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A phase-field approximation of the Willmore flow with volume constraint
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1. Introduction

Let Ω be an open bounded subset of RN , 1 6 N 6 3, with smooth boundary Γ . We are interested
in the following evolution problem:

∂tv −∆µ+W
′′(v) µ−W ′′(v) µ = 0, (t, x) ∈ (0,∞)×Ω, (1)

µ = −∆v +W ′(v), (t, x) ∈ (0,∞)×Ω, (2)
∇v · ν = ∇µ · ν = 0, (t, x) ∈ (0,∞)× Γ, (3)
v(0) = v0, x ∈ Ω, (4)

where the nonlinearity W is a smooth double-well potential (for instance, W(r) = (r2
− 1)2/4),

ν is the outward unit normal vector field to Γ , and f̄ denotes the spatial mean value of an integrable
function f , namely,

f̄ :=
1
|Ω|

∫
Ω

f (x) dx for f ∈ L1(Ω).

As one can easily realize from (1) and (3) by integrating over Ω , the mean value of v is conserved
during the evolution, that is, v(t) = v0.

The initial-boundary value problem (1)–(4) is a phase-field approximation of the Willmore
flow (cf., in particular, [5, 6]), the Willmore flow belonging to a class of geometric evolutions of
hypersurfaces involving nonlinear functions of the principal curvatures of the hypersurface. Recall
that the Willmore flow with volume constraint for a family of (smooth) hypersurfaces (Σ(t))t>0
reads

V = −∆ΣH −
H

2
(H 2
− 4K)+ λ, (5)
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where V , H , K , and ∆Σ denote the normal velocity of Σ , the sum of its principal curvatures
(scalar mean curvature), the product of its principal curvatures (Gauß curvature), and the Laplace–
Beltrami operator on Σ , respectively, while λ is the Lagrange multiplier accounting for the volume
conservation ∫

Σ

V ds = 0.

In addition, the Willmore flow is the L2-gradient flow of the Willmore energy

EW (Σ) :=
∫
Σ

H 2 ds. (6)

Related geometric evolution flows involve more complicated energies such as the Helfrich energy
and additional constraints, for instance on the area, and are found in the modelling of biological
cell membranes. We refer, e.g., to [2–6, 9] and the references therein for a more detailed description
of these flows and their applications. To our knowledge, the energetic phase-field approximation
(1)–(4) has been introduced in [6] in order to describe the deformation of a vesicle membrane under
the elastic bending energy, with prescribed bulk volume and surface area, a related model without
constraints being considered in [7]. Here, we restrict our analysis to the case of only the volume
constraint, leaving the more complex case of two constraints as in [6] to a subsequent investigation.
A nice feature of (1)–(4) already reported in [6] is that it inherits the gradient flow structure of the
Willmore flow and, for α ∈ R, it is actually a gradient flow in L2

α(Ω) := {w ∈ L2(Ω) : f̄ = α} for
the functional

E(v) :=
1
2

∫
Ω

[−∆v(x)+W ′(v(x))]2 dx, (7)

a property which is a cornerstone of the forthcoming analysis. The connection between the
minimizers of the Willmore energy (6) and those of a suitably rescaled version of the energy (7)
of the stationary phase-field model has been investigated in [4, 8, 9], and we refer to [5, 6, 11] for
the analysis of the relationship between the phase-field approach (1)–(4) and the Willmore flow,
with or without volume and surface constraints. However, the well-posedness of the phase-field
approximation does not seem to have been considered so far, and the aim of this note is to show the
well-posedness of (1)–(4) under suitable assumptions on the data: more precisely, we assume that
there is C0 > 0 such that

W ∈ C3(R), W > 0, (8)
W ′′(r) > −C0 and rW ′(r) > −C0, r ∈ R. (9)

Next, owing to the already mentioned expected time invariance of the spatial mean value of
solutions to (1)–(4), for α ∈ R we define the function space

V := {w ∈ H 2(Ω) : ∇w · ν = 0 on Γ } and its subset Vα := {w ∈ V : w = α}. (10)

The paper is devoted to the proof of the following existence and uniqueness result.

THEOREM 1 Given α ∈ R and v0 ∈ Vα , there is a unique solution v to (1)–(4) satisfying

v ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;Vα) and µ := −∆v +W ′(v) ∈ L2(0, T ;V )
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for all T > 0. In addition,

t 7→ E(v(t)) :=
1
2
‖µ(t)‖22 is a nonincreasing function, (11)∫

∞

0
‖−∆µ(t)+W ′′(v(t))µ(t)−W ′′(v)µ(t)‖22 dt 6 2E(v0). (12)

Owing to the above mentioned gradient flow structure, a classical approach to existence is to
use an implicit time scheme and solve a minimization problem at each step (see, e.g., [1] or [10,
Chap. 8]). The existence of a minimizer to the corresponding stationary problem is discussed in
Section 2, and Subsection 2.1 also collects some properties of the auxiliary variable µ. The time
discretization is next implemented in Subsection 2.2 and convergence of the time discrete scheme
is proved in Subsection 2.3 with the help of monotonicity and compactness properties. Finally,
uniqueness is shown in Section 3 by a standard contraction argument.

2. Existence

2.1 The energy functional

Following [6], we define the functional E on V by

E(w) :=
1
2

∫
Ω

[−∆w(x)+W ′(w(x))]2 dx. (13)

Observe that E is well defined for any w ∈ V thanks to the continuous embedding of H 2(Ω) in
L∞(Ω) and (8). Indeed, for w ∈ V , we have w ∈ L∞(Ω) and

|W ′(w)| 6 |W ′(0)| +
∫
|w|

−|w|

|W ′′(r)| dr 6 |W ′(0)| + sup
[−‖w‖∞,‖w‖∞]

|W ′′| · |w|.

Consequently, W ′(w) ∈ L2(Ω) and E is well defined. We gather some properties of E in the next
lemma.

LEMMA 2 Given α ∈ R, there is C1(α) > 0 depending only on Ω , C0 in (9), and α such that

‖w‖H 2 + ‖W
′(w)‖2 6 C1(α)

(
1+

√
E(w)

)
for all w ∈ Vα. (14)

Proof. Consider w ∈ Vα and put µ := −∆w + W ′(w). Then µ ∈ L2(Ω) with ‖µ‖22 = 2E(w),
and we infer from (9) that∫

Ω

wµ dx = ‖∇w‖22 +
∫
Ω

wW ′(w) dx > ‖∇w‖22 − C0|Ω|.

Combining the above inequality with the Poincaré–Wirtinger inequality

‖w − w‖2 6 C2‖∇w‖2, (15)

we obtain

‖∇w‖22 6 C0|Ω| +

∫
Ω

wµ dx 6 C0|Ω| + ‖w‖2‖µ‖2

6 C0|Ω| +
√

2E(w)(α|Ω|1/2 + ‖w − α‖2) 6 C0|Ω| +
√

2E(w)(α|Ω|1/2 + C2‖∇w‖2)

6 C0|Ω| + α|Ω|
1/2
√

2E(w)+
1
2
‖∇w‖22 + C

2
2E(w),
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hence ‖∇w‖22 6 C(α)(1+ E(w)). Using again (15), we conclude that

‖w‖H 1 6 C(α)
(
1+

√
E(w)

)
. (16)

Now, w ∈ V solves
−∆w +W ′(w)+ C0w = µ+ C0w (17)

and, since the function r 7→ W ′(r)+C0r is nondecreasing by (9), a classical monotonicity argument
shows that

‖∆w‖2 + ‖W
′(w)+ C0w‖2 6 ‖µ+ C0w‖2.

Indeed, it suffices to test equation (17) with W ′(w)+ C0w, observe that∫
Ω

(−∆w)(W ′(w)+ C0w) dx =
∫
Ω

(W ′′(w)+ C0)|∇w|
2 dx > 0,

and compare the terms in (17) in order to get the above estimate. Consequently,

‖∆w‖2 + ‖W
′(w)‖2 6 ‖µ‖2 + 2C0‖w‖2,

which, together with (16) and ‖µ‖2 =
√

2E(w), gives (14). 2

Next, given τ > 0 and f ∈ L2(Ω), we define the functional Fτ,f on V by

Fτ,f (w) :=
1
2
‖w − f ‖22 + τE(w), w ∈ V. (18)

LEMMA 3 Given α ∈ R, the functional Fτ,f has (at least) a minimizer in Vα .

Proof. We set F := Fτ,f to simplify notation. Since E is nonnegative, F is obviously nonnegative
and there is a minimizing sequence (wn)n>1 in Vα such that

mα := inf
w∈Vα

F(w) 6 F(wn) 6 mα + 1/n, n > 1. (19)

Since F(wn) > τE(wn), we readily infer from (19) that (E(wn))n>1 is bounded, which in
turn implies that (wn)n>1 is bounded in H 2(Ω) by Lemma 2. Owing to the compactness of the
embedding ofH 2(Ω) in C(Ω̄), we deduce that there arew ∈ H 2(Ω) and a subsequence of (wn)n>1
(not relabeled) such that

wn→ w in C(Ω̄) and wn ⇀ w in H 2(Ω). (20)

Clearly, the first convergence implies that (W ′(wn))n>1 converges towards W ′(w) in L2(Ω) and
therefore

F(w) 6 lim inf
n→∞

F(wn) 6 mα.

Asw obviously belongs to Vα by (20), we also have F(w) > mα andw is a minimizer of F in Vα . 2

We next derive an energy inequality and the Euler–Lagrange equation satisfied by minimizers
of Fτ,f in Vα when f̄ = α.
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LEMMA 4 Let α ∈ R and let w be a minimizer of Fτ,f in Vα . Assume further that f̄ = α. Then
µ := −∆w +W ′(w) belongs to V ,∫

Ω

[
w − f

τ
−∆µ+W ′′(w)µ−W ′′(w)µ

]
ψ dx = 0 for all ψ ∈ V, (21)

and ∥∥−∆µ+W ′′(w)µ−W ′′(w)µ∥∥2 6 ‖w − f ‖2/τ . (22)

Proof. Let ε ∈ (0, 1) and ϕ ∈ V0. As w + εϕ belongs to Vα , we have Fτ,f (w) 6 Fτ,f (w + εϕ),
from which we deduce by classical arguments (after passing to the limit as ε→ 0) that

1
τ

∫
Ω

(w − f )ϕ dx +
∫
Ω

µ(−∆ϕ +W ′′(w)ϕ) dx > 0.

Since the above inequality is valid for ϕ and −ϕ, we actually have the identity

1
τ

∫
Ω

(w − f )ϕ dx +
∫
Ω

µ(−∆ϕ +W ′′(w)ϕ) dx = 0 (23)

for all ϕ ∈ V0. Now, if ψ ∈ V , the function ψ − ψ belongs to V0 and it follows from (23) that

1
τ

∫
Ω

(w − f )ψ dx +
∫
Ω

µ(−∆ψ +W ′′(w)ψ) dx = W ′′(w)µ
∫
Ω

ψ dx, (24)

since w and f have the same mean value α. Since µ ∈ L2(Ω) solves the variational equality (24)
for all test functions ψ ∈ V , we deduce that µ is in V and satisfies (21).

Next, for η ∈ (0, 1), let ϕη be the unique solution in V0 to

ϕη − η∆ϕη = −∆µ+W
′′(w)µ−W ′′(w)µ in Ω,

the right-hand side of the previous equation being in L2(Ω) since µ ∈ V and w ∈ H 2(Ω) is
bounded. Also, the right-hand side of the equation has a zero mean value so that ϕη ∈ V0. Taking
ψ = ϕη in (21), we realize that∫

Ω

[
w − f

τ
+ ϕη − η∆ϕη

]
ϕη dx = 0,

from which we deduce that

‖ϕη‖
2
2 6 ‖ϕη‖

2
2 + η‖∇ϕη‖

2
2 = −

∫
Ω

w − f

τ
ϕη dx 6

‖w − f ‖2

τ
‖ϕη‖2,

whence
‖ϕη‖2 6 ‖w − f ‖2/τ .

Since (ϕη)η converges toward −∆µ+W ′′(w)µ−W ′′(w)µ in L2(Ω) as η→ 0, (22) follows from
the above inequality. 2
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2.2 Time discretization

Let α ∈ R and take an initial condition v0 ∈ Vα . We consider a positive time step τ ∈ (0, 1) and
define a sequence (vτn)n>1 inductively as follows:

vτ0 := v0, (25)
vτn+1 is a minimizer of Fτ,vτn in Vα, n > 0, (26)

the functional Fτ,vτn being defined in (18). Setting

µτn := −∆vτn +W
′(vτn) and Mτ

n := W ′′(vτn)µτn, (27)

we define three piecewise constant time-dependent functions vτ , µτ , and Mτ by

(vτ (t), µτ (t),Mτ (t)) := (vτn, µ
τ
n,M

τ
n ) for t ∈ [nτ, (n+ 1)τ ) and n > 0. (28)

LEMMA 5 For τ ∈ (0, 1), t1 > 0, and t2 > t1, we have

E(vτ (t2)) 6 E(vτ (t1)) 6 E(v0), (29)

‖vτ (t2)− v
τ (t1)‖

2
2 6 2E(v0)(τ + t2 − t1), (30)∫

∞

τ

‖−∆µτ (t)+W ′′(vτ (t))µτ (t)−Mτ (t)‖22 dt 6 2E(v0). (31)

Proof. Let n > 0. Since vτn ∈ Vα , we infer from (26) that Fτ,vτn (v
τ
n+1) 6 Fτ,vτn (v

τ
n), that is,

1
2τ
‖vτn+1 − v

τ
n‖

2
2 + E(v

τ
n+1) 6 E(vτn). (32)

Let t2 > t1 > 0 and put ni := [ti/τ ] (the integer part of ti/τ ), i = 1, 2. On the one hand, n2 > n1
and it readily follows from (32) by induction that

E(vτ (t2)) = E(v
τ
n2
) 6 E(vτn1

) = E(vτ (t1)),

whence (29). In particular, we have

1
2

sup
t>0
‖µτ (t)‖22 = sup

t>0
E(vτ (t)) = sup

n>0
E(vτn) 6 E(vτ0 ) = E(v0). (33)

On the other hand, summing (32) over n ∈ N gives

1
2τ

∞∑
n=0

‖vτn+1 − v
τ
n‖

2
2 6 E(vτ0 ) = E(v0), (34)

from which we deduce that

‖vτ (t2)− v
τ (t1)‖2 = ‖v

τ
n2
− vτn1

‖2 6
n2−1∑
n=n1

‖vτn+1 − v
τ
n‖2 6 (n2 − n1)

1/2
(n2−1∑
n=n1

‖vτn+1 − v
τ
n‖

2
2

)1/2

6

(
1+

t2 − t1

τ

)1/2

(2τE(v0))
1/2 6

√
2E(v0)(τ + (t2 − t1))

1/2,
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and thus (30). Finally, for n > 0, we have vτn+1 = v
τ
n = α by (26) and we infer from (22) that

‖−∆µτn+1 +W
′′(vτn+1)µ

τ
n+1 −M

τ
n+1‖2 6 ‖vτn+1 − v

τ
n‖2/τ .

Combining (34) and the previous inequality gives∫
∞

τ

‖ −∆µτ (t)+W ′′(vτ (t))µτ (t)−Mτ (t)‖22 dt

6
∞∑
n=0

∫ (n+2)τ

(n+1)τ
‖−∆µτn+1 +W

′′(vτn+1)µ
τ
n+1 −M

τ
n+1‖

2
2 dt 6

∞∑
n=0

‖vτn+1 − v
τ
n‖

2
2/τ 6 2E(v0),

and the proof is complete. 2

Useful bounds on (vτ )τ and (µτ )τ follow from Lemma 5.

COROLLARY 6 For all T > 0, there is C3(T ) > 0 depending only on α, v0, W , and T such that,
for τ ∈ (0, 1) ∩ (0, T ),

sup
t∈[0,T ]

‖vτ (t)‖H 2 6 C3(T ), (35)∫ T

τ

(‖µτ (t)‖4
H 1 + ‖µ

τ (t)‖2
H 2) dt 6 C3(T ). (36)

Proof. The boundedness (35) of (vτ )τ is a straightforward consequence of (14) and (33). Next,
owing to the continuous embedding of H 2(Ω) in L∞(Ω) and (35), the family (W ′′(vτ ))τ is
bounded in L∞((0, T )×Ω), which, together with (33), implies that

(W ′′(vτ )µτ )τ is bounded in L∞(0, T ;L2(Ω)). (37)

Setting f τ := −∆µτ +W ′′(vτ )µτ −Mτ , it follows from (31) and (37) that(∫ T

τ

‖∆µτ (t)‖22 dt
)1/2

=

(∫ T

τ

‖W ′′(vτ (t))µτ (t)−Mτ (t)− f τ (t)‖22 dt
)1/2

6 2
(∫ T

τ

‖W ′′(vτ (t))µτ (t)‖22 dt
)1/2

+

(∫ T

τ

‖f τ (t)‖22 dt
)1/2

6 C(T ),

which gives the boundedness of (µτ )τ in L2(τ, T ;H 2(Ω)) with the help of (33). Finally, µτ is in V
and solves

−∆µτ + (W ′′(vτ )+ C0)µ
τ
= f τ + C0µ

τ
+Mτ in Ω.

Taking the scalar product in L2(Ω) of the previous equation with µτ and using the nonnegativity
(9) of W ′′ + C0, we obtain

‖∇µτ‖22 6 ‖∇µτ‖22 +
∫
Ω

(W ′′(vτ )+ C0)(µ
τ )2 dx 6 ‖f τ‖2‖µ

τ
‖2 + C0‖µ

τ
‖

2
2 + |M

τ
| ‖µτ‖2.

We next deduce from (33) and (37) that

‖∇µτ‖22 6 C(T )(1+ ‖f τ‖2),

and the boundedness of the right-hand side of the above inequality in L2(τ, T ) follows at once
from (31). 2



348 P. COLLI AND PH. LAURENÇOT

2.3 Convergence

Owing to (30), (35), and the compactness of the embedding of H 2(Ω) in C(Ω̄), a refined version
of the Ascoli–Arzelà theorem (in the spirit of [1, Prop. 3.3.1]) ensures that (vτ )τ is relatively
compact in C([0, T ] × Ω̄) for all T > 0. Consequently, there are three functions v, µ, and M
and a subsequence (vτk )k>1 of (vτ )τ such that, for all T > 0,

v ∈ C([0, T ]× Ω̄) ∩ L∞(0, T ;H 2(Ω)), µ ∈ L∞(0, T ;L2(Ω)), M ∈ L∞(0, T ),

and

vτk (t)→ v(t) in C(Ω̄) for all t ∈ [0, T ], (38)

vτk
∗

⇀ v in L∞(0, T ;H 2(Ω)), (39)

µτk
∗

⇀ µ in L∞(0, T ;L2(Ω)), (40)

Mτk
∗

⇀M in L∞(0, T ). (41)

Thanks to the smoothness (8) of W and the convergences (38)–(41), it is straightforward to pass to
the limit in (27) and conclude that

µ = −∆v +W ′(v) and M = W ′′(v)µ. (42)

In addition, (36), (40), and a lower semicontinuity argument guarantee that

µ ∈ L4(0, T ;H 1(Ω)) ∩ L2(0, T ;H 2(Ω)) for all T > 0. (43)

It remains to derive the equation solved by v. Let ψ ∈ V , t > 0, n = [t/τ ], and m ∈
{0, . . . , n− 1}. Using the definition of vτm+1 and Lemma 4, we are led to∫

Ω

[
vτm+1 − v

τ
m

τ
−∆µτm+1 +W

′′(vτm+1)µ
τ
m+1 −M

τ
m+1

]
ψ dx = 0,

which also reads∫
Ω

(vτm+1 − v
τ
m)ψ dx =

∫ (m+2)τ

(m+1)τ

∫
Ω

[∆µτ (s)−W ′′(vτ (s))µτ (s)+Mτ (s)]ψ dx ds.

Summing the above identities over m ∈ {0, . . . , n− 1} and recalling (28), we obtain∫
Ω

(vτ (t)− v0)ψ dx =
∫ (n+1)τ

τ

∫
Ω

[∆µτ (s)−W ′′(vτ (s))µτ (s)+Mτ (s)]ψ dx ds.

Noticing that t 6 (n+ 1)τ 6 t + τ , we may take τ = τk in the above identity and pass to the limit
as k→∞ with the help of (38)–(41) to obtain∫

Ω

(v(t)− v0)ψ dx =
∫ t

0

∫
Ω

[∆µ(s)−W ′′(v(s))µ(s)+M(s)]ψ dx ds. (44)

Collecting (42)–(44) completes the proof of the existence part of Theorem 1. The properties (11)
and (12) next follow from (29), (31), and the convergences (38)–(41).

REMARK 7 It is not difficult to check that the above proof actually only requires W to be C2-
smooth, so that the existence statement of Theorem 1 is also true under this weaker assumption.
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3. Uniqueness

Let v1 and v2 be two solutions to (1)–(4) with µi := −∆vi+W ′(vi) andMi := W ′′(vi)µi , i = 1, 2.
Fix T > 0. Since H 2(Ω) is continuously embedded in L∞(Ω), the regularity properties of v1, v2,
µ1, and µ2 listed in Theorem 1 ensure that there is K > 0 depending on T such that

sup
t∈[0,T ]

(‖v1(t)‖∞+‖v2(t)‖∞+‖µ1(t)‖2+‖µ2(t)‖2)+

∫ T

0
(‖µ1(s)‖

2
∞+‖µ2(s)‖

2
∞) ds 6 K. (45)

It then follows from (45) and the smoothness (8) of W that

|W ′′(v1)µ1 −W
′′(v2)µ2| 6 |W

′′(v1)−W
′′(v2)| |µ1| + |W

′′(v2)| |µ1 − µ2|

6 ‖W ′′′‖L∞(−K,K)|v1 − v2| |µ1| + ‖W
′′
‖L∞(−K,K)|µ1 − µ2|

6 C(|µ1| |v1 − v2| + |µ1 − µ2|), (46)

from which we deduce that

|M1 −M2| 6
1
|Ω|

∫
Ω

|W ′′(v1)µ1 −W
′′(v2)µ2| dx 6 C

∫
Ω

(|µ1| |v1 − v2| + |µ1 − µ2|) dx

6 C(‖µ1‖2‖v1 − v2‖2 + ‖µ1 − µ2‖2). (47)

Since v1 − v2 solves

∂t (v1 − v2)−∆(µ1 − µ2) = M1 −M2 −W
′′(v1)µ1 +W

′′(v2)µ2

and v1 − v2, µ1 − µ2 both belong to V , we have

1
2

d
dt
‖v1 − v2‖

2
2 =

∫
Ω

(µ1 − µ2)∆(v1 − v2) dx +
∫
Ω

(M1 −M2)(v1 − v2) dx

−

∫
Ω

[W ′′(v1)µ1 −W
′′(v2)µ2](v1 − v2) dx.

We deduce from (2), (45), (46), and (47) that

1
2

d
dt
‖v1 − v2‖

2
2 =

∫
Ω

(µ1 − µ2)[W ′(v1)−W
′(v2)− (µ1 − µ2)] dx +

∫
Ω

(M1 −M2)(v1 − v2) dx

−

∫
Ω

[W ′′(v1)µ1 −W
′′(v2)µ2](v1 − v2) dx

6 ‖W ′′‖L∞(−K,K)‖µ1 − µ2‖2‖v1 − v2‖2 − ‖µ1 − µ2‖
2
2

+C(‖µ1‖2‖v1 − v2‖2 + ‖µ1 − µ2‖2)‖v1 − v2‖2

+C

∫
Ω

(|µ1| |v1 − v2| + |µ1 − µ2|)|v1 − v2| dx

6 C‖µ1 − µ2‖2‖v1 − v2‖2 − ‖µ1 − µ2‖
2
2 + C(1+ ‖µ1‖∞)‖v1 − v2‖

2
2

6 C(1+ ‖µ1‖∞)‖v1 − v2‖
2
2.

Therefore, recalling (45),

‖(v1 − v2)(t)‖
2
2 6 ‖(v1 − v2)(0)‖22 exp

(
C

∫ t

0
(1+ ‖µ1(s)‖∞) ds

)
6 C‖(v1 − v2)(0)‖22

for t ∈ [0, T ], and the uniqueness assertion follows.
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REMARK 8 Using the same kind of estimate, one can prove that, in the case when f ∈ Vα , the
minimizer w given by Lemma 3 is unique provided τ is sufficiently small. Indeed, assume for
contradiction that there are two different minimizers w1 and w2 and introduce the related quantities
µi = −∆wi + W

′(wi), i = 1, 2, as in Lemma 4. Since f ∈ Vα and wi is a minimizer of Fτ,f
(cf. (18)), one has

1
2τ
‖wi − f ‖

2
2 + E(wi) 6 E(f ), i = 1, 2,

and consequently, on account of (22) as well, it turns out that estimates independent of τ can be
found for ‖wi‖∞ and for ‖τ 1/2µi‖∞, i = 1, 2. At this point, we take the difference of the two
equations (21) written for w1, µ1 and w2, µ2 respectively, and choose ψ = w1−w2. Then, arguing
as above, it is not difficult to deduce that

1
τ
‖w1 − w2‖

2
2 6 C(1+ ‖µ1‖∞)‖w1 − w2‖

2
2 ,

whence ‖w1 − w2‖
2
2 6 Cτ 1/2

‖w1 − w2‖
2
2. This means that, for τ small enough, ‖w1 − w2‖2 = 0

and uniqueness of the minimizer follows. Observe that this property is significant for the time
discretization of Subsection 2.2 as, in view of (25) and the assumption v0 ∈ Vα , uniqueness is
ensured for our time discrete solution as soon as the time step is smaller than a suitable one.
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