discussion in Section 5
of [11]). In the same section it is also discussed why, when letting u depend on v, among other
possible modifications of the functional developed in [10] the one used in this paper should be
preferred. Finally, the numerical examples in this paper show that this simplification allows us to
obtain good reconstruction with an easier implementation.

As the numerical method, in order to find the minimizers, we use an iterative method. We
formulate the corresponding optimality system and we use a gradient method. In particular, in
Section 2, we describe the method and we prove that the functional is decreasing along the iterations,
unless we hit a critical point. Since the functional to be minimized is not convex, it is not possible
to guarantee that we converge to an absolute minimizer, since there might be local minimizers or
even critical points. In numerical experiments, we have used an Armijo-type line search to try to
move past local minimizers or critical points that might be encountered along the iterations. An
important feature of our approach and of our numerical simulations is that we do not need any
a priori assumption about the number and the location of the defects (in the crack case, in principle,
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not even whether the defect is a crack or a cavity). Therefore, we do not make any initial guess
on the number and location of the defects to be reconstructed. In fact in all the experiments we
start with the same initial phase-field function v = 1 − ṽ, which is a very small perturbation of
the constant function equal to 1. We cannot start with the function which is identically equal to 1
just because this is a critical point of the functional. Another important property of the method
is that it works with few measurements. We recall that, at least in the planar case, two different
measurements in principle suffice. Moreover, in the applications it is important to be able to obtain
good reconstruction with as few measurements as possible. Therefore, we purportedly decided to
use few measurements in our numerical simulations.

In Section 3 numerical simulations are presented for both the single-well and double-well
approximations. Numerical experiments are performed for various types of defect with noise-free
and noisy data-sets.

2. Optimality system and the gradient method

We now turn towards the numerical implementation of the method. In this section we describe the
iterative algorithm we shall use in numerical experiments. In particular, we shall prove that the
functional decreases along the iterations, unless we hit a critical point.

We begin by recalling the differentiability properties of the functionals Fε and Gε, which have
been investigated in [11, Section 6].

We define the following spaces. For any p, 2 6 p 6 +∞, let us set Lp(Ω) = {ṽ ∈ Lp(Ω) :
ṽ = 0 a.e. in Ω1} and Hp(Ω) = H 1,2(Ω) ∩ Lp(Ω), with the norm ‖ṽ‖Lp(Ω) = ‖ṽ‖Lp(Ω) and
‖ṽ‖Hp(Ω) = ‖ṽ‖Lp(Ω)+‖∇ṽ‖L2(Ω). To any ṽ ∈ L2(Ω)we as usual associate the function v = 1−ṽ.
If ṽ belongs either to Lp(Ω) or to Hp(Ω), then v ∈ Lp(Ω), v = 1 almost everywhere in Ω1, and
provided 0 6 ṽ 6 1 almost everywhere inΩ , we also have 0 6 v 6 1 almost everywhere inΩ . We
observe that H2(Ω) = H(Ω) as previously defined.

For any q > 2, we define

H 1,q
γ (Ω) =

{
u ∈ H 1,q(Ω) :

∫
γ

u = 0
}
.

We observe that, by a generalized Poincaré inequality, on H 1,q
γ (Ω) the usual H 1,q(Ω) norm and

the norm ‖u‖
H

1,q
γ (Ω)

= ‖∇u‖Lq (Ω) are equivalent. Therefore, we shall set this second one as the

natural norm on H 1,q
γ (Ω).

We defineHε : L2(Ω)→ H 1,2
γ (Ω) as follows:

Hε(ṽ) = ũε(ṽ) for any ṽ ∈ L2(Ω).

There exist constants p(ε) > 2 and q(ε) > 2, depending on ε and α, such that the following
results hold.

First,Hε : L2(Ω)→ H
1,q(ε)
γ (Ω) with bounded image inH 1,q(ε)

γ (Ω), and, for any ṽ0 ∈ L2(Ω),
Hε is differentiable at ṽ0 with respect to the Lp(Ω) norm for all p > p(ε), and the H 1,q(ε)

γ (Ω)

norm. Let DHε(ṽ0) : Lp(Ω)→ H
1,q(ε)
γ (Ω) be the differential at ṽ0. Then for any ṽ in Lp(Ω) we

have
DHε(ṽ0)[ṽ] = Uε(ṽ0, ṽ)



360 W. RING AND L. RONDI

where Uε = Uε(ṽ0, ṽ) ∈ H
1,2
γ (Ω) solves the following problem:{

div(ψε(v0)∇Uε) = div(ψ ′ε(v0)ṽ∇(Hε(ṽ0))) in Ω,
ψε(v0)∇Uε · ν = 0 on ∂Ω. (2.1)

Obviously, v0 = 1 − ṽ0. We recall that for any vector-valued function G ∈ L2(Ω,RN ), div(G)
defines a functional on H 1,2(Ω) in the following way:

div(G)[φ] = −
∫
Ω

G · ∇φ for any φ ∈ H 1,2(Ω).

Therefore, the weak formulation of (2.1) is to look for a function Uε ∈ H 1,2
γ (Ω) such that∫

Ω

ψε(v0)∇Uε · ∇ϕ =

∫
Ω

ψ ′ε(v0)ṽ∇(Hε(ṽ0)) · ∇ϕ for any ϕ ∈ H 1,2(Ω).

Here, and analogously throughout, the differentiability has to be understood in the following
sense. For any ṽ in Lp(Ω),

Hε(ṽ0 + ṽ) = Hε(ṽ0)+DHε(ṽ0)[ṽ]+ R(ṽ)

where

lim
‖ṽ‖Lp(Ω)→0

‖R(ṽ)‖
H

1,q(ε)
γ (Ω)

‖ṽ‖Lp(Ω)
= 0.

We conclude that, for any ṽ0 ∈ H(Ω), Fε and Gε are differentiable at ṽ0 with respect to the
Hp(Ω) norm, for all p > p(ε). Let DFε(ṽ0), DGε(ṽ0) : Hp(Ω)→ R be the differentials at ṽ0 of
Fε and Gε, respectively. Then, for any ṽ ∈ Hp(Ω),

DFε(ṽ0)[ṽ] =
2a
εq1

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)

+ b

∫
Ω

(
2ψε(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ

′
ε(v0)|∇Hε(ṽ0)|

2ṽ
)

+
c2

ε

∫
Ω

(−V ′(v0)ṽ)+ 2ε
∫
Ω

∇ṽ0 · ∇ṽ (2.2)

and

DGε(ṽ0)[ṽ] =
2a
εq1

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)

+ b

∫
Ω

(
2ψε(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ

′
ε(v0)|∇Hε(ṽ0)|

2ṽ
)

+
c2

ε

∫
Ω

(−W ′(v0)ṽ)+ 2ε
∫
Ω

∇ṽ0 · ∇ṽ. (2.3)

An important remark is the following. If N = 2, then we may actually choose p(ε) = 2, and we
observe thatH2(Ω) is a Hilbert space, with the scalar product

∫
Ω
∇ṽ1 ·∇ṽ2 for any ṽ1, ṽ2 ∈ H2(Ω).
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If N > 2, then it might happen that p(ε) > 2 and that Hp(ε)(Ω) does not have a Hilbert space
structure anymore. However, since p(ε) is finite, Hp(ε)(Ω) is still a strictly convex real reflexive
Banach space.

In what follows we shall fix p = p(ε) (with p(ε) = 2 if N = 2), and we denote by MFε the
functional defined on H 1,2

γ (Ω)×Hp(ε)(Ω) by

MFε(u, ṽ) =
a

εq1

∫
γ

|u− gε|
2
+

∫
Ω

(
bψε(v)|∇u|

2
+
c2

ε
V (v)+ ε|∇v|2

)
for any (u, ṽ) ∈ H 1,2

γ (Ω)×Hp(ε)(Ω). (2.4)

This value is always finite. By a similar reasoning, for any (u0, ṽ0) ∈ H
1,q(ε)
γ (Ω) × Hp(ε)(Ω),

MFε is differentiable at (u0, ṽ0) and for any (u, ṽ) ∈ H 1,2
γ (Ω)×Hp(ε)(Ω) we have

DMFε(u0, ṽ0)[(u, ṽ)] =
2a
εq1

∫
γ

(u0 − gε)u+ b

∫
Ω

(
2ψε(v0)∇u0 · ∇u− ψ

′
ε(v0)|∇u0|

2ṽ
)

+
c2

ε

∫
Ω

(−V ′(v0)ṽ)+ 2ε
∫
Ω

∇ṽ0 · ∇ṽ. (2.5)

We observe that Fε(ṽ) = MFε(Hε(ṽ), ṽ). Analogously, we define MGε simply by
replacing V with W . Analogous properties of differentiability hold forMGε as well.

Let us finally define LFε : H 1,2
γ (Ω)×Hp(ε)(Ω)×H

1,2(Ω)→ R by setting, for any (u, ṽ, φ) ∈
H 1,2
γ (Ω)×Hp(ε)(Ω)×H

1,2(Ω),

LFε(u, ṽ, φ) =MFε(u, ṽ)+
∫
Ω

ψε(v)∇u · ∇φ −

∫
∂Ω

fεφ. (2.6)

In an analogous way we define LGε by replacingMFε withMGε.
We observe that LFε (and LGε as well) is differentiable at any (u0, ṽ0, φ0) ∈ H

1,q(ε)
γ (Ω) ×

Hp(ε)(Ω)×H
1,2(Ω). For any (u, ṽ, φ) ∈ H 1,2

γ (Ω)×Hp(ε)(Ω)×H
1,2(Ω) we have

∂LFε
∂u

(u0, ṽ0, φ0)[u] =
2a
εq1

∫
γ

(u0−gε)u+2b
∫
Ω

ψε(v0)∇u0 ·∇u+

∫
Ω

ψε(v0)∇φ0 ·∇u, (2.7)

and

∂LFε
∂ṽ

(u0, ṽ0, φ0)[ṽ] = −b
∫
Ω

ψ ′ε(v0)|∇u0|
2ṽ +

c2

ε

∫
Ω

(−V ′(v0)ṽ)

+ 2ε
∫
Ω

∇ṽ0 · ∇ṽ −

∫
Ω

ψ ′ε(v0)ṽ∇u0 · ∇φ0, (2.8)

and, finally,
∂LFε
∂φ

(u0, ṽ0, φ0)[φ] =
∫
Ω

ψε(v0)∇u0 · ∇φ −

∫
∂Ω

fεφ. (2.9)

Then the resulting optimality system is the following. We look for critical points, or better
minimizers, of Fε, or equivalently, of MFε(u, ṽ) subject to the constraint u = Hε(ṽ). We use a
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gradient method; the algorithm is divided into several steps. A completely analogous method may
be used for finding minimizers of Gε. We describe the algorithm and show that the functional is
decreasing along the iterations.

Step 0: initialization. We initialize the algorithm by putting k = 0 and choosing an initial guess
ṽ0 ∈ H(Ω) such that 0 6 ṽ0 6 1 almost everywhere. We observe that taking ṽ0 ≡ 0 (that is,
v0 ≡ 1) is not a good choice because this is a critical point of the functional Fε, thus the gradient
method fails in this case.

Step 1: finding uk . We solve 
div(ψε(vk)∇uk) = 0 in Ω,
ψε(vk)∇uk · ν = fε on ∂Ω,∫
γ

uk = 0,
(2.10)

that is, we look for uk ∈ H 1,2
γ (Ω) such that∫

Ω

ψε(vk)∇uk · ∇φ −

∫
∂Ω

fεφ = 0 for any φ ∈ H 1,2(Ω). (2.11)

We notice that uk = Hε(ṽk) and uk actually belongs to H 1,q(ε)
γ (Ω). By (2.6) and (2.9), for any

φ̃ ∈ H 1,2(Ω) we have

LFε(uk, ṽk, φ̃) =MFε(uk, ṽk) = Fε(ṽk) and
∂LFε
∂φ

(uk, ṽk, φ̃) = 0.

Step 2: finding φk . We solve the following boundary value problem:
div(ψε(vk)∇φk) = −div(2bψε(vk)∇uk) in Ω,

ψε(vk)∇φk · ν = −
2a
εq1
(uk − gε)χγ on ∂Ω,∫

γ

φk = 0.

(2.12)

Here χγ denotes the characteristic function of γ , that is,

(uk − gε)χγ =

{
uk − gε on γ,
0 on ∂Ω \ γ.

The weak formulation of (2.12) is to look for φk ∈ H 1,2
γ (Ω) such that∫

Ω

ψε(vk)∇φk · ∇u = −2b
∫
Ω

ψε(vk)∇uk · ∇u−
2a
εq1

∫
γ

(uk − gε)u

for any u ∈ H 1,2(Ω). (2.13)

Such a solution φk exists and is unique. Then LFε(uk, ṽk, φk) = MFε(uk, ṽk) = Fε(ṽk) and,
by (2.7),

∂LFε
∂φ

(uk, ṽk, φk) = 0 and
∂LFε
∂u

(uk, ṽk, φk) = 0.
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Step 3: computing the gradient and updating vk . We compute the differential of Fε at the point ṽk .
We observe that if u = Hε(ṽ), then for any φ̃ ∈ H 1,2(Ω) we have

Fε(ṽ) =MFε(Hε(ṽ), ṽ) = LFε(Hε(ṽ), ṽ, φ̃).

Therefore, since uk = Hε(ṽk), and if we pick φ̃ = φk , then

DFε(ṽk) =
∂LFε
∂ṽ

(uk, ṽk, φk).

We conclude that, by (2.8), for any ṽ ∈ Hp(ε)(Ω) we have

DFε(ṽk)[ṽ] = −b
∫
Ω

ψ ′ε(vk)|∇uk|
2ṽ +

c2

ε

∫
Ω

(−V ′(vk)ṽ)

+ 2ε
∫
Ω

∇ṽk · ∇ṽ −

∫
Ω

ψ ′ε(vk)ṽ∇uk · ∇φk. (2.14)

Let us now consider the space Hp(ε)(Ω). We recall that either Hp(ε)(Ω) = H2(Ω) (if N = 2),
that is, Hp(ε)(Ω) is a Hilbert space, or Hp(ε)(Ω) is a strictly convex real reflexive Banach space
(if N > 2). In either case, if H = Hp(ε)(Ω), we fix an operator T : H ∗ → H such that for any
w∗ ∈ H ∗, we have

〈w∗, T (w∗)〉 = ‖w∗‖2 and ‖T (w∗)‖ = ‖w∗‖,

where 〈·, ·〉 is the usual duality between H ∗ and H . We may choose T as the duality mapping
from H ∗ into H ∗∗ = H . If H is a Hilbert space and we also identify H ∗ with H , then T is
actually the identity. See, for instance, [12, Section 42.6]. Let Tε denote the corresponding operator
for Hp(ε)(Ω).

For a positive constant tk , we then update ṽk by setting

v̂k+1 = ṽk − tkTε(DFε(ṽk)).

We observe the following. If DFε(ṽk) = 0, then (uk, ṽk, φk) is a critical point of LFε and ṽk is
a critical point of Fε, and the algorithm comes to a stop. Otherwise, provided tk is small enough, an
easy computation shows that Fε(v̂k+1) < Fε(ṽk).
Step 4: normalization and finding ṽk+1. We normalize v̂k+1 by truncation as follows. We set
ṽk+1 = (v̂k+1 ∧ 1) ∨ 0. Then ṽk+1 ∈ Hp(ε)(Ω) and 0 6 ṽk+1 6 1 almost everywhere in Ω .

Let us note that, by our hypotheses, such a truncation does not increase the value of the
functional: in fact, for any v̂ ∈ Hp(ε)(Ω), if ṽ = (v̂ ∧ 1) ∨ 0, then

Fε(ṽ) 6 Fε(v̂).

Therefore, we have found that either DFε(ṽk) = 0, and the algorithm stops, or otherwise,
provided tk is small enough, Fε(ṽk+1) < Fε(ṽk).

Once we have computed ṽk+1, we iterate the algorithm by going back to Step 1.

3. Numerical experiments

The data for the numerical experiments are generated by solving the Laplace equation numerically
on a domain with certain prescribed defects (cracks or cavities). We solve the Neumann problem
with given flux on the boundary of the computational domain, and read off the corresponding
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Dirichlet data to get a feasible pair of Neumann and Dirichlet boundary data on a discrete set of
measurement points on the boundary from which the defect has to be reconstructed. As input fluxes
we choose pairs of plus-shaped current profiles with opposite sign located at two different sides of
the rectangular computational domain. The Laplace equation is solved on a very fine irregular grid
using linear finite elements. The boundary data are genuinely defined on the unevenly distributed
nodal points of elements on the boundary and are interpolated onto a much courser regular grid
of measurement points. When experimenting with noisy input data, both boundary values are
contaminated by adding Gaussian distributed artificial noise to the data, usually with different noise
levels for f = ∂u

∂ν
|γ and g = u|γ .

In Step 0 of our algorithm, we choose an initial guess ṽ0 which is a small perturbation of the
function which is identically equal to 0. We recall that ṽ0 ≡ 0 has to be avoided because this is a
critical point for our functionals. The initial guess is kept fixed in all the experiments and carries no
information whatsoever on the defects to be reconstructed.

For the numerical implementation of Step 1 (that is, the numerical solution of equation (2.11) for
uk with given vk and prescribed fε), we also use linear finite elements for the discretization of uk .
In contrast to the data generation routine, we discretize the potential on a regular, structured grid,
which is usually much coarser than the grid used for the data generation. Later on, we shall assume
that the phase-field vk is also an element of the space of piecewise linear functions on the same
underlying regular grid as for uk . To assemble the stiffness matrix for (2.11), however, we replace
the phase-field vk by its L2-projection onto the space of functions which are piecewise constant
on the triangles of the finite element space. A completely analogous procedure is applied for the
solution of the adjoint equation (2.13) described in Step 2 for the adjoint variable φk . Note that both
systems share the same stiffness matrix and the right-hand side of (2.13) can be easily assembled
using a slightly modified stiffness matrix. We shall use up to six different Cauchy data-sets for
the reconstruction of the defect. The data-sets correspond to all possible combinations of pairs of
electrodes where each electrode is located on a different side of the computational rectangle. We
can use the same factorization of the stiffness matrix for all different right-hand sides of (2.11) and
(2.13).

The calculation of the descent direction for the cost functional as described in Step 3 requires
another solution of an elliptic boundary value problem for the variable δṽk = Tε(DFε(ṽk)). As
mentioned above, the update δṽk is discretized using linear triangular elements on a regular grid.
To find δṽk we have to solve an elliptic equation with system matrix defined by a discretization of
the operator T : H ∗ → H . In our two-dimensional test examples, we always set H = H 1,2(Ω)

and for any w∗ ∈ H ∗ we set T (w∗) = v where v solves v − c∆v = w∗ in a weak sense with
some parameter c > 0 and homogeneous Dirichlet boundary conditions. The choice of Dirichlet
boundary conditions is motivated by the desire to keep the value of the phase-field constantly 1 on
the boundary. The assembling of the right-hand side of the equation for δṽk is done by evaluating
(2.14) for functions ṽ piecewise linear in all bases.

The projection required in Step 4 is easily implemented for piecewise linear functions by
thresholding the nodal values. Moreover, a suitable step-length for the update of the phase-field
is found using an Armijo-type line search. We use a maximum number of five reduction steps for
the correction of the step-length. Since each evaluation of the cost functional requires one solution
of the state equation, we try to steer the step-size modification in a rather conservative way.

Within this setup, the following numerical experiments have been performed. For all
experiments, the phase-field parameter ε was decreased in several steps from an initial value of
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ε = 2 · 10−4 down to ε = 1 · 10−6 for the single-well potential and to ε = 2 · 10−6 for the
double-well case. We run 2500 iterations of our algorithm in the single-well case and 1000 in the
double-well case. Figure 2 shows the final phase-field together with the linear crack (a white line)
which was used for the data generation. We use all six available data-sets with electrode positions
on (up/down), (left/right), (down/left), (up/left), (down/right), and (up/right) sides of the rectangle
for the reconstruction and set the noise-level to zero. In this simple situation where the crack is
located rather close to the boundary we obtain very good reconstruction of the crack location with
the single-well approximation.

FIG. 2. Reconstruction of a small linear crack with noise-free data.

Figure 3 shows a comparison between reconstructions using three measurements (left image)
with electrode positions on (left/right), (left/up), and (right/up) edges and six measurements (right
figure), again in the single-well case. It is notable that in the reconstruction with three data-sets the
crack tips are accurately identified but the reconstructed crack is strongly curved, which is probably
due to the fact that we have no electrode located on the lower edge of the computational domain. In
contrast the overall geometrical shape of the crack is reconstructed much better with six data-sets but
the position of the crack tips is less accurate. We believe that this is due to the fact that, in general,

FIG. 3. Comparison of reconstructions from three and six measurements.
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the reconstructions tend to be offset towards the center of the computational domain, maybe because
we keep the phase-field value fixed near the boundary. This tendency, together with the fact that the
jump set of minimizers of the Mumford–Shah functional is smooth outside critical points, explains
why when the shape recovered is more straight we have higher inaccuracy in the recovery of the
crack tips. In any case, the main reason for these inaccuracies is the exponential ill-posedness of
the problem, that is, even if the reconstructions are quite different from the looked-for defects, their
corresponding boundary data may still match the measured ones very well. In these two simulations
we added one percent of normally distributed noise to Neumann and Dirichlet data.

Figure 4 shows results for a situation with two cracks and different noise levels. Here we fixed
the noise level for the Neumann data to be 1% for both experiments whereas the Dirichlet data were
contaminated with 1% (left image) and 5% (right image) of noise. We used three measurements
(left/right), (left/up), (right/up) and the single-well potential. There is no big difference in the quality
of the reconstructions. In both cases the placement of the smaller crack in the upper right corner is
inaccurate and the larger crack in the lower left corner is curved. Nonetheless the convergence
of the algorithm is not heavily affected by the presence of (moderately strong) noise and the
reconstructions are stable.

FIG. 4. Comparison with different noise levels.

We notice that the tendency of the reconstructed lower left crack to bend inward is not due to the
choice of the mesh used. To see this, in the next Figure 5 we illustrate the dependence of the method
on the mesh. In the leftmost image we have reconstruction with a low resolution mesh (100× 100,
which is slightly lower than 140× 140 used in the other experiments). In the center image we have
a higher resolution mesh of 200 × 200, whereas in the rightmost image we have the same high
resolution but the grid is rotated through 90 degrees. In these three experiments we used exactly the
same Cauchy data with a noise level of 1% on both Neumann and Dirichlet data. The differences
between these reconstructions are again due to the ill-posedness of the problem, whereas there is no
significant influence of mesh refinement or rotation.

The next series of experiments presented in Figure 6 shows the tendency of the single-well
based algorithm to produce dendrite-like structures. In fact, the dendrite-shaped crack in the leftmost
image is reconstructed quite well. The polygonal crack in the middle image is approximated by a
cloth-hanger-like structure which has a satisfactory data fit with a shorter overall length than the
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FIG. 5. Dependence of reconstructions from the mesh.

polygonal curve. Finally the cavity in the rightmost image is approximated by a one-dimensional
structure which looks roughly like the skeleton of the cavity. In all these three experiments, the noise
level is 1% for Neumann data and 5% for Dirichlet data and the three measurements (left/right),
(left/up), (right/up) are used. The dendrite-like structures may be explained as follows. The method
tries to minimize the length of the defects, thus it prefers those skeleton-like structures. Moreover,
we already noticed that the jump set of minimizers of the Mumford–Shah functional is usually
smooth outside critical points, thus sharp corners tend to be avoided. On the other hand, at a critical
point of the jump set of minimizers of the Mumford–Shah functional, a typical structure which may
be found is that of a triple point or propeller, which is exactly what we obtain in our reconstructions.
Clearly, the most important reason of this behavior is again the exponential ill-posedness of the
problem.

FIG. 6. Dendrite-like reconstructions with single-well potential.

Figure 7 shows reconstructions obtained by using the double-well approximation. As expected,
the phase-field approximates the characteristic functions of one cavity (left image) and two cavities
(right image). In these two tests, the noise level is 1% for Neumann data. In the left image, the
noise level for Dirichlet data is 5% and the three measurements (left/right), (left/up), (right/up) are
used. In the right image, the noise level for Dirichlet data is 1% but only one measurement, namely
(left/right), is used. The overall location of the cavities is satisfactory, but the lower left quadrilateral
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FIG. 7. Reconstructions of cavities with double-well potential.

is approximated by a non-convex shape. In this respect the experiment with the double-well potential
for two cavities resembles the results shown in Figure 3 where the lower left crack also has a strong
tendency to bend inward.

In another numerical experiment, documented in Figure 8, the double-well approach was used
for the reconstruction of one-dimensional defects like the polygonal crack shown in the left image
and the star-shaped crack shown in the right figure. In both cases the defect is approximated by
a two-dimensional structure. An interesting feature is the occurrence of a self-intersection of the
boundary curve of the reconstructed defect in the case of the star-shaped crack. Also in these two
tests, the noise level is 1% for Neumann data and 5% for Dirichlet data and the three measurements
(left/right), (left/up), (right/up) are used.

FIG. 8. Reconstructions of cracks with double-well potential.

Finally, we also tested the method when no defect is present. We used a noise level of 1% for
both Neumann and Dirichlet data and a high resolution mesh. Figure 9 shows the final phase-field
which is correctly identically equal to one but for some small artifacts in correspondence to the
input pulses. We also compare the (numerical) solution u to the direct problem (left image) to the
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FIG. 9. No defect case.
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reconstructed u by our iterative process (right image). Their difference, illustrated in the last image,
shows that the deviation is comparable, in percentage, with the noise level on the Cauchy data
used. This means that, although not designed for such a purpose, our approach provides indirectly a
reasonably efficient method for the numerical solution of Cauchy problems.

As a conclusion we can state that both algorithms give reconstructions of the defects with a
satisfactory accuracy for an exponentially ill-posed problem. The algorithms exhibit a quite stable
behavior in the presence of data noise. The single-well and double-well models develop the types of
structure for which they are designed (one-dimensional for the single-well and two-dimensional for
the double-well potential), so the single-well approach approximates cavities by dendrites and the
double-well approach approximates cracks by cavities. The double-well approach looks more stable
with respect to noise, is slightly less sensitive to the adjustment of the phase-field parameter ε and
usually needs fewer iterations for convergence. This may be in accordance with the theory, in fact
for the double-well case a convergence analysis is proved, whereas the single-well model we use is a
modification of the one for which we have convergence results. Finally, it turned out to be important
to update the phase-field parameter ε adaptively during the algorithm. If the parameter ε is chosen
too small initially or decreased too fast, sharp interfaces develop too early, sometimes at incorrect
locations, and the algorithm is not able to move well established interfaces to other locations. On
the other hand, if the parameter ε is decreased too much, the term containing the potential might
prevail and not well established defects, usually the smaller ones, may disappear.
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