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We investigate support properties of nonnegative solutions to nonlinear parabolic equations with
variable density in bounded domains. The density can diverge or vanish near the boundary. Assuming
that the initial datum has support not intersecting the boundary, we provide simple conditions, in
dependence on the behaviour of the density, guaranteeing that the support of every nonnegative
solution intersects the boundary at some positive time, or, in the case of convex domains, that it
remains away from it for any positive time. These results extend to the case of bounded domains
those given in [KK] for the Cauchy problem.

2010 Mathematics Subject Classification: Primary 35K61, 35K67, 35B99; Secondary 35B40,
35B51.

Keywords: Support of solutions; sub- and supersolutions; comparison principles.

1. Introduction

We consider nonnegative bounded solutions to nonlinear parabolic equations of the following type:

ρ∂tu = ∆[G(u)] in Ω × (0,+∞) =: Q,

where Ω is an open bounded subset of Rn (n > 1) with boundary ∂Ω ≡ S, and ρ = ρ(x),
which will be referred to as a density, is a positive function only depending on the space variable;
moreover, a typical choice for the function G is G(u) = um, , m > 1.

Following [KT], [PT], [P2], we allow the density ρ to vanish, to diverge, or to not have a limit
as the distance dist(x,S) ≡ d(x) goes to zero. On the other hand, ρ is supposed to be positive and
continuous inside Ω . More precisely, we always make the following assumptions:

(H1) S is an (n− 1)-dimensional compact submanifold of Rn of class C3,

(H2)


(i) ρ ∈ C(Ω), ρ > 0 in Ω;
(ii) G ∈ C1([0,+∞), G(0) = G′(0) = 0, G′(s) > 0 for any s > 0,

G′ is increasing in [0, δ] for some δ > 0;
(iii) u0 ∈ C(Ω), u0 > 0, supp u0 ∩ S = ∅.

Hence, it is natural to study the following initial value problem:{
ρ∂tu = ∆[G(u)] in Q,
u = u0 in Ω × {0}; (1.1)

notice that in (1.1) no boundary conditions are imposed at S.

c© European Mathematical Society 2011



398 F. PUNZO

The well-posedness of problem (1.1) has been studied in [KT] for n = 1 and in [P2] for n > 1.
If ρ(x) → 0 fast enough as d(x) → 0 then nonuniqueness of bounded solutions is proved; on
the contrary, when ρ does not vanish at S, or ρ(x) → 0 slowly as d(x) → 0, then uniqueness of
bounded solutions not satisfying any extra conditions at S is showed.

The aim of this paper is to investigate support properties of nonnegative bounded solutions to
problem (1.1), in dependence on the behaviour of ρ near the boundary S; special attention will be
paid to the case G(u) = um (m > 1), when problem (1.1) reads{

ρ∂tu = ∆(u
m) in Q,

u = u0 in Ω × {0}. (1.2)

In particular, we shall prove that if ρ ∈ L1(Ω) and

(H3)

∫ 1

0

G′(s)

s
ds < +∞,

then for every nonnegative solution u to problem (1.1), supp u(·, t0) intersects S for some t0 > 0.
Moreover, when G(u) = um (m > 1), the hypothesis ρ ∈ L1(Ω) can be replaced by the
weaker condition ρ[d(x)]α/m ∈ L1(Ω) for some α ∈ (0, 1). Instead, if Ω is convex and
ρ(x) > C[d(x)]−α (x ∈ Ω) for some C > 0 and α > 2, then for every nonnegative solution u to
problem (1.1), supp u(·, t) does not intersect S for any t > 0.

Similar results have already been proved in [KK] (see also [GHP]) for the Cauchy problem{
ρ∂tu = ∆[G(u)] in Rn × (0,+∞),
u = u0 in Rn × {0}, (1.3)

supposing that the functions ρ, u0, G satisfy the hypothesis

(H4)


(i) ρ ∈ C1(Rn) ∩ L∞(Rn), ρ > 0;
(ii) G ∈ C1([0,+∞)),G(0) = G′(0) = 0, G′(s) > 0 for any s > 0,

G′ is increasing in [0, δ] for some δ > 0;
(iii) u0 ∈ C(Rn), u0 > 0, supp u0 is compact.

To be specific, in [KK] it has been proved that if n > 3, ρ ∈ L1(Rn) and (H3) holds true, then for
every nonnegative bounded solution u to problem (1.3) there exists t0 > 0 such that supp u(·, t0) is
not compact. Moreover, whenG(u) = um (m > 1), the assumption ρ ∈ L1(Rn) can be replaced by
the weaker condition ρ|x|(2−n)/m ∈ L1(Rn). On the contrary, when n > 1, G(u) = um (m > 1)
and

ρ(x) >
C

(1+ |x|2)α/2
(x ∈ Rn), (1.4)

for some 0 < α 6 2 and C > 0 , then for every nonnegative bounded solution u to problem (1.3)
supp u(·, t) remains compact for any t > 0.

In connection with these results of [KK] let us mention that if n > 3 and ρ → 0 fast enough as
|x| → ∞, then nonuniqueness of bounded solutions to problem (1.3) has been proved (see [EK],
[KKT], [P1]). Instead, when n = 2 or n > 3 and condition (1.4) holds true, then uniqueness for
problem (1.3), in the class of bounded solutions not satisfying any extra constraints at infinity, has
been showed (see [KKT], [P1]).
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Roughly speaking, for problem (1.1) the boundary S plays the same role as infinity for
problem (1.3). Hence, to study problem (1.1), the requirement supp u0 ∩ S = ∅ in assumption
(H2)(iii) corresponds to the requirement that supp u0 is compact in (H4)(iii) to study problem (1.3).

Clearly, results that we shall prove can be regarded as an extension to problem (1.1) of results
given in [KK] for problem (1.3).

1.1 Results

More precisely, we shall prove the following results.

THEOREM 1.1 Let assumptions (H1)–(H3) be satisfied, and ρ ∈ L1(Ω). Let u be any solution to
problem (1.1). Then there exists t0 > 0 such that supp u(·, t0) ∩ S 6= ∅.

COROLLARY 1.2 Let assumptions (H1) and (H2)(i),(iii) be satisfied; suppose that G(u) = um

(m > 1) and ρ[d(x)]α/m ∈ L1(Ω) for some α ∈ (0, 1). Let u be any solution to problem (1.1).
Then there exists t0 > 0 such that supp u(·, t0) ∩ S 6= ∅.

Let Sε := {x ∈ Ω | d(x) < ε} (ε > 0).

THEOREM 1.3 Let assumptions (H1) and (H2)(i),(iii) be satisfied; suppose that Ω is convex and
that G(u) = um (m > 1). Assume that there exist C > 0, ε̃ > 0 and α > 2 such that

ρ(x) >
C

[d(x)]α
(x ∈ S ε̃). (1.5)

Let u be any solution to problem (1.1). Then supp u(·, t) ∩ S = ∅ for any t > 0. Moreover,

(i) if α > 2, then there exist a > 0, b > 0, ε̂ > 0 such that, for any t > 0,

supp u(·, t) ⊆ (Ω \ S ε̂) ∪
{
x ∈ S ε̂

∣∣∣∣ d(x,S) > 1
a(bt + 1)1/(α−2)

}
; (1.6)

(ii) if α = 2, then there exist a > 0, β > 0, ε̂ > 0 such that, for any t > 0,

supp u(·, t) ⊆ (Ω \ S ε̂) ∪
{
x ∈ S ε̂

∣∣∣∣ d(x,S) > 1
aeβt

}
.

In a forthcoming paper we shall study if Theorem 1.3 can be generalized to the case of a
nonconvex domain Ω .

2. Mathematical framework

DEFINITION 2.1 By a solution of problem (1.1) we mean a nonnegative function u ∈ C(Q) ∩
L∞(Q) such that∫ τ

0

∫
Ω1

{ρu∂tψ +G(u)∆ψ} dx dt =
∫
Ω1

ρ[u(x, τ )ψ(x, τ )− u0(x)ψ(x, 0)] dx

+

∫ τ

0

∫
∂Ω1

G(u)〈∇ψ, ν〉 dσ dt (2.1)
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for any open set Ω1 ⊆ Ω with smooth boundary, Ω1 ⊆ Ω , τ > 0, ψ ∈ C2,1(Ω1 × [0, τ ]), ψ > 0,
ψ = 0 in ∂Ω1 × [0, τ ]; here ν denotes the outer normal to Ω1 and 〈·, ·〉 the scalar product in Rn.

Supersolutions (or subsolutions) of (1.1) are defined by replacing “=” by “6” (“>”,
respectively) in (2.1).

We will also consider, for any ε > 0 small enough, the auxiliary problemρut = ∆[G(u)] in [Ω \ Sε]× (0,+∞) =: Qε,

u = 0 in Aε × (0,+∞),
u = u0 in [Ω \ Sε]× {0};

(2.2)

here Aε := {x ∈ Ω | d(x) = ε}.

DEFINITION 2.2 By a supersolution of problem (2.2) we mean a nonnegative function u ∈

C(Qε) ∩ L
∞(Qε) such that∫ τ

0

∫
Ω1

{ρu∂tψ +G(u)∆ψ} dx dt 6
∫
Ω1

ρ[u(x, τ )ψ(x, τ )− u0(x)ψ(x, 0)] dx

+

∫ τ

0

∫
∂Ω1\Aε

G(u)〈∇ψ, ν〉 dσ dt

for any open set Ω1 ⊆ Ω \ Sε with smooth boundary, τ ∈ (0, T ], ψ ∈ C2,1(Ω1 × [0, τ ]), ψ > 0,
ψ = 0 in ∂Ω1 × [0, τ ]. Solutions and subsolutions are defined accordingly.

For further purposes, let us also introduce the elliptic equation

∆U = f in Ω, (2.3)

where f ∈ C(Ω), and the elliptic problem{
∆U = f in Ω \ Sε,
U = 0 in Aε, (2.4)

where f ∈ C(Ω \ Sε).

DEFINITION 2.3 By a supersolution to equation (2.3) we mean a function U ∈ C(Ω) such that∫
Ω1

U∆ψ dx 6
∫
∂Ω1

U〈∇ψ, ν〉 dσ +
∫
Ω1

fψ dx (2.5)

for any open set Ω1 ⊆ Ω with smooth boundary, Ω1 ⊆ Ω,ψ ∈ C
2(Ω1), ψ > 0, ψ = 0 in ∂Ω1;

here ν denotes the outer normal to Ω1. Subsolutions and solutions of problem (2.3) are defined
accordingly.

DEFINITION 2.4 By a supersolution of problem (2.4) we mean a function U ∈ C(Ω \ Sε) such
that ∫

Ω1

U∆ψ dx 6
∫
∂Ω1\Aε

U〈∇ψ, ν〉 dσ +
∫
Ω1

fψ dx

for any open set Ω1 ⊆ Ω \ Sε with smooth boundary, ψ ∈ C2(Ω1), ψ > 0, ψ = 0 in ∂Ω1; here ν
denotes the outer normal to Ω1. Solutions and subsolutions are defined accordingly.
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We need some preliminary material concerning the distance function x 7→ d(x) (x ∈ Ω). First,
observe that in view of the compactness and regularity of S assumed in (H1), there exists σ > 0
such that for any x ∈ Sσ there exists a unique point x∗(x) ∈ S such that d(x) = |x − x∗(x)|;
moreover (see [F]), x∗(·) ∈ C2(Sσ ;S), d ∈ C3(Sσ ) and (see also [A])

|∇d(x)| = 1 for any x ∈ Sσ . (2.6)

Furthermore, when Ω ⊆ Rn is a convex subset, then (see e.g. [AD])

∆d(x) 6 0 for any x ∈ Sσ . (2.7)

For any x0 ∈ Rn, R > 0 we set BR(x0) := {x ∈ Rn | |x − x0| < R}.

Let y0
∈ S; let Ty0S and ⊥y0 S denote respectively the tangent and the orthogonal space to S

at y0. For further purposes, observe that we can choose a new coordinate systemX ≡ (X1, . . . , Xn)

in Rn such that, if p ≡ pn : BR(0) ⊆ Rn−1
→ R (R > 0) denotes the local representation of S

near X∗(X0) with respect to this system, the following holds:

(C)


(i) X∗(X0) = 0;
(ii) ⊥0S = {X ∈ Rn | X1 = · · · = Xn−1 = 0};
(iii) X0

≡ (0, . . . , 0, X0
n), d(X

0) = X0
n;

(iv)
∂2pn

∂Xi∂Xj
(0) =

∂2pn

∂X2
i

(0)δij (i, j = 1, . . . , n− 1).

LEMMA 2.5 Let assumption (H1) be satisfied. There exist ε0 ∈ (0, σ ) and C0 > 0 such that, if
ε ∈ (0, ε0), x0

∈ Sε is fixed and the choice (C) is made, then:

(i) for any i = 1, . . . , n,
∂d(X)

∂Xi

∣∣∣
X=X0

= δin; (2.8)

(ii) we have ∣∣∣∣ ∂2d(X)

∂Xi∂Xj

∣∣∣∣
X=X0

∣∣∣∣ 6 C0 if i = j = 1, . . . , n− 1, (2.9)

∂2d(X)

∂Xi∂Xj

∣∣∣∣
X=X0

= 0 otherwise. (2.10)

We refer the reader to [MP], [PPT] for the proof of the above lemma.

3. Proof of Theorem 1.1 and Corollary 1.2

We adapt to the present situation the proof of Theorem 1 in [KK]. In the proof of Theorem 1.1 a
central role will be played by

LEMMA 3.1 Let assumptions (H1)–(H2) be satisfied. Let u be a solution to problem (1.1), and
T > 0. Suppose that supp u(·, t) ∩ S = ∅ for any τ ∈ (0, T ). Then for any τ ∈ (0, T ),∫

Ω

ρ(x)u(x, τ ) dx =
∫
Ω

ρ(x)u0(x) dx. (3.1)
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Proof. Let τ ∈ (0, T ); take ε > 0 so small that

u(x, t) = 0 for any (x, t) ∈ Sε × (0, τ ). (3.2)

Let η ∈ C∞([0, τ ]), 0 6 η 6 1,

η(t) =

{
1 if t ∈ [0, τ − 2δ]
0 if t ∈ [τ − δ, τ ] (δ > 0);

and χ ∈ C∞0 (Ω \ Sε/2), χ ≡ 1 in Ω̄ \ Sε. Equality (2.1) with ψ = ηχ , Ω1 = Ω \ Sε/2 gives∫ τ

0

∫
Ω\Sε/2

{ρu∂tψ +G(u)∆ψ} dx dt =
∫
Ω\Sε/2

ρ[u(x, τ )ψ(x, τ )− u0(x)ψ(x, 0)] dx

+

∫ τ

0

∫
Aε/2

G(u)〈∇ψ, ν〉 dσ dt,

hence ∫ τ

0

∫
Ω\Sε

ρu∂tψ dx dt = −
∫
Ω\Sε

ρu0 dx. (3.3)

It is easily seen that (3.3) when δ→ 0+ yields

−

∫
Ω\Sε

ρu(x, τ ) dx dt = −
∫
Ω\Sε

ρu0 dx.

Letting ε→ 0+, by the monotone convergence theorem we get the conclusion. 2

LEMMA 3.2 Let the assumptions of Theorem 1.1 be satisfied. Then there exists a minimal positive
solution W to the equation

∆U = −ρu0 in Ω. (3.4)

Moreover, W ∈ C(Ω̄) and W = 0 on S.

Proof. For any ε > 0 let Wε be the solution to the problem{
∆U = −ρu0 in Ω \ Sε,
U = 0 in Aε. (3.5)

By the strong maximum principle we have, for any ε > 0,

Wε > 0 in Ω \ Sε. (3.6)

This implies that if ε1 > ε2 > 0, thenWε1 is a solution, whileWε2 is a supersolution, to the problem{
∆U = −ρu0 in Ω \ Sε1 ,

U = 0 in Aε1 .

Thus, again by the maximum principle, we infer that for any ε1 > ε2 > 0,

Wε1 6 Wε2 in Ω \ Sε1 . (3.7)
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Observe that, since supp u0∩S = ∅ and ρ ∈ C(Ω), there exists (see e.g. [PPT]) a supersolution
V ∈ C2(Sε) ∩ C(Ω̄) (for ε > 0 sufficiently small) to equation (3.4) such that V > 0 in Ω and

V = 0 on S. (3.8)

In particular, V is a supersolution to problem (3.5).
Thus by comparison principles we have

Wε 6 V in Ω \ Sε. (3.9)

By usual compactness arguments, there exists a subsequence {Wεm} ⊆ {Wε} which converges
uniformly on compact subsets of Ω. Let

W := lim
m→+∞

Wεm in Ω.

Then W is a solution to equation (3.4). Moreover, from (3.6)–(3.7) and (3.9) if follows that

0 < W 6 V in Ω. (3.10)

By (3.10) we see that W ∈ C(Ω̄) and W = 0 on S. Clearly, W is minimal among all positive
solutions to equation (3.4). 2

LEMMA 3.3 Let the assumptions of Theorem 1.1 be satisfied. Then there exists a minimal solution
u to problem (1.1); moreover, for any t > 0,∫ t

0
G(u(x, τ )) dτ 6 W(x) (x ∈ Ω), (3.11)

W being the minimal positive solution to equation (3.4) defined in Lemma 3.2.

Proof. For any ε > 0 let uε be the unique solution to problem (2.2). By comparison results we have

0 6 uε 6 ‖u0‖∞ in Qε.

By usual compactness arguments, there exists a subsequence {uεm} ⊆ {uε} which converges
uniformly on compact subsets of Ω × (0,+∞) to a solution u to problem (1.1). Clearly, u is the
minimal nonnegative solution to problem (1.1).

Define

U(x, t) :=
∫ t

0
G(u(x, τ )) dτ ((x, t) ∈ Q), (3.12)

Uε(x, t) :=
∫ t

0
G(uε(x, τ )) dτ ((x, t) ∈ Qε).

Observe that Uεm → U in Ω × (0,+∞) as m→+∞.
It is straightforward to show that for any t > 0 the function Uε(·, t) is a subsolution to problem

(3.5). In fact, by Definition 2.2 we obtain∫
Ω1

Uε(x, τ )∆ψ(x) dx =
∫
Ω1

ρ(x)[uε(x, τ )− u0(x)]ψ(x) dx +
∫
∂Ω1\Aε

Uε(x, τ )〈∇ψ(x), ν〉 dσ

> −
∫
Ω1

ρ(x)u0(x)ψ(x) dx +
∫
∂Ω1\Aε

Uε(x, τ )〈∇ψ(x), ν〉 dσ

for any Ω1 and ψ = ψ(x) as in Definition 2.4 and τ > 0.
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Let {Wεm} be the sequence of solutions to problems (3.5) with ε = εm introduced in the proof
of Lemma 3.2. By comparison results we obtain

Wεm > Uεm in Ω \ Sεm; (3.13)

letting m→+∞ we get (3.11). 2

Proof of Theorem 1.1. Let u be the minimal solution to problem (1.1). From (3.11) we have

U(x, t) 6 max
Ω̄
W =: C1 for any (x, t) ∈ Q; (3.14)

here U is given by (3.12). Therefore∫ t

0

∫
Ω\Sε

G(u(x, τ )) dx dτ 6 C1 meas(Ω). (3.15)

From (3.15) we obtain ∫ t+1

t

G(u(x, τ )) dx dτ → 0 as t →+∞. (3.16)

Fix σ > 0 arbitrarily. Since ρ ∈ L1(Ω), we can find ε̄ = ε̄(σ ) > 0 such that∫
S ε̄
ρ(x) dx < σ ; (3.17)

moreover, by (H3) we have

u 6
σ

meas(Ω \ S ε̄)
+ āG(u) in Q (3.18)

for some ā = ā(σ ) > 0.
Using (3.16) and (3.18) we have∫ t+1

t

∫
Ω\S ε̄

ρu dx dτ 6 sup
Ω\S ε̄

ρ

∫ t+1

t

∫
Ω\S ε̄

u dx dt

6 sup
Ω\S ε̄

ρ

[
σ + ā

∫ t+1

t

∫
Ω\S ε̄

G(u) dx dτ
]

6 sup
Ω\S ε̄

ρ(1+ ā)σ (3.19)

for any t > t̄ for some t̄ = t̄ (σ ) > 0. Inequalities (3.17) and (3.19) give∫ t+1

t

∫
Ω

ρu dx dτ =
∫ t+1

t

∫
Ω\S ε̄

ρu dx dτ +
∫ t+1

t

∫
S ε̄
ρu dx dτ

6 sup
Ω\S ε̄

ρ(1+ ā)σ +‖u0‖∞σ =
(

sup
Ω\S ε̄

ρ(1+ ā)+‖u0‖∞

)
σ for any t > t̄ .

Hence equality (3.1) cannot be satisfied with u = u. Then Lemma 3.2 implies the result. 2
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LEMMA 3.4 Let the assumptions of Corollary 1.2 be satisfied; let α ∈ (0, 1). Then the minimal
solution to problem (1.1) satisfies∫ t

0
G(u(x, τ )) dτ 6 C[d(x)]α for any x ∈ S ε̃ (3.20)

for some C > 0, ε̃ > 0.

In order to prove Lemma 3.4 we will use problems of the following type:∆U = 0 in S ε̃ \ Sε,
U = 0 in Aε,
U = γ in Aε̃;

(3.21)

here ε̃ > ε > 0 and γ ∈ C(Aε̃).

DEFINITION 3.5 By a supersolution of problem (3.21) we mean a function U ∈ C(S ε̃ \ Sε) such
that ∫

Ω1

U∆ψ dx 6
∫
∂Ω1\Aε

U〈∇ψ, ν〉 dσ +
∫
∂Ω1∩Aε̃

γ 〈∇ψ, ν〉 dσ

for any open set Ω1 ⊆ S ε̃ \ Sε with smooth boundary, ψ ∈ C2(Ω1), ψ > 0, ψ = 0 in ∂Ω1; here ν
denotes the outer normal to Ω1. Solutions and subsolutions are defined accordingly.

Proof of Lemma 3.4. Define

V (x) := C[d(x)]α (x ∈ Sε1)

with C > 0, ε1 ∈ (0, ε0) to be chosen later. For any x ∈ Sε1 and i, j = 1, . . . , n we have

∂V (x)

∂xi
= Cα[d(x)]α−1 ∂d(x)

∂xi
,

∂2V (x)

∂xi∂xj
= Cα

{
(α − 1)[d(x)]α−2 ∂d(x)

∂xj

∂d(x)

∂xi
+ [d(x)]α−1 ∂

2d(x)

∂xi∂xj

}
. (3.22)

From (2.9)–(2.10) and (3.22) we get

∆V (x) 6 Cα[d(x)]α−2
{α − 1+ (n− 1)C0d(x)} 6 0 (x ∈ Sε1), (3.23)

taking ε1 ∈ (0, ε0) small enough. Choose ε̃ ∈ (0, ε1) so small that

supp u0 ⊆ Ω \ S2ε̃
; (3.24)

then fix m0 ∈ N such that εm ∈ (0, ε̃) for any m > m0.

Consider the sequences of functions {uεm}, {Uεm} introduced in the proof of Lemma 3.3. It is
easily seen that for any t > 0 the function Uεm(·, t) is a subsolution to the problem∆U = 0 in S ε̃ \ Sεm

U = 0 in Aεm
U = C1 in Aε̃

(m > m0). (3.25)
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In fact, by Definition 2.2 using (3.13), (3.14), (3.24) we obtain∫
Ω1

Uεm(x, τ )∆ψ(x) dx > −
∫
Ω1

ρ(x)u0ψ(x) dx +
∫
∂Ω1\Aε

Uεm(x, τ )〈∇ψ(x), ν〉 dσ

=

∫
∂Ω1\(Aεm∪Aε̃)

Uε(x, τ )〈∇ψ(x), ν〉 dσ

+

∫
∂Ω1∩Aε̃

Uεm(x, τ )〈∇ψ(x), ν〉 dσ

>
∫
∂Ω1\(Aεm∪Aε̃)

Uεm(x, τ )〈∇ψ(x), ν〉 dσ +
∫
∂Ω1∩Aε̃

C1〈∇ψ(x), ν〉 dσ

for anyΩ1 and ψ = ψ(x) as in Definition 3.5, τ > 0, m > m0; here C1 > 0 is the constant defined
in (3.14), and the inequality

〈∇ψ, ν〉 6 0 on ∂Ω1 (3.26)

has been used.
Set C := C1/ε̃

α . Then, in view of (3.23), V is a supersolution (in the classical sense) to problem
(3.25). By comparison results we have

Uεm(x) 6 V (x) (x ∈ S ε̃ \ Sεm).

Letting m→+∞ yields the result. 2

Proof of Corollary 1.2. Let u be the minimal positive solution to problem (1.1) introduced in
Lemma 3.3. Fix any σ > 0. In view of Lemma 3.4, since ρ[d(x)]α/m ∈ L1(Ω) we obtain, for any
t > 0, ∫ t+1

t

∫
Sε
uρ dx dτ 6

∫
Sε
ρ

[∫ t+1

t

u dτ
]

dx 6
∫
Sε
ρ

[∫ t+1

t

um dτ
]1/m

dx

6 C1/m
∫
Sε
ρ(x)[d(x)]α/m dx < σ, (3.27)

choosing ε > 0 small enough. Repeating the proof of Theorem 1.1, using inequality (3.27) instead
of (3.17), yields the conclusion. 2

4. Proof of Theorem 1.3

Proof of Theorem 1.3. (i) Let α > 2. Define

ṽ(x, t) :=
[
a −

1
d(x)(bt + 1)β

]1/(m−1)

+

≡ F 1/(m−1) ((x, t) ∈ S ε̂ × [0,+∞)), (4.1)

where a > 0, b > 0, β > 1 are constants to be fixed. Take ε̂ ∈ (0, σ ) such that supp u0 ⊆ Ω \ S ε̂.
Let N := {(x, t) ∈ S ε̂ × [0,+∞) | ṽ(x, t) = 0}. Choose

a > 3/ε̂ + ‖u0‖
m−1
∞ ; (4.2)
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thus
d(x) < ε̂/2 for any (x, t) ∈ N . (4.3)

For any (x, t) ∈ [S ε̂ × (0,+∞)] \N =: D we have:

∂ṽ(x, t)

∂t
=

βb

m− 1
[d(x)]−1(bt + 1)−β−1F−1+1/(m−1), (4.4)

∂{[ṽ(x, t)]m}
∂xi

=
m

m− 1
F 1/(m−1)(bt + 1)−β [d(x)]−2 ∂d(x)

∂xi
, (4.5)

∂2
{[ṽ(x, t)]m}
∂xi∂xj

=
m

m− 1
(bt + 1)−β

{
F−1+1/(m−1)

m− 1
(bt + 1)−β [d(x)]−4 ∂d(x)

∂xi

∂d(x)

∂xj

+ F 1/(m−1)
[
−2[d(x)]−3 d(x)

∂xi

d(x)

∂xj
+ [d(x)]−2 ∂

2d(x)

∂xi∂xj

]}
; (4.6)

here i, j = 1, . . . , n. From (2.6), (2.7), (4.4), (4.6), we obtain

ρ(x)
∂ṽ

∂t
−∆{[ṽ(x, t)]m}

>
[d(x)]−1

m− 1
(bt + 1)−β−1F−1+1/(m−1)

{
bβρ(x)−

m

m− 1
(bt + 1)−β+1[d(x)]−3

}
for any (x, t) ∈ D. (4.7)

By (4.7) and (1.5), if α > 3, β > 1, b > m
Cβ(m−1) , then

ρ∂t ṽ −∆ṽ
m > 0 in D. (4.8)

Now suppose α ∈ (2, 3). Define γ := 1
3−α and take β > γ

γ−1 =
1
α−2 . Observe that

[d(x)]−1/γ < a1/γ (bt + 1)β/γ . (4.9)

Inequalities (4.7) and (4.9) yield, for any (x, t) ∈ D,

ρ(x)∂t ṽ(x, t)−∆{[ṽ(x, t)]m}

>
[d(x)]−1

m− 1
(bt + 1)−β−1F−1+1/(m−1)

{
βbρ(x)−

m(bt + 1)−β+1

m− 1
[d(x)]−1/γ−3+1/γ

}
>

[d(x)]−1

m− 1
(bt + 1)−β−1F−1+1/(m−1)

·

{
βb[d(x)]−3+1/γ

−
m

m− 1
(bt + 1)−β+1+β/γ a1/γ [d(x)]−3+1/γ

}
> 0, (4.10)

taking b > m
Cβ(m−1)a

1/γ , for 1− β + β/γ 6 0. Furthermore, observe that

∇(ṽm) = 0 in ∂N ∩Q. (4.11)

Define

v̂(x, t) :=
[
a −

1
ε̂(bt + 1)β

]1/(m−1)

((x, t) ∈ (Ω \ S ε̂)× [0,+∞)) (4.12)
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(notice that, due to (4.2), a − 1
ε̂(bt+1)β > 0). Clearly,

ρ∂t v̂ −∆(v̂
m) > 0 in (Ω \ S ε̂)× (0,+∞). (4.13)

From (4.5) we have

〈∇(ṽm), νε̂〉 = 〈∇(ṽ
m),∇d(x)〉 > 〈∇(v̂m), νε̂〉 = 0 in Aε̂ × (0,+∞), (4.14)

where νε̂ is the outer normal to S ε̂ at Aε̂.
Define

v(x, t) :=
{
ṽ(x, t) if (x, t) ∈ S ε̂ × [0,+∞),
v̂(x, t) if (Ω \ S ε̂)× [0,+∞).

(4.15)

In view of (4.2)–(4.3), we have v ∈ C(Ω × [0,+∞)) and

v(x, 0) > u0(x) (x ∈ Ω). (4.16)

We claim that v is a supersolution to problem (1.1). In fact, take τ > 0, Ω1 and ψ as in
Definition 2.1. By (4.8), (4.10), (4.13) we have∫ τ

0

∫
Ω1

{ρ∂tv −∆(v
m)}ψ dx dt > 0. (4.17)

Hence, due to (4.1) we get

−

∫ τ

0

∫
Ω1

ρv∂tψ dx dt +
∫
Ω1

ρ[v(x, t)ψ(x, t)− v(x, 0)ψ(x, 0)] dx

−

∫ τ

0

∫
Ω1\S ε̂

∆(v̂m)ψ dx dt −
∫ τ

0

∫
Ω1∩S ε̂

∆(ṽm)ψ dx dt > 0.

Then, integrating by parts, using (4.1), (4.3) and (4.11) we obtain

−

∫ τ

0

∫
Ω1

ρv∂tψ dx dt +
∫
Ω1

ρ[v(x, t)ψ(x, t)− v(x, 0)ψ(x, 0)] dx

−

∫ τ

0

∫
Ω1\S ε̂

v̂m∆ψ dx dt +
∫ τ

0

∫
∂Ω1\S ε̂

v̂m〈∇ψ, ν〉 dσ dt −
∫ τ

0

∫
Aε̂∩Ω1

v̂m〈∇ψ, νε̂〉 dσ dt

−

∫ τ

0

∫
Ω1∩S ε̂

ṽm∆ψ dx dt −
∫ τ

0

∫
Aε̂∩Ω1

〈∇(ṽm), νε̂〉ψ dσ dt

+

∫ τ

0

∫
Aε̂∩Ω1

ṽm〈∇ψ, νε̂〉 dσ dt +
∫ τ

0

∫
∂Ω1∩S ε̂

ṽm〈∇ψ, ν〉 dσ dt > 0.

Therefore, from (4.14), (4.16), (3.26), since v ∈ C(Q), we get∫ τ

0

∫
Ω1

{ρv∂tψ + v
m∆ψ} dx dt 6

∫
Ω1

ρ[v(x, τ )ψ(x, τ )− u0(x)ψ(x, 0)] dx

+

∫ τ

0

∫
∂Ω1

vm〈∇ψ, ν〉 dσ dt.

Hence the claim has been proved.
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Now, let u be any solution to problem (1.1). Let u denote the minimal positive solution
to problem (1.1) considered in Lemma 3.3, and for any ε > 0 let uε denote the solution to
problem (2.2). By uniqueness results (see [P2]) we deduce that

u ≡ u in Q. (4.18)

Observe that the claim above implies that v is a supersolution to problem (2.2) for any ε > 0.
Hence by comparison principles, for any ε > 0,

uε 6 v in Qε. (4.19)

This implies that u 6 v in Q; thus by (4.18) we deduce

u 6 v in Q. (4.20)

Since supp v(·, t) is compact for any t > 0, by (4.20), also supp u(·, t) is compact for any t > 0.
Moreover, (4.20), (4.12), (4.15) and (4.1) imply (1.6).

(ii) Let α = 2. The result follows by arguing as in (i) above, replacing the definition of ṽ in (4.1)
by the following:

ṽ(x, t) :=
[
a −

1
d(x)eβt

]
+

≡ F 1/(m−1) ((x, t) ∈ S ε̂ × [0,+∞)),

where a > 0, b > 0, β > 1 are constants to be chosen appropriately. 2

REMARK 4.1 Observe that whenΩ is a bounded interval of R or, for instance,Ω = BR(x0) ⊆ Rn
(n > 1) for some x0 ∈ Rn and R > 0, then the distance d(x) (x ∈ Ω) can be explicitly computed,
hence the proofs of Lemma 3.4 and Theorem 1.3 become more direct.
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