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Two numerical approximation schemes for minimising the Mumford–Shah functional for unit
vector fields are proposed, analysed, and compared. The first uses a projection strategy, the second
a penalisation strategy to enforce the sphere constraint. Both schemes are then applied to the
segmentation of colour images using the Chromaticity and Brightness colour model.

1. Introduction

For Ω ⊂ Rd , and γ, α, λ positive constants, we are interested in numerically minimising the
following weak version of the Mumford–Shah energy functional:

G(u) :=
γ

2

∫
Ω

|∇u|2 dx+ αHd−1(Su)+
λ

2

∫
Ω

|u− g|2 dx, (1.1)

with u, g ∈ GSBV(Ω,Rm), and |u|2 = 1 a.e. (see Section 2 for definitions). This is a prototype
problem for studying interesting effects with applications in image processing (see e.g. [43, 44, 8,
10, 19, 50, 7]), and liquid crystal theory (see e.g. [39, 42, 21, 51, 1, 6, 16]).

We are sometimes going to refer to functional (1.1) as the “Mumford–Shah” functional. It is, in
fact, a version (for sphere-valued functions) of a functional proposed by De Giorgi, Carriero, and
Leaci in [27] (for scalar functions) as a weak formulation of the original functional proposed by
Mumford and Shah in [43] for greyscale image segmentation,

E(u,K) :=
γ

2

∫
Ω\K

|∇u|2 dx+ αHd−1(K)+
λ

2

∫
Ω

(u− g)2 dx, (1.2)

with g ∈ L2(Ω), which is to be minimised for all closed setsK ⊂ Ω and functions u ∈ H 1(Ω \K).
It is shown in [27] that the two problems are essentially equivalent.

The goal of image segmentation is to partition images into meaningful regions, which is often
done by finding the edges which bound these regions, and which are in our case identified with the
set K . The first term in (1.2) ensures smoothness of u outside of K , the second one ensures that
there are not too many edges, and the last term ensures that the segmented image u does not deviate
too much from the original one g.

A more concrete motivation for studying functional (1.1), therefore is colour image
segmentation in the Chromaticity and Brightness (CB) colour model, where the chromaticity (colour
information) is represented by an Sm−1-valued function (usually m = 3) on the image domain Ω .
The brightness, represented by a function b : Ω → [0, 1], can be separately treated just like a
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greyscale image. It has been suggested that this model is well-suited for colour image processing.
Osher and Vese [44] studied p-harmonic flows to the sphere (p > 1, in particular p ∈ {1, 2}), and
applied them to image chromaticity, for example; other sources include [19, 50, 7] and references
therein.

The name free discontinuity problems was introduced by De Giorgi in [24] for variational
problems like (1.2), which consist in minimising a functional with volume and surface terms,
depending on a closed set K and a function u (usually smooth outside K). Other early sources
include [26, 25]. Weak formulations like (1.1) allow one to prove existence of solutions (see [27]
for the scalar and [17] for the sphere-valued case), but still require the computation of geometric
properties of the unknown set of discontinuity boundaries.

Therefore, Ambrosio and Tortorelli introduced an elliptic approximation in [3, 4], whose
vectorial version, if defined for sphere-valued functions, is to minimise

ATε(u, s) :=
γ

2

∫
Ω

(s2
+ kε)|∇u|2 dx+ α

∫
Ω

(
ε|∇s|2 +

1
4ε
(1− s)2

)
dx

+
λ

2

∫
Ω

|u− g|2 dx (1.3)

for u, g ∈ H 1(Ω,Sm−1), s ∈ H 1(Ω, [0, 1]), 0 < ε, kε � 1, and kε = o(ε). Here, s is a phase
function approximating 1−χK by penalisation of phase transitions. Ambrosio and Tortorelli showed
Γ -convergence of ATε(u, s) toG(u) in L2 in the scalar ([3, 4]) as well as the Sm−1-valued case ([4])
for ε→ 0.

Bellettini and Coscia [8] carried out a finite element approximation of the Mumford–Shah
functional in the scalar case, based on this elliptic approximation. They showed that their
approximationGε,h : V h(Ω)×V h(Ω, [0, 1])→ R is Γ -convergent toG : H 1(Ω)×H 1(Ω)→ R
provided that the mesh size satisfies h = o(kε), and that Su is piecewise C2. Here, V h(Ω)
is the continuous, piecewise affine finite element space. Using the approximation result in [28],
Bourdin [10] showed that Su need not be piecewise C2; and he proposed an algorithm for actual
computations—without providing a proof for its convergence, though. The problem here is that the
two variables u and s appear strongly coupled in the energy and in the corresponding gradient flow.

As an alternative to the above phase-field approximation of the Mumford–Shah functional,
Braides and Dal Maso [13] proposed a non-local approximation approach, on which Cortesani [22]
based a Γ -convergent, vector-valued finite element approximation.

A different motivation for (1.3) comes from the theory of nematic liquid crystals. In order to
overcome mathematical difficulties in showing existence and regularity of energy minimising static
configurations in the Oseen–Frank model, Lin [39] adapts Ericksen’s energy, which he simplifies to
(see [39, equation (3.12)]) ∫

Ω

(
1
2
s2
|∇n|2 + |∇s|2 +W0(s)

)
dx

with variable degree of orientation s ∈ [−1/2, 1] (in experiments, often s > 0), and director n,
|n| = 1 a.e. The strong similarity of this energy to the functional (1.3) lets us hope that our analysis
may be of use for this, too.

The overall goal of the present work is to construct and analyse convergent discretisations for a
prototype problem with several non-convexities; namely, we consider a non-convex functional (the
Mumford–Shah functional) with a non-convex constraint (the sphere constraint), as an extension
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to existing work on convex functionals (in particular harmonic maps) with non-convex constraints,
which have been extensively studied (see e.g. [1, 5, 6] and references therein). In particular, we
deal with discretisations of the sphere constraint, which we account for using a projection and a
penalisation strategy. The former turns out to deliver more convincing computational results, while
the latter is analytically more satisfactory.

Below, we give a short overview of the two methods for the approximation of (1.1) that we shall
present in Sections 3–7 of this paper, where in particular we discuss relevant stability properties of
computed approximations, such as

• energy decay property for splitting schemes related to (1.3),
• the validity of a discrete or penalised sphere constraint for approximations of u, and
• non-negativity and upper bounds for approximations of the phase field function s.

1.1 Splitting & Projection strategy

The problem of coupled variables is addressed through an iterative splitting strategy, i.e., in every
step of the iteration the energy is first minimised with respect to the first variable while keeping
the second variable fixed, and then minimised with respect to the second variable while keeping
the first one fixed. A special projection idea as proposed by Alouges [1] is used to enforce the
sphere constraint. We propose a first-order finite element discretisation, which preserves the sphere
constraint exactly at nodal points. The resulting discrete algorithm is simple, results in only linear
equations to be solved in every step of the iteration, and every step is energy-decreasing (for acute
triangulations). The algorithm converges weakly (up to subsequences) inH 1

×H 1 to a tuple (u, s) ∈
H 1(Ω, Sm−1) × H 1(Ω). For d = 2 we can show that s and iterates Sn satisfy Sn, s ∈ [−1, 1].
However, we have not been able to show that (u, s) is a stationary point of the Ambrosio–Tortorelli
energy for unit vector fields.

1.2 Penalisation & Splitting strategy

This method again uses a splitting strategy, but the sphere constraint is now approximated by
penalisation, i.e., we add a Ginzburg–Landau term (4δε)−1 ∫

Ω
(|u|2 − 1)2 dx (0 < δ � 1) to

the energy (1.3). We show that for proper scales of δε in terms of ε, this does not affect Γ -
convergence. Furthermore, we propose a first-order finite element algorithm based on this splitting
and penalisation strategy. The resulting algorithm converges weakly (up to subsequences) in
H 1
×H 1 to a tuple (u, s) ∈ H 1(Ω,Rm)×H 1(Ω), without any mesh constraint. For d = 2 we can

also show that Sn, s ∈ [−1, 1]. This allows one to get strong convergence (up to subsequences) of
iterates Un in H 1, which in turn allows passing to the limit and showing that (u, s) is a stationary
point of the Ambrosio–Tortorelli–Ginzburg–Landau energy, and that s > 0. However, we now have
to solve a non-linear equation in every iteration.

In Section 6, comparative computational experiments for the “Penalisation & Splitting” and
“Splitting & Projection” methods are presented, which address in particular

(1) the effect of perturbing the sphere constraint throughout minimisation, as well as proper scalings
of regularisation and numerical parameters;

(2) the accuracy of zero sets of s in the course of minimisation; and
(3) comparative numerical studies to relate the CB and RGB models in colour image segmentation.
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2. Preliminaries

We often use c and C as generic non-negative constants, capital letters for finite element functions,
and boldface for vectors or vector-valued functions. Given x, y ∈ Rd , 〈x, y〉 or x · y will denote
their standard scalar product, and |x| the Euclidean norm of x. For a measurable set S, |S| or Ld(S)
denotes its Lebesgue measure of dimension d, and Hd(S) its Hausdorff measure. The L2 scalar
product and norm will be denoted by (·, ·) and ‖ · ‖, respectively, and Sm−1 will be the unit sphere
in Rm. For a, b ∈ R, let a∧b := min{a, b} and a∨b := max{a, b}. By A : B for A,B ∈ Rm×m we
denote the dyadic product, i.e., A : B :=

∑m
i,j=1 aijbij for A = (aij ), B = (bij ). Let |A| denote the

Frobenius norm of A, i.e., |A|2 :=
∑m
i,j=1 |aij |

2. For two vectors a ∈ Rd , b ∈ Rm, let a⊗ b := M
denote the matrix with entries mij := aibj .

2.1 Functions of bounded variation and Γ -convergence

We summarise some definitions and results on functions of bounded variation and Γ -convergence.
Sources are e.g. [2, 35, 30, 23, 11, 12, 18].

2.1.1 BV, SBV, and GSBV functions. Let Ω ⊂ Rd be a bounded open set, u : Ω → Rm a
measurable function, S := Rm ∪ {∞}, and x ∈ Ω be fixed. We call z ∈ S the approximate limit of
u at x, written z = ap-limy→x u(y), if for every neighbourhood U of z ∈ S we have

lim
%→∞

1
%n
|{y ∈ Ω : |y− x| < %, u(y) /∈ U}| = 0.

If z ∈ Rm, we call x a Lebesgue point of u, and we denote by Su the complement of the set of
Lebesgue points of u (approximate discontinuity set). Since |Su| is known to be zero, u = ũ a.e. for

ũ(x) := ap- lim
y→x
y∈Ω

u(y).

Let x ∈ Ω \ Su be such that ũ(x) 6= ∞. If there exists L ∈ Rd×m such that

ap- lim
y→x
y∈Ω

|u(y)− ũ(x)− L(y− x)|
|y− x|

= 0,

we call u approximately differentiable at x, and ∇u(x) := L the (uniquely determined) approximate
gradient of u at x. A function u ∈ L1(Ω,Rm) is called a function of bounded variation inΩ , written
u ∈ BV(Ω,Rm), if its distributional derivative Du is representable by a measure with finite total
variation |Du|(Ω), i.e.,

m∑
α=1

∫
Ω

uα div(ϕ)α dx = −
m∑
α=1

d∑
i=1

∫
Ω

ϕαi dDiuα ∀ϕ ∈ C1
c (Ω,R

m×d),

with Du an Rd×m-valued matrix of measures Diuα , and u = (u1, . . . , um). Defining

‖u‖BV(Ω,Rm) := ‖u‖L1(Ω,Rm) + |Du|(Ω)

makes BV(Ω,Rm) a Banach space.
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If {uj } ⊂ BV(Ω,Rm) with supj ‖uj‖BV(Ω,Rm) < +∞, then there exist a subsequence {ujk } and
a function u ∈ BV(Ω,Rm) such that ujk → u in L1(Ω,Rm), and Dujk → Du weakly-∗ in the
sense of measures.

Also, for u ∈ BV(Ω,Rm), Su is countablyHd−1-rectifiable, i.e.,

Su = N ∪
⋃
i∈N

Ki,

where Hd−1(N) = 0, and each Ki is a compact subset of a C1 manifold. So, for Hd−1-a.e. y ∈ Su
we can define the exterior unit normal νννu and outer and inner traces of u on Su by

u±(x) := ap- lim
y→x

y∈π±(x,νννu(x))

u(y),

with π±(x, νννu(x)) := {y ∈ Rd : ±〈y − x, νννu(x)〉 > 0}. A point x ∈ Ω is called a jump point of u,
written x ∈ Ju, if there exists ννν ∈ Sd−1 such that

ap- lim
y→x

y∈π−(x,ννν)

u(y) 6= ap- lim
y→x

y∈π+(x,ννν)

u(y).

It is known that Ju ⊆ Su, andHd−1(Su \ Ju) = 0.
If we decompose Du into the absolutely continuous part Dau and the singular part Dsu, both

with respect to the Lebesgue measure Ld , Du = Dau+Dsu, then the density of Dau with respect
to Ld coincides with the approximate gradient ∇u Ld -a.e. The restriction Dju of Dsu to Su is
called the jump part of Du, and the restriction Dcu of Dsu to Ω \ Su is called the Cantor part. So,

Du = Dau+Dju+Dcu.

It is known that Dju = (u+ − u−)⊗ νννuHd−1
bSu.

A function u ∈ BV(Ω,Rm) is called a special function of bounded variation in Ω , written
u ∈ SBV(Ω,Rm), if Dcu = 0. We call u ∈ BV(Ω,Rm) a generalised special function of bounded
variation, and write u ∈ GSBV(Ω,Rm), if g(u) ∈ SBV(Ω,Rm) for every g ∈ C1(Rm) such that
∇g has compact support. For 1 < p < +∞, let

(G)SBVp(Ω,Rm) := {u ∈ (G)SBV(Ω,Rm) : Hd−1(Ju) < +∞, ∇u ∈ Lp(Ω,Rd×m)}.

We remark thatW 1,1(Ω,Rm) ( BV(Ω,Rm); u ∈ SBV(Ω,Rm) implies u ∈ W 1,1(Ω\Su,Rm);
and SBV(Ω,Rm) ∩ L∞(Ω,Rm) = GSBV(Ω,Rm) ∩ L∞(Ω,Rm).

2.1.2 Γ -convergence. LetX be a separable Banach space with a topology τ and let Fε : X→ R
be a sequence of functionals. We say Fε Γ -converges to F in the topology τ , written F =

Γ - limε→0 Fε, if the following two conditions hold:

(1) For every x ∈ X and for every sequence {xε} ⊂ X τ -converging to x ∈ X,

F(x) 6 lim inf
ε→0

Fε(xε).
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(2) For every x ∈ X there exists a sequence {xε} ⊂ X (recovery sequence) τ -converging to x ∈ X
such that

F(x) > lim sup
ε→0

Fε(xε).

LEMMA 2.1 Let Fε, F : X→ R with Γ - limε→0 Fε = F . Then

(1) F is lower semicontinuous on X.
(2) F +G = Γ -lim(Fε +G) for all continuous G : X→ R.
(3) Let {uε} ⊂ X be such that

lim
ε→0+

(
Fε(uε)− inf

X
Fε

)
= 0.

Then every accumulation point u of {uε} minimises F over X, and

lim
ε→0+

inf
X
Fε = min

X
F = F(u).

Here are some connections between Γ -convergence and pointwise convergence:

• If Fε converges uniformly to F , then Fε Γ -converges to F .
• If Fε is decreasing and converges pointwise to F , then Fε Γ -converges to RF , the lower

semicontinuous envelope of F .

3. Splitting & Projection algorithm

Let Ω ⊂ Rd be a polyhedral Lipschitz domain, and Th be a quasi-uniform triangulation of Ω
with node set N and maximal mesh size h > 0 (cf. [14]). The space of globally continuous,
piecewise affine finite element functions on Th is denoted by Vh(Ω) ⊆ H 1(Ω). The nodal basis
functions are {ϕz : z ∈ N } ⊆ Vh(Ω). Let Vh(Ω,Rm) be the finite element space of Rm-valued
mappings with basis functions {ϕϕϕiz : z ∈ N , 1 6 i 6 m}, with ϕϕϕ1

z := (ϕz, 0, . . .)T ∈ Vh(Ω,Rm),
ϕϕϕ2

z := (0, ϕz, 0, . . .)T ∈ Vh(Ω,Rm), and so forth. Let Ih(·) : C0(Ω) → Vh(Ω) be the Lagrange
interpolation operator, and Rh(·) : H 1(Ω)→ Vh(Ω) the Ritz projection, defined by

(∇(Rh(ϕ)− ϕ),∇V )+ (Rh(ϕ)− ϕ, V ) = 0 ∀V ∈ Vh(Ω),

and rh(·) : L2(Ω)→ Vh(Ω) the Clément operator [20] (IIIh(·), Rh(·), and rh(·) in the vector-valued
case). The latter operator will be needed since it can be applied to discontinuous functions.

LEMMA 3.1 The tuple (u, s) ∈ H 1(Ω,Sm−1)×H 1(Ω, [0, 1]) is a stationary point of ATε(·, ·) if
and only if

γ ((s2
+ kε)∇u,∇ϕϕϕ) = λ(g,ϕϕϕ) (3.1)

for all ϕϕϕ ∈ H 1(Ω,Rm) such that ϕϕϕ(x) ∈ Tu(x)Sm−1 (the tangent space of Sm−1 at u(x)), and

2αε(∇s,∇ϕ)+
((
γ |∇u|2 +

α

2ε

)
s, ϕ

)
=

(
α

2ε
, ϕ

)
(3.2)

for all ϕ ∈ H 1(Ω) ∩ L∞(Ω).

Proof. Note u · ϕϕϕ = 0 a.e. and derive the first variation of ATε(·, ·) with respect to u and s,
respectively (cf. [49] and [15, Proposition 1.1]). 2
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The most natural approach to the discrete case would be to work with the original functional
ATε(·, ·). However, it is not clear how to get a uniform L∞ bound on the iterates Sn in this setting.
We therefore introduce mass lumping into the last term: For G ∈ Vh(Ω,Rm), we define

Eh(U, S) :=
γ

2

∫
Ω

(S2
+ kε)|∇U|2 dx+

λ

2

∫
Ω

|U−G|2 dx

+α

∫
Ω

(
ε|∇S|2 +

1
4ε
Ih((1− S)2)

)
dx,

and

Ẽ(U, S) :=
γ

2

∫
Ω

(S2
+ kε)|∇U|2 dx+

λ

2

∫
Ω

|U−G|2 dx,

with γ, α, ε, kε fixed and positive, and λ > 0. We also assume d 6 2, since so far, our arguments for
the L∞ bound on the iterates Sn fail for higher dimensions (the rest of the analysis works for d 6 3),
but we hope it will be possible to improve these results (and possibly remove lumping altogether).

Another solution would be to use mass lumping in all non-linear terms involving S, i.e., to use
the functional

γ

2

∫
Ω

(Ih(S2)+ kε)|∇U|2 dx+
λ

2

∫
Ω

|U−G|2 dx+ α
∫
Ω

(
ε|∇S|2 +

1
4ε
Ih((1− S)2)

)
dx.

This introduces additional errors, but it still allows one to get the necessary uniform H 1 bounds on
the iterates (Un, Sn), in addition to the L∞ bound on Sn, and it does not require d 6 2; see [15] for
details.

Functions V ∈ Vh(Ω,Rm) which satisfy the pointwise constraint |V| = 1 are necessarily
constant. So it is more reasonable to work in the space

H 1
h (Th) := {V ∈ Vh(Ω,Rm) : V(z) ∈ Sm−1

∀z ∈ N }.

We set
Kn
h := {W ∈ Vh(Ω,Rm) : W(z) · Un(z) = 0 ∀z ∈ N },

where Un ∈ H 1
h (Th) will be the iterates of the fully discrete algorithm.

The idea now is to find U ∈ Kn
h minimising Ẽ(·, S) and then project to the sphere. This approach

is based on [1] and [5] and replaces the non-linear, non-convex constraint U ∈ H 1
h (Th) by the linear

one W(z) ·Un(z) = 0 ∀z ∈ N , which in turn ensures that projection to the sphere does not increase
the energy.

ALGORITHM 3.2 Let a quasi-uniform triangulation Th of Ω , starting values U0, S0, and
parameters ε, kε, % > 0 be given. For n := 0, 1, . . .

(1) Minimise Ẽ(Un −W, Sn) for W ∈ Kn
h , i.e. solve

γ ((S2
n + kε)∇(Un −W),∇V)− λ(W+G,V) = 0, (3.3)

for all V ∈ Kn
h , and call the solution Wn.

(2) If ‖Wn‖H 1(Ω;Rm) 6 % set U := Un, W :=Wn, S := Sn and stop.
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(3) Set

Un+1 :=
∑
z∈N

Un(z)−Wn(z)
|Un(z)−Wn(z)|

ϕϕϕz.

(4) Minimise Eh(Un+1, S) for all S ∈ Vh(Ω), i.e. solve

2αε(∇S,∇W)+ γ (S|∇Un+1|
2,W)+

α

2ε
(S − 1,W)h = 0 (3.4)

for all W ∈ Vh(Ω), and call the solution Sn+1.

Here (ϕ, ψ)h :=
∫
Ω
Ih(ϕψ) dx for ϕ,ψ ∈ C(Ω).

DEFINITION 3.3 Let Th be a quasi-uniform triangulation of Ω , and s ∈ H 1(Ω) be fixed. Th is
said to satisfy the energy decreasing condition (ED) if

Eh(W, s) 6 Eh(V, s)

for all V ∈ Vh(Ω,Rm) satisfying |V(z)| > 1 for z ∈ N . Here W ∈ Vh(Ω,Rm) is defined by

W :=
∑
z∈N

V(z)
|V(z)|

ϕz.

As demonstrated in [5, Lemma 3.2 & Remarks 3.3], for d 6 3 (ED) holds if every angle in Th is
6 π/2 (i.e., if the triangulation is acute).

LEMMA 3.4 Let U ∈ Vh(Ω,Rm) be given, and d 6 2. If S ∈ Vh(Ω) minimises Eh(U, ·), then we
can assume −1 6 S 6 1.

Proof. We show that from a minimiser S ∈ Vh(Ω) that does not satisfy −1 6 S 6 1, we can
always construct one that does. For a ∈ R define a := −1 ∨ a ∧ 1. Note that for this result it is
crucial that we have piecewise affine finite element functions.

Step 1: If a, b ∈ R, then (a+b)2 6 (a+b)2 and (a−b)2 6 (a−b)2. A case differentiation gives:

• a, b ∈ [−1, 1] is trivial.
• a, b > 1 or a, b < −1⇒ (a + b)2 = 22 6 (a + b)2.
• a > 1, b < −1⇒ (a + b)2 = 0 6 (a + b)2

and b > 1, a < −1 is symmetrical.
• a /∈ [−1, 1], b ∈ [−1, 1]⇒ 0 6 1+ sign(ab)|b| 6 |a| + sign(ab)|b|,
⇒ (a + b)2 = (1+ sign(ab)|b|)2 6 (|a| + sign(ab)|b|)2 = (a + b)2,
and b /∈ [−1, 1], a ∈ [−1, 1] is symmetrical.

Therefore (a + b)2 6 (a + b)2, and (a − b)2 6 (a − b)2 follows by symmetry.

Step 2: We have −1 6 S 6 1. In case −1 6 S 6 1 should not be true, we replace S(x) =∑
z∈N S(z)ϕz(x) by

S(x) :=
∑
z∈N

(−1 ∨ S(z) ∧ 1)ϕz(x) = Ih(−1 ∨ S ∧ 1),

for which clearly −1 6 S 6 1. We shall prove Eh(U, S) 6 Eh(U, S), by showing energy-decrease
for every term involving S, on every triangle T ∈ Th. Since ∇U is constant on every T , the terms we
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have to look at are
∫
T
S2 dx,

∫
T
|∇S|2 dx, and

∫
T
Ih((1 − S)2) dx. Let the values of S at the nodal

points of T be S0, . . . , Sd , let S0, . . . , Sd be the corresponding values of S, let ϕ0, . . . , ϕd be the
corresponding nodal basis functions, and x := (x1, . . . , xd). By a simple transformation argument,
we can restrict ourselves to the standard simplex, which we shall still call T . Then

S(x)|T = S0 +

d∑
i=1

(Si − S0)xi and ∇S(x)|T = (S1 − S0, . . . , Sd − S0).

For the first term, a calculation yields∫
T

S2 dx =
2

(d + 2)!

d∑
i=0

Si

d∑
j=i

Sj . (3.5)

If d = 1, then, by Step 1,∫
T

S
2

dx =
1
3
(S

2
0 + S0S1 + S

2
1) =

1
6
((S0 + S1)

2
+ S

2
0 + S

2
1)

6
1
6
((S0 + S1)

2
+ S2

0 + S
2
1) =

∫
T

S2 dx.

Similarly, if d = 2,∫
T

S
2

dx =
1
12
(S

2
0 + S

2
1 + S

2
2 + S0S1 + S0S2 + S1S2)

=
1
24
((S0 + S1)

2
+ (S0 + S2)

2
+ (S1 + S2)

2)

6
1
24
((S0 + S1)

2
+ (S0 + S2)

2
+ (S1 + S2)

2) =

∫
T

S2 dx.

Note that both arguments break down for d > 3; in fact, counter-examples are easy to find (cf.
Remark 3.5).

The second term gives, by Step 1 and symmetry,∫
T

|∇S|2 dx =
∫
T

(S1 − S0, . . . , Sd − S0)
2 dx =

1
d!
((S1 − S0)

2
+ · · · + (Sd − S0)

2)

6
1
d!
((S1 − S0)

2
+ · · · + (Sd − S0)

2) =

∫
T

|∇S|2 dx.

As for the last term, again by Step 1,∫
T

Ih((1− S)2) dx =
d+1∑
i=1

(1− Si)2
∫
T

ϕi dx 6
d+1∑
i=1

(1− Si)2
∫
T

ϕi dx =
∫
T

Ih((1− S)2) dx. 2

REMARK 3.5 For d = 3, Step 2 in the above proof is wrong: Let S0 := S1 := S2 := 1, and
S3 := −3/2. Then, by (3.5), ∫

T

S
2

dx =
1

60

d∑
i=0

Si

d∑
j=i

Sj =
1
15
,
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while ∫
T

S2 dx =
1

60

d∑
i=0

Si

d∑
j=i

Sj =
1

16
.

We suspect that there exist dimension-dependent constants cd at which one could crop |S|, so that
the energy is still decreasing (also replacing (1− s)2 by (cd − s)2).

LEMMA 3.6 Let Th be a quasi-uniform triangulation of Ω satisfying (ED), % > 0 fixed, S0 ∈

Vh(Ω), and U0 ∈ H 1
h (Th). Then Algorithm 3.2 terminates within a finite number of iterations

with output (U, S) ∈ H 1
h (Th) × Vh(Ω, [−1, 1]) and W ∈ Vh(Ω,Rm) such that ‖∇W‖ 6 %, and

Eh(U, S) 6 Eh(U0, S0).

Proof. We proceed by induction. Suppose that for some n > 0 we have (Un, Sn) ∈ H 1
h (Th) ×

Vh(Ω). The set Kn
h is a subspace of Vh(Ω,Rm). Therefore, by Lax–Milgram, there is a unique

Wn ∈ K
n
h such that (3.3) holds. Since Wn(z) · Un(z) = 0 and |Un(z)| = 1, we have, for z ∈ N ,

|Un(z)−Wn(z)|2 = 1+ |Wn(z)|2 > 1.

Therefore, Un+1 is well-defined and in H 1
h (Th). And since 0 ∈ Kn

h and Th satisfies (ED), we get

Eh(Un+1, Sn) 6 Eh(Un −Wn, Sn).

Step 4 of Algorithm 3.2 has a solution Sn+1 by convexity and coercivity of the functional. So

Eh(Un+1, Sn+1) 6 Eh(Un+1, Sn) 6 Eh(Un −Wn, Sn) 6 Eh(Un, Sn).

In fact, Eh(Un+1, Sn+1) 6 Eh(Un+1,W) for all W ∈ Vh(Ω). Therefore, by Lemma 3.4, we can
assume −1 6 Sn+1 6 1. Furthermore,

I := 2Ẽ(Un+1, Sn+1)− 2Ẽ(Un, Sn)

6 2Ẽ(Un −Wn, Sn)− 2Ẽ(Un, Sn)

6 γ

∫
Ω

(S2
n + kε)(|∇Un|2 + |∇Wn|

2
− 2∇Un : ∇Wn) dx

+ λ

∫
Ω

(|Un|2 + |Wn|
2
+ |G|2 − 2G · (Un −Wn)− 2Un ·Wn) dx

−

∫
Ω

(γ (S2
n + kε)|∇Un|2 + λ(|Un|2 + |G|2 − 2G · Un)) dx

=

∫
Ω

(
γ (S2

n + kε)(|∇Wn|
2
− 2∇Un : ∇Wn)+ λ(|Wn|

2
+ 2Wn · (G− Un))

)
dx.

Using equation (3.3) with V :=Wn, we get

I 6 −
∫
Ω

(γ (S2
n + kε)|∇Wn|

2
+ λ|Wn|

2) dx,

whence

0 6
1
2

∫
Ω

(γ (S2
n + kε)|∇Wn|

2
+ λ|Wn|

2) dx 6 Ẽ(Un, Sn)− Ẽ(Un+1, Sn+1).
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Summing this from 0 to N leads to

1
2

N∑
n=0

∫
Ω

(γ (S2
n + kε)|∇Wn|

2
+ λ|Wn|

2) dx 6 Ẽ(U0, S0)− Ẽ(UN+1, SN+1) < +∞,

i.e., the series
1
2

∑
n>0

∫
Ω

(γ (S2
n + kε)|∇Wn|

2
+ λ|Wn|

2) dx

is convergent. Therefore, ‖Wn‖H 1(Ω;Rm) 6 % for n large enough. 2

REMARK 3.7 Let {Thl } be a sequence of quasi-uniform triangulations satisfying (ED) with
maximal mesh size hl → 0 for l → +∞, %l → 0 for l → +∞, and Ehl (U0, S0) 6 C0 <

+∞ independently of hl . Let {Ul, Sl} be the output of Algorithm 3.2 (after termination) from
input (U0

l , S
0
l , %l). Then the sequence {Ul, Sl} converges weakly in H 1(Ω,Rm) × H 1(Ω) (up to

subsequences, not relabelled) as l→+∞ to a point (u, s) ∈ H 1(Ω,Sm−1)×H 1(Ω, [−1, 1]), with
ATε(u, s) 6 lim infl ATε(Ul, Sl) 6 lim infl ATε(U0

l , S
0
l ).

Proof. By assumption and Lemma 3.6, we have

Ehl (Ul, Sl) 6 Ehl (U
0
l , S

0
l ) 6 C0,

and −1 6 Sl 6 1. This implies uniform boundedness of H 1-norms of iterates Ul and Sl . Hence
we can extract a subsequence that converges weakly in H 1

× H 1 to some map (u, s). Poincaré’s
inequality (elementwise), |Ul(z)| = 1 for all z ∈ Nhl , and |Ul | 6 1 a.e. imply∥∥|Ul |2 − 1

∥∥ 6 Chl‖2UTl ∇Ul‖ 6 Chl .

So Ul → u a.e. leads to |u| = 1 a.e.
Since H 1(Ω) is a Hilbert space and {ϕ ∈ H 1(Ω) : 0 6 ϕ 6 1 a.e.} ⊂ H 1(Ω) is a closed,

convex set, it is weakly closed. Therefore, by the weak convergence Sl ⇀ s in H 1, we get −1 6
s 6 1.

Finally, by weak lower semicontinuity of ATε(·, ·),

ATε(u, s) 6 lim inf
l

ATε(Ul, Sl)

6 lim inf
l

(Ehl (Ul, Sl)+ c‖Ih((1− Sl)2)− (1− Sl)2‖L1(Ω))

6 lim inf
l

(Ehl (U
0
l , S

0
l )+ chl‖Sl‖L2(Ω)‖∇Sl‖L2(Ω)) 6 lim inf

l
Ehl (U

0
l , S

0
l )

6 lim inf
l

(ATε(U0
l , S

0
l )+ chl‖S

0
l ‖L2(Ω)‖∇S

0
l ‖L2(Ω)) 6 lim inf

l
ATε(U0

l , S
0
l ). 2

REMARK 3.8 We have not been able to prove that (u, s) is a stationary point of ATε(·, ·). In
particular, equation (3.4) in Step 4 of Algorithm 3.2 is

2αε(∇S,∇W)+ γ (S|∇Un+1|
2,W)+

α

2ε
(S − 1,W)h = 0
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for all W ∈ Vh(Ω). Identifying limits on a term by term basis would require identifying the limit

lim
n→+∞

(|∇Un+1|
2Sn,W),

which so far we have to leave as an open problem.
What is missing for this identification of limits is strong convergence of ∇Un in L2. This

is a fundamental shortcoming also observed in [1, 5] for the simpler case of harmonic maps to
the sphere. In fact, we are not aware of any algorithm, even in the harmonic mapping case, that
simultaneously gives strong convergence of ∇Un in L2 and ensures the sphere constraint exactly.

However, the algorithm converges, decreases the energy, ensures the sphere constraint exactly
and delivers very convincing computational results (indeed, it is faster and delivers better results
than the alternative algorithm described in Section 6).

4. Γ -convergence for Penalisation & Splitting

In order to resolve the problems with passing to the limit, we now use a penalisation approach
instead of projection. This requires adding a term to the Ambrosio–Tortorelli energy, which
penalises the sphere constraint. In this section, we show that this addition does not affect Γ -
convergence to the Mumford–Shah functional, if the penalisation term is properly scaled.

Let Ω ⊂ Rd , γ, α, λ be fixed positive constants, ε, δε > 0, kε > 0, g ∈ L∞(Ω,Sm−1), and
Gε,G : L2(Ω,Rm)× L2(Ω)→ [0,+∞] be defined by

Gε(u, s) :=


γ

2

∫
Ω

(s2
+ kε)|∇u|2 dx+

λ

2

∫
Ω

|u− g|2 dx+ α
∫
Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx

+
1

4δε

∫
Ω

(|u|2 − 1)2 dx if u ∈ H 1(Ω,Rm), s ∈ H 1(Ω, [0, 1]),

+∞, otherwise,

and

G(u, s)

:=


γ

2

∫
Ω

|∇u|2 dx+ αHd−1(Su)+
λ

2

∫
Ω

|u− g|2 dx if u ∈ GSBV(Ω, Sm−1) and s = 1 a.e.,

+∞, otherwise.

THEOREM 4.1 If Ω ⊂ Rd is open and bounded with Lipschitz boundary, δε → 0 as ε → 0,

kε = o(ε), and kε = o(δε), thenGε
Γ
−→ G as ε→ 0 in L2(Ω,Rm)×L2(Ω). Moreover, there exists

a solution {uε, sε} to the minimum problem

mε = inf
u∈H 1(Ω,Rm),
s∈H 1(Ω,[0,1])

Gε(u, s)

with ‖uε‖L∞ 6 C, and every accumulation point of {uε} is a solution to the minimum problem

m = inf
u∈GSBV(Ω,Sm−1)

G(u, 1),

and mε → m as ε→ 0+.
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For the lim inf inequality we can apply the work of Focardi ([32, Lemma 3.3]). For the lim sup
inequality we use the same construction as Ambrosio and Tortorelli in [3], so it is enough to verify
that the penalisation term we added vanishes for ε→ 0+. This is explained in more detail below.

Proof. For notational convenience, we first localise the functionals above, denoting by Gε(u, s, A)
and G(u, s, A) the same functionals with integration over A ⊆ Ω instead of Ω , and Hd−1(Su)
replaced byHd−1(Su ∩ A).

Step 1: The liminf inequality. Let ε → 0+, and (uε, sε)→ (u, s) in L2(Ω,Rm) × L2(Ω). Up to
subsequences, we can suppose that (uε, sε)→ (u, s) a.e., and that limε→0+ Gε(uε, sε) exists and is
finite. We can further assume s = 1 a.e., since otherwise

∫
Ω
(1−sε)2 dx 9 0, andGε(uε, sε)→∞.

Similarly, we get |u|2 = 1 a.e.
We now have to show

lim inf
ε→0+

Gε(uε, sε) > G(u, s).

Since it is clear that
∫
Ω
|uε − g|2 dx →

∫
Ω
|u − g|2 dx, and that the penalisation term is non-

negative, it is sufficient to prove that u ∈ GSBV(Ω,Rm), and

lim inf
ε→0+

∫
Ω

(s2
ε + kε)|∇uε|2 dx+ 2

∫
Ω

(
ε|∇sε|

2
+
(1− sε)2

4ε

)
dx >

∫
Ω

|∇u|2 dx+ 2Hd−1(Su).

This was shown for a more general situation in [32, Lemma 3.3] (see also [33]).

Step 2: The limsup inequality. It suffices to consider the case u ∈ SBV(Ω,Rm) ∩ L∞(Ω,Rm).
We can also assume ∇u ∈ L2(Ω,Rd×m), |u|2 = 1 a.e., and (see [33, Theorem 2.7.14]) that Su is
essentially closed in Ω , i.e., Hd−1(Ω ∩ (Su \ Su)) = 0. Setting d(x) := dist(x, Su), we define the
Minkowski content of Su by

Md−1(Su) := lim
δ→0+

Md−1
δ (Su) := lim

δ→0+

|{x ∈ Ω : d(x) < δ}|

2δ
.

It is well-known that for Su essentially closed,

lim
δ→0+

Md−1
δ (Su) = Hd−1(Su) (4.1)

(see [31, Theorem 3.2.39]). So, there exists a sequence wε → 0+ such that

|{x ∈ Ω : d(x) < δ}| 6 2δ(Hd−1(Su)+ wε) (4.2)

for every δ > 0 small enough.
Given such functions u, and s = 1 a.e., we have to construct {uε, sε} that converge in

L2(Ω,Rm)× L2(Ω) to (u, s) and such that

lim sup
ε→0+

Gε(uε, sε) 6 G(u, s)

for any positive sequence ε converging to zero.
It is natural to require sε ≡ 0 in some ε-dependent neighbourhood of Su, sε converging to 1

everywhere outside a larger neighbourhood of Su, and smooth in between, as well as uε ≡ u
everywhere outside some neighbourhood of Su.
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To this end, we use the same construction as in the paper [3] by Ambrosio and Tortorelli: Choose
a positive sequence bε such that bε = o(ε), bε = o(δε), and kε = o(bε). For any b > 0, set
Sb := {x ∈ Ω : d(x) < b}. Thanks to (4.2), |Sb| = O(b). For t > bε, let

σε(t) := 1− exp
(
−
t − bε

2ε

)
, so that σ ′ε(t) =

1
2ε

exp
(
−
t − bε

2ε

)
.

We now set (cf. Figure 1)

sε(x) :=


0 if x ∈ Sbε ,
σε(d(x)) if x ∈ Sbε+2ε ln(1/ε) \ Sbε ,

1− ε if x ∈ Ω \ Sbε+2ε ln(1/ε),

(4.3)

and
uε(x) := u(x)min{d(x)/bε, 1}.

Note that 0 < 2ε ln(1/ε)→ 0+, and ε = o(2ε ln(1/ε)).

FIG. 1. Sketch of sε(x) in the case Su = {0}, and d = 1.

By construction, (uε, sε)→ (u, 1) in L2(Ω,Rm)× L2(Ω) as ε→ 0+.
Therefore, the term penalising the sphere constraint satisfies

1
4δε

∫
Ω

(|uε|2 − 1)2 dx 6 c
|Sbε |

δε
6 c

bε

δε
→ 0. (4.4)

So this term does not contribute to the lim sup. This calculation motivates why we cannot expect
good experimental results for δε too small (compared to bε, which in turn is between ε and kε); i.e.,
we have to sacrifice something in terms of the sphere constraint (cf. our experiments in Section 6.2).

The other terms are just like those in the original paper [3].

Step 3: Convergence of minimisers. The functionalGε is coercive and lower semicontinuous inL2.
So for every ε > 0 there exists a minimising pair (uε, sε) of Gε. By a simple truncation argument,
‖uε‖L∞ 6 C. As above, we can assume that (uε, sε) ∈ SBV(Ω,Rm)× SBV(Ω) ∩ L∞(Ω,Rm)×
L∞(Ω). By the SBV Closure and Compactness Theorems [2, Theorems 4.7 and 4.8], there exists a
subsequence {uεj , sεj } converging to some (u, 1) in L2(Ω,Rm) × L2(Ω), with u ∈ SBV(Ω,Rm).
Thus, the stability of minimising sequences under Γ -convergence (Lemma 2.1(3)) concludes the
proof. 2
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5. Penalisation & Splitting algorithm

Let Ω ⊂ Rd be a polyhedral Lipschitz domain, and let g : Ω → Sm−1 be the chromaticity
component of a given image. For u, g ∈ H 1(Ω,Rm), s ∈ H 1(Ω, [0, 1]), and 0 < ε, kε, δε � 1, we
want to minimise the following vector-valued Ambrosio–Tortorelli–Ginzburg–Landau energy using
a splitting strategy:

Gε(u, s) =
γ

2

∫
Ω

(s2
+ kε)|∇u|2 dx+

λ

2

∫
Ω

|u− g|2 dx

+ α

∫
Ω

(
ε|∇s|2 +

1
4ε
(1− s)2

)
dx+

1
4δε

∫
Ω

(|u|2 − 1)2 dx. (5.1)

In this section, we shall always assume that γ, α, ε, kε, δε are fixed and positive, λ > 0, and d 6 2
(the last assumption is again only used to show that the iterates Sn are in [−1, 1], and that their weak
limit s is in [0, 1]).

DEFINITION 5.1 A tuple (u, s) ∈ H 1(Ω,Rm) × H 1(Ω, [0, 1]) is called a weak solution to the
problem infGε if

γ ((s2
+ kε)∇u,∇ϕϕϕ)+ λ(u− g,ϕϕϕ)+

1
δε
((|u|2 − 1)u,ϕϕϕ) = 0 (5.2)

for all ϕϕϕ ∈ H 1(Ω,Rm), and

2αε(∇s,∇ϕ)+ γ (|∇u|2s, ϕ)+
α

2ε
(s − 1, ϕ) = 0 (5.3)

for all ϕ ∈ H 1(Ω) ∩ L∞(Ω).

We use the same finite element setting as in Section 3, in particular, we shall always assume that
the triangulation Th is quasi-uniform. For U,G ∈ Vh(Ω,Rm) and S ∈ Vh(Ω, [−1, 1]), let

Gε,h(U, S) =
γ

2

∫
Ω

(S2
+ kε)|∇U|2 dx+

λ

2

∫
Ω

|U−G|2 dx

+ α

∫
Ω

(
ε|∇S|2 +

1
4ε
Ih((1− S)2)

)
dx+

1
4δε

∫
Ω

(|U|2 − 1)2 dx. (5.4)

In the algorithm below we use G := rh(g) ∈ Vh(Ω,Rm), i.e., the Clément interpolation of g.
This allows the use of non-smooth g. If g ∈ C0(Ω,Rm), the Lagrange interpolation would do as
well.

ALGORITHM 5.2 Let U0,G ∈ Vh(Ω,Rm) and S0 ∈ Vh(Ω) be given. For n = 1, 2, . . . until
convergence do

(1) Compute Un ∈ Vh(Ω,Rm) such that

γ ((S2
n−1 + kε)∇Un,∇W)+ λ(Un −G,W)+

1
δε
((|Un|2 − 1)Un,W) = 0 (5.5)

for all W ∈ Vh(Ω,Rm).
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(2) Compute Sn ∈ Vh(Ω) such that

2αε(∇Sn,∇W)+ γ (Sn|∇Un|2,W)+
α

2ε
(Sn − 1,W)h = 0 (5.6)

for all W ∈ Vh(Ω).

The following existence and uniqueness result follows by standard coercivity and convexity
arguments for Gε,h (see e.g. [34, Section 8.4]). The fact −1 6 S 6 1 follows from Lemma 3.4.

PROPOSITION 5.3 There exists a function U ∈ Vh(Ω,Rm) such that (5.5) holds for all W ∈

Vh(Ω,Rm), and there is a unique function S ∈ Vh(Ω, [−1, 1]) such that (5.6) holds for all W ∈
Vh(Ω).

LEMMA 5.4 Algorithm 5.2 decreases Gε,h with respect to n ∈ N.

Proof. For any n ∈ N fixed, Algorithm 5.2 ensures that

Gε,h(Un+1, Sn+1) 6 Gε,h(Un+1, Sn) 6 Gε,h(Un, Sn). 2

The main convergence properties of the iterates from Algorithm 5.2 are given in the following

THEOREM 5.5 Let {Thl } be a sequence of quasi-uniform triangulations with maximal mesh size
hl → 0 for l → +∞, and Gε,hl (U

l
0, S

l
0) 6 C0 < +∞ independently of hl . Then the sequences

{Ulm, Slm}m,l constructed by Algorithm 5.2 from inputs (Ul0, S
l
0) have a (diagonal) subsequence,

called {Un, Sn}n, such that Un converges strongly in H 1(Ω,Rm), and Sn converges weakly in
H 1(Ω) to some (u, s) ∈ H 1(Ω,Rm)×H 1(Ω, [0, 1]), which is a weak solution as in Definition 5.1.

To identify limits in the proof of Theorem 5.5, it will be crucial to prove strong L2 convergence
of ∇Un to ∇u, for which we use a strategy from [15, Proof of Theorem 4.2], where the authors
show convergence of two adaptive, stationary finite element approximations for the minimisation of
the unconstrained Ambrosio–Tortorelli energy: In Step 2 we show that u satisfies (5.2), then we use
(5.2) and (5.5) and dominated convergence (cf. Lemma 5.6, also derived from [15]) to show strong
L2 convergence of ∇Un to ∇u in Step 3, and finally we use this to show that s satisfies (5.3) in
Step 4.

LEMMA 5.6 Let pn, p ∈ H 1(Ω) ∩ L∞(Ω) such that ‖pn‖L∞(Ω), ‖p‖L∞(Ω) 6 C < +∞ a.e.,
independently of n, and pn→ p in L2(Ω). Then

lim
n
(|pn − p|, |∇ϕϕϕ|

2) = 0 ∀ϕϕϕ ∈ H 1(Ω,Rm).

Proof. See [15, Proof of Theorem 4.2]. 2

Proof of Theorem 5.5.

Step 1: For m, l → ∞, there is a subsequence {Un, Sn}, converging weakly in H 1(Ω,Rm) ×
H 1(Ω) to some (u, s) ∈ H 1(Ω,Rm) × H 1(Ω, [−1, 1]). For every m, l ∈ N, Proposition 5.3
gives existence of (Ulm, Slm) and ensures that −1 6 Slm 6 1 a.e. By Lemma 5.4 and by assumption,

Gε,hl (U
l
m, S

l
m) 6 Gε,hl (U

l
0, S

l
0) 6 C0,

independently of l, m. In particular, Gε,hn(Unn, Snn) 6 C0. So, by the definition of Gε,hn , the H 1-
norms of Unn and Snn are bounded independently of n. Therefore, since H 1 is a Hilbert space,
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there exist subsequences, called {Un} and {Sn}, which converge weakly in H 1 to some (u, s) ∈
H 1(Ω,Rm)×H 1(Ω).

Finally, since H 1(Ω) is a Hilbert space and {ϕ ∈ H 1(Ω) : −1 6 ϕ 6 1 a.e} ⊂ H 1(Ω) is a
closed, convex set, it is weakly closed. Therefore, by the weak convergence Sn ⇀ s in H 1, we get
−1 6 s 6 1.

Below, we shall use the abbreviation h for hn.

Step 2: u solves equation (5.2). Let ϕϕϕ ∈ C∞(Ω,Rm) be fixed, n ∈ N, and h > 0. Consider

γ ((s2
+ kε)∇u,∇ϕϕϕ)+ λ(u− g,ϕϕϕ)+

1
δε
((|u|2 − 1)u,ϕϕϕ) =: γ T1 + λT2 +

1
δε
T3.

Since H 1 is compactly embedded in Lp for p < 6, as long as the space dimension d 6 3, we have
Un→ u in Lp(Ω,Rm) for p < 6.

We compute

T1 = ((S
2
n−1 + kε)∇Un,∇IIIh(ϕϕϕ))+ ((s2

− S2
n−1)∇Un,∇ϕϕϕ)

+ ((s2
+ kε)∇(u− Un),∇ϕϕϕ)+ ((S2

n−1 + kε)∇Un,∇(ϕϕϕ − IIIh(ϕϕϕ)))
=: T n11 + T

n
12 + T

n
13 + T

n
14.

Note that ‖ϕϕϕ − IIIh(ϕϕϕ)‖H r (Ω,Rm) 6 ch2−r
‖∇

2ϕϕϕ‖L2(Ω,Rm) for 0 6 r 6 2.
Since −1 6 Sn−1, s 6 1, we have |S2

n−1 − s
2
| 6 C|Sn−1 − s| 6 C|Sn−1 − s|

1/2, whence, by
Lemma 5.6,

T n12 = ((s
2
− S2

n−1)∇Un,∇ϕϕϕ) 6 C(|s − Sn−1|, |∇ϕϕϕ|
2)1/2‖∇Un‖L2(Ω,Rm×d )

h→0
−−−−→
n→+∞

0.

Since s 6 1, we know that (s2
+kε)∇ϕϕϕ ∈ L

2(Ω,Rd×m), so T n13 = (∇(u−Un), (s2
+kε)∇ϕϕϕ)→ 0,

by weak convergence. And since ‖ϕϕϕ − IIIh(ϕϕϕ)‖H 1(Ω,Rm) → 0, in view of the bounds established in
Step 1, the terms T n14, T2, T3 all clearly vanish.

Putting all of the above together, we have for n ∈ N and h > 0 fixed,

γ ((s2
+ kε)∇u,∇ϕϕϕ)+ λ(u− g,ϕϕϕ)+

1
δε
((|u|2 − 1)u,ϕϕϕ) =: γ T n13 + λT

n
21 +

1
δε
T n31 + T

n,

where γ T n13 + λT
n

21 + 1/δεT n31 = 0 by construction. Now, letting n → +∞ and h → 0, we have
T n→ 0, as shown above. And by a density argument, the above is true for generalϕϕϕ ∈ H 1(Ω,Rm).
Step 3: ∇Un → ∇u strongly in L2(Ω,Rm×d) as n → +∞ and h → 0. Let n ∈ N and h > 0.
Then

γ kε ‖∇(u− Un)‖2L2 6 γ ((S2
n−1 + kε)∇u,∇(Rh(u)− Un))

− γ ((S2
n−1 + kε)∇Un,∇(Rh(u)− Un))

− λ(Un −G,Rh(u)− Un)−
1
δε
((|Un|2 − 1)Un,Rh(u)− Un)

+ λ(Un −G,Rh(u)− Un)+
1
δε
((|Un|2 − 1)Un,Rh(u)− Un)

+ γ ((S2
n−1 + kε)∇(u− Un),∇(u− Rh(u)))

=: T n1 + · · · + T
n
7 .
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By construction (equation (5.5) with W := Rh(u) − Un), the expression T n2 + T
n

3 + T
n
4 is zero.

Next,

T n1 = γ ((S
2
n−1 − s

2)∇u,∇(Rh(u)− Un))+ γ ((s2
+ kε)∇u,∇(Rh(u)− Un))

+ λ(u− g,Rh(u)− Un)+
1
δε
((|u|2 − 1)u,Rh(u)− Un)

− λ(u− g,Rh(u)− Un)−
1
δε
((|u|2 − 1)u,Rh(u)− Un)

=: T n11 + . . .+ T
n

16.

By Step 2, T n12 + T
n

13 + T
n

14 = 0. Therefore

γ kε‖∇(u− Un)‖2L2 6 T n11 + T
n

15 + T
n

16 + T
n

5 + T
n

6 + T
n

7 .

All of the above is true for any n ∈ N. Now, consider the limit n→+∞ and h→ 0. Note that,
by a density argument,

‖Rh(u)− Un‖X 6 ‖Rh(u)− u‖X + ‖u− Un‖X
h→0
−−−−→
n→+∞

0

for X = H 1 and, by embedding, for X = Lp (p < 6). Therefore, similarly to Step 2, the terms
T n5 , T

n
6 , T

n
7 , T

n
15 and T n16 all vanish in the limit h → 0 and n → +∞. Finally, T n11 vanishes using

Lemma 5.6, as in Step 2, and the H 1-stability of the Ritz projection.

Step 4: s solves equation (5.3), and 0 6 s 6 1. Let ϕ ∈ C∞(Ω) be fixed, n ∈ N, and h > 0. Set

2αε(∇s,∇ϕ)+ γ (|∇u|2s, ϕ)+
α

2ε
(s − 1, ϕ) =: 2αεT1 + γ T2 +

α

2ε
T3.

We have

T1 = (∇Sn,∇Ih(ϕ))+ (∇Sn,∇(ϕ − Ih(ϕ)))+ (∇(s − Sn),∇ϕ) =: T n11 + T
n

12 + T
n

13,

with T n12, T
n

13 → 0 by the strong H 1 convergence of Ih(·) and the weak H 1 convergence of Sn,
respectively, as in Step 2. Also,

T2 = (|∇Un|2Sn, Ih(ϕ))+ (|∇Un|2Sn, ϕ − Ih(ϕ))
+ ((|∇u|2 − |∇Un|2)Sn, ϕ)+ (|∇u|2(s − Sn), ϕ)
=: T n21 + T

n
22 + T

n
23 + T

n
24,

with T n22, T
n

23, T
n

24 → 0 by the properties of the Lagrange interpolation, Step 3, and Lemma 5.6,
respectively. Finally,

T3 = (Sn − 1, Ih(ϕ))h + (Sn − 1, Ih(ϕ))− (Sn − 1, Ih(ϕ))h
+ (Sn − 1, ϕ − Ih(ϕ))+ (s − Sn, ϕ)
=: T n31 + · · · + T

n
35,

with |T n32 + T
n

33| 6 Ch‖∇Sn‖L2(Ω)‖Ih(ϕ)‖L2(Ω) → 0, and T n34, T
n

35 → 0 by the strong Lp

convergence of Ih(·) and Sn, respectively.
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So, putting all of the above together, we have, for n ∈ N and h > 0 fixed,

2αε(∇s,∇ϕ)+ γ (|∇u|2s, ϕ)+
α

2ε
(s − 1, ϕ) =: 2αεT n13 + γ T

n
21 +

α

2ε
T n31 + T

n,

where 2αεT n13 + γ T
n

21 +
α
2εT

n
31 = 0 by construction. Now, letting n → +∞ and h → 0, we get

T n→ 0, as shown above.
By a density argument, s solves equation (5.3) for ϕ ∈ H 1(Ω) ∩ L∞(Ω). And since replacing

s pointwise by 0 ∨ s ∧ 1 would only decrease every term of this energy, 0 6 s 6 1 follows. 2

REMARK 5.7 For d 6 2, one can also get ∇Sn → ∇s strongly in L2(Ω;Rm), with an argument
similar to Step 3, using the equations for Sn and s and a test function Rh(s)− Sn. This breaks down
for d > 3 because of the lack of L∞-stability of the Ritz projection.

6. Computational studies

To implement Algorithm 5.2, we use a simple fixed-point strategy (with three iterations) for the
Ginzburg–Landau term.

To process real images, we suggest to amend Ambrosio and Tortorelli’s energy to ATε(u, v, s) :
H 1(Ω, Sm−1)×H 1(Ω)×H 1(Ω)→ [0,+∞],

ATε(u, v, s) :=
γ

2

∫
Ω

(s2
+ kε)|∇u|2 dx+

λ

2

∫
Ω

|u− g|2 dx

+
γ1

2

∫
Ω

(s2
+ kε)|∇v|

2 dx+
λ1

2

∫
Ω

|v − b|2 dx

+ α

∫
Ω

(
ε|∇s|2 +

1
4ε
(1− s)2

)
dx, (6.1)

with γ, γ1, α, λ, λ1 positive constants and b, v ∈ L∞(Ω)∩H 1(Ω) the brightness components of the
original and the processed image, respectively (normalised to lie in [0, 1]). So, we add a smoothing
and a fidelity term for the brightness component in the second line of (6.1). The idea here is that
the smoothing term for the chromaticity component forces |s| to be small whenever |∇u| is large,
while the smoothing term for the brightness component does the same whenever |∇v| is large. So
we expect {s ≈ 0} to approximate the union of the essential jump sets of the chromaticity and the
brightness component.

This necessitates the adaptation of the optimisation problem for s as well as the solution of a
third optimisation problem, which we place between the two existing ones.

If we process an image with more noise in the chromaticity than in the brightness, as is
usually the case with images from digital cameras, we can now choose to give more weight to the
information on the brightness component, and the chromaticity component will profit from the better
information on the brightness component through the joint edge set, as illustrated in Example 4.

6.1 Academic images, Splitting & Projection

All arrows below are scaled in length to fit the plots. What we call h below is the length of the
two shorter sides of the rectangular triangles in our triangulations, i.e., it is shorter than the actual
diameter of the triangles (by a factor of

√
2).
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EXAMPLE 1 Let Ω := (0, 1)2 and G as in the left plot in Figure 2. The right picture shows a
section along x = 0.5, where the z-values of the two regions are the closest. We use a triangulation
consisting of 22∗8 halved squares (along the direction (1, 1)), i.e., 131072 triangles, with 66049
nodes, and h = 2−8

≈ 4 ∗ 10−3. The initial values for U and S are U0 ≡ G and S0 ≡ 0.5,
respectively. We test two different values for ε, and choose the remaining parameters by experiment:

(1) ε = 5 ∗ h ≈ 2 ∗ 10−2, γ = 1, α = 0.7, λ = 60, and kε = 10−6.
(2) ε = h/6 ≈ 6 ∗ 10−4, γ = 1.2, α = 0.5, λ = 2 ∗ 103, and kε = 10−6.

Figure 2 shows the initial values, Figure 3 the results after 10 iterations of our proposed
algorithm. Figure 4 shows the detected edge sets and Figure 5 the Ambrosio–Tortorelli energies
over time. In our analysis, we did the discretisation limit first, and the Γ -limit afterwards, which
would suggest choosing ε larger than h. Interestingly, however, the algorithm remains stable for
significantly smaller ε (this is true for both algorithms). And while the qualitative differences in the
image are minimal, a larger phase parameter obviously leads to a less precise edge set.

The next example numerically studies blowup behaviour for the W 1,∞-norm of the iterates
{Un, Sn} in the absence of a fidelity term, i.e., for λ = 0. This is motivated by blowup results for
harmonic maps (to the sphere); see e.g. [46–49, 37, 6]. In particular, it is known that for d = 2,
singularities only appear for large initial energy. And any harmonic map (for general d) is smooth
outside a set whose (d − 2)-dimensional Hausdorff measure is zero (see [45, 46, 38, 29, 9, 41, 40]).

EXAMPLE 2 Let Ω be as above. We first use a triangulation consisting of 22∗r , r = 8, halved
squares as above, and later use coarser ones (r ∈ {5, . . . , 8}) for comparison. Let γ = 1 = α,
λ = 0, ε = 5 ∗ h, and kε = 10−6. We use initial data for U and S as shown in Figure 6 (leftmost
column): U0 is constantly (0, 0, 1) in the periphery of the image, (0, 0,−1) at the centre, and varying
continuously inside a circle around the centre; as well as S = 0 at the centre, S = 1 in the periphery,
and smoothly varying in between.

Figure 6 shows iterates n ∈ {0, 3, 5} for r = 8 (crops in the case of Un), Figure 7 shows
the total energy for r ∈ {5, . . . , 8}, while Figure 8 shows the W 1,∞-norms of Un and Sn for r ∈
{5, . . . , 8}, which both show blowup behaviour. This time it is Un which appears one step ahead
of Sn with respect to blowup behaviour. Depending somewhat on r , the system matrices become
close to singular after 6–7 iterations, so after this point, the results can no longer be expected to be
reliable. The arrow at the centre of U at this point still points down, while the rest of U points up.
The variable S, on the other hand, becomes 1 everywhere, except for the centre, where it stays 0.
After breakdown, the arrows move erratically, but perfectly synchronised with one another.

6.2 Academic images, Penalisation & Splitting

The next example studies the same setting as Example 1, this time with Algorithm 5.2, i.e., the
sphere constraint is enforced by penalisation instead of projection. Again, all arrows are scaled in
length to fit the plots.

EXAMPLE 3 The setting is as in Example 1. Parameters are γ = 1.2, α = 0.5, λ = 2 ∗ 103,
ε = 10−3, kε = 10−6, and δε = 0.1 (chosen by experiment).

The result U after 10 iterations looks just as in Example 1 (Figure 3), so we omit the
corresponding figures. The detected edge set after 10 iterations, however, is less exact, as shown in
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FIG. 2. Example 1: Original image (left) and z-values of a vertical section through it (x = 0.5, right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
10

x

y

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u
10

(5.000000e−01,:)
z

y

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
10

x

y

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u
10

(5.000000e−01,:)
z

y

z

FIG. 3. Example 1: Image (left) and section (right) after 10 iterations for ε = 5 ∗ h (top) and ε = h/6 (bottom).
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FIG. 4. Example 1: Edge set (left) and horizontal section through it (y = 0.375, right) after 10 iterations for ε = 5 ∗ h (top)
and ε = h/6 (bottom).
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FIG. 5. Example 1: Ambrosio–Tortorelli energy (10 iterations, logarithmic plot) for ε = 5 ∗ h (left) and ε = h/6 (right).
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FIG. 6. Example 2: Detail of Un (top) and full image of Sn (bottom) for n ∈ {0, 3, 5}.
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FIG. 7. Example 2: Ambrosio–Tortorelli energy, 10 steps, for r = 8 (left) and r ∈ {5, . . . , 8} (right), y-logarithmic plots.
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FIG. 8. Example 2: W1,∞-norm of U and S for r ∈ {5, . . . , 8}.
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FIG. 9. Example 3: Edge set (left) and horizontal section through it (y = 0.375, right) after 10 iterations.
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FIG. 10. Example 3: min and max of |U| (left), and Ambrosio–Tortorelli energy (right) for 10 iterations.
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Figure 9. Figure 10 shows the global minimum and maximum of |U| and the Ambrosio–Tortorelli
energy over time.

For δε between about 5 ∗ 10−3 and at least 102, the results are qualitatively very similar to the
ones in Example 1, but the detected edge set is less exact, and |U| can be quite a bit shorter than 1.
For δε smaller than 5 ∗ 10−3 (which would be advantageous for the accuracy of |U|), the results
break down, which is in accordance with our theoretical results.

6.3 Real image, Splitting & Projection

EXAMPLE 4 We try our algorithm on a small photograph (399×299 pixels), as shown in Figure 11.
We choose Ω := (0, 399/299) × (0, 1), whence h = 1/298 ≈ 3 ∗ 10−3, the pixels are used as
nodes, each square of four pixels giving rise to two triangles. We further choose S0 ≡ 1 and add
two different kinds of noise to the image:

(1) RGB noise: R = R0 + 0.3 ∗ randn, and G and B analogously, where randn are pseudo-random
values drawn from the standard normal distribution. After this operation, we crop R, G, and B
to lie in [0, 1] (where R0,G0, B0 were scaled to lie). This is shown in Figure 11.

(2) CB noise, mainly in the chromaticity component: C = C0 + 0.5 ∗ randn ∗ C0 × [1, 1, 1], and
B = B0 + 0.01 ∗ randn. After this operation, C is projected onto the sphere, and B is cropped
to lie in [0, 1]. This is shown in Figure 14.

Our CB algorithm was in both cases compared to a channelwise RGB computation for the same
image, with all channels sharing the same edge set. Parameters were chosen as follows (by
experiment):

(1) RGB computation: α = 0.3, β = 10−2, γ = 103, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.5, β = 8 ∗ 10−3, γ = γ1 = 103, ε = 10−4, and kε = 10−7.

(2) RGB computation: α = 0.5, β = 5 ∗ 10−3, γ = 50, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.3, β = 5 ∗ 10−2, γ = 102, γ1 = 5 ∗ 105, ε = 10−4, and
kε = 10−7.

FIG. 11. Example 4.1: Original image (left) and image with RGB noise (right).
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FIG. 12. Example 4.1: Image (top) and edge set (bottom) after 10 iterations; for RGB (left) and CB (right).
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FIG. 13. Example 4.1: Expanded Ambrosio–Tortorelli energy (10 iterations, y-logarithmic plots), RGB (left) and CB (right).
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FIG. 14. Example 4.2: Original image and image with CB noise (top), as well as noisy chromaticity (bottom left) and
brightness (bottom right) components.

FIG. 15. Example 4.2: Image (top) and edge set (bottom) after 10 iterations; for RGB (left) and CB (right).
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FIG. 16. Example 4.2: Expanded Ambrosio–Tortorelli energy (10 iterations, y-logarithmic plots), RGB (left) and CB (right).

First, let us look at the computations with RGB noise: Figure 11 shows the noisy initial image,
and Figure 12 the images and edge sets after 10 iterations. Figure 13 shows the expanded Ambrosio–
Tortorelli energy over time. The energy terms labelled “. . . C” belong to the chromaticity component,
those labelled “. . . B” to the brightness. The channelwise RGB algorithm has the advantage here.

Next, let us look at the image with CB noise: Figure 14 shows the noisy initial image, and
Figure 15 the images and edge sets after 10 iterations. Figure 16 shows the expanded Ambrosio–
Tortorelli energy over time. The CB algorithm has a very clear advantage here.
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