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In this paper, we propose a new scheme for anisotropic motion by mean curvature in R
d . The scheme

consists of a phase-field approximation of the motion, where the nonlinear diffusive terms in the

corresponding anisotropic Allen–Cahn equation are linearized in the Fourier space. In real space,

this corresponds to the convolution with a specific kernel of the form

K�;t .x/ D F
�1

h

e�4�2t�o.�/
i

.x/:

We analyse the resulting scheme, following the work of Ishii–Pires–Souganidis on the convergence of

the Bence–Merriman–Osher algorithm for isotropic motion by mean curvature. The main difficulty

here, is that the kernel K�;t is not positive and that its moments of order 2 are not in L1.Rd /. Still,

we can show that in one sense the scheme is consistent with the anisotropic mean curvature flow.
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1. Introduction and motivation

In the last decades, a lot of attention has been devoted to the motion of interfaces, and particularly

to motion by mean curvature. Applications concern image processing (denoising, segmentation),

material sciences (motion of grain boundaries in alloys, crystal growth), biology (modelling of

vesicles and blood cells). This paper is interested in numerical schemes for the anisotropic mean

curvature flow, that is, the “gradient flow” of an anisotropic perimeter

P�.˝/ D
Z

@˝

�ı�

n.x/
�

d� (1)

where n.x/ is the outer normal to @E at x and �ı is a convex, one-homogeneous surface tension

(the isotropic case corresponds to �ı.n.x// D jn.x/j D 1).

There is an important literature on numerical methods for the isotropic and anisotropic curvature

flows. These can be roughly classified into three categories: Parametric methods [7, 8, 23, 24], Level
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set formulations [19, 27, 35–37] or Phase field approaches [10, 17, 34, 38]. See for instance [24] for

a complete review and comparison between these three different strategies.

In this work, we will consider a new scheme, proposed in [14], based on a phase field

representation. It relies on the introduction of a specific anisotropic Laplacian (pseudo-differential)

operator, which can be used both in a standard phase-field approximation (an anisotropic Allen–

Cahn equation), or in a convolution/thresholding scheme [11, 32] which can be thought as a limiting

case of the Allen–Cahn equation. The basic idea in [11] is to alternate the diffusion (with the

heat equation) and the sharpening (by thresholding) of the characteristic functions of a set; [32]

study a more general variant where the diffusion is replaced with the convolution by quite general

kernels.

In the phase-field approach, anisotropic flows can be tackled either by a modified version of

the Bence–Merriman–Osher algorithm [11], where the heat equation is replaced with a nonlinear

variant built upon the anisotropy �ı [15], or by replacing the heat equation with the convolution with

a nonnegative, nonsymmetric kernel f as in [32]. However, in the latter case, the inverse problem of

finding an appropriate kernel f , given the anisotropy �ı, is solved only in 2D [41]. Some progress

was done recently in relating the convolution kernel with �ı in [22], but the inverse problem is still

considered untractable in higher dimension. In fact, it is not even clear that any anisotropy, even

smooth, can be obtained in the framework of [32].

The aim of this work is to study a simple construction, proposed in [14] of a kernel f for all

kind of anisotropy �ı in all dimension. This kernel can be seen as the fundamental solution of

the heat equation with a particular pseudo-differential operator which can be seen as an anisotropic

Laplacian. The most interesting feature of this approach is that the diffusion can be solved efficiently

using the Fourier Transform, as proposed in [16] for the isotropic Allen–Cahn equation (and as

can also be done for [32, 41]. A few numerical experiments with this approach have been already

shown in [14] with smooth, but also crystalline or even non-convex anisotropies. Although the

approach seems (numerically) to perform well in all these cases, a full justification is still missing.

The essential contribution of this paper is to extend the consistency proof (see Theorem (2)) of Ishii–

Pires–Souganidis in the case of our specific kernel, for smooth, uniformly elliptic anisotropies. The

main issue is that in this case, the kernel does not satisfy the assumptions which are needed in [32].

In particular, it is not even nonnegative, so that our scheme is non-monotone and a complete proof

of convergence is still missing.

In the next section, we introduce our notation and a precise framework. We give a short

introduction to level set formulations, phase field approximations and the Bence–Merriman–Osher

algorithm in the case of the isotropic and anisotropic mean curvature flow. Next, we introduce

our anisotropic heat kernel and establish some of its properties. Our main consistency result

(Theorem 2) is given in Section 4. We show the consistency of an anisotropic Bence–Merriman–

Osher scheme built upon that kernel. The last section shows numerical evidence of the convergence

of a slightly modified scheme, which corresponds to a splitting of the anisotropic Allen–Cahn

equation (hence the thresholding is replaced with a reaction term which only enhances the slope of

the diffuse interface). Computationally, the scheme proves very efficient and very fast, even when

the anisotropy is not smooth.

In comparison with other existing methods, our approach can be easily implemented: Contrarily

to methods based on a parametric representations, it does not require special care in handling

topological changes or in the case of 3D computations. Besides, it avoids direct discretization of

the non linear anisotropic Allen Cahn equation (e.g., by finite elements) [10, 38]. Indeed, in our
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approach the non linear diffusion operator is replaced by an approximate linear operator, whose

resolution can be easily performed by Fourier transform.

2. Preliminaries

2.1 Motion by isotropic mean curvature

The simplest case of motion by isotropic mean curvature concerns the evolution of a set ˝t �
R

d with a boundary �t of codimension 1, whose normal velocity Vn is proportional to its mean

curvature �

Vn.x/ D �.x/; a.e. x 2 �t ; (2)

with the convention that � is negative if ˝t is a convex set. It at t D 0 the initial set ˝0 is smooth,

then the evolution is well-defined until some time T > 0 when singularities may develop [2].

Viscosity solutions provide a more general framework, that defines evolution past singularities,

or evolution from non-smooth initial sets. If g is a level set function of ˝0, i.e.,

˝0 D
n

x 2 R
d I g.x/ 6 0

o

; �0 D
n

x 2 R
d I g.x/ D 0

o

;

and if u denotes the viscosity solution to the geometric evolution equation

(

ut D div
�

ru
jruj

�

jruj;
u.0; x/ D g.x/;

then the generalized mean curvature flow˝t starting from˝0 is defined by the 0-level set of u [20,

26, 27, 37]

˝t D
n

x 2 R
d I u.t; x/ 6 0

o

; @�t D
n

x 2 R
d I u.t; x/ D 0

o

:

Alternatively, one can define the motion by mean curvature as the limit of diffuse interface

approximations obtained by solving the Allen–Cahn equation

@u

@t
D �u� 1

�2

�

W 0.u/
�

; (3)

where � is a small parameter (that determines the width of the diffuse interface) and where W.s/ D
s2.1�s/2

2
is a double well potential. This equation can be viewed as a gradient flow for the energy

J�.u/ D
Z

Rd

�

�

2
jruj2 C 1

�
W.u/

�

dx:

Modica and Mortola [33, 34] have shown that J� approximates (in the sense of � - convergence) the

surface energy cW J where

J.˝/ D
Z

@˝

1 d� and cW D
Z 1

0

p

2W.s/ ds:

Existence, uniqueness, and a comparison principle have been established for (3) (see, for example,

Chapters 14 and 15 in [2] and the references therein).
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Let u� solve (3) with the initial condition

u�.x; 0/ D q
�d.x;˝0/

�

�

;

where d.x;˝/ denotes the signed distance of a point x to the set ˝ and where the profile q is

defined by

q D arg min

(

Z

R

�

1

2
 02 CW./

�

I  2 H 1
loc.R/; .�1/ D C1; .C1/ D �1; .0/ D 1

2

)

:

The set

˝t;� D
�

x 2 R
d I u�.x; t/ >

1

2

�

;

approximates˝.t/ at the rate of convergenceO.�2jlog �j2/ in the case of smooth motion by mean

curvature [9, 17].

In the case of generalized motion by mean curvature, convergence has been shown [3, 26]

provided that the interior of the set �t remains empty (i.e., no fatting occurs).

About numerical point of view, convergence has been established for a finite element method

in [39] and for a finite difference method in [18]. A splitting spectral Fourier method is also been

addressed in [14, 16].

The Bence–Merriman–Osher algorithm [11] is yet another approximation to motion by mean

curvature. Given a closed set E � R
d , and denoting �E its characteristic function, one defines

ThE D
�

x 2 R
d I u.x; h/ >

1

2

�

;

where u solves the heat equation

(

@u
@t
.x; t/ D �u.x; t/; t > 0; x 2 R

d ;

u.x; 0/ D �E .x/:

Setting Eh.t/ D T Œt=h�E , where Œt=h� is the integer part of t=h, Evans [25], and Barles and

Georgelin [4] have shown that Eh.t/ converges to Et , the evolution by mean curvature from E .

Remark also that this algorithm can be seen as a splitting algorithm for the Allen–Cahn equation in

the limited case � ! 0. See also [41] where an efficient numerical resolution is presented.

2.2 Motion by anisotropic mean curvature

We use the framework of the Finsler geometry as described in [10]. Let � W R
d ! Œ0;C1Œ denote

a strictly convex function in C 2.Rd n f0g/, which is 1-homogeneous and bounded, i.e.,

�

�.t�/ D jt j�.�/ � 2 R
d ; t 2 R;

�j�j 6 �.�/ 6 �j�j � 2 R
d ;

for two positive constants 0 < � 6 � < C1. We assume that its dual function �o W R
N !

Œ0;C1Œ, defined by

�o.��/ D sup f��:� I �.�/ 6 1g
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is also in C 2.RN n f0g//. Given a smooth set E and a smooth function u W R
d ! R such that

@E D
˚

x 2 R
d I u.x/ D 0

	

, we define

� the Cahn–Hoffman vector field n� D �o
�
.ru/,

� the �-curvature �� D div.n�/.

We say that E.t/ is the evolution from E by �-curvature, if at each time t , the normal velocity Vn

is given by

Vn D ���n� :

As in the case of isotropic flows, one can define motion by �-curvature using a level set formulation,

i.e., following the level lines of the solution to the anisotropic evolution equation

ut D �o.ru/ �o
��.ru/ W r2u: (4)

Existence, uniqueness and a comparison principle have been established in [5, 6, 19, 21]. The

anisotropic surface energy

J.˝/ D
Z

@˝

�o.n/ d�

can be approximated by the Ginzburg–Landau-like energy

J�;�.u/ D
Z

Rd

�

�

2
�o.ru/2 C 1

�
W.u/

�

dx;

and its gradient flow leads to the anisotropic Allen–Cahn equation [1]

@u

@t
D ��u � 1

�2
W 0.u/: (5)

The operator�� WD div
�

�o
�
.ru/�o.ru/

�

is called the anisotropic Laplacian.

This equation can be numerically solved by a semi finite elements method (see [38] for instance)

but the complexity of this algorithm is much greater than in the isotropic case because it needs a

resolution of a new linear system at each iteration in time.

The Bence–Merriman–Osher algorithm has also been extended to anisotropic motion by mean

curvature. One generalization was proposed by Chambolle and Novaga [15] as follows: Given a

closed set E , let Th.E/ D
˚

x 2 R
d I u.x; h/ >

1
2

	

, where u.x; t/ is the solution to

8

<

:

@u

@t
.x; t/ D ��u.x; t/; t > 0; x 2 R

d ;

u.x; 0/ D �E .x/:
(6)

Define then Eh.t/ D T
Œt=h�

h
E . The convergence of Eh.t/ to the generalized anisotropic mean

curvature flow from E is established in [15]. The result holds for very general anisotropic surface

tensions and even in the crystalline case. However, as for the phase field formulation, because of

the strongly nonlinear character of �� , the numerical resolution of (6) is much harder and not also

efficient than in the isotropic case.

Another generalization of the Bence–Merriman–Osher algorithm has been studied by Ishii, Pires

and Souganidis [32]. The main idea is to represent the solution u of (6) as the convolution of �E with

a geometric kernel. More precisely, Let f W R
d ! R be a function which satisfies the following

conditions
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.A1/ Positivity and symmetry:

f .x/ > 0; f .�x/ D f .x/; and

Z

Rd

f .x/dx D 1:

.A2/ Boundedness of the moments:

Z

Rd

jxj2f .x/dx < C1;

0 <

Z

p?

.1C jxj2/f .x/dH
d�1 < 1; for all p 2 S

d�1:

.A3/ Smoothness:

p !
Z

p?

f .x/dH
d�1 and p !

Z

p?

xixjf .x/dH
d�1 are continous on S

d�1:

Here p? denotes the orthogonal complement of the vector p, i.e,

p? D
˚

x 2 R
d I hx ; pi D 0

	

.

Given E � R
d , define ThE D

˚

x 2 R
d I u.x; h/ >

1
2

	

, where

u.x; h/ D
Z

Rd

QKh.y/ �E .y � x/ dy;

with the kernel

QKt .x/ D 1

td=2
f .

p
tx/; x 2 R

d :

They showed [32] that T
Œt=h�

h
E converges to the setE.t/ obtained fromE as the generalized motion

by anisotropic mean curvature via the geometric evolution equation

ut D F.D2u;Du/;

where

F.X; p/ D
�Z

p?

f .x/dH
d�1.x/

��1 �

�1
2

Z

p?

hXx ; xi f .x/dH
d�1.x/

�

:

This algorithm appears to be more efficient than the last one (with the non linear operator ��), but

raises a natural question: Given an anisotropy �o, can one find a kernel f , so that the generalized

front @E.t/ defined by the associated evolution equation evolves by �-mean curvature? This

problem has been addressed by Ruuth and Merriman [42] in dimension 2. They propose a class

of kernels and study the corresponding numerical schemes, which prove very efficient. However,

their approach cannot be generalized to higher dimensions. In contrast, our algorithm is not specific

to the dimension 2.
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2.3 A new algorithm for motion by anisotropic mean curvature

In this work, our objective is to extend Ishii–Pires–Souganidis’ analysis to study the following

algorithm. Starting from a bounded closed set E � R
d , we define an operator ThE by

ThE D
�

x 2 R
d I u.x; h/ >

1

2

�

; (7)

where u solves the following parabolic equation:

(

@u
@t
.x; t/ D Q��u.x; t/; t > 0; x 2 R

d ;

u.x; 0/ D �E .x/:
(8)

Denoting by F .u/ the Fourier transform of a function u,

F .u/.�/ D
Z

Rd

u.x/e�2�ix�� dx;

the operator Q�� is defined by

Q��u D F
�1

�

�4�2�o.�/2F .u/.�/
�

:

and can be seen as a linearization of�� in the Fourier space. The solution u of (8) can be expressed

as a convolution product of the characteristic function of E and of the anisotropic kernel

K�;t .x/ D F
�1

�

e�4�2t�o.�/2
�

.x/:

However, this kernel (more preciselyK�;tD1) does not satisfy the hypotheses .A1/ and .A2/ above:

K�;1 is not positive and x !
R

Rd jxj2K�.x/ is not in L1.R/. But we will show that the associated

Hamiltonian flow is

F.X; p/ D
�Z

p?

K�dH
d�1

��1 �

1

2

Z

p?

< Xx; x > K�.x/dH
d�1

�

D �o.p/�o
��.p/ W X;

which establishes a link betweenK� and �-anisotropic mean curvature flow.

3. The operator Q�� and properties of the anisotropic kernel K�

Let � D �.�/ denote a strictly convex smooth Finsler metric and let �o denote its dual (see [10]).

We assume that that �o is a 1-homogenous, symmetric function in C1.Rd n f0g/ that satisfies

�j�j 6 �o.�/ 6 �j�j: (9)

In particular, it follows that for any � 2 R
d and t 2 R,

8

ˆ

<

ˆ

:

�o.t�/ D jt j�o.�/;

�o
�
.t�/ D t

jt j�
o
�
.�/;

�o
�
.�/:� D �o.�/:
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The associated anisotropic mean curvature is defined as the anisotropic Laplacian operator

4�u D div
�

�o.ru/�o
� .ru/

�

; 8u 2 H 2.˝/:

A direct computation shows that for any � 2 R
d ,

(

4� Œcos.2��:x/� D �4�2�o.�/2 cos.2��:x/;

4� Œsin.2��:x/� D �4�2�o.�/2 sin.2��:x/;

i.e., that plane waves are eigenfunctions of the anisotropic Laplacian (albeit nonlinear). We define
Q4� W H 2.Rd / ! L2.Rd / by

Q4�u D F
�1

�

�4�2�o.�/2F Œu�.�/
�

:

Given an initial condition u0 2 L2.Rd /, we study the solution u of
(

ut .t; x/ D Q4�u.t; x/;

u.0; x/ D u0:

The function u can also be expressed as the convolution product u D K�;t � u0, where the

anisotropic heat kernelK�;t is defined by

K�;t D F
�1

h

e�4�2t�o.�/2
i

:

We also set K� D K�;1. In the rest of this section, we establish some properties of this operator.

PROPOSITION 1 (Regularity of OK�) The function OK� W � ! e�4�2�o.�/2
is in W dC1;1.Rd /, and

DdC2 OK� is a function.

Proof. First, we notice that

D OK�.�/ D �8�2�o
� .�/�

o.�/e�4�2�o.�/2

;

and

D2 OK�.�/ D 64�4�o.�/2
�

�o
� .�/˝ �o

� .�/
�

e�4�2�o.�/2

� 8�2
�

�o.�/�o
��.�/C �o

� .�/˝ �o
� .�/

�

e�4�2�o.�/2

:

We note that �o
�

is discontinuous at � D 0. Nevertheless, we next prove that the d � 1th derivative

of D2 OK� belongs to L1.Rd /d
2
. Assume that f D DnC2 OK� is an integrable function on R

d for

some integer n < d . The homogeneity of �o shows the existence of a constant Cn such that

jDnC2 OK�j 6 Cn

1

j�jn e
��j�j2 ; for all � 2 R

d n f0g:

Since f is smooth away from � D 0, the distributional derivative of f is the sum of a function and

of possibly a Dirac mass at � D 0 :

Df D frf g C c ı;
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where c is a constant and rf denotes the pointwise derivative of f . Let ' 2 D.Rd /d
nC2

and let

� > 0. Then

hDf ; 'i D � hf ; div'i D �
Z

Rd

f:div'dx

D �
Z

Rd nB.0;�/

f:div'dx �
Z

B.0;�/

f:div'dx

D
Z

Rd nB.0;�/

rf:'dx �
Z

@B.0;�/

f:.':En/d� �
Z

B.0;�/

f:div'dx:

Since we assumed that f 2 L1.Rd /d
nC2

, the last integral above tends to 0, as � ! 0. Moreover as

n < d , we have
ˇ

ˇ

ˇ

ˇ

Z

@B.0;�/

f ':End�
ˇ

ˇ

ˇ

ˇ

6 k'kL1

Z

@B.0;�/

Cn

1

j�jn e
��j�j2d�

6 k'kL1Cn

Z

@B.0;�/

��nd� 6 Cnk'kL1�d�1�n;

so that

lim
�!0

ˇ

ˇ

ˇ

ˇ

Z

@B.0;�/

f ':End�
ˇ

ˇ

ˇ

ˇ

D 0:

It follows that c D 0, which concludes the proof.

PROPOSITION 2 (Decay properties ofK�) Let s 2 Œ0; 1Œ. There exists a constant C�o;s, which only

depends on the anisotropy �o and on s, such that

jK�.x/j 6
C�o;s

1C jxjdC1Cs
; 8x 2 R

d : (10)

REMARK 1 The case s D 0 is easy: According to Proposition 1, the function 4 dC1
2 OK�.�/ is in

L1.Rd /. The continuity of the Fourier transform from L1 to L1 shows that

k.1C jxjdC1/K�kL1 6 Ck OK�.�/C 4 dC1
2 OK�.�/kL1.Rd /;

and since OK�.�/ D e�4�2�o.�/2
,

jK�.x/j 6
C�o;0

1C jxjdC1
; 8x 2 R

d :

The proof uses properties of interpolation spaces [12]. Consider X , Y two Banach spaces, and for

u 2 X C Y and t 2 R
C, let

k.t; u/ D inf
uDu0Cu1

fku0kX C tku1kY g :

For s 2 Œ0; 1� and p > 1, the interpolation space ŒX; Y �s;p between X and Y is defined by

ŒX; Y �s;p D
�

u 2 X C Y I t�sK.t; u/ 2 Lp

�

1

t

��

:
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In particular, given a strictly positive function h W R
d ! R, consider the weighted spaceL1

h
defined

by

L1
h .R

d / D
˚

u 2 L1.Rd /I sup
x2Rd

fh.x/u.x/g < 1
	

:

One can interpolate between L1 and L1
h

according to the following lemma.

LEMMA 1 Let h be a strictly positive function R
d ! R, and let s 2�0; 1Œ. Then

�

L1.Rd /; L1
h .R

d /
�

s;1 D L1
hs .R

d /:

Proof. 1) Assume that u 2 L1
hs .R

d /. There exists a constant C such that for a.e. x 2 R
d ,

ju.x/j 6
C

h.x/s
: (11)

To estimate k.t; u/ D infuDu0Cu1

˚

ku0kL1 C tku1kL1
h

	

, we note that

� If t > 1, the choice u0 D u and u1 D 0, shows that K.t; u/ 6 kukL1 .

� If t < 1, we consider the set A D
˚

x 2 R
d I ju.x/jh.x/ 6 ts�1

	

, and we choose u0 D
�Ac u and u1 D �A u, so that ku1kL1

h
6 ts�1. Moreover, we remark that for all x 2 Ac ,

ju.x/jh.x/ > ts�1 so that, in view of (11),

ju0.x/j 6 Ch.x/�s
6 C ju0.x/jsts.1�s/;

and thus k.t; u/ 6 .C C 1/ts .

In summary, these estimates show that

K.t; u/ 6

(

kukL1 if t > 1;

.C C 1/ts if t < 1;

which proves that u 2 ŒL1; L1
h
�s;1.

2) Conversely, we consider u 2 ŒL1; L1
h
�s;1. For all t > 0, there exists a decomposition u D

u0;t C u1;t such that

ju0;t jL1 C t ju1;t jL1
h

6 C ts :

It follows that for all t > 0, we have

h.x/s ju.x/j 6 jh.x/s ju0;t .x/C u1;t .x/j 6 C
�

h.x/sts C h.x/s�1ts�1
�

:

Choosing t D h.x/�1 in the above inequality shows that for all x 2 R
d , h.x/s ju.x/j 6 2C , which

concludes the proof.

We use the following properties of interpolation spaces:

.P1/ if T is continuous from X ! QX and from Y ! QY , then T is continuous from ŒX; Y �s;p to

Œ QX; QY �s;p.

.P2/ if p < p0, then ŒX; Y �s;p � ŒX; Y �s;p0 for any 0 < s < 1 and p > 1.

.P3/ ŒL
1.Rd /; L1

.1Cjxj/.R
d /�s;1 D L1

.1Cjxj/s .R
d / for any 0 < s < 1.
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In the following, we consider the case where T is the Fourier transform, X D L1.Rd /, Y D
L1.Rd /, QX D W 1;1.Rd / and QY D L1

.1Cjxj/.R
d /.

Proof of Proposition 2. We claim that it suffices to show that for any 0 < s < 1

u.�/ WD 4 dC1
2 OK�.�/ 2 ŒX; Y �s;1: (12)

Indeed, the inclusion ŒX; Y �s;1 � ŒX; Y �s;1 implies then that u 2 ŒX; Y �s;1, so that in view of .P1/

and .P3/ we obtain

Ou 2 Œ QX; QY �s;1 D ŒL1.Rd /; L1
.1Cjxj/.R

d /�s;1 D L1
.1Cjxj/s .R

d /;

and consequently

j.1C jxjs/ Ou.x/j D j.1C jxjdC1/K�.x/.1C jxj/sj 6 C�o;s ; for all x 2 R
d :

It follows that for some constant C�o;s

jK�.x/j 6
C�o;s

1C jxjdC1Cs
; for all x 2 R

d :

We now prove (12). The homogeneity of �o shows that for some c1 > 0 and c2 > 0, and for

� 2 R
d n f0g,

ju.�/j 6
c1

j�jd�1
e��j�j2 and jru.�/j 6

c2

j�jd e
��j�j2 ;

which shows that u 2 X D L1.Rd /. However, u may not belong to Y D L1.Rd /. We now

estimate k.u; t/, for t 2 R
C. If t > 1, we set u0 D u, u1 D 0, so that

k.t; u/ 6 kukX ; 8t > 1: (13)

If t < 1, consider the function �t .�/ defined by

�t .�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if jxj 6 t;

1 if jxj > 2t;
sin

�

�
2

j�j�t
t

�

otherwise:

We choose u0 D .1 � �t /u and u1 D �tu and check that

ju0jL1.Rd / 6

Z

B.0;2t/

ju.�/jd� 6

Z

B.0;2t/

C

j�jd�1
d� 6 2C jSd jt:

Moreover,

kru1kL1.Rd / 6 kr�tuC �t rukL1.Rd /

6

Z

Rd nB.0;t/

jr�t ju.�/d� C
Z

Rd nB.0;t/

jru.�/jd�

6
�

2t

Z

B.0;2t/nB.0;t/

C

j�jd�1
e��j�j2d� C

Z

Rd nB.0;t/

C

j�jd e
��j�j2d�:
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First, we have

�

2t

Z

B.0;2t/nB.0;t/

C

j�jd�1
e��j�j2d� 6

C�

2t
jSd j

Z 2t

t

dr 6
jSd jC�
2

:

Second,
Z

Rd nB.0;t/

C

j�jd e
��j�j2d� 6

Z

B.0;1/nB.0;t/

C

j�jd e
��j�j2d� C

Z

Rd nB.0;1/

C

j�jd e
��j�j2d�

6 C jSd j
Z 1

t

1

r
dr C C jSd j

Z 1

1

e��r2

dr

6 C jSd j
�

j ln.t/j C 1p
�

p
�

2

�

;

so that

ku1kY 6 C

�

jSd j
�

�

2
C 1p

�

p
�

2
C j ln.t/j

��

:

Consequently, this decomposition of u shows that

k.u; t/ 6 C.1C j ln.t/j/t; 8t < 1; (14)

for some constant C > 0. In summary,

k.u; t/ 6

(

kukX if t > 1;

C.1C j ln.t/j/t if t < 1;

and therefore we obtain

kt�s k.t; u/k1
L1.1=t/

D
Z

RC

jk.t; u/t�s j1
t
dt

6

Z 1

0

.C0 C C1j ln.t/j/
ts

dt C
Z 1

1

kuk1
X

t1Cs
dt < C1;

which proves that u 2 ŒX; Y �s;1 as claimed.

COROLLARY 1 For any s 2 Œ0; 1Œ and p 2 Sd ,

jxj1CsK� 2 L1.Rd /;
�

K�

�

jp? 2 L1.Rd�1/;
�

x ˝ xK�

�

jp? 2 L1.Rd�1/:

PROPOSITION 3 (Decay of averages of K� on spheres) The integral

I.R/ D
Z

@B.0;R/

K�dH
d�1

is strictly positive, and decays rapidly as

Rd�1jSd�1j
.4�/d=2�d

e
� R2

4�2 6 I.R/ 6
Rd�1jSd�1j
.4�/d=2�d

e
� R2

4�2 ;

where � and � are bounds for �o as in (9).
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Proof. Since the measure � WD ı@B.0;R/ has finite mass, its Fourier transform is the continuous and

bounded function

O�.�/ D
Z

Rd

e�2�ix��d� D
Z

@B.0;R/

e�2�ix�� :

As � is radially symmetric, O� can be expressed in the form

O�.�/ D Rd�1J.Rj�j/;

where J is a function R
C ! R. It follows that

I.R/ D
˝

ı@B.0;R/ ; K�

˛

D
D

Rd�1J.Rj�j/ ; e�4�2�o.�/2
E

D Rd�1

Z

Sd�1

Z C1

0

rd�1J.Rr/e�4�2�o.�/2r2

drdH
d�1: (15)

We use the particular case when �o.�/ is isotropic, i.e., �o.�/ D j�j to estimate the previous integral.

In this case, K� D 1

.4�/d=2 e
� x2

4 is the heat kernel, and by a direct calculation we see that the

corresponding integral is I.R/ D< ıB.0;R/; K� >D Rd�1jSd�1 j
.4�/d=2 e� R2

4 . Comparing this expression

to (15) and using the radial symmetry of K� shows that

Z C1

0

rd�1J.Rr/e�4�2r2

dr D 1

.4�/d=2
e� R2

4 ;

or, after a change of variable, that

Z C1

0

rJ.Rr/e�4�2�o.�/2r2

dr D 1

.4�/d=2�o.�/d
e

� R2

4�o.�/2 : (16)

Returning to a general kernel K� , we deduce from (15) and (16) that

I.R/ D Rd�1

.4�/d=2

Z

Sd�1

1

�o.�/d
e

� R2

4�o.�/2 dH
d�1;

which in view of (9) concludes the proof.

PROPOSITION 4 (Positivity on hyperplanes) For all p 2 S
d�1, the integral

R

p? K�dH
d�1 is well

defined, and satisfies
Z

p?

K�dH
d�1 D 1

2
p
��o.p/

:

In particular, we have
1

2
p
��

6

Z

p?

K�dH
d�1

6
1

2
p
��

:

Proof. Let p 2 S
d�1. We already know from Corollary 1 that

R

p? K�dH
d�1 is well defined.

Consider for � > 0, the approximating functions f�, defined by

(

f�.x/ D K�.x/e
��jxj2=�2

;

Of�.�/ D e�4�2�o.�/2 � 1
�2 e

���2j�j2 :
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The function f� belongs to the Schwartz space S.Rd /. Moreover, Of� ! OK� in W d�1;1.Rd /, and

the trace theorem [31] shows that one also has

lim
�!1

Z

R

Of�.sp/ds D
Z

R

OK�.sp/ds: (17)

On the other hand, it follows from the Lebesgue dominated convergence theorem and from (10) that

lim
�!1

Z

p?

f�dH
d�1 D

Z

p?

K�dH
d�1: (18)

As f� 2 S.Rd /, we infer that

Z

p?

f�dH
d�1 D

˝

ıp? ; f�

˛

D
˝

ıp ; F
�

f�

�˛

D
Z

R

Of�.sp/ds;

so that (17) and (18) yield
Z

p?

K�dH
d�1 D

Z

R

OK�.sp/ ds D
Z

R

e�4�2s2�o.p/2

ds

D
Z

R

e��.2
p

��o.p/s/
2

ds D 1

2
p
��o.p/

;

which concludes the proof.

PROPOSITION 5 (Moments of order 2) Let p 2 S
d�1. Then 1

2

R

p? x ˝ xK�dH
d�1 is well defined

and satisfies
1

2

Z

p?

x ˝ xK�dH
d�1 D �o

��.p/
1

2
p
�
:

Proof. Corollary 1 states that the integral
R

p? jxj2K�dH
d�1 is well defined. Recalling the sequence

f� used in the previous proposition, we observe that D2 Of� ! D2 OK� in W d�1;1.Rd /, so that the

trace theorem implies

lim
�!1

Z

R

D2 Of�.sp/ds D
Z

R

D2 OK�.sp/ds: (19)

From Proposition 2 and the Lebesgue dominated convergence, we obtain

lim
�!1

Z

p?

x ˝ x f�.x/ dH
d�1 !

Z

p?

x ˝ x K�.x/ dH
d�1: (20)

Moreover, we have
Z

p?

x ˝ xf�.x/dH
d�1 D

˝

ıp? ; x ˝ xf�

˛

D � 1

4�2

D

ıp ; D
2 Of�

E

D � 1

4�2

Z

R

D2 Of�.sp/ds;

so that in view of (19)
Z

p?

x ˝ xK�.x/dH
d�1 D � 1

4�2

Z

R

D2 OK�.sp/ds:
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We next estimate the above right-hand side by a direct calculation:

� 1

4�2

Z

R

D2 OK�.sp/ ds D
h

2�o.p/�o
��.p/C 2�o

� .p/˝ �o
� .p/

i

Z

R

e�4�2s2�o.p/2

ds

�
h

2�o
� .p/˝ �o

� .p/
i

Z

R

8�2s2�o.p/2e�4�2s2�o.p/2

ds:

Further, we see by integration by parts that

Z

R

8�2s2�o.p/2e�4�2s2�o.p/2

ds D
Z

R

n

4�22s�o.p/2e�4�2s2�o.p/2
o

fsg ds

D
Z

R

e�4�2s2�o.p/2

ds D 1

2
p
��o.p/

;

and we conclude that
1

2

Z

p?

x ˝ xK�.x/dH
d�1 D �o

��.p/
1

2
p
�
:

COROLLARY 2 (The operator F.X; p/) Given X 2 R
d�d and p 2 S

d�1, let

F.X; p/ D
�Z

p?

K�.x/dH
d�1

��1 �

1

2

Z

p?

< Xx; x > K�.x/dH
d�1

�

: (21)

This operator is elliptic and satisfies

F.X; p/ D �o.p/�o
��.p/ W X: (22)

Proof. Equation (22) is a direct consequence of Propositions 4 and 5, while the ellipticity of F

follows from the convexity of �o.

REMARK 2 In the next section, we introduce an algorithm for motion by anisotropic mean

curvature, and show its consistency with an evolution equation of the form ut D �F.D2u;
ru

jruj /,
where F is defined by (21). The expression (22) shows that this operator is precisely the one

corresponding to motion by anisotropic mean curvature (see [10]).

PROPOSITION 6 (Positivity of order moment s) Let V be a subspace of R
d of dimension 1 6 m 6

d , and let 0 < s < 2. Then
Z

V

jxjsK�dH
m > 0:

Proof. We first consider the case m D d and V D R
d . we consider the finite part Pf

�

1
jxjdCs

�

as

a temperate distribution, defined for ' 2 S.Rd / by

�

Pf

�

1

jxjdCs

�

; '

�

D lim
�!0

�Z

Rd nB.0;�/

'.x/ � '.0/

jxjdCs
dx

�

:
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This function happens to be the Fourier transform of the distribution jxjs . More precisely,

F Œjxjs� D Cs;dPf

�

1

j2��jdCs

�

; with Cs;d D 2sCd�d=2� ..s C d/=2/

� .�s=2/ (23)

(see for instance [30], � denotes the Gamma function). We can thus write

Z

Rd

jxjsK� dx D
˝

jxjs ; K�

˛

D
�

Cs;dPf

�

1

j2��jdCs

�

; e�4�2�o.�/2

�

(24)

D Cs;d lim
�!0

Z

Rd nB.0;�/

e�4�2�o.�/2 � 1

j2��jdCs
> 0; (25)

a strictly positive quantity, in view of the sign of Cs;d .

Suppose now thatm < d and consider the subspace V D Vectfe1; : : : ; emg. We write x D .x0; x00/,
� D .� 0; �prime0/, with x0; � 0 2 V . A straightforward computation shows that

Z

V

jx0jsK� dH
m D

˝

jx0js ; K�.x
0; 0/

˛

D0.Rm/;D.Rm/

D
D

H
d�m
xf�00D0g ˝ jx0js ; K�.x

0; x00/
E

D0.Rd /;D.Rd /

D
�

Cs;mPf

�

1

j2�� 0jmCs

�

; h.� 0/

�

D0.Rm/;D.Rm/

;

where the function h W R
m ! R is defined by

h.� 0/ D
Z

Rd�m

e�4�2�o..�0;�00//2

d� 00:

The next lemma states that h is C 1 and maximal at � 0 D 0, which in view of (23) and of the sign of

Cs;m concludes the proof.

LEMMA 2 The function h W R
m ! R, defined by

h.� 0/ D
Z

Rd�m

e�4�2�o..�0;�00/2

d� 00

is C 1, with fast decay as j� 0j ! 1, and is maximal at � 0 D 0.

Proof. Recalling (9), we first remark that

e�4�2�o.�0;�00/
2

6 e�4�2�2j�j2
6 e�4�2�2j�0j2 ;

so that the functions � 0 ! e�4�2�o.�0;�00/
2

and their derivatives are uniformly bounded in

L1.Rd�m/. The C 1 regularity of h is thus a consequence of the Lebesgue theorem. The above

estimate also shows that

jh.� 0/j 6

Z

Rd�m

e�4�2�2.�2
1

C�2
2

C:::C�2
d

/d�mC1 : : : d�d 6
1

2�m
p
�

m e
�4�2�2�02

:
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�2

�1

A�1;�

A0;�

A�1;�

B
�0;�

FIG. 1.

To determine the maximal value of h, we consider the setsA�0;t , defined for all � 0 2 R
m and t 2�0; 1Œ

by

A�0;t D
n

� 00 2 R
d�m I e�4�2�o..�0;�00//2

> t
o

:

Fix � 0
0 2 R

m. The set A�0
0

;t can be defined as the intersection of the hyperplane
˚

� 2 R
d I � 0 D � 0

0

	

with the Frank shape

B�o;t D
�

� 2 R
d I �o.�/ 6

1

2�

p

� ln.t/

�

:

The set B�o;t is convex since �o is convex. Moreover, from the symmetry of �o, (�o.�/ D �o.��/),
we have

jA�0
0

;t j D jA��0
0

;t j:
Next, let

QA�0
0

;t D 1

2

�

A�0
0

;t C A�0
0

;t

�

D
�

� 00 2 R
d�m I 9.� 00

1 ; �
00
2 / 2 A�0

0
;t � A��0

0
;t ; � 00 D 1

2

�

� 00
1 C � 00

2

�

�

:

We remark that the convexity of �o implies that QA�0
0

;t � A0;t . Indeed, let � 00 2 QA�0
0

;t ,

�o
�

.0; � 00/
�

D �o

�

1

2

�

.� 0
0; �

00
1 /C .�� 0

0; �
00
2 /

�

�

6
1

2

�

�o
�

.� 0
0; �

00
1 /

�

C �o
�

.�� 0
0; �

00
2 /

��

6
1

2�

p

� ln.t/;

so that e�4�2�o..0;�00//
2

> t , i.e., � 00 2 A0;t . Invoking the Brunn–Minkowski inequality, we obtain

j QA�0
0

;t j1=.d�m/ D 1

2
jA�0

0
;t C A��0

0
;t j1=.d�m/ (26)

>
1

2

�

jA�0
0

;t j1=.d�m/ C jA��0
0

;t j1=.d�m/
�

> jA�0
0

;t j1=.d�m/; (27)
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and finally that,

jA0;t j > j QA�0
0

;t j > jA�0
0

;t j:
As this equality holds for any � 0

0 2 R
m, it follows that h is maximal at � 0 D 0.

4. The Bence–Merriman–Osher-like algorithm

Barles and Souganidis [6] have studied the convergence of a general approximation scheme to

viscosity solutions of nonlinear second-order parabolic PDE’s of the type

ut C F.D2u;Du/ D 0: (28)

The main assumption on the function F is its ellipticity, i.e., F satisfies

8 p 2 R
d n f0g;8X; Y 2 Md�d

s ; X 6 Y ( F.X; p/ 6 F.Y; p/: (29)

Let BUC.Rd / denote the space of bounded uniformly continuous functions on R
d . Thus, Barles

and Souganidis study a family of operatorsGh W BUC.Rd / ! BUC.Rd / for h > 0, which satisfy,

for all u; v 2 BUC.Rd /:

� Continuity

8 c 2 R; Gh.uC c/ D Ghu; (30)

� Monotonicity

u 6 v ( Ghu 6 Ghv C o.h/; (31)

(see Remark 2.1 in [6])

� Consistency

8 ' 2 C1.Rd /;

(

limh!0 h
�1

�

Gh.'/ � '
�

.x/ 6 �F�
�

D2'.x/;D'.x/
�

;

limh!0 h
�1

�

Gh.'/ � '
�

.x/ > �F ��

D2'.x/;D'.x/
�

:
(32)

For all T > 0 and for all partitions P D fO D t0 < : : : < tn D T g of Œ0; T �, one can then define a

sequence of functions uP W R
d � Œ0; T � ! R by

uP .:; t/ D
(

Gt�ti .uP .:; ti // if t 2 .ti ; tiC1�;

g if t D 0:
(33)

If additionally the following condition holds,

� Stability

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

there exists ! 2 C.Œ0;1�; Œ0;1�/; independent of P and depending

on g only through the modulus of continuity of g;

such that !.0/ D 0 and for all t 2 Œ0; t �;
kuP .:; t/ � gkL1 6 !.t/;

(34)

then the following theorem holds [6]:
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THEOREM 1 Assume that Gh W BUC.Rd / ! BUC.Rd / satisfies (30), (31), (32), and (34) for all

T > 0, g 2 BUC.Rd / and all partitions P of Œ0; T �. Then, uP defined in (33) converges uniformly

in R � Œ0; T � to the viscosity solution of (28).

This result was used by H. Ishii, G. Pires and P. E. Souganidis in [32] to study anisotropic mean

curvature flow. These authors introduce a kernel f , which satisfies:

(H1) f .x/ > 0; f .�x/ D f .x/ for all x 2 R
d ; and

R

Rd f .x/dx D 1,

(H2)
R

p?.1C jxj2/jf .x/jdH
d�1 < 1 for all p 2 S

d�1,

(H3)

(

the functions p ! R

p? f .x/dH
d�1 p ! R

p? xixjf .x/dH
d�1;

1 6 i; j 6 d; are continuous on S
d�1;

(H4)
R

Rd jxj2jf .x/jdx < 1,

(H5) For all collections fR.�/g0<�<1 � R such that R.�/ ! 1 and �R.�/2 ! 0 as � !
0, and for all functions g W R

d�1 ! R of the form g.�/ D a C hA� ; �i where a 2 R and

where A is a symmetric matrix,

lim
�!0

sup
U 2O.d/

sup
0<r<�

ˇ

ˇ

ˇ

ˇ

Z

B.0;R.�//

fU .�; rg.�//g.�/d� �
Z

Rd�1

fU .�; 0/g.�/d�

ˇ

ˇ

ˇ

ˇ

D 0;

where O.n/ denotes the group of d � d orthogonal matrices, and where fU W R
d ! R is

defined for all U 2 O.d/ by fU .x/ D f .U �x/.

Theorem 1 has been applied to schemes for anisotropic mean curvature motion (see Theorem 3.3

in [32]) with Gh defined by

Gh	.x/ D sup f� 2 R I Sh1l	>�.x/ > �hg (35)

D inf f� 2 R I Sh1l	>�.x/ < �hg ; (36)

where

Shg.x/ D h�d=2f .:=
p
h/ � g.x/ D h�d=2

Z

Rd

f .y=
p
h/g.x � y/ dy; �h D 1

2
C c

p
h;

and where F.X; p/ is given by

F.X; p/ D �
�Z

p?

f .x/dH
d�1.x/

��1 �

1

2

Z

p?

hXx ; xif .x/dH
d�1.x/C cjpj

�

(the last term in this integral models a forcing term).

In this section, we follow the proof in [32] to show a consistency result in our case when f is a

non positive kernel and does not have moments of order two (i.e., x ! jxj2f .x/ … L1.Rd /). We

introduce two operatorsGC
h

and G�
h

defined by

GC
h
	.x/ D sup f� 2 R I Sh1l	>�.x/ > �hg ; (37)

G�
h 	.x/ D inf f� 2 R I Sh1l	>�.x/ < �hg ; (38)

which are not necessarily equal as our kernel is not being nonnegative. To adapt these results to our

context we modify the assumptions .H1/, .H4/ and .H5/ as follows
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.H 0
1/

R

p? f .x/dH
d�1 > 0 for all p 2 S

d�1; f .�x/ D f .x/ and
R

Rd f .x/dx D 1;

.H 0
4/

R

Rd jxj2��jf .x/jdx < 1 for 0 < � < 2;

.H 0
5/ Assume that � 2�0; 1=2�. Then for all collections fR.�/g0<�<1 � R such that R.�/ ! 1

and �R.�/2�� ! 0 as � ! 0, and for all functions g W R
d�1 ! R of the form g.�/ D

aC hA� ; �i where a 2 R and where A is a symmetric matrix,

lim
�!0

sup
U 2O.d/

sup
0<r<�

ˇ

ˇ

ˇ

ˇ

Z

B.0;R.�//

fU .�; rg.�//g.�/d� �
Z

Rd�1

fU .�; 0/g.�/d�

ˇ

ˇ

ˇ

ˇ

D 0;

lim
�!0

sup
U 2O.d/

sup
0<r<�

ˇ

ˇ

ˇ

ˇ

Z

B.0;R.�//

jfU .�; rg.�//j g.�/d� �
Z

Rd�1

jfU .�; 0/j g.�/d�
ˇ

ˇ

ˇ

ˇ

D 0:

In this last statement, B.0;R.�// denotes the .n � 1/-dimensional ball, centered at 0 and of radius

R.�/.

4.1 K� satisfies .H2;H3/ and .H 0
1;H

0
4;H

0
5/

We remark that OK�.�/ D OK�.��/ and F .K�/.0/ D 1, so that

K�.�x/ D K�.x/ for all x 2 R
d ; and

Z

Rd

K�.x/dx D 1:

Moreover, Proposition 4 shows that

Z

p?

K�.x/dH
d�1

>
1

.4�/d=2�d
> 0 for all p 2 S

d�1;

so that .H 0
1/ is satisfied. Propositions 4 and 5 also imply that K� satisfies .H2/, i.e.,

Z

p?

.1C jxj2/jK�.x/jdH
d�1 < 1 for all p 2 S

d�1: (39)

Concerning .H3/, we note that

1

2

Z

p?

x ˝ xK�.x/dH
d�1 D 1

2
p
�
�o

��.p/;

and that
Z

p?

K�dH
d�1 D 1

2
p
��o.p/

:

Since �o is smooth on R
d n f0g and positive (in particular �o

> � on Sd ) we see that the functions

p !
Z

p?

K�.x/dH
d�1 p !

Z

p?

xixjK�.x/dH
d�1; 1 6 i; j 6 d;

are continuous on Sd .
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We next prove that if 0 < � < 2, then

Z

Rd

jxj2��jf .x/jdx < 1:

Indeed, Proposition 2 with s D 1 � �=2 shows that

Z

Rd

jxj2��jf .x/j dx 6

Z

Rd

C�o;sjxj2��

1C jxjdC1C.1��=2/
dx 6

Z

Rd

C

1C jxjdC�=2
dx

6 C jSd j
Z 1

0

1

.1C r1C�=2/
dr < 1;

for some generic constant C .

It remains to prove .H 0
5/: Let 0 < � < 1=2 and let R W R

C �! R
C such that, as � ! 0,

R.�/ ! 1 and �R.�/2�� ! 0. Setting fU .x/ D K�.U
�x/, we consider

Z

Rd�1

ˇ

ˇ

�

fU . Qx; rg. Qx//1lB.0;R.�//. Qx/ � fU . Qx; 0/
�

g. Qx/
ˇ

ˇ d Qx

6

Z

B.0;R.�//c

jfU . Qx; 0/j jg. Qx/jd Qx C
Z

B

�

0;R.�/
2��

2

� j.fU . Qx; rg. Qx// � fU . Qx; 0// g. Qx/jd Qx

C
Z

B.0;R.�//nB

�

0;R.�/
2��

2

�

ˇ

ˇ .fU . Qx; rg. Qx// � fU . Qx; 0// g. Qx/
ˇ

ˇd Qx: (40)

From the decay assumptions on K� (see Proposition 2) we have

jfU . Qx; rg. Qx//g. Qx/j 6
C

1C j Qxjd�1Cs
;

where C does not depend on U and r . Then, it holds that

Z

B.0;R.�//c

jfU . Qx; 0/g. Qx/j d Qx 6 C

Z

B.0;R.�//c

1

1C j Qxjd�1Cs
d Qx

6 C jSd�1j
Z 1

R.�/

1

1C jr j1Cs
dr

6 C jSd�1jR.�/�s;
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and

Z

B.0;R.�//nB

�

0;R.�/
2��

2

�

ˇ

ˇ

ˇ

�

fU . Qx; rg. Qx// � fU . Qx; 0/
�

g. Qx/
ˇ

ˇ

ˇ
d Qx

6 2C

Z

B.0;R.�//nB

�

0;R.�/
2��

2

�

1

1C j Qxjd�1Cs
d Qx

6 2C jSd�1j
Z R.�/

R.�/
2��

2

1

1C jr j1Cs
dr

6 C jSd�1j
�

R.�/
�.2��/s

2 �R.�/�s
�

;

and implies that the first and the third term in (40) converge to 0 uniformly with respect to U and r

as � ! 0. Moreover, using smoothness property of K� (C1.Rd /), we have

ˇ

ˇrfU . Qx; rg. Qx//
ˇ

ˇ

ˇ

ˇg. Qx/
ˇ

ˇ 6

QC
1C j Qxjd�1Cs

2 L1.Rd�1/;

uniformly on U and r , and with r < �,

Z

B
�

0;R.�/
2��

2

�

ˇ

ˇ

�

fU . Qx; rg. Qx// � fU . Qx; 0/
�

g. Qx/
ˇ

ˇd Qx

6 rR.�/2��

Z

B
�

0;R.�/
2��

2

�

n

sup
U 2O.d/

sup
06s6rg. Qx/

fj@xn
fU . Qx; s/g. Qx/jg

o

d Qx

6 C�R.�/2��;

for some generic constant C .

We conclude that

lim
�!0

sup
U 2O.d/

sup
0<r<�

ˇ

ˇ

ˇ

ˇ

Z

B.0;R.�//

fU . Qx; rg. Qx//g. Qx/ d Qx �
Z

Rd�1

fU . Qx; 0/g. Qx/ d Qx
ˇ

ˇ

ˇ

ˇ

D 0:

The second statement in .H 0
5/ is established similarly.

4.2 The consistency proof

THEOREM 2 Let ' 2 C 2.Rd /. For all z 2 R
d and � > 0, there exists ı > 0 such that for all

x 2 B.z; ı/ and h 2 .0; ı�, if r�.x/ ¤ 0 we have

G�
h '.x/ 6 '.x/C

�

� F.D2'.z/;D'.z//C �
�

h;

GC
h
'.x/ > '.x/C

�

� F.D2';D'.z// � �
�

h:

Proof. We closely follow the argument in [32].

1. We only prove the first inequality. The other one is obtained similarly.
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2. Without loss of generality, we can assume that z D 0. Let us fix a 2 R, such that

a > �F
�

D2'.0/;D'.0/
�

:

The inequality is proved if we can exhibit a ı > 0 such that, for all x 2 B.0; ı/ and h 2 .0; ı�,

Sh1l'>'.x/Cah.x/ < �h:

3. Fix ı1 > 0, such that D' ¤ 0 on B.0; ı1/ and choose a continuous family fU.x/gx2B.0;ı1/ �
O.d/, such that for all x 2 B.0; ı1/,

U.x/

�

D'.x/

jD'.x/j

�

D ed ;

where ed denotes the unit vector with components .0; 0; : : : ; 0; 1/ 2 R
d . Note that if x 2 B.0; ı1/,

then

Sh1l'>'.x/Cah D
Z

Rd

fU.x/.y/1l'>'.x/Cah

�

x �
p
hU.x/�y

�

dy:

4. Choosing ı smaller if necessary, .H 0
1/ implies the inequality

a > �F.D2';D'/ in B.0; ı1/;

or in other words,

1

2

Z

Rd�1

˝

P �U.x/D2'.x/U.x/�P� ; �
˛

fU.x/.�; 0/d� � a
Z

Rd�1

fU.x/.�; 0/d�

< �cjD'.x/j; (41)

where P denotes the d � .d � 1/ matrix with components Pij D ıij .

5. We next fix � > 0, and ı2 2 .0; ı1Œ, such that for all x 2 B.0; ı2/,

1

2

Z

Rd�1

˝

P �U.0/.D2'.0/C 3�2I /U.0/�P� ; �
˛

fU.x/.�; 0/d�

� .a � �2/

Z

Rd�1

fU.x/.�; 0/d� < �.� C �/jD'.0/j:

6. The Taylor theorem yields a  > 0 such that for all h > 0, y 2 R
d , and x 2 B.0; ı2/, ifp

hjyj 6  , then

'.x �
p
hU.x/�y/ 6 '.x/ �

p
h hD'.x/ ; U.x/�yi

C h

2

˝

U.x/.D2'.x/C �2I /U.x/�y ; y
˛

6 '.x/ �
p
hjD'.x/jyd C Chy2

d

C h

2

˝

P �U.x/.D2'.x/C 2�2I /U.x/�Py0 ; y0˛ ;
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and

'.x �
p
hU.x/�y/ > '.x/ �

p
h hD'.x/ ; U.x/�yi

C h

2

˝

U.x/.D2'.x/ � �2I /U.x/�y ; y
˛

> '.x/ �
p
hjD'.x/jyd � Chy2

d

C h

2

˝

P �U.x/.D2'.x/ � 2�2I /U.x/�Py0 ; y0˛ ;

where we write y D .y0; yd / 2 R
d�1 � R, and where C is a positive constant.

7. Reducing  and ı2 if necessary, the previous inequalities imply that for y 2 B.0; =
p
h/ and

x 2 B.0; ı2/,

� if '.x �
p
hU.x/�y/ > '.x/C ah, then

yd 6

p
h

jD'.x/j � C
p
hyd

�

�a C 1

2

˝

P �U.x/.D2'.x/C 2�2I /U.x/�Py0 ; y0˛
�

6

p
h

jD'.0/j

�

�a C �2 C 1

2

˝

P �U.0/.D2'.0/C 3�2I /U.0/�Py0 ; y0˛
�

;

� if

yd 6

p
h

jD'.0/j

�

�a � �2 C 1

2

˝

P �U.0/.D2'.0/� 3�2I /U.0/�Py0 ; y0˛
�

;

then

'.x �
p
hU.x/�y/ > '.x/C ah:

We define
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a� D .a � �2/jD'.0/j�1;

a� D .a C �2/jD'.0/j�1;

A� D jD'.0/j�1P �U.0/
�

D2'.0/C 3�2I
�

U.0/�P;

A� D jD'.0/j�1P �U.0/
�

D2'.0/� 3�2I
�

U.0/�P;

and for y0 2 R
d�1

g�.y0/ D
�

�a� C 1

2

˝

A�y0 ; y0˛
�

; g�.y
0/ D

�

�a� C 1

2

˝

A�y
0 ; y0˛

�

:

We also set

Vh;x D
n

y 2 Rd I '.x �
p
hU.x/�y/ > '.x/C ah

o

;

and
8

<

:

EC
�;h;x

D
n

y 2 R
d I yd 6

p
hg�.y

0/
o

;

E�
�;h;x

D
n

y 2 R
d I yd 6

p
hg�.y0/

o

:
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We check that for all x 2 B.0; ı2/,

8

<

:

�

Vh;x \ B.0; =
p
h/

�

�
�

EC
�;h;x

\ B.0; =
p
h/

�

;
�

E�
�;h;x

\ B.0; =
p
h/

�

�
�

Vh;x \ B.0; =
p
h/

�

:

8. The assumption .H4/ yields the existence of a decreasing function ! 2 C.Œ0;1/; Œ0;1// such

that !.R/ ! 0 as R ! 1, and
Z

B.0;R/c

jf .y/jjyj2��dy 6 !.R/2; for all R > 0:

For each 0 < t < 1, we define the family of sets R.t/ 2 .0;1/ by

!
�

R.t/
�

D tR.t/2��; (42)

which satisfy (H 0
5). We then choose � 2 .0; 1/ such that

R.t/ 6 =t; for all t 2 .0; ��: (43)

9. Let

� D
p
h; T .�/ D Bn�1.0;R.�// � R � R

d :

For all h 2�0; �2/ and for all x 2 B.0; ı2/, we estimate
Z

Vh;x

fU.x/.y/dy D
Z

Rd

fU.x/.y/1l'>'.x/Cah.x �
p
hU �.x/y/dy

6

Z

Vh;x \B.0;R.�//

fU.x/.y/dy C
Z

B.0;R.�//c

jfU.x/.y/jdy

6

Z

E
C

�;h;x
\B.0;R.�//

fU.x/.x/dx C
Z

B.0;R.�//c

jfU.x/.y/jdy

C
Z

�

E
C

�;h;x
nE�

�;h;x

�

\B.0;R.�//

jfU.x/.y/jdy

6

Z

E
C

�;h;x
\T .�/

fU.x/.y/dy C
Z

�

E
C

�;h;x
nE�

�;h;x

�

\T .�/

jfU.x/.y/jdy

C 3

Z

B.0;R.�//c

jfU.x/.y/jdy:

10. For the last integral above, we have
Z

B.0;R.�//c

jfU.x/j.y/dy 6
1

R.�/2��

Z

B
�

0;R.�/
�c

jyj2��jfU.x/j.y/dy 6 !
�

R.�/
�

�;

and moreover, since K� is symmetric,

1

2
D

Z

yd 60

fU.x/.y/dy 6

Z

T .�/\fyd 60g
jfU.x/j.y/dy C !

�

R.�/
�

�:



26 E. BONNETIER, E. BRETIN AND A. CHAMBOLLE

We note that

Z

T .�/\E
C

�;h;x

fU.x/.y/dy

D
Z

T .�/\fyd 6�g�.y0/g
fU.x/.y/ dy

D
Z

T .�/\fyd 60g
fU.x/.y/dy C

Z

Bn�1.0;R.�//

d�

Z �g�.y0/

0

fU.x/.�; r/ dr

D
Z

T .�/\fyd 60g
fU.x/.y/ dy C

Z �

0

dr

Z

Bn�1.0;R.�//

fU.x/.�; rg.�//g
�.�/ d�:

It follows from .H 0
5/ that as � ! 0,

1

�

(

Z

T .�/\E
C

�;h;x

fU.x/.y/dy �
Z

T .�/\fyd 60g
fU.x/.y/dy

)

!
Z

Rd�1

fU.x/.�; 0/g
�.�/d�;

uniformly with respect to x. Possibly reducing � we may assume that for x 2 B.0; ı2/,

1

�

(

Z

T .�/\E
C

�;h;x

fU.x/.y/dy �
Z

T .�/\fyd 60g
fU.x/.y/dy

)

6

Z

Rd�1

fU.x/.�; 0/g
�.�/d� C �2:

Using same argument, we also conclude that

Z

T .�/\
�

E
C

�;h;x
nE�

�;h;x

�

jfU.x/.y/jdy D
�Z

T .�/\f06yd 6�g�.y0/g
jfU.x/.y/jdy

�

�
�Z

T .�/\f06yd 6�g�.y0/g
jfU.x/.y/jdy

�

6 �

Z

Rd�1

jfU.x/j.�; 0/.g�.�/ � g�.�//d� C ��2

6 ��2

�

1C
Z

Rd�1

�

2C 3j�j2
�

jfU.x/j.�; 0/d�
�

6 C0��
2;

where

C0 D sup
x2B.0;ı2/

�

1C
Z

Rd�1

�

2C 3j�j2
�

jfU.x/j.�; 0/d�
�

:

11. Finally, noting that from (41),

Z

Rd�1

fU.x/.�; 0/g
�.�/d� 6 �c � �;
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we get

Z

Rd

f .x/1l'>'.x/Cah.x �
p
hz/dz 6

1

2
C

Z

Rd�1

fU.x/.�; 0/g.�/d�

C �
�

�2 C 4!.R.�//C C0�
2
�

6
1

2
C �

�

�c � � C �2 C 4!.R.�//C C0�
2
�

< �h;

for � sufficiently small.

Even if the function � is regular, GC
h
' and G�

h
' need not be equal and continuous. However, it is

easy to check that if ' D 1l˝ is a characteristic function thenGC
h
1l˝ D G�

h
1l˝ . The next proposition

shows that if ' is smooth,G�
h
'.x/ D GC

h
.x/'Co.h/, so that one could conceivably build a Bence

Merriman Osher type scheme using either GC
h

or G�
h

.

PROPOSITION 7 Let ' 2 C 2.Rd /. Let x 2 R
d such as r'.x/ ¤ 0, then

G�
h '.x/ D GC

h
'.x/C o.h/:

Proof. Let x 2 R
d such as r'.x/ ¤ 0 and for all h > 0 let

�.h/ D GC
h
'.x/ �G�

h '.x/:

Introduce also gh.�/ W R ! R defined by

gh.�/ D Sh�'>�.x/ D
Z

Rd

K�;h.y/�'>�.x � y/dy:

This function may not be continuous. We claim that its jumps are bounded by o.
p
h/. Indeed, for

all � 2 R, one can express gh.�/ as

gh.�/ D
Z

B.0;�/

K�;h.y/�f'>�g.x � y/dy C
Z

Rd nB.0;�/

K�;h.y/�f'>�g.x � y/dy

D Qgh.�/CRh.�/;

where � is chosen sufficiently small so that jr'.y/j > 0 for all y 2 B.x; �/. Let 0 < � < 1, let

!.R/ D
Z

B.0;R/c

jyj2��jK�.y/jdy;

and let R.t/ be defined by the equality !.R.t// D tR.t/2��. Note that .H 0
4/ implies thatp

hR.h/2�� ! 0 as h ! 0, so that
p
hR.h/1��=2 < � for h sufficiently small, it follows that

jRh.�/j 6

Z

Rd nB.0;
p

hR.h/1��=2/

jK�;h.y/jdy:
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Moreover, changing variables, we see that

Z

Rd nB.0;
p

hR.h/1��=2/

jK�;h.y/jdy 6

Z

Rd nB.0;R.h/1��=2/

jK�.y/jdy

6
1

R.h/.2��/2=2

Z

Rd nB.0;R.h/1��=2/

jyj2�� jK�.y/jdy

6
!.R.h//

R.h/.2��/2=2
:

Since 0 < .2 � �/=2 < 1, it follows that

jRh.�/j 6

�

!.R.h//

R.h/2��

�1��=2

D h1��=2 D o.
p
h/:

Further, the fact that jr'.y/j > 0 on B.x; �/ show that Qgh is continuous in �, which proves the

claim.

Recall that
(

G�
h
'.x/ D inf

˚

s 2 R I Sh�'>s.x/ < �h

	

;

GC
h
'.x/ D sup

˚

s 2 R I Sh�'>s.x/ > �h

	

;

it follows from the claim above that

Sh�'>G�
h

'.x/.x/ D �h C o.
p
h/; and Sh�'>G

C

h
'.x/

.x/ D �h C o.
p
h/;

and consequently

Z

Rd

K�;h.y/�G�
h

'.x/6'6G�
h

'.x/C�.h/.x � y/dy D o.
p
h/:

One can use the same argument as in the consistency proof, (in particular see point 7) to show that

asymptotically, the above integral behaves like

Z

Rd

K�;h.y/�G�
h

'.x/6'6G�
h

'.x/C�.h/.x � y/dy D �.h/

jr'.x/j
p
h

Z

p?

K�.x/dH
d�1.x/C o.

p
h/;

where p D r�.x/
jr�.x/j . In conclusion, as

R

p? K�.x/dH
d�1.x/ > 0, we deduce that

�.h/ D jr'.x/j
R

p? K�.x/dHd�1.x/
o.h/;

which proves the proposition.

REMARK 3 Our consistency result sheds light on the relationship between the kernel K� and the

evolution equation (4). Proving convergence of a Bence Merriman Osher type algorithm in our

context seems to be very difficult (if true at all). The argument of [32] does not apply here. The

main difficulty is that G˙
h
' may not be continuous, even if ' is regular. Further, we can only show

monotonicity of the operators G˙
h

up to o.h/ for smooth functions whose gradients do not vanish.

The source of these difficulties is really the thresholding in the definition of G˙
h

.
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5. Numerical simulations

In the previous section, we proved a consistency result for a Bence Merriman Osher-type algorithm.

Here we numerically investigate the convergence proper- ties of a related scheme, based on a phase-

field discretization. Both schemes consist in a diffusion step followed by a correction step. In the

case of the BMO scheme, the correction is a simple thresholding, while the correction is obtained

via a reaction term for the phase field scheme. More precisely, in the second case, given a small

parameter � > 0, we set

Gh;�'.x/ D Th;�.K�;h � '/;
where Th;� is defined as follows: Given � 2 R, Th;�.�/ D  .�/ where  is the solution of the ODE

(

 t D � 1
�2W

0. /;

 .0/ D �;

and W a double well potential with wells located at  D 0 and  D 1. Note that if ' D 1l˝ is a

characteristic function, then

lim
�!0

Gh;�1l˝ D GC
h
1l˝ D G�

h 1l˝ ;

which shows a formal relationship in the correction step of the BMO and phase field schemes.

The advantage of the phase field scheme, is that it produces smoother interfaces, which avoids

numerical errors due to aliasing. Moreover, we wanted to test our method for approximating

anisotropic diffusion on computations of Wulff shapes, a problem where one has to impose a volume

constraint. Such constraint is easier to handle with a phase field scheme, where one can explicitly

compute the associated Lagrange multiplier. The next paragraph, describes the phase-field algorithm

for the operator Q�� .

5.1 The Q��-phase field model and its discretization

As an approximation to the anisotropic Allen–Cahn equation (5), we consider the following phase-

field model
(

ut D Q��u � 1
�2W

0

.u/;

u.x; 0/ D q
�

dist.x;@E/
�

�

:
(44)

We also report tests, where we estimate the L1-error on anisotropic Wulff sets (the sets which

minimize the anisotropic perimeter under a volume constraint). To impose volume conservation, we

consider a conserved phase-field model, of the form

8

<

:

ut .x; t/ D Q��u.x; t/ � 1
�2W

0

.u.x; t//C 1
�
�.t/

q

2W
�

u.x; t/
�

;

u.x; 0/ D q
�

dist.x;˝0/
�

�

:
(45)

The parameter

�.t/ D
R

Rd W
0�

u.x; t/
�

dx

�
R

Rd

q

2W
�

u.x; t/
�

dx
;
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can be seen as a Langrage multiplier, which preserves the mass of u. See [13] where schemes of

this form have been studied for isotropic mean curvature with a volume constraint.

We now describe the numerical method we use for solving the PDE’s (44) and (45). Several

studies of classical numerical schemes for the Allen–Cahn equation have already been conducted

in the past: see for instance, [16, 18, 24, 28, 29, 39, 40]. Here, the computational domain is the

fixed box Q D Œ�1=2; 1=2�d � R
d , d D 2; 3. The initial datum is u0 D q. dist.x;@˝

�
/, where

˝0 is a smooth bounded set strictly contained Q. We assume that during the evolution, the set

˝�;t WD fu�.x; t/ > 1=2g remains strictly inside Q, so that we may impose periodic boundary

conditions on @Q.

Our strategy consists in representing u as a Fourier series in Q, and in using a splitting

method. First, one applies the diffusion operator, which given the form of Q�� , merely amounts

to a multiplication in the Fourier space. The interesting feature of our approach is that this step is

fast and very accurate. Next, the reaction term is applied.

More precisely, u�.x; tn/ at time tn D t0 C nıt is approximated by

uP
� .x; tn/ D

X

max16i6d jpi j6P

u�;p.tn/e
2i�p�x :

In the diffusion step, we set

uP
� .x; tn C 1=2/ D

X

max16i6d jpi j6P

u�;p.tn/e
�4�2ıt �o.p/2

e2i�p�x :

We then integrate the reaction terms

uP
� .x; tn C 1/ D uP

� .x; tn C 1/� ıt�2W 0
i;�

�

uP
� .x; tn C 1=2/

�

:

In practice, the first step is performed via a fast Fourier transform, with a computational cost

O.P d ln.P //.

The corresponding numerical scheme turns out to be stable when solving (44), under the

condition ıt 6 M�2, where M D
h

supt2Œ0;1�

n

W
00

.t/
oi�1

. Numerically, we observed that

this condition is also sufficient for the conserved potential in (45). In the simulations, we used

W.s/ D 1
2
s2.1 � s/2.

The isotropic version of our splitting scheme has been studied in [13]. It is shown there that this

scheme converges with the same rate as phase-field approximations based on a spatial discretization

by finite differences or by finite elements. Its advantages are greater precision, and unconditional

stability.

5.2 Test of convergence in dimension 2

We consider following anisotropic densities

�o
1.�/ D k�k`4 D

�

j�1j4 C j�2j4
�

1
4 ;

�o
2.�/ D k�k

`
4
3

D
�

j�1j 4
3 C j�2j 4

3

�
3
4

;

�o
3.�/ D

�

j�1j1;001 C j 1
2
�1 C

p
3

2
�2j1;001 C j 1

2
�1 �

p
3

2
�2j1;001

�
1

1;001

:
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FIG. 3. ˝.t/ at different times for the anisotropic densities �1; �2; �3

See Figure 2 for a representation of their Wulff sets B�i
and Frank diagrams B�o

i
.

1. Evolution from a Wulff set.

We consider the equation
(

@tu D Q��u � 1
�2W

0.u/;

u.0; x/ D q .d ist.x;˝0/=�/ ;

where the initial set ˝0 is a Wulff set of radius R0 D 0:25

˝0 D
˚

x 2 R
2 I �.x/ 6 R0

	

:

It is well known that the set˝.t/ obtained from˝0 through evolution by anisotropic mean curvature

is a Wulff set with radius R.t/ D
q

R2
0 � 2t , which decreases to a point at the extinction time

text D R2
0

2
. In these simulations, the number of Fourier modes is P D 28, and the time step and

phase-field parameter are chosen to be ıt D 1=P 2 and � D 1=P . In Figure 3 the interface ˝.t/

is plotted at different times. We observe a good agreement between the theoretical and computed

curves, in spite of the smoothening of the corners of the latter.

2. Convergence to the Wulff set

This smoothening of corners actually depends on the thickness � of the diffuse interface, as
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FIG. 4. From left to right: ˝.t/ at different times with anisotropy �o
1
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2

, error

estimate � ! k1lB�
�

� 1lB�;R0
kL1.Rd / in logarithmic scale ( �o

1
in red and �o

2
in blue)

evidenced in the next series of tests, of evolution by anisotropic mean curvature under a volume

constraint according to (45). The initial set ˝0 is a circle centered at 0, of the same volume as

˝� D
˚

x 2 R
d I �.x/ < R0

	

. The evolution˝t from˝0 is expected to converge to the Wulff set

˝�.

The left and middle of Figure 4 represent the final sets ˝�
� obtained from the resolution of

anisotropic Allen–Cahn equation, with respective anisotropic densities �1 and �2, and for different

value of �. We observe that the smaller �, the better the approximation of the Wulff set. On the

right-hand side of Figure 4, the L1 error

� ! k1l˝� � 1l˝�
�
kL1.Rd /;

is plotted in a logarithmic scale. This graph indicates that this error is of order �.

5.3 Some 3D simulations

As final illustrations, we consider the anisotropic densities

(

�o
4.�/ D

q

�2
1 C �2

2 C j�3j;
�o

5.�/ D j�1j C j�2j C j�3j:
The corresponding Wulff sets and Frank diagrams are plotted in Figure 5.

We report in Figure 6 (respectively in Figure 7) the evolution by �o
4 (resp. �o

5 ) anisotropic mean

curvature from an initial torus. The number of Fourier modes is P D 27, the time step and diffuse

interface thickness are ıt D 1=P 2 and � D 1=P .

Frank diagram Wulff set Frank diagram Wulff set

FIG. 5. Frank diagram and Wulff set: B�o
4

, B�4
, B�o

5
, B�5
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FIG. 6. �o
4

.�/-evolution from an initial torus, at different times

FIG. 7. �o
5 .�/-evolution from an initial torus, at different times
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