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On the blow-up mechanism of moving boundary problems
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We introduce the notion of maximal solutions of a class of moving boundary problems in the sense
that we characterize what inhibits global existence of solutions. The technique is demonstrated on a
model describing the growth of an avascular tumor. Further applications of the main result will be
given elsewhere.
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1. Introduction

A major difficulty in the study of moving boundary problems is the understanding of their dynamical
behavior ‘reasonably far’ from the initial geometry. In order to solve moving boundary problems,
it is often needed to transform them to a pde system on a fixed reference domain involving an
evolution equation for a function describing the boundary of the unknown time-dependent domains.
Unfortunately, these transformations only work inside a small neighborhood of the initial domain,
so that a solution can a priori only exist until it reaches the boundary of that neighborhood. Thus,
taking the initial geometry close to a stable equilibrium may be the only way to guarantee that the
corresponding solution will describe some ‘observably dynamic behavior’ for a reasonably long
time.

In this paper we extend the notion of maximal solutions to a class of moving boundary problems.
For a moving boundary problem we think of a blow-up scenario as a real blow-up of some physical
quantity involved or as the ocurrence of a singularity in the moving boundary. Our technique is
applied to the following problem:

−∆p = f (v) in Ω(t),
∂tv −∆v = −h(v) in Ω(t),
V = −∂νp on Γ (t),
p = γH on Γ (t),
v = ψ on Γ (t),

(1.1)

where γ > 0. It is complemented by the initial conditions v(0, ·) = v0, Γ (0) = Γ0, where we
set Γ (t) := ∂Ω(t). The scalar system (1.1) is a model describing the growth of an avascular
tumor: Ω(t) is the domain occupied by the tumor at time t . By p we denote the cell pressure
and v describes the concentration of a nutrient, for example glucose, diffusing through the tumor.
On the free boundary this concentration is given by the smooth function ψ , typically a positive
constant. The normal velocity of the family {Γ (t)} and the mean curvature of the surface Γ (t) are
denoted by V and H = H(t), respectively. The functions h and f are known: they describe the
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rate of consumption of the nutrient and that of the cell-proliferation. This model was introduced by
Greenspan in [Gr1956] and [Gr1972] (see also [ByCh96] for more information).

Some work concerning model (1.1) has already been done: Mostly a radially symmetric setting
has been investigated in [FR1999], [FR2001a], [FR2001b] and [EsMa10]. In fact, in [EsMa10]
radially symmetric solutions of a model similar to (1.1) are considered. It is shown that in the case
of a critical rate of cell death the tumor must vanish. Corollary 1.3 of the present article is of similar
nature, because a constant rate of cell death is assumed. In this generality, a blow-up of the pressure
gradient at the boundary cannot be excluded.

Finally, the papers [BF2003] and [Es2004] deal with existence of nonsymmetric solutions. In
[Es2004] the existence of smooth local solutions has been proved for a large class of initial data.

At the end of this introduction we state the main theorem of this paper as well as an associated
corollary. In Section 2 we first define all our notation and then discuss some helpful material from
differential geometry. Section 3 deals with a survey of the problem’s transformation to a fixed
reference domain, and with the proofs of Theorem 1.2 and Corollary 1.3.

Let us now make some general assumptions which we keep fixed afterwards:

• n > 2, q > n+ 1 and β > 1− 1/q;
• (f, h,ψ) ∈ C∞(R)× C∞(R)× C∞(Rn).
DEFINITION 1.1 Let Ω0 be a domain in Rn of class c3+β and v0 − ψ ∈ W

2
q,0(Ω0). A classical

solution of problem (1.1) is a triple (v(t, x), p(t, x), Γ (t)) defined on a nontrivial interval J :=
[0, S) such that

(i)
⋃
t∈J̇ ({t} × Γ (t)) is a smooth submanifold of Rn+1;

(ii) {Γ (t) : t ∈ J } is of class (mb)(3,β);
(iii) v ∈ BUC∞(

⋃
t∈(ε,S−ε)({t} ×Ω(t)),R) for all 0 < ε < S/2;

(iv) p(t, ·) ∈ W 2
q (Ω(t)) and v ◦Θ t

∈ C([0, δt ),W 2
q (D

t )) for t ∈ J ;
(v) (v, p, Γ ) satisfy the equations (1.1) pointwise on

⋃
t∈J ({t} ×Ω(t)).

The class (mb)(k,α) is a convenient tool to measure the spatial regularity of a family of
hypersurfaces in Rn+1. The precise definition of this class and of the mappingΘ t in (iv) is provided
in Section 2. Notice that (iv) in particular implies that v(t) ∈ W 2

q (Ω(t)) for t ∈ J .
A classical solution is maximal if there is no proper extension of it. In this case, t+ denotes the

maximal time of existence.

THEOREM 1.2 Let Ω0 be a domain in Rn of class c3+β and v0 − ψ ∈ W
2
q,0(Ω0). Then there

exists a unique maximal classical solution of problem (1.1). If t+ <∞, then there exists a sequence
tn→ t+ such that

• ‖v(tn)‖BUC1(Ω(tn))
+ ‖p(tn)‖BUC1(Ω(tn))

→∞ as tn→ t+, or
• A(Γ (tn))→ 0 as tn→ t+.

The quantityA(Γ )measures the maximal possible size of spheres which intersect Γ only in one
point (see Section 2). Therefore, the second condition covers the situation where different regions
of the tumor grow together, mathematically speaking the occurrence of self-intersection. This has
been the case in numerical experiments (see [CrLoNi]). The condition can also describe shrinking
to a point or the development of singularities in Γ (t):

COROLLARY 1.3 Let c > 0. Assume v0 ≡ c, ψ ≡ c, h(c) = 0 and f (c) = −α0 < 0. Let
(v, p, Γ ) be the unique classical solution of system (1.1) corresponding to some initial surface Γ0.
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Then there exists a sequence tn→ t+ such that

A(Γ (tn))
−1
+ ‖∇p(tn)‖C(Γ (tn))→∞ as tn→ t+.

2. Notation and helpful material

In the following by a Ck+α [ck+α]-domain Ω we mean a bounded connected open subset of Rn
whose boundary Γ := ∂Ω is a compact closed embedded hypersurface of regularity Ck+α [ck+α].
Here ck+α denotes the small Hölder space, that is, the closure of the (sufficiently) smooth functions
in the usual Hölder norm (cf. [TrI83], [TrII92], [Lu1995]). The definition of the space BUCs can be
found in [Es2004], [Ama93].

IfΩ is a domain, we define a tubular neighborhood of Γ to be an open setN which is the image
of the diffeomorphic map

X : Γ × (−δ, δ)→ Rn, (x, a) 7→ x + a · ν(x),

where ν(x) is the outer unit normal vector at x ∈ Γ and δ > 0 is sufficiently small. We decompose
the inverse ofX asX−1

= (P[Γ ],Λ[Γ ]), where P[Γ ] is the metric projection of a point x onto Γ , and
Λ[Γ ] is the signed distance function with respect to Γ . Clearly, if im(X) is a tubular neighborhood
of Γ , so is im(X|Γ×(−a,a)) if a < δ. The set of all tubular neighborhoods of a surface Γ is denoted
by T N (Γ ).

We say that Ω ⊂ Rn satisfies the interior sphere condition (ISC) if for any x ∈ Γ there is a
ball Bx ⊂ Ω̄ such that Γ ∩ Bx = {x}; and Ω satisfies the exterior sphere condition (ESC) if its
complement has ISC. For a suitable domain Ω and x ∈ Γ , let Ri(x) [Re(x)] be the supremum over
all radii of possible interior [exterior] spheres at x and define

Ai(Γ ) := inf
x∈Γ

Ri(x), Ae(Γ ) := inf
x∈Γ

Re(x), A(Γ ) := min{Ai(Γ ), Ae(Γ )}.

Finally, if N ∈ T N (Γ ), then r(N) := dist(∂N, Γ ) is the radius of N .

DEFINITION 2.1 We say that a family {Γα : α ∈ A} of submanifolds of Rn has uniformly bounded
Ck-geometry if there exist m ∈ N and K,L > 0 such that

• for each α ∈ A there is a Ck-atlas (U lα, ϕ
l
α) for Γα , where 1 6 l 6 m;

• if ϕlα ∈ diffk(V lα,W
l
α) (i.e. U lα = (ϕlα)

−1[W l
α] ∩ Γα), then, for some xlα ∈ U

l
α , ‖ϕlα‖Ck(V lα) +

‖(ϕlα)
−1
− xlα‖Ck(W l

α)
6 K for (l, α) ∈ {1, . . . , m} × A;

• for each α ∈ A there is a partition of unity {π lα}, 1 6 l 6 m, subordinate to the above covering,
such that ‖π lα ◦ (ϕ

l
α)
−1
‖Ck(W l

α)
6 L for (l, α) ∈ {1, . . . , m} × A.

LEMMA 2.2 Let µ > 0 be given, let {Ωα : α ∈ A} be a family of C2-domains in Rn, and let Γα
be the boundary of Ωα . Suppose

inf
α∈A

A(Γα) > µ.

Then for each α ∈ A there is Nα ∈ T N (Γα) such that infα∈A r(Nα) > µ. Moreover, if N ∈
T N (Γα) satisfies r(N) 6 a < µ, then the quantity

sup
Γβ⊂N

‖Λ[Γα]‖C2(Γβ )

can be estimated from above in terms of the numbers a and µ. Finally, if supα∈A area(Γα) < ∞,
then {Γα} has uniformly bounded C2-geometry. Here area(Γ ) :=

∫
Γ

1.
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Proof. The first statement can be easily seen by a careful reading of Chapter 14.6 in [GilTru]. For
the second one we notice

sup
Γβ⊂N

‖Λ[Γα]‖C(Γβ ) 6 r(N) 6 a.

Let κ1(xα), . . . , κ
n−1(xα) be the principal curvatures of the surface Γα at xα ∈ Γα . Inside N we

have
∇(Λ[Γα])(x) = ν(zα),

where zα := P[Γα](x), as well as

D2(Λ[Γα])(x) = diag
[

−κ1(zα)

1− κ1(zα)Λ[Γα](x)
, . . . ,

−κn−1(zα)

1− κn−1(zα)Λ[Γα](x)
, 0
]

with respect to a principal coordinate system centered at zα , since |κ i | 6 1/µ. Thus, to prove the
theorem, it suffices to construct a suitable C2-atlas for each of the surfaces Γα . We fix α ∈ A.
Without loss of generality we may work near 0 ∈ Rn, which is assumed to be an element of Γα .

Let Γα be locally the graph of some C2-function g satisfying g(0) = 0, ∇g(0) = 0, and let
ψ(y) := (y, g(y)). Fix a principal coordinate system (which is an orthonormal basis) B := Bp :=
{v1(x), . . . , vn−1(x)} centered at p = ψ(x) ∈ Γα and let B ′ := {∂1ψ(x), . . . , ∂n−1ψ(x)}. Let
IIC := IIC(p) be the representation matrix of the second fundamental form II (p) with respect to
C ∈ {B,B ′}. If corC(z) is the coordinate vector of z ∈ Tp Γα with respect to C ∈ {B,B ′}, it follows
from basic linear algebra that

D2g(x)√
1+ |∇g(x)|2

= IIB ′ = (M
B ′

B )
t IIB M

B ′

B = (M
B ′

B )
t diag[κ1, . . . , κn−1]MB ′

B , (2.1)

where MB ′

B corB ′(z) = corB(z) defines the action of MB ′

B . Moreover, since B is an orthonormal
basis, we have

(MB ′

B )
tMB ′

B = (∂iψ(x) · ∂jψ(x))i,j = I +∇g(x)(∇g(x))
t ,

provided the evaluations of g and its partial derivatives at x are well defined, of course. Keep in
mind that |κ i | 6 1/µ. Let V be the largest connected open set where g can be defined. It is not
difficult to see that |∇g(x)| → ∞ as x → ∂V . Let

W :=
⋃
{U ∈ U(0) ∩ V : ‖∇g‖C(U) 6 1} ∩ B(0, 1).

Here, U(0) denotes the neighborhood filter of 0 ∈ Rn−1. We conclude

‖D2g‖∞,W 6 (
√

2N/µ)‖MB ′

B ‖
2
∞,W 6 2

√
2N/µ,

where N := (n− 1)2. Let y ∈ ∂W be given. Then, if |y| < 1, it follows from the last inequality and
the mean value theorem that |y| > µ/(2

√
2(n− 1)N). Moreover, ‖g‖C2(W) 6 max{1, 2

√
2N/µ}.

Since this estimate is independent of α ∈ A, it remains to construct a suitable family π lα of partitions
of unity, subordinate to the sets g[W ]. This is possible because of the lower bound for the size ofW .
To prove the last statement, we fix an open real interval J containing 0 and define local coordinates
by

ϕ−1 : W × J → Rn, (x, y) 7→ (x, y + g(x)).
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Clearly, ϕ(x, y) = (x, y − g(x)) for (x, y) ∈ ϕ−1[W × J ] ⊂ Rn. Moreover, if supα∈A area(Γα)
< ∞, we can cover each surface Γα by, say, m ∈ N charts constructed as above, because, if not,
there would be a sequence (αn) ⊂ A such that

∫
Γαn

1 =
aαn (n)∑
l=1

∫
supp(π lαn )

π lαn > aαn(n) · C,

where aαn(n) > n and C = C(min{1, µ/(2
√

2(n− 1)N)). This completes the proof. 2

Let k ∈ N and α ∈ (0, 1). Given any compact manifoldM of class Ck , let Bkε(M) be the open ball in
Ck(M) with radius ε > 0 and center 0. The next theorem ensures that any hypersurface M of class
ck+α with k > 2 can always be represented as the graph of a ck+α-function in the normal direction
of an analytic surface. The proof is based on a level set approximation ofM and the implicit function
theorem. The author wants to emphasize that this idea is due to M. Bergner. In order to avoid too
much technicalities we omit a precise proof here. The details are given in [BEL2011].

THEOREM 2.3 Let Ω be a Ck+α [ck+α]-domain in Rn, k > 2, and let ε > 0 be given. Then there
exists

• a domain D whose boundary Σ is an analytic embedded hypersurface;
• a tubular neighborhood N of Σ containing ∂Ω;
• a function ρ ∈ Ck+α(Σ) [ρ ∈ ck+α(Σ)];
• a norm on C1(Σ)

such that the map
θρ : Σ → ∂Ω, x 7→ x + ρ(x) · ν(x),

is a Ck+α [ck+α]-diffeomorphism and ρ ∈ B1
ε(Σ).

To the best knowledge of the author, up to now a rigorous proof of the statement of Theorem 2.3
has not been published, although it is a frequently made assumption in many articles.

In the special situation of this article, we will need Theorem 2.3 only to represent the initial
surface Γ0. It becomes more important, of course, if one tries to continue a flow which does not
produce smooth surfaces immediately after the initial time.

However, it is now natural to introduce the classes (MB)(k,α):

DEFINITION 2.4 Let J be a real interval. The family {Γ (t) : t ∈ J } is of class (MB)(k,α) if, given
t0 ∈ J \ sup J , there is a smooth manifold Σ = Σ(t0), a positive number δ = δ(t0), and a function

ρ = ρ(t0) ∈ C([0, δ), Ck+α(Σ)) ∩ C1([0, δ), C(Σ))

such that Γ (t0 + h) = θρ(h)[Σ] for h ∈ [0, δ). It is of class (mb)(k,α) if this holds true for the little
Hölder spaces ck+α . We shall use the notation Σ t0 := Σ(t0), δt0 := δ(t0).

The abbreviation ‘MB’ should remind of ‘moving boundary’. If {Γ (t)} is of class (MB)(k,α)

[(mb)(k,α)], we use the symbols Dt0 and Θ t0 to denote the domain enclosed by Σ t0 (cf.
Theorem 2.3) and the family of diffeomorphisms θρ(t0)(·) : [0, δt0) → Abb(Rn,Rn), i.e. Θ t0(h) ∈

diff(D̄t0 , Ω̄(t0 + h)), h ∈ [0, δt0).
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3. Time localizations

Let the data of the problem be as described in Section 1 and fix a smooth manifold Σ , a tubular
neighborhood N of Σ containing ∂Ω , and a function ρ0 ∈ c3+β(Σ) such that θρ0 is a c3+β -
diffeomorphism from Σ onto Γ0. If a := r(N), by Lemma 2.2 we can assume that ‖ρ0‖C1(Σ) <

a/5. Notice that ρ0 ∈ B
4−1/q
qq (Σ) thanks to β > 1− 1/q, thus c3+β(Σ) ↪→ B

4−1/q
qq (Σ).

The assumption that the initial surface Γ0 should be of class c3+β instead of B4−1/q
qq was made

due to the fact that the representation theorem 2.3 treats manifolds whose smoothness is measured
in the Hölder scale. Thus, the existence of a smooth reference surface Σ is not an assumption but a
fact, provided Γ0 is of class c3+β . Inside N the diffeomorphisms θρ(·) transform problem (1.1) into

A(ρ)r = f (w) in J ×D,
∂tw + A(ρ)w = R(w, r, ρ)− h(w) in J̇ ×D,
∂tρ + B(ρ)r = 0 on J̇ ×Σ,
r = H(ρ) on J ×Σ,
w = χ(ρ) on J ×Σ,
w(0, ·) = w0 in D,
ρ(0, ·) = ρ0 in Σ

(3.1)

where we set w0 := v0 ◦ θρ0 and χ(ρ) = ψ ◦ θρ . The term R arises from the transformation of the
time derivative vt . It is worth mentioning here that it is possible to extend θρ(t) to a diffeomorphism
θ̃ρ(t) ∈ diff3+β(Rn,Rn) ∩ diff3+β(D,Ω(t)). Our notation does not distinguish between θ and θ̃ .
All necessary calculations and notation can be found in [Es2004].

Now, if
r(w, ρ) := S(ρ)f (w)+ T (ρ)H(ρ),

i.e. r(w, ρ) is the unique solution of the elliptic problem{
A(ρ)r = f (w) in D,
r = H(ρ) on Σ, (3.2)

we get 
∂tw + A(ρ)w = R(w, r(w, ρ), ρ)− h(w) in J̇ ×D,
w = χ(ρ) on J ×Σ,
∂tρ + B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f (w) on J̇ ×Σ,
w(0, ·) = w0 in D,
ρ(0, ·) = ρ0 in Σ.

(3.3)

Letting u := w − χ(ρ) we have

∂tu+ A(ρ)u = R(uχ , r(uχ , ρ), ρ)− h(uχ )

− A(ρ)χ(ρ)−Q(r(uχ , ρ), ρ) in J̇ ×D,
u = 0 on J ×Σ,
∂tρ + B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f (uχ ) on J̇ ×Σ,
u(0, ·) = w0 − χ(ρ0) in D,
ρ(0, ·) = ρ0 in Σ,

(3.4)

where we have used the notation uχ := uχ (ρ) := u+χ(ρ). HereQ results from the differentiation
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of the transformed boundary data χ(ρ) with respect to time. We consider (3.4) as the system
∂tu+ A(ρ)u = R(uχ , r(uχ , ρ), ρ)− h(uχ )

− A(ρ)χ(ρ)−Q(r(uχ , ρ), ρ) in J̇ ×D,
∂tρ + B(ρ)T (ρ)H(ρ) = B(ρ)S(ρ)f (uχ ) on J̇ ×Σ,
u(0, ·) = w0 − χ(ρ0) in D,
ρ(0, ·) = ρ0 in Σ,

(3.5)

over a suitable function space including the zero boundary condition. Finally, we split the mean
curvature H(ρ) into a leading quasilinear part P(ρ)ρ and a nonlinear part Q(ρ) containing only
first order terms:H(ρ) = P(ρ)ρ+Q(ρ) (cf. Lemma 3.1 in [EsSi97a] and Lemma 3.2 in [Es2004]).
We arrive at 

∂tu+ A(ρ)u = F(u, ρ) in J̇ ×D,
∂tρ + B(ρ)T (ρ)P (ρ)ρ = G(u, ρ) on J̇ ×Σ,
u(0, ·) = w0 − χ(ρ0) in D,
ρ(0, ·) = ρ0 in Σ,

(3.6)

where
F(u, ρ) := R(uχ , r(uχ , ρ), ρ)− h(uχ )− A(ρ)χ(ρ)−Q(r(uχ , ρ), ρ),
G(u, ρ) := −B(ρ)[T (ρ)K(ρ)− S(ρ)f (uχ )].

The mappings A, BT P , F and G are smooth between various spaces. The precise mapping
properties of A and BT P can be found in Lemma 2.2 and Theorem 4.1 of [EsSi97a], and in
Lemmas 3.1 and 4.4 of [Es2004]. The nonlinearity (F,G) (in the case h(y) = y) is investigated in
Lemma 4.6 of [Es2004].

We choose b := max{2‖ρ0‖C1+β (Σ), a/5} and define

U := H 2
q,0(D)× {ρ ∈ B

4−1/q
qq (Σ) : ‖ρ‖c1+β (Σ) < b, ‖ρ‖c1(Σ) < a/5},

abbreviated by U := H 2
q,0(D) ×A. Then U is an open subset of D := H 2

q,0(D) × B
4−1/q
qq (Σ) and

it contains (u0, ρ0). H s
q and Bsqq denote the Bessel potential and Besov spaces, respectively (see

[TrI83], [TrII92]). Now, in literally the same way as in [Es2004] and using the fact that h induces
smooth Nemytskiı̆ operators acting on various function spaces, one can show the existence of a
unique solution of (3.6), that is, a pair of functions (u, ρ) defined on a nontrivial interval J := [0, T )
such that

• ρ ∈ C(J, B
4−1/q
qq (Σ) ∩A) ∩ C1(J, B

1−1/q
qq (Σ)) ∩ C∞(J̇ , B

4+k−1/q
qq (Σ)) for all k ∈ N,

• u ∈ C(J,H 2
q (D)) ∩ C

1(J, Lq(D)) ∩ C
∞(J̇ , H 2+k

q (D)) for all k ∈ N,
• u(t)|Σ = 0 for t ∈ J , and
• (u, ρ) satisfy the equations in (3.6) pointwise in J .

Moreover, modifying Lemma 4.6 in [Es2004] in an obvious way and using the generation
properties of the operator B(·)T (·)P (·) in the Hölder space setting which are stated for example
in [EsSi97a] we obtain the continuity of the distance function ρ at 0 with respect to the c3+β

topology by standard arguments based on interpolation and the variation-of-constants formula:
ρ ∈ C(J, c3+β(Σ)). Following the abstract theory (cf. Theorems 12.1 and 12.5 in [Ama93]), T
can be chosen maximal in the sense that

‖(u(t), ρ(t))‖D
t→T
−−−→∞ or (u(t), ρ(t))

t→T
−−−→ ∂U , (3.7)

provided T <∞.
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Notice that the transformation of problem (1.1) was made in such a way that if (u, ρ) is a solution
to (3.6) in the sense stated above, then

(v(t), p(t), Γ (t)) := (u(t)+ χ(ρ(t)) ◦ θ−1
ρ(t), r(t) ◦ θ

−1
ρ(t), θρ(t)[Σ])

solves (1.1), where r = r(u, ρ) is defined by (3.2). Let us introduce the notion of time-local
solutions:

DEFINITION 3.1 A solution (u, ρ) of (3.6) corresponding to the initial value (u0, ρ0) is said to be
a time-local solution of (1.1).

It can be shown that the transformations sketched in this section can also be used to construct a
time-local solution of (3.6) from a given classical solution of (1.1) in the sense of Definition 1.1. For
this we have to use the regularity assumption v ◦Θ0

∈ C([0, δ0),W 2
q (D

0)) in Definition 1.1(iv). It
guarantees uniqueness of classical solutions for a short time.

LEMMA 3.2 Let (u, ρ) be a time-local solution of (3.6) and assume T < ∞. If (u, r) ∈
L∞(J,BUC1(D) × BUC1(D)), then (u, ρ) extends to a continuous function on J := [0, T ] with
values in H 2

q (D)× c
3+β(Σ). Moreover, ρ(T ) ∈ ∂A.

Proof. By definition, ρ takes its values in the setA. Thus, ρ is bounded in c1+β(Σ). Therefore, the
set {ρ(t) | t ∈ [0, T )} is relatively compact in c1+β ′(Σ) for β ′ < β. Notice that the mappings P(·),
K(·) and σ 7→ θσ can be defined on the closure of A in the norm of c1+β ′(Σ). Therefore

sup
δ∈J

(‖θρ(δ)‖C1(D,Rn) + ‖θ
−1
ρ(δ)‖C1(Ωρ(δ),Rn)) <∞.

Direct calculations (see [Kn2007]) show that from this and from our assumption on r we get
a bound for B(ρ)r in the norm of C(Σ), so that the velocity ρt is bounded in the same norm (cf.
the third equation in (3.1)). Also, from P(ρ)ρ = r − K(ρ) and well-known generation properties
of the operator P(ρ), we are allowed to conclude ‖ρ‖C(J,c2+µ(Σ)) < ∞ for some µ > 0. Thus,
interpolating between C(Σ) and c2+µ(Σ) and using the mean value theorem, we find that ρ ∈
BUCε(J, c2+µ′(Σ)), where µ > µ′ > 0 and ε is a suitable positive number. Thus, our assumption
on u implies that G(u, ρ) is bounded in cµ

′

(Σ). Since the mapping B(·)T (·)P (·) can be defined on
the closure ofA in the norm of c2+µ′(Σ), the second equation in (3.6) and the generation properties
of B(ρ)T (ρ)P (ρ) provide a variation-of-constants formula based bootstrapping procedure ending
up (after two steps) with a bound for ρ in the norm of c3+β(Σ).

Turning to the function u, we find that F(u, ρ) is bounded in Lq(D). Since A(·) can be defined
on the closure of A in the norm of c2+µ′(Σ), a (two-step) bootstrapping procedure based on the
variation-of-constants formula leads to a bound for u in the H 2

q (D)-norm, so we also get a bound
for the time derivative ut in the norm of Lq(D). Therefore u ∈ BUCε

′

(J,H s
q ) for s < 2 and suitable

ε′ > 0. By a bootstrapping argument we conclude that in fact (u, ρ) ∈ BUCε
′′(k)([γ, T ),H k

q (D)×

ck(Σ)) for any positive γ < T , k ∈ N and an interpolation exponent ε′′ > 0 depending on k. Thus,
ρ(T ) ∈ ∂A by (3.7). 2

REMARK 3.3 The a priori estimates for ρ which we used in the proof of the last lemma depend
highly on the geometry of Σ . As we will see later, we do not need them to be uniform with
respect to that manifold in any sense. What we need to be uniform is just the property of P(σ),
B(σ)T (σ )P (σ ), σ ∈ A, to generate an analytic semigroup. We will comment on this in more detail
at the very end of this section, after defining the necessary notation (cf. Remark 3.4).
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In order to prove our main result, we need to comment on an important relation between the
original problem and its transformed version: If (u, ρ) is a time-local solution to (1.1), then the
surface Γ (t) = θρ(t)[Σ] is the zero level set of the function

ϕρ(t) : N → R, x 7→ Λ[Σ](x)− ρ(t)(P[Σ](x)).

From this we conclude easily V (t, θρ(t)(x)) = ρt (t)(x)/|∇(ϕρ(t))(θρ(t)(x))| (see again [Es2004]).
We are now prepared for

Proof of Theorem 1.2. Let the initial data of the problem be given and fix a suitable reference
manifold Σ as described in this section. The existence result for time-local solutions ensures that
we can find a solution of problem (1.1) either on [0,∞) or on some finite interval [0, T ). Then the
maximal interval of existence is

[0, t+) :=
⋃
T>0

{[0, T ) : (1.1) has a solution on [0, T )},

where a solution is understood in the sense of Definition 1.1. Let us first take care of uniqueness:
Since any solution of problem (1.1) is of class (mb)(3,β), the uniqueness of time-local solutions
implies that on some nontrivial interval [0, τ ) there can only be one solution. Let us assume that
there are two different maximal solutions, say (v1, p1, Γ1), (v2, p2, Γ2). Then continuity implies
that

D := {t : (v1, p1, Γ1)(t) 6= (v2, p2, Γ2)(t)}

is an open subset of [0, t+). Thus t∗ := infD 6∈ D. But we can use (v1, p1, Γ1)(t∗) =

(v2, p2, Γ2)(t∗) as initial value for a unique time-local solution, existing on, say, [t∗, t∗ + τ ′). Thus,
we can extend (v1, p1, Γ1) to a unique classical solution on [0, t∗ + τ ′). But [t∗, t∗ + τ ′) ∩D 6= ∅,
which is a contradiction.

Now, let N(t) be a tubular neighborhood of Γ (t) and suppose that there are constants C, ε0 > 0
such that

(i) ‖v(t)‖BUC1(Ω(t)) + ‖p(t)‖BUC1(Ω(t)) 6 C,
(ii) A(Γ (t)) > ε0.

Let us assume that t+ is finite. First of all we observe∣∣∣∣ d
dt

area(Γ (t))
∣∣∣∣ = ∣∣∣∣ d

dt

∫
Γ (t)

1
∣∣∣∣ = ∣∣∣∣∫

Γ (t)

V (t) ·H(t)

∣∣∣∣ 6
1
ε0
· C · area(Γ (t)),

i.e. supt∈[0,t+) area(Γ (t)) < ∞, since t+ < ∞. Therefore, invoking Lemma 2.2, the family
{Γ (t)} has uniformly bounded C2-geometry. We fix a smooth atlas for each surface Γ (t) and a
corresponding partition of unity as constructed in the proof of Lemma 2.2. In particular, we choose
m,K,L according to Lemma 2.2. Keep in mind that the norms of the function spaces built over Γ (t)
are fixed from now on. If now t∗ ∈ [0, t+) is given, then for some δ∗ = δ∗(t∗) > 0 the solution
has a time-local representation (u∗, ρ∗) in the form (3.6) on some interval J (t∗) := [t∗, t∗ + δ∗),
where u∗0 = v(t

∗) − ψ , ρ∗0 = 0 in the case t∗ > 0, since Γ (t∗) is smooth. By (ii) we may assume
that r(N(t∗)) = ε0. For a technical reason (cf. Lemma 2.2) we choose r(N(t∗)) = a0, where
0 < a0 < ε0. Then (u∗, ρ∗) is arranged to take values in the set

U(t∗) := H 2
q,0(Ω(t

∗))× {ρ ∈ B
4−1/q
qq (Γ (t∗)) : ‖ρ‖c1+β (Γ (t∗)) < a0/5},
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but our assumptions imply even stronger a priori bounds: Later on we will see that for some
number ε̃,

sup
t∗∈[0,t+)

sup
x∈N(t∗), h∈J (t∗)

|∇(ϕρ∗(h))(x)| 6 ε̃. (3.8)

From this, V = pν and (i) we conclude

sup
t∗∈[0,t+)

sup
J (t∗)

|ρ∗t | <∞, (3.9)

meaning that ‖ρ∗(·)‖C(J (t∗),C(Γ (t∗))) will vanish as t∗ → t+. We will see at the very end of the
proof that also the quantity

‖ρ∗‖C(J (t∗),C1+β (Γ (t∗))) (3.10)

will vanish as t∗→ t+.
On the other hand, if t∗ ∈ [0, t+) is given, as in the proof of Lemma 3.2 the definition of the

mapping σ 7→ θσ immediately implies

sup
δ∈J (t∗)

(‖θρ∗(δ)‖C1(Ω(t∗),Rn) + ‖θ
−1
ρ∗(δ)‖C1(Ω(t∗+δ),Rn)) <∞.

This estimate may depend on t∗. Nevertheless, (r∗, u∗) ∈ L∞(J (t
∗),BUC1(Ω(t∗)) ×

BUC1(Ω(t∗))), and we can arrange the time-local solution (u∗, ρ∗) to exist until it reaches the
boundary of U(t∗), thanks to Lemma 3.2, contradicting (3.10).

It remains to prove (3.8) and (3.10). Fix t∗ ∈ (0, t+) and let x ∈ N(t∗). Let
{(W1, ϕ

−1
1 ), . . . , (Wmx , ϕ

−1
mx
)} be those charts of Γ (t∗) that contain P[Γ (t∗)](x), that is,

P[Γ (t∗)](x) ∈

mx⋂
l=1

Wl ∩ Γ (t
∗).

If {πj : 1 6 j 6 m} is the corresponding subordinate partition of unity, and if supp(πl) ⊂ Wl ∩

Γ (t∗) for 1 6 l 6 mx , the assertion follows from the decomposition

ρ∗(t) ◦ P[Γ (t∗)] =
( mx∑
l=1

πl

)
ρ∗(t) ◦ ϕ−1

l ◦ ϕl ◦ P[Γ (t∗)] =
[ mx∑
l=1

(πl · ρ
∗(t)) ◦ ϕ−1

l

]
◦ [ϕl ◦ P[Γ (t∗)]],

due to the bounded geometry of {Γ (t)}, Lemma 2.2 and ‖ρ∗‖C(J (t∗),C1(Γ (t∗))) 6 a0/5. An estimate
for DP[Γ (t∗)] in terms of the principal curvatures of Γ (t∗) (dominated by 1/ε0) can be obtained by
inverting equation (14.97) in Chapter 14.6 of [GilTru].

In order to prove (3.10), let us economize our notation and drop t∗, l unless it is necessary. Let
Y := ϕ[Γ ∩ ϕ−1[W ]] ⊂ Rn−1 and write again ϕ−1 instead of ϕ−1

|Y . After possibly performing a
suitable rotation and translation of coordinates, we may assume that Y is a 0-neighborhood in Rn−1

as well as ϕ−1(x) = (x, g(x)) in Y . A careful inspection of the proof of Lemma 2.2 shows that we
may assume

• ‖∇g‖C(Ȳ ) 6 1;
• Y = B(0, R) for some R > 0;
•
⋃m
l=1 ϕ

−1(l, t∗)[Yε] = Γ (t∗), where Yε := B(0, R − ε), 0 < ε < R;
• π is subordinate to ϕ−1[Yε].



MOVING BOUNDARY PROBLEMS 433

Then, in order to prove (3.10), it suffices to show that for some constant K̃ ,

‖ρ∗(h) ◦ ϕ−1(l, t∗)‖W 2
s (Yε)

6 K̃, l ∈ {1, . . . , m}, h ∈ J (t∗),

where K̃ depends on the global constants K,L, a0, and s is large enough that W 2
s ↪→ c1+γ where

γ > β.
Let G(x, z) := g(x)− z for x ∈ Y and z ∈ R, |z| < R. Then ϕ−1[Y ] = G−1[{0}]. Observe that

the matrix
aij (ζ ) := δij − ζiζj/(1+ |ζ |2), ζ ∈ Rn−1,

is positive definite (δij being the Kronecker symbol). Thus, the operator A defined by

H(x, g(x)) = div
(

∇g(x)√
1+ |∇g(x)|2

)
=

1
|∇G|

·

n−1∑
i,j=1

aij (∇g(x))∂i∂jg(x) =: Ag(x)

is uniformly elliptic in Y . Moreover, maxi,j ‖aij (∇g(x))‖C1(Ȳ ) 6 c, c = c(K), and

∇Ag = A(∇g)+ B,

where B = B(D2g) is also uniformly bounded in terms ofK . From the fourth equation in (1.1) and
our assumption on p we know that ∇[H ◦ (x, g(x))] = [A∇g + B](x) is a priori bounded in terms
of K and C. Thus, elliptic theory implies that

‖∂kg‖W 2
s (Yε)

6 c, c = c(K, n,C, ε, s), 1 6 k 6 n− 1.

Now, let ν = ν(t∗) be the outward unit normal vector field of Γ = Γ (t∗), and let ν̂ := ν ◦ ϕ−1

and ρ̂ := ρ∗(h) ◦ ϕ−1. Let µ̂ be the outward unit normal vector field of the surface θρ̂[Γ ]. Then
‖ν̂j‖W 2

s (Yε)
is estimated from above in terms of c = c(K, n,C, ε, s). Since ‖ρ∗(h)‖c1+β (Γ ) 6 a0,

interpolation shows that
‖ρ∗(h) ◦ ϕ−1(t∗)‖C1(Ȳ )

will vanish as t∗ reaches t+, thanks to (3.9). Observe

0 = ∂j1 = ∂j (ν̂ · ν̂) = 2∂j ν̂ · ν̂

and thus
(∂j (ϕ

−1
+ ρ̂ν̂)) · ν̂ = ∂j ρ̂.

Therefore, since the left factor in the last equation is tangential to θρ̂[Γ ], we may assume that ν̂ · µ̂
is close to 1. As in the proof of Lemma 2.2 it can be seen that the coordinate representation of the
second fundamental form of the surface θρ̂[Γ ],

[II (θρ̂[Γ ])]ij := (∂i∂jϕ−1
+ ∂i∂j ρ̂ν̂ + ∂i ρ̂∂j ν̂ + ∂j ρ̂∂i ν̂ + ρ̂∂i∂j ν̂) · µ̂,

is estimated in terms of ε0 and K . The desired estimate of ∂i∂j ρ̂ follows immediately. 2
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REMARK 3.4 We use the same notation as at the end of the last proof and let ρ := ρ∗(h).
Moreover,D(ρ̂) denotes the localized version of the operatorD,D ∈ {P,BT P }, i.e. (D(ρ)f )◦ϕ−1

= D(ρ̂)(f ◦ ϕ−1), where f denotes a sufficiently regular function on Γ (t∗). From [EsSi97a] we
know that the operator P(ρ̂) is elliptic in x ∈ Y if ρ̂ is a priori bounded in C1(Ȳ ) and the matrix
[wjk(x)]−1 with

wjk(x) := [∂jϕ−1
· ∂kϕ

−1
+ ρ̂(h)(∂j ν̂ · ∂kϕ

−1
+ ∂k ν̂ · ∂jϕ

−1)+ ρ̂(h)2(∂j ν̂ · ∂k ν̂)](x)

is positive definite (cf. the proof of Lemma 3.2 in [EsSi97a]). Thus, the generation property of P(ρ)
depends on a smallness assumption for ρ which can be made uniformly with respect to a uniformly
bounded C2-geometry of the family {Γ (t)}. Basically, three facts guarantee the generation property
of B(ρ)T (ρ)P (ρ) for ρ ∈ c2+ε(Γ ):

(i) ellipticity of P(ρ̂);
(ii) ellipticity of A(ρ);

(iii) positivity of Eb(ρ) · ν,

where Eb(ρ) defines the action of B(ρ) by B(ρ)w = Eb(ρ) · ∇w. Notice that the requirements (ii)
and (iii) are automatically fullfilled if θρ is a diffeomorphism—they do not need a further smallness
assumption for ρ. A few more details about this are given in [Li2009].

The sufficiency of (i)–(iii) may be deduced from a careful study of Lemmata 5.1, 5.2 and
estimates (5.6), (5.7) in [EsSi97a]. More details are given in [EsSi97b], [EsSi95]. That is why we
do not have to worry about (i)–(iii) when choosing the number a0 in the proof of the preceding
theorem.

Proof of Corollary 1.3. First observe that u = v ≡ c. We have

d
dt

vol(t) =
∫
Γ (t)

V (t) dx = −
∫
Γ (t)

pν(t, x) dσ(x) = −
∫
Ω(t)

∆p(t, x) dx

=

∫
Ω(t)

f (v(t, x)) dx = −α0 vol(t).

Thus, if t+ = ∞, then vol(Ω(t))→ 0 as t → ∞, thus A(Γ (t))→ 0: Indeed, if not, there would
be a ball B ⊂ Ω̄(t) for all t ∈ [0, t+) and vol(Ω(t)) > vol(B). Let us assume t+ < ∞, but
A(Γ (t)) > a0 and ‖∇p(t)‖C(Γ (t)) 6 C. From the corresponding a priori bounds for V and H (and
thus area(Γ (t)), since t+ <∞) it can be deduced that then

DM := sup
t

diam(Ω(t)) <∞.

Thus |p(t, x)| 6 C1(α0, a0,DM) (cf. Theorem 3.7 in [GilTru]). Moreover, observe that ∂ip(t)
is harmonic in Ω(t) for i = 1, . . . , n, meaning that

sup
t
|∇p(t, x)| 6 C2, x ∈ Ω(t),

with C2 = C2(C,DM) (cf. again Theorem 3.7 in [GilTru]), contradicting Theorem 1.2. This
completes the proof. 2
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