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We study the long-time behavior of an exterior Hele-Shaw problem in random media with a free
boundary velocity that depends on the position in dimensions n > 2. A natural rescaling of solutions
that is compatible with the evolution of the free boundary leads to the homogenization of the free
boundary velocity. By studying a limit obstacle problem for a Hele-Shaw problem with a point
source, we are able to show the uniform convergence of the rescaled solution to a self-similar limit
profile and we deduce that the rescaled free boundary uniformly approaches a sphere.

1. Introduction

We consider a Hele-Shaw type problem (HS) in random media and study the long-time behavior of
the solutions. Let n > 2 and letK ⊂ Ω0 ⊂ Rn, 0 ∈ intK ,K be a nonempty compact set andΩ0 be
a bounded open set such that K and Ω0 have smooth boundaries (see Figure 1). Let Γ = ∂K and
Γ0 = ∂Ω0. Formally, the Hele-Shaw type problem is to find a function v(x, t) : Rn × [0,∞)→ R
that solves 

−∆v = 0 in {v > 0} \K,
v = 1 on K,
vt = g(x, ω)|Dv|

2 on ∂{v > 0},
v(·, 0) = v0 on Ω0 \K,

(HS)

where the initial data v0(x) : Rn→ R is the solution of
−∆v0 = 0 in Ω0 \K,

v0 = 1 on K,
v0 = 0 on ∂Ω0.
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FIG. 1. Initial configuration.
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Here Dv and ∆v are, respectively, the gradient and the Laplacian of v with respect to the space
variable x, and vt is the partial derivative of v with respect to the time variable t .

Let (A,F , µ) be a probability space. We consider g(x, ω) : Rn×A→ R, a continuous function
in x for a.e. ω ∈ A, satisfying

0 < m 6 g(x, ω) 6 M for all x ∈ Rn and a.e. ω ∈ A, (1.1)

where m and M are positive constants. Furthermore, in order to observe some averaging behavior
as t →∞, we assume that g is stationary ergodic. In other words, we assume that we have a group
{τx}x∈Rn of measure preserving transformations τx : A→ A such that

g(x + x′, ω) = g(x′, τxω) for all x, x′ ∈ Rn and a.e. ω ∈ A, (1.2)

i.e. g is stationary. Furthermore, we require that {τx}x∈Rn is ergodic, that is, if B ⊂ A is such that
τx(B) = B for all x ∈ Rn, then µ(B) = 0 or 1. For a more detailed discussion of stationary ergodic
media, see for instance [5, 20].

The classical Hele-Shaw problem in two dimensions with g ≡ 1 was introduced in [12]
modelling a slow movement of a viscous fluid injected in between two parallel plates close to each
other that form the so-called Hele-Shaw cell. This problem naturally generalizes to all dimensions
n > 1.

We study a Hele-Shaw type problem (HS) describing a pressure-driven motion of a fluid in an
inhomogeneous random medium where the velocity law of the fluid on the free boundary depends
on the position. The homogenization of this problem was recently studied in [14]. Free boundary
problems with similar velocity laws have various applications in the plastics industry [22, 24, 28],
in electromechanical machining [19] and others. In fact, Hele-Shaw problem can be thought of as
a quasi-stationary limit of the Stefan problem with a similar boundary velocity law, modelling heat
transfer [2, 17, 21, 27].

In this paper, we are concerned with the behavior of the solution for large times. The main
result, Theorem 7.1, is the locally uniform convergence of a rescaled viscosity solution of the
inhomogeneous problem (HS),

vλ(x, t) = λ(n−2)/nv(λ1/nx, λt) if n > 3

(see Section 3 for a discussion of the rescaling and the case n = 2), which then satisfies

vλt = g(λ
1/nx, ω)|Dvλ|2 on ∂{vλ > 0},

and its free boundary as λ→∞ to the self-similar solution of the Hele-Shaw problem with a point
source, formally 

−∆v = Cδ in {v > 0},

vt =
1
〈1/g〉

|Dv|2 on ∂{v > 0},

v(·, 0) = 0.

(1.3)

Here δ is the Dirac δ-function with mass at the origin, and the constant C depends on K and n. The
constant 〈1/g〉 represents the “average” of 1/g and it will be properly defined later.

The following heuristics can help with understanding of the free boundary velocity for the limit
problem. For the moment, we suppose that g is periodic and the solution v is sufficiently smooth.
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Since the free boundary ∂{v > 0} is a level set of v, its normal velocity is given by V = vt/|Dv|.
If we interpret (HS) as a quasi-stationary limit of the one-phase Stefan problem where v is the
temperature and −Dv is the heat flux, the quantity 1/g represents the latent heat of the phase
transition depending on the position (see [21]). Indeed, for the free boundary to expand by dx, the
heat flux must deliver (1/g) dx of heat into the interface. Since it delivers exactly |Dv| dt of heat in
time dt , we have

V ∼
dx
dt
=

1
1/g(x)

|Dv| = g(x)|Dv|. (1.4)

When we rescale the problem, the latent heat will simply average out and therefore

V =
1
〈1/g〉

|Dv|

is the natural free boundary velocity of the limit solution.
A result similar to ours was obtained in [23] for weak solutions of the homogeneous Hele-Shaw

problem with the free boundary velocity

V = |Dv|.

In the current situation, however, the velocity law of the free boundary depends on the position and
therefore the techniques from [23] can only provide lower and upper bounds on the free boundary
radius. This requires the use of a more refined method to prove the convergence of the solution to
the self-similar asymptotic profile. We combine the strengths of two notions of solution of (HS)—
viscosity and weak—using their correspondence studied in [14].

We use the weak solution u(x, t) : Rn×[0,∞)→ R considered in [9] by applying the transform

u(x, t) =

∫ t

0
v(x, s) ds.

This transform was introduced for the porous dam problem in [3] (see also [4]) and for the one-
phase Stefan problem in [8]. For more details on the variational inequality framework, see also the
survey [26]. The function u formally solves the Euler–Lagrange equation

−∆u = −
1

g(x, ω)
χRn\Ω0 in {u > 0},

u = |Du| = 0 on ∂{u > 0},
u = t on K

(1.5)

of some obstacle problem. Since g satisfies (1.1) and (1.2), the subadditive ergodic theorem (see
[1, 7]) implies that there is a constant, denoted 〈1/g〉, such that∫

Rn

1
g(λ1/nx)

u(x) dx →
∫

Rn

〈
1
g

〉
u(x) dx for a.e. ω ∈ A (1.6)

as λ→∞. This then leads to the homogenization of the obstacle problem (1.5).
While in [14] the uniform convergence of the weak solutions in the homogenization limit follows

more directly from the regularity of the obstacle problem (1.5), the current situation is considerably
different. As the fixed domainK shrinks to the origin due to the rescaling, the rescaled weak solution
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gets singular. Thus the convergence of weak solutions as λ→ ∞ is restricted to a locally uniform
convergence on compact sets not containing the origin and the obstacle problem regularity cannot
be used directly. We resolve this difficulty by introducing a limit obstacle problem and studying its
wellposedness. The main challenge is posed by the singular behavior of the solution as |x| → 0.
From this development, we can deduce the necessary locally uniform convergence away from the
origin. As the last step, we extend the applicability of the tools developed in [14] to our situation
with a singularity at the origin. This allows us to conclude that the rescaled free boundary converges
uniformly to the free boundary of the asymptotic profile, a sphere.

The current method requires g(x, ω) to be strictly positive, the main reason being the loss
of uniqueness of viscosity solutions if g becomes zero and the free boundary can stop. It is an
interesting open problem if g can reach zero yet 1/g ∈ L1

loc so that (1.6) still makes sense. It
is currently under investigation by the author. The interpretation (1.4) of (HS) in terms of heat
balance suggests that the homogenized velocity law V = 〈1/g〉−1

|Dv| continues to hold, at least
for maximal viscosity solutions.

As noted above, the Hele-Shaw problem can be thought of as a quasi-stationary limit of the
one-phase Stefan problem. The results obtained in [18, 23] on the asymptotic behavior of the
(homogeneous) one-phase Stefan problem show that a solution of the Stefan problem converges to
a solution of the (homogeneous) Hele-Shaw problem as t →∞. Furthermore, the homogenization
result for an inhomogeneous one-phase Stefan problem was proved in [15]. This suggests an
interesting question: does a solution of such a Stefan problem have a rescaling and an asymptotic
behavior as t →∞ which is similar to our result for (HS)?

A brief outline follows: Section 2 summarizes the two notions of solution for problem (HS) and
their correspondence. In Section 3, we introduce the rescaling of (HS), which is then followed by an
investigation of radially symmetric test functions in Section 4. The main contribution of the paper
is contained in Sections 5 and 6, where we first define and study the limit obstacle problem and then
show that the rescaled weak solutions of (HS) converge to the unique solution of the limit obstacle
problem. Finally, equipped with those results in Section 7, we turn back to the viscosity notion to
prove the uniform convergence of free boundaries to those of the limit problem.

2. Hele-Shaw type problem

Notation. Since the arguments are independent of ω, we fix ω ∈ A for which all (1.1), (1.2) and
(1.6) hold and we omit ω in the rest of the paper.

Throughout the article, we will make use of the standard notation for the bilinear form aΩ(·, ·)

on H 1(Ω) and the scalar product 〈·, ·〉Ω on L2(Ω) for some domain Ω ,

aΩ(u, v) =

∫
Ω

Du ·Dv dx, 〈u, v〉Ω =

∫
Ω

uv dx.

Whenever Ω = Rn, we drop the subscript Ω .
For a set A, we denote by Ac its complement. Given a nonnegative function v, we respectively

define the positivity set of v and the free boundary of v,

Ω(v) := {(x, t) : v(x, t) > 0}, Γ (v) := ∂Ω(v),

and their time-slices

Ωt (v) := {x : v(x, t) > 0}, Γt (v) := ∂Ωt (v).
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(f )+ will be the positive part of f , i.e.

(f )+ = max {f, 0}.

Lastly, Br(x) is the open space ball of radius r centered at x,

Br(x) = {y ∈ Rn : |y − x| < r}.

This section reviews the two notions of solution of (HS) that will be used in this paper.
The notion of viscosity solution for (HS) was introduced in [13] and used in [14] to prove the

uniform convergence of the free boundary in the homogenization limit. We will consider solutions
on the spacetime cylinder Q = (Rn \K)× [0,∞).

DEFINITION 2.1 A nonnegative upper-semicontinuous function v defined in Q is a viscosity
subsolution of (HS) if

(a) for each T > 0, the set Ω(v) ∩ {t 6 T } ∩Q is bounded, and
(b) for every φ ∈ C2,1

x,t (Q) such that v− φ has a local maximum in Ω(v)∩ {t 6 t0} ∩Q at (x0, t0),
the following two conditions hold:

(i) if v(x0, t0) > 0 then −∆φ(x0, t0) 6 0,
(ii) if (x0, t0) ∈ Γ (v), |Dφ|(x0, t0) 6= 0 and −∆φ(x0, t0) > 0, then

(φt − g(x0)|Dφ|
2)(x0, t0) 6 0.

DEFINITION 2.2 A nonnegative lower-semicontinuous function v defined in Q is a viscosity
supersolution of (HS) if for every φ ∈ C

2,1
x,t (Q) such that v − φ has a local minimum in

Ω(v) ∩ {t 6 t0} ∩Q at (x0, t0), the following two conditions hold:

(a) if v(x0, t0) > 0 then −∆φ(x0, t0) > 0,
(b) if (x0, t0) ∈ Γ (v), |Dφ|(x0, t0) 6= 0 and −∆φ(x0, t0) < 0, then

(φt − g(x0)|Dφ|
2)(x0, t0) > 0.

Now we can define viscosity sub- and supersolutions with the appropriate initial and boundary
data.

DEFINITION 2.3 A viscosity subsolution v of (HS) in Q is a viscosity subsolution of (HS) in Q
with initial data v0 and boundary data 1 if

(a) v is upper-semicontinuous in Q, v = v0 at t = 0 and v 6 1 on Γ ,
(b) Ω(v) ∩ {t = 0} = {x : v0(x) > 0}.

DEFINITION 2.4 A viscosity supersolution v of (HS) in Q is a viscosity supersolution of (HS)
in Q with initial data v0 and boundary data 1 if v is lower-semicontinuous in Q, v = v0 at t = 0
and v > 1 on Γ .

Finally, we can define a viscosity solution:

DEFINITION 2.5 A viscosity supersolution v of (HS) in Q (with initial data v0 and boundary
data 1) is a viscosity solution of (HS) in Q (with initial data v0 and boundary data 1) if

v?(x, t) := lim sup
(y,s)→(x,t)

v(y, s)

is a viscosity subsolution of (HS) in Q (with initial data v0 and boundary data 1).
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The following comparison principle is given in [13]:

THEOREM 2.6 ( [13, Theorem 1.7]) Let v1 and v2 be respectively a viscosity subsolution and a
viscosity supersolution of (HS). If {v1(·, 0) > 0} is bounded, v1(x, 0) < v2(x, 0) in {v1(·, 0) > 0}
and v1 < v2 on ∂K × [0,∞), then

v1 6 v2 on Kc
× [0,∞).

The second notion of solution is the one introduced by [9], given by an obstacle problem for
each time for a new variable u(x, t) =

∫ t
0 v(x, s) ds:

DEFINITION 2.7 The function u(x, t) is called a weak solution of problem (HS) if for every t > 0,
w = u(·, t) solves the obstacle problemw ∈ Kt ,a(w, ϕ − w) >

〈
−

1
g(x)

χRn\Ω0 , ϕ − w

〉
for all ϕ ∈ Kt ,

(2.1)

where
Kt = {ϕ ∈ H 1

0 (R
n) : ϕ > 0 in Ω, ϕ = t on K}.

The theory of the obstacle problem (2.1) is well understood. We refer the reader to [25] for
instance. We have the following:

PROPOSITION 2.8 Suppose that K ⊂ Ω0 ⊂ Rn, Ω0 is a bounded open set and K is a compact set
with ∂K ∈ C1,1. Then (2.1) has a unique solution u(·, t) ∈ H 1

0 (R
n) for all t > 0. For every T > 0

there exists R = R(T ) such that

Ωt (u) ⊂ BR(0) for all t ∈ [0, T ].

Moreover, for any 1 < p <∞, there is a constant C = C(m, n, p) such that

‖u(·, t)‖W 2,p(Rn\K) 6 Ct for all t > 0.

Finally, the function t 7→ u(x, t) is Lipschitz continuous with

|u(x, t1)− u(x, t2)| 6 |t1 − t2| for all 0 < t1 6 t2, x ∈ Rn.

One of the main tools used in this paper is the following correspondence of weak and viscosity
solutions proved in [14]:

THEOREM 2.9 (cf. [14, Theorem 3.1]) Let u(x, t) be the unique solution of (2.1). For each t > 0,
let v(·, t) be the solution of 

∆v(·, t) = 0 in Ωt (u) \K,
v = 1 on K,
v = 0 on Γt (u),

i.e. for every t > 0, v(·, t) is the supremum of all lower-semicontinuous functions w(x) for which
there exists some s, 0 < s < t , such that

−∆w 6 0 in Ωs(u),
w = 1 on K,
suppw ⊂ Ωs(u).
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Then v is a viscosity solution of (HS). Moreover,

v(x, t) = ∂−t u(x, t),

the left time derivative of u.

3. Rescaling

We are interested in the behavior of (HS) as t → ∞. The goal is to prove that a rescaled solution
converges to the self-similar solution of the homogeneous Hele-Shaw problem with a point delta
source. As was observed in [23], the behavior depends on the dimension and the necessary rescaling
is more involved in the two-dimensional case.

3.1 Case n > 3

The heat interpretation (1.4) of the free boundary velocity from the introduction suggests that the
radius of the free boundary should behave as ∼ t1/n and thus we use the rescaling

vλ(x, t) = λ(n−2)/nv(λ1/nx, λt). (3.1)

If we defineKλ := K/λ1/n andΩλ
0 := Ω0/λ

1/n, we derive the following problem for vλ from (HS):
−∆vλ = 0 in Ω(vλ) \Kλ,

vλ = λ(n−2)/n on Kλ,

vλt = g
λ(x)|Dvλ|2 on Γ (vλ),

vλ(·, 0) = vλ0 on Ωλ
0 \K

λ,

(3.2)

where gλ(x) = g(λ1/nx) as can be easily seen from

λ(n−2)/n+1vt (λ
1/nx, λt) = gλ(x)λ2(n−2)/n+2/n

|(Dv)(λ1/nx, λt)|,

vt (λ
1/nx, λt) = gλ(x)|(Dv)(λ1/nx, λt)|

(3.3)

compared to the boundary condition in (HS)

vt (λ
1/nx, λt) = g(λ1/nx)|(Dv)(λ1/nx, λt)|.

The rescaled problem (3.2) implies the weak formulation for the rescaled uλ(·, t) =∫ t
0 v

λ(·, s) ds, the obstacle problem{
w ∈ Kλt ,
a(w, ϕ − w) > 〈−(1/gλ)χRn\Ωλ

0
, ϕ − w〉 for all ϕ ∈ Kλt ,

(3.4)

for each t > 0, where

Kλt = {ϕ ∈ H 1(Rn) : ϕ > 0, ϕ = λ(n−2)/nt on Kλ
}.



380 N. POŽÁR

The relation of uλ and u can be deduced from the definition of uλ as

uλ(x, t) =

∫ t

0
vλ(x, s) ds = λ(n−2)/n

∫ t

0
v(λ1/nx, λs) ds

= λ(n−2)/n
∫ λt

0
v(λ1/nx, σ )

dσ
λ
= λ−2/nu(λ1/nx, λt). (3.5)

The following observation will be useful:

LEMMA 3.1 The harmonic function p(x) = C|x|2−n is invariant under the rescaling (3.1). In
particular, if v(x, t) 6 C|x|2−n for all t > 0 then also

vλ(x, t) 6 C|x|2−n for all t > 0.

Proof. Observe that
pλ(x) = Cλ(n−2)/n

|λ1/nx|2−n = C|x|2−n. 2

3.2 Case n = 2

Since the rescaling (3.1) does not recover the logarithmic singularity at the origin in dimension
n = 2, we use a different rescaling that preserves the system:

vλ(x, t) = logR(λ) v(R(λ)x, λt),

whereR(λ) is the unique solution of

R2 logR = λ (3.6)

for any λ > 0. In fact, the solution can be found explicitly in terms of the Lambert W function,
R(λ) = exp( 1

2W(2λ)). It is easy to see that limλ→∞R(λ) = ∞. Taking the logarithm of (3.6)
gives

2 logR(λ)
(

1+
log logR(λ)
2 logR(λ)

−
log λ

2 logR(λ)

)
= 0.

We deduce
lim
λ→∞

log λ
2 logR(λ)

= 1, (3.7)

which together with (3.6) yields

lim
λ→∞

R(λ)
R∞(λ)

= 1, R∞(λ) =
(

2λ
log λ

)1/2

. (3.8)

In this case, we defineKλ := K/R(λ) andΩλ
0 := Ω0/R(λ). Since v satisfies (HS), vλ satisfies

−∆vλ = 0 in Ω(vλ) \Kλ,

vλ = logR(λ) on Kλ,

vλt = g
λ(x)|Dvλ|2 on Γ (vλ),

vλ(·, 0) = vλ0 on Ωλ
0 \K

λ.

(3.9)

Here gλ(x) = g(R(λ)x), which can be derived as in (3.3) together with (3.6).



HELE-SHAW TYPE PROBLEM 381

The rescaled problem (3.9) implies a weak formulation for the rescaled uλ(x, t) =
∫ t

0 v
λ(x, s) ds

of the form (3.4) where now

Kλt = {ϕ ∈ H 1(Rn) : ϕ > 0, ϕ = logR(λ) t on Kλ
}.

This induces scaling for the weak solution u analogous to (3.5),

uλ(x, t) =
logR(λ)

λ
u(R(λ)x, λt).

REMARK 3.2 Note that the scaling in dimensions n > 3 and the scaling in dimension n = 2 are
qualitatively different. Indeed, in dimension n > 3 a solution with a point source and a solution
with a finite source have the same asymptotic speed of the free boundary ≈ t1/n. That is not true in
dimension n = 2 where a point source solution has asymptotic speed ≈ t1/2, but a solution with a
finite source has a slower asymptotic speed ≈ (t/log t)1/2.

4. Comparison with radially symmetric solutions

The radially symmetric solutions for the Hele-Shaw problem, derived in [23], will serve as test
functions in our arguments. A radially symmetric solution in the domain |x| > a, t > 0 is a pair of
functions p(x, t) and R(t), where p is of the form

p(x, t) =
Aa2−n(|x|2−n − R2−n(t))+

a2−n − R2−n(t)
if n > 3, (4.1a)

or

p(x, t) =
A
(
log R(t)

|x|

)
+

log R(t)
a

if n = 2, (4.1b)

and R(t) satisfies a certain algebraic equation (see [23] for details; we will be interested only in the
behavior as t →∞). This solution satisfies the boundary conditions

p(x, t) = Aa2−n for |x| = a > 0,
p(x, t) = 0 for |x| = R(t),

R′(t) =
1
L
|Dp| for |x| = R(t),

R(0) = b > a.

(4.2)

Also

lim
t→∞

R(t)

c∞t1/n
= 1, c∞ =

(
An(n− 2)

L

)1/n

if n > 3, (4.3a)

or
lim
t→∞

R(t)

c∞(t/ log t)1/2
= 1, c∞ = 2

√
A/L if n = 2. (4.3b)

In dimension n = 2, we will also make use of the limit behavior

lim
t→∞

logR(t)
log t

=
1
2
. (4.4)
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LEMMA 4.1 For L = 1/m (resp. L = 1/M), with m, M defined in (1.1), p(x, t) is a viscosity
subsolution (resp. supersolution) of (HS) in Q.

Proof. Assume that 1/L = m. The case 1/L = M is similar. We will show that p(x, t) satisfies the
conditions in Definition 2.1.

p(x, t) is clearly continuous and (a) immediately follows from (4.1a) and (4.3).
As for (b), (i) follows from the fact that p(·, t) is harmonic in Ωt (p) for every t > 0.
To show (ii), let φ be a smooth function such that p−φ has a local maximum 0 inΩ(p)∩{t 6 t0}

at (x0, t0) ∈ Γ (p) such that |Dφ|(x0, t0) 6= 0 and −∆φ(x0, t0) > 0. Let Br ⊂ Ωt0(p) be a
ball touching Γt0(p) from the inside at (x0, t0) in which −∆φ > 0 (by smoothness of boundaries
and continuity of ∆φ there is such a ball). Then by Hopf’s Lemma (see [10, Ch. 6.4.2]), since
−∆(φ − p) = −∆φ < 0,

∂(φ − p)

∂ν
> 0 at (x0, t0),

where ν is the inner normal. Thus together with the fact that the boundaries are smooth level sets,
we conclude that

|Dp|(x0, t0) =
∂p

∂ν
<
∂φ

∂ν
= |Dφ|(x0, t0).

The normal velocity of the free boundary is given as Vn = pt/|Dp| (level sets), and we have

pt

|Dp|
(x0, t0) >

φt

|Dφ|
(x0, t0).

Hence finally

(φt − g(x0)|Dφ|
2)(x0, t0) < |Dφ|

(
pt

|Dp|
− g(x0)|Dp|

)
(x0, t0)

(1.1)
6 |Dφ|

(
pt

|Dp|
−m|Dp|

)
(x0, t0)

(4.2)
= 0. 2

Comparison with the radially symmetric sub- and supersolution provides us with the following
straightforward result:

LEMMA 4.2 Let v be a viscosity solution of (HS). There exists t0 > 0 and constants ρ1 and ρ2,
0 < ρ1 < ρ2, such that

ρ1t
1/n < min

Γt (v)
|x| 6 max

Γt (v)
|x| < ρ2t

1/n if n > 3,

or

ρ1R(t) < min
Γt (v)
|x| 6 max

Γt (v)
|x| < ρ2R(t) if n = 2,

for t > t0, and
max
Γt (v)
|x| < ρ2

for 0 6 t 6 t0. Moreover there is a constant C > 0 such that

0 6 v(x, t) 6 C|x|2−n.
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FIG. 2. Arrangement of domains for comparison.

Proof. Given problem (HS), we can find constants a, b± such that Ba(0) ⊂ K and Bb−(0) ⊂
Ω0 ⊂ Ω0 ⊂ Bb+(0) (see Fig. 2). Set also L− = 1/m, L+ = 1/M . Using the maximum principle
for harmonic functions, we can also find constants A− and A+ so that p− and p+, the radially
symmetric subsolution and supersolution, respectively, given in (4.1) that satisfy the boundary
conditions (4.2) with the respective constants, also satisfy

p− ≺ v ≺ p+ on (Kc
× {0}) ∪ (Γ × (0,∞)).

Then by the comparison principle for viscosity solutions [14, Theorem 2.6], we have

p− ≺ v ≺ p+ on Kc
× (0,∞),

and also
v(x, t) 6 p+(x, t) < C|x|2−n

for C > 0 large enough and

R−(t) < min
Γt (v)
|x| 6 max

Γt (v)
|x| < R+(t),

where R± are the radii of the free boundaries of the functions p±, respectively, and their limit
behavior is given by (4.3). 2

Lemma 4.2 is all we need to prove the crucial theorem from [23]:

THEOREM 4.3 (Near-field limit) The viscosity solution v(x, t) of the Hele-Shaw like problem
(HS) converges to the unique solution P(x) of the exterior Dirichlet problem

∆P = 0, x ∈ Rn \K,
P = 1, x ∈ Γ,

lim|x|→∞ P(x) = 0 if n > 3, or
P is bounded if n = 2,

(4.5)

as t →∞ uniformly on compact subsets of Kc.

Proof. See proof of [23, Theorem 4.1]. 2

The following constant C∗ characterizes the singularity of the limit solution:
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LEMMA 4.4 There exists a constant C∗ = C∗(K) such that the solution P of problem (4.5)
satisfies

lim
|x|→∞

|x|n−2P(x) = C∗.

Proof. See Lemma 4.5 in [23]. 2

Finally, we also need to improve on the convergence result for radially symmetric solutions
from [23]:

LEMMA 4.5 Let p(x, t) be a radially symmetric solution (4.1) of the Hele-Shaw problem
satisfying the boundary conditions (4.2) with constants A, a, b and L. Then the rescaled solutions
pλ(x, t) converge locally uniformly on the set (Rn \ {0})× [0,∞) to the solution of the Hele-Shaw
problem with a point source,

V (x, t) = VA,L(x, t) =


A(|x|2−n − ρ2−n(t))+, n > 3,

A

(
log

ρ(t)

|x|

)
+

, n = 2,

where

ρ(t) = ρL(t) =

{
(An(n− 2)t/L)1/n, n > 3,
(2At/L)1/2, n = 2.

Proof. We shall show the uniform convergence on the sets {(x, t) : |x| > ε, 0 6 t 6 T } for some
ε, T > 0. Let t0 = ρ−1(ε/2). Starting with n > 3, we have

pλ(x, t) =
Aa2−n(

|x|2−n −
(
R(λt)

(λt)1/n
t1/n

)2−n)
+

a2−n − R2−n(λt)
.

There are two cases:

(a) t0 6 t 6 T . Due to (4.3), we have

R(λt)

λ1/n =
R(λt)

(λt)1/n
t1/n→

(
Aan−2n(n− 2)t

L

)1/n

= ρ(t), R2−n(λt)→ 0,

as λ → ∞ uniformly on t0 6 t 6 T . That shows the uniform convergence pλ → V on
{|x| > ε, t0 6 t 6 T }.

(b) 0 6 t 6 t0. Clearly V (x, t) = 0 in {|x| > ε, 0 6 t 6 t0}. Since

R(λt)

λ1/n 6
R(λt0)

λ1/n < ρ(t0)+
ε

2
= ε

for all λ large enough, we see that pλ = 0 = V on {|x| > ε, 0 6 t 6 t0} for all λ large.

In dimension n = 2, the rescaling yields

pλ(x, t) = A

(
log R(λt)

R(λ)|x|
)
+

log (R(λt)/a)
logR(λ)

.
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Again, we split the proof into two cases:

(a) t0 6 t 6 T . Rewriting R(λt)/R(λ) and using (4.3b) and (3.8), we obtain

R(λt)

R(λ)
=

R(λt)(
λt

log λt

)1/2 ·
(

λt
log λt

)1/2(
λ

log λ

)1/2 ·
(

λ
log λ

)1/2
R(λ)

→ 2
(
A

L

)1/2

· t1/2 ·
1
√

2
=

(
2At
L

)1/2

as λ→∞ uniformly for t0 6 t 6 T . Similarly, (4.4) and (3.7) lead to

log R(λt)
a

logR(λ)
=

logR(λt)− log a
log λt

·
log λt
log λ

·
log λ

logR(λ)
→

1
2
· 1 · 2 = 1

as λ → ∞ uniformly for t0 6 t 6 T . This proves the uniform convergence pλ → V on
{|x| > ε, t0 6 t 6 T }.

(b) 0 6 t 6 t0. Argue as in the case n > 3, (b). 2

5. The limit problem

Our current task is a characterization of the limit of rescaled weak solutions uλ as λ→∞. We want
to show that the limit satisfies a certain obstacle problem that can be interpreted as a Hele-Shaw
problem with a point source. Existence and uniqueness of such a problem in two dimensions was
studied in [6]. Our situation requires extending the definition to all dimensions n > 3.

First define UA,L(x, t) to be the Baiocchi transform of VA,L(x, t), introduced in Lemma 4.5
(see proof of Theorem 5.1 for derivation):

UA,L(x, t) ==


(
At |x|2−n +

L

2n
|x|2 −

1
2
(Ant)2/n

(
n− 2
L

)(2−n)/n)
+

if n > 3,(
A

2
t log

2At
Le|x|2

+
L|x|2

4

)
+

if n = 2.

(5.1)

We say that U(x, t) is a solution of the limit problem if for every t ∈ [0, T ], U(·, t) satisfies the
following obstacle problem: 

w ∈ Kt ,
a(w, φ) > 〈−L, φ〉, ∀φ ∈ V,

a(w,ψw) = 〈−L,ψw〉, ∀ψ ∈ W,

(5.2)

where

Kt =
{
ϕ ∈

⋂
ε>0

H 1(Rn \ Bε) ∩ C(Rn \ Bε) : ϕ > 0, lim
|x|→0

ϕ(x)

UA,L(x, t)
= 1

}
,

V = {φ ∈ H 1(Rn) : φ > 0, φ = 0 on Bε(0) for some ε > 0}, (5.3a)

W = V ∩ C1(Rn). (5.3b)

THEOREM 5.1 For given A,L > 0, UA,L(x, t) defined in (5.1) is the unique solution of the
problem (5.2).
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Proof. We first verify that UA,L is a solution. It can be found by integrating the function VA,L(x, t)
from Lemma 4.5,

U(x, t) =

∫ t

0
V (x, s) ds =


0 t 6 s(x),∫ t

s(x)

V (x, t) dt, t > s(x),

where
s(x) = ρ−1(|x|).

It is clear that ∆U = L in U > 0 and U = ∂U/∂ν = 0 on Γt (U), i.e. when |x| = ρ(t).
A straightforward application of Green’s theorem then shows thatU satisfies the variational equality
and inequality in (5.2).

To prove the uniqueness, we will use a comparison for an obstacle problem and for this we need
the following observation:

LEMMA 5.2 If w satisfies the obstacle problem (5.2), it also satisfies the obstacle problem

aΩ(w, ϕ − w) > 〈−L, ϕ − w〉Ω for all ϕ ∈ K,

on Ω = Rn \ Ba for every a > 0, where

K = {ϕ ∈ H 1(Ω) : ϕ > 0, ϕ = w on ∂Ba}.

Proof. Fix ϕ ∈ K. Pick 0 < ε < a. Find ψ ∈ C1(Rn), 0 6 ψ 6 1, such that ψ = 0 on Ba−ε(0)
and ψ = 1 on Ba(0)c. Then ψ ∈ W . Define

ϕ̃ =

{
ϕ on Ba(0)c,
w otherwise.

Since ϕ|∂Ba(0) = w|∂Ba(0), we have ϕ̃ ∈ H 1(Rn \ Ba−ε). Define

φ = (ψ − 1)w + ϕ̃ ∈ H 1(Rn).

Clearly φ > 0 and φ = 0 for |x| 6 a − ε. Therefore φ ∈ V . From problem (5.2) we have

aΩ(w, ϕ − w) = a(w, φ − ψw) > 〈−L, φ − ψw〉 = 〈−L, ϕ − w〉Ω .

This holds for every ϕ ∈ K. 2

The main tool is the following lemma:

LEMMA 5.3 (Comparison for the limit problem) Let w1, w2 be two solutions of the obstacle
problem (5.2) for some t > 0 with A1, L1 resp. A2, L2. If 0 < A1 < A2 and L1 > L2 > 0
then

w1 6 w2 for all x 6= 0.

Proof. Let ε = (A2 − A1)/3 > 0. If n > 3, there exists a > 0 such that∣∣∣∣w1(x)

|x|2−n
− A1t

∣∣∣∣ < ε and
∣∣∣∣w2(x)

|x|2−n
− A2t

∣∣∣∣ < ε for all |x| 6 a.
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We can replace |x|2−n by − 1
2 log |x| in dimension n = 2. In particular, w1(x) 6 w2(x) in |x| 6 a.

Lemma 5.2 implies that w1 and w2 satisfy the obstacle problem on Ω = Ba(0)c,

a(wi, ϕ − wi)Ω > 〈−Li, ϕ − wi〉Ω ∀ϕ ∈ Ki, i = 1, 2,

where Ki = {ϕ ∈ H 1(Ω) : ϕ > 0, ϕ = wi on |x| = a}. Now we can use the comparison for the
obstacle problem (see Corollary 5.2, Chapter 4 in [25]) to obtain w1 6 w2 in Ω. 2

Now we can finish the proof of Theorem 5.1. Lemma 5.3 implies that for any ε > 0 we can compare

UA−ε,L(x, t) 6 U(x, t) 6 UA+ε,L(x, t),

since UA,L(x, t) are solutions of the limit problem (5.2). After taking the limit ε→ 0 we conclude
that

U(x, t) = UA,L(x, t). 2

6. Uniform convergence of uλ

The following lemma was proven in [14]:

LEMMA 6.1 (cf. [14, Lemma 4.1]) For given g satisfying (1.1) and (1.2), there exists a constant,
denoted 〈1/g〉, such that if Ω ⊂ Rn is a bounded measurable set and if {uε}ε>0 ⊂ L2(Ω) is a
collection of functions such that uε → u strongly in L2(Ω) as ε→ 0, then

lim
ε→0

∫
Ω

1
g(x/ε, ω)

uε(x) dx =
∫
Ω

〈
1
g

〉
u(x) dx a.e. ω. (6.1)

Recall that in Section 2, we fixed ω for which (6.1) holds. The goal of this section is proving the
following theorem:

THEOREM 6.2 The functions uλ converge to UA,L as λ→ ∞ locally uniformly on (Rn \ {0}) ×
[0,∞), where UA,L is the unique solution of the limit problem from Theorem 5.1, with A = C∗
from Lemma 4.4, and L = 〈1/g〉 from Lemma 6.1.

Proof. We need to prove uniform convergence on the sets {|x| > ε, 0 6 t 6 T }. Hence fix T > 0
and ε > 0. The functions uλ(·, t) satisfy the obstacle problem (3.4) for each t > 0 and λ > 0.

Using Lemma 4.2, we can find ρ2 > 0 and t0 > 0 such that

Ωt (u) ⊂ Bρ2R(t) for all t > t0, (6.2)
Ωt (u) ⊂ Bρ2 for all 0 6 t 6 t0.

Inclusion (6.2) is preserved under rescaling when n > 3. In dimension n = 2, we have

Ωt (u
λ) ⊂ Bρ2R(λt)/R(λ) for all t > t0/λ.

But
R(λt)
R(λ)

6
R(λT )
R(λ)

∼

(
T log λ
log λT

)1/2

→ T 1/2 as λ→∞.

Thus we can find ρ̂ > 0 such that Ωt (uλ) ⊂ Ω := Bρ̂(0) for all 0 6 t 6 T and λ > 1. Define
Ωε := {x ∈ Ω : |x| > ε} and Qε := Ωε × [0, T ].
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Now find λ0 > 1 such that Kλ
⊂ Bε/2(0) for all λ > λ0. Since uλ(·, t) is a solution of

the rescaled obstacle problem (3.4), we can use the regularity estimates for the obstacle problem
from [25, Theorem 5.2.4] to conclude that

‖∆uλ(·, t)‖Lq (Ωε/2) 6

∥∥∥∥ 1
gλ

∥∥∥∥
Lq (Ωε/2)

for all 1 6 q 6∞.

Let p+ be the radially symmetric supersolution from the proof of Lemma 4.2. Since by
Lemma 4.5 the rescaled pλ+ converges uniformly on the set Qε/2 to the function VA,L as λ → ∞
for some A and L, we can find a constant C1 such that pλ+ 6 C1 onQε/2 for all λ > λ0. Now recall
that due to Theorem 2.9 we can express uλ as

uλ(x, t) =

∫ t

0
vλ(x, s) ds 6

∫ t

0
pλ+(x, s) ds 6 C1T for (x, t) ∈ Qε/2. (6.3)

In particular, ‖uλ(·, t)‖L2(Ωε/2)
is bounded uniformly in t ∈ [0, T ] and λ > λ0.

Thus we can use the standard elliptic regularity results (see [16], for instance) to find constants
0 < α < 1 and C2, independent of t ∈ [0, T ] and λ > λ0, such that

‖uλ(·, t)‖H 2(Ωε)
6 C2

‖uλ(·, t)‖C0,α(Ωε)
6 C2

for all 0 6 t 6 T , λ > λ0.

Using (6.3) again, we have |uλ(x, t)− uλ(x, s)| 6 C3|t − s| and we conclude that

‖uλ‖C0,α(Qε)
6 C4(C2, C3) for all λ > λ0.

Using the standard diagonalization argument and Arzelà–Ascoli, we can find a subsequence uλk
that converges locally uniformly on Qε, ε > 0, to a function u as k → ∞. Due to the compact
embedding of H 1 in H 2, the uniqueness of the limit and the bound on the H 2-norm implies that
also uλk (·, t)→ u(·, t) in H 1-norm on Qε as λ→∞ for every 0 6 t 6 T , ε > 0.

Finally, in the following two lemmas, we will show that u is a solution of the limit problem
(5.2). Using the uniqueness of the limit problem (Theorem 5.1), we conclude that the convergence
is not restricted to a subsequence and we have

uλ→ UC∗,〈1/g〉, λ→∞,

locally uniformly on (Rn \ {0})× [0,∞), which concludes the proof of Theorem 6.2.

LEMMA 6.3 w = u(·, t) satisfies

a(w, φ) > (−L, φ), ∀φ ∈ V,

a(w,ψu) = (−L,ψw), ∀ψ ∈ W,

for each 0 6 t 6 T , where L = 〈1/g〉 is defined in Lemma 6.1 and V , W were defined in (5.3a).

Proof. Fix t ∈ [0, T ] and φ ∈ V . We will denote wk ≡ uλk (x, t). There is ε > 0 such that φ = 0
in Bε(0). There is also k0 such that if k > k0, we have Ωλk

0 ⊂ Bε(0). Define ϕk = φ + wk . Clearly
φ = 0 on Γ λk0 if k > k0 and thus ϕk ∈ Kλkt . Since uλk satisfies (3.4), we have

a(wk, φ) = a(wk, ϕk − wk) >

〈
−

1
gλk

, ϕk − wk
〉
=

〈
−

1
gλk

, φ

〉
.
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The mapping w 7→ a(w, φ) is a linear functional on H 1 and hence a(wk, φ) → a(w, φ) as
k → ∞ because wk → w H 1-strongly. Lemma 6.1 also yields 〈−1/gλk , φ〉 → 〈−L, φ〉. Hence
we conclude

a(w, φ) > 〈−L, φ〉.

Now fix ψ ∈ W such that 0 6 ψ 6 1. There is Bε(0) in which ψ = 0 and k0 as above. Define
ϕk = (1− ψ)wk . Again ϕk ∈ Kλkt if k > k0. Now

a(wk, ψwk) = −a(wk, ϕk − wk) 6 −

〈
−

1
gλk

, ϕk − wk
〉
=

〈
−

1
gλk

, ψwk
〉
.

The fact that wk → w L2-strongly implies ψwk → ψw in L2, and by Lemma 6.1,〈
−

1
gλk

, ψwk
〉
→ 〈−L,ψw〉.

Due to the lower semicontinuity of the map w 7→ a(w,ψw) in H 1, we also obtain

a(w,ψw) 6 lim inf
k→∞

a(wk, ψwk) 6 lim
k→∞

〈
−

1
gλk

, ψwk
〉
= 〈−L,ψu〉.

Finally, since ψw ∈ V , we have

a(w,ψw) 6 〈−L,ψw〉 6 a(w,ψw). 2

LEMMA 6.4 We have
lim
|x|→0

u(x, t)

UC∗,L(x, t)
= 1

for every t > 0, where C∗ is the constant from Lemma 4.4.

Proof. We will use a comparison with the sub- and supersolutions from Lemma 4.1.
Let C∗ be the constant from Lemma 4.4. Fix ε > 0. Then by Lemma 4.4 there exists a > 0

laege enough such that ∣∣∣∣P(x)a2−n − C∗

∣∣∣∣ < ε

2
for |x| = a.

The set {|x| = a} is a compact subset of Rn \K and by the near-field limit (Theorem 4.3), there is
t0 > 0 large enough that ∣∣∣∣v(x, t)a2−n −

P(x)

a2−n

∣∣∣∣ < ε

2
for |x| = a, t > t0.

Therefore we have ∣∣∣∣v(x, t)a2−n − C∗

∣∣∣∣ < ε for |x| = a, t > t0.

Let p+ and p− be the radially symmetric supersolution, resp. subsolution, satisfying the boundary
conditions

p±

a2−n = C∗ ± ε on |x| = a,

b+ = max
x∈Γt0 (v)

|x|, b− = min
x∈Γt0 (v)

|x|, L+ =
1
M
, L− =

1
m
.
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Then by a comparison,

p−(x, t − t0) 6 v(x, t) 6 p+(x, t − t0) for |x| > a, t > t0.

Lemma 4.5 yields
pλ±→ V± := VC∗±ε,L± as λ→∞,

locally uniformly on {|x| > 0, t > 0}.
Using the formula (3.5) for uλ we have, for λ1/n

|x| > |a| and λ > t0/t ,

uλ(x, t) =

∫ t

0
vλ(x, s) ds

6
∫ t0/λ

0
vλ(x, s) ds +

∫ t

t0/λ
pλ+(x, s − t0/λ) ds

=

∫ t0/λ

0
vλ(x, s) ds +

∫ t−t0/λ

0
pλ+(x, s) ds.

The first term tends to 0 as λ→∞ since vλ(x, s) 6 C|x|2−n by Lemma 4.2. The locally uniform
convergence of pλ+ then implies that the second integral converges to

∫ t
0 V+(x, s) ds as λ→∞ by

the bounded convergence theorem. The same argument can be used to bound uλ from below using
p− and we finally have∫ t

0
V−(x, s) ds 6 lim inf

λ→∞
uλ(x, t)

6 u(x, t) 6 lim sup
λ→∞

uλ(x, t) 6
∫ t

0
V+(x, s) ds (6.4)

for all (x, t) ∈ (Rn \ {0})× [0,∞).
Now suppose that n > 3. The integrals on both sides can be found explicitly as in the proof of

Theorem 5.1 and ∫ t

0
V±(x, s) ds = U±(x, t) := UC∗±ε,L±(x, t),

with

lim
|x|→0

UC∗±ε,L±(x, t)

|x|2−n
= (C∗ ± ε)t.

Then we divide (6.4) by |x|2−n and take the limit |x| → 0, which leads to

(C∗ − ε)t 6 lim inf
|x|→0

u(x)

|x|2−n
6 lim sup
|x|→0

u(x)

|x|2−n
6 (C∗ + ε)t.

We obtain an analogous result in dimension n = 2, after replacing |x|2−n by −log |x|. The proof is
complete because ε > 0 was arbitrary. 2

This finishes the proof of Theorem 6.2. 2
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7. Convergence of v and the free boundary

In this final section, we want to show the locally uniform convergence of vλ and Γ (vλ) as λ→∞.
Define the half-relaxed limits

v∗(x, t) = lim sup
(y,s),λ→(x,t),∞

vλ(y, s), v∗(x, t) = lim inf
(y,s),λ→(x,t),∞

vλ(y, s),

in {|x| 6= 0, t > 0}. Let V (x, t) = VC∗,L(x, t) be the radially symmetric solution with a point
source at 0 from Lemma 4.5, where C∗ is the constant from Lemma 4.4 and L = 〈1/g〉. Clearly

Ωt (V ) = {x : 0 < |x| < ρ(t)}.

By continuity, V∗ = V = V ∗.
Our goal is proving a theorem similar to [14, Theorem 4.4].

THEOREM 7.1 {Γ (vλ)}λ converges to Γ (V ) locally uniformly with respect to the Hausdorff
distance, and vλ converges locally uniformly to V in (Rn\{0})×[0,∞) as λ→∞, and furthermore

v∗ = v
∗
= V.

We will use the ideas developed in [14]. The proof is somewhat less technical because V , the
limit of vλ, is smooth.

First, we will collect some necessary technical results in the spirit of [14]:

REMARK 7.2 (a) Since v is a viscosity supersolution, vλ(·, t) is superharmonic in Ωt (vλ) and
therefore also v∗(·, t) is superharmonic in Ωt (v∗).

(b) u(·, t) is a weak solution of −∆w 6 0 for every t > 0 and thus v(x, t) > (1/t)u(x, t).
(c) The construction of the viscosity solution v implies that vλ is subharmonic in (Kλ)c (see [14,

proof of Theorem 3.1, Step 2]). Therefore v∗ is subharmonic in Rn \ {0}.

LEMMA 7.3 (cf. [14, Lemma 4.6]) Suppose (xk, tk) ∈ {uλk = 0} and (xk, tk, λk)→ (x∞, t∞,∞)

with x0 6= 0. Then the following holds:

(a) (x0, t0) ∈ {U = 0}.
(b) If xk ∈ Γtk (u

λk ) then x∞ ∈ Γt∞(U).

We need to identify the singularity of v∗ and v∗ at x = 0.

LEMMA 7.4 v∗ and v∗ defined above have a singularity at 0 with

lim
|x|→0+

v∗(x, t)

V (x, t)
= 1, lim

|x|→0+

v∗(x, t)

V (x, t)
= 1

for each t > 0.

Proof. Fix ε > 0. Using comparison with the radially symmetric subsolution p− and super-
solution p+ as in Lemma 6.4, with

p±(x, t)

a2−n = C∗ ± ε for |x| = a,

we deduce that there are a > 0 and t0 > 0 such

p−(x, t − t0) 6 v(x, t) 6 p+(x, t − t0) for all t > t0, |x| > a.
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Since
pλ±(x, t − t0/λ)→ VC∗±ε,L±(x, t) as λ→∞,

locally uniformly on the set (Rn \ {0})× [0,∞), the uniform convergence yields

VC∗−ε,L−(x, t) 6 v∗(x, t) 6 v∗(x, t) 6 VC∗+ε,L+(x, t).

We have the conclusion because ε > 0 was arbitrary. 2

LEMMA 7.5 (cf. [14, Lemma 4.12]) There exists a constant C1 = C1(n,M) such that if (x0, t0) ∈

Ω(vλ) and Br(x0) ∩Ω
λ
0 = ∅, we have

sup
Br (x0)

vλ(·, t0) >
C1r

2

t0
.

Proof. Recall that vλ(·, t0) > uλ(·, t0)/t0 (Remark 7.2) and use Lemma 3.3 of [14]. 2

LEMMA 7.6 (cf. [14, Lemma 4.10]) The following inclusion holds:

Ω(V ) ⊂ Ω(v∗).

Moreover,
v∗ > V.

Proof. Recall that v(x, t) > (1/t)u(x, t) for all t > 0, x 6= 0 and that the inequality is preserved
under rescaling (3.1) and (3.5). As uλ converges to U uniformly on each set {|x| > ε} × [0, T ], we
have

v∗(x, t) >
1
t
U(x, t)

and we see that Ω(V ) = Ω(U) ⊂ Ω(v∗).
Recall that v∗(·, t) is superharmonic in Ωt (v∗) for each t (Remark 7.2) and behaves at zero as

V (·, t) by Lemma 7.4. For fixed ε > 0, comparison of v∗(·, t) and VC∗−ε,L(·, t) yields

v∗(x, t) > VC∗−ε,L(x, t) for every t > 0,

because Ω(VC∗−ε,L) ⊂ Ω(V ). We conclude by taking the limit ε→ 0. 2

LEMMA 7.7 (cf. [14, Lemma 4.13(ii)]) The following inclusion of boundaries holds:

Γ (v∗) ⊂ Γ (V ).

Proof. Argue as in [14], with the use of Lemma 7.3 above. 2

Proof of Theorem 7.1. Since Ωt (v∗) is bounded for every time t > 0 by Lemma 4.2, and Ω(V ) is
a simply connected set, Lemma 7.7 also implies that in fact Ω(v∗) ⊂ Ω(V ). In particular, we see
that

Ω(v∗) ⊂ Ω(V ) ⊂ Ω(VC∗+ε,L) for all ε > 0.

Recall that v∗(·, t) is subharmonic in Rn \ {0} for every t > 0 (Remark 7.2). Since
lim|x|→0 v

∗(x, t)/V (x, t) = 1 for all t > 0, we see that v∗(x, t) 6 VC∗+ε,L(x, t) for every ε > 0.
After letting ε→ 0+, we recover

V (x, t) 6 v∗(x, t) 6 v∗(x, t) 6 V (x, t)
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and
Γ (v∗) = Γ (v

∗) = Γ (V ).

To prove the locally uniform convergence of boundaries with respect to the Hausdorff distance,
fix 0 < t1 < t2 and denote

Γ λ = Γ (vλ) ∩ {t1 6 t 6 t2}, Γ∞ = Γ (V ) ∩ {t1 6 t 6 t2}.

We define the δ-neighborhood of a set A ⊂ Rn × R by

Uδ(A) := {(x, t) : dist((x, t), A) < δ}.

We need to show that for every δ > 0 there exists λ0 > 0 such that

Γ λ ⊂ Uδ(Γ
∞) ∀λ > λ0, (7.1)

Γ∞ ⊂ Uδ(Γ
λ) ∀λ > λ0. (7.2)

First, suppose that for some δ > 0, the inclusion (7.1) fails infinitely often. In other words,
suppose that there is δ > 0 and a sequence {λk}∞k=1 with λk →∞ such that

Γ λk ∩ (Uδ(Γ
∞))c 6= ∅.

Accordingly, we choose a sequence of points (xk, tk) ∈ Γ λk whose distance from Γ∞ is bounded
by δ from below,

dist((xk, tk), Γ∞) > δ. (7.3)

Since
⋃
λ Γ

λ is bounded (recall Lemma 4.2), there is a converging subsequence (xkj , tkj )→ (x0, t0)

as j →∞. Moreover, x0 6= 0 by Corollary 4.2 and also t1 6 t0 6 t2. Hence Lemma 7.3(b) implies
that (x0, t0) ∈ Γ (U) = Γ (V ) and therefore (x0, t0) ∈ Γ

∞. But that is a contradiction with (7.3).
To prove the second inclusion, (7.2), we start by proving a pointwise result. Suppose that

there is δ > 0, a point (x0, t0) ∈ Γ∞ and a sequence {λk}∞k=1 with λk → ∞ such that
dist((x0, t0), Γ

λk ) > δ/2 for every k. That means that there is r > 0 such that the spacetime
cylinder Dr(x0, t0) := Br(x0)× [t0 − r, t0 + r] satisfies either

Dr(x0, t0) ⊂ {v
λk > 0} or Dr(x0, t0) ⊂ {v

λk = 0}.

At least one of the inclusions holds for infinitely many k. Therefore we arrive at two possibilities:

(a) In the case of the first inclusion, Lemma 7.5 and Harnack’s inequality in Br/2(x0) for all t ∈
[t0 − r, t0 + r] yield

C1r
2

4t
6 sup
Br/2(x0)

vλk (·, t) 6 C2 inf
Br/2(x0)

vλk (·, t),

where C2 does not depend on λk and t . We conclude that v∗ > 0 in Br/2(x0)× [t0 − r, t0 + r]
and that is a contradiction with (x0, t0) ∈ Γ

∞
⊂ Γ (v∗).

(b) In the second case, we clearly have v∗ = 0 in Dr(x0, t0), which contradicts (x0, t0) ∈

Γ∞ ⊂ Γ (v∗).
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We conclude that for each δ > 0 and (x0, t0) ∈ Γ
∞ there is λ0, depending on (x0, t0), such that

dist((x0, t0), Γ
λ) < δ/2 for all λ > λ0. But if (x, t) ∈ Γ∞ and |(x, t)− (x0, t0)| < δ/2, we have

dist((x, t), Γ λ) 6 dist((x0, t0), Γ
λ)+ |(x, t)− (x0, t0)| < δ ∀λ > λ0.

The set Γ∞ is compact and therefore it can be covered by finitely many open sets,

Γ∞ ⊂
⋃

16j6j0

{(x, t) : |(x, t)− (xj0 , t
j

0 )| < δ/2}.

We can set λ0 = max16j6j0 λ
j

0 to conclude that

Γ∞ ⊂ Uδ(Γ
λ) ∀λ > λ0. 2
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