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Regular solutions to a monodimensional model with discontinuous elliptic

operator
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The note examines qualitative behavior of solutions to a monodimensional nonlinear elliptic equation
d

dx
.ux C sgn ux/ D f with Dirichlet boundary data. This simple example explains the phenomenon

of facets – flat regions of solutions, characteristic for models arising from theories of crystal growth

and image processing.
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Introduction

The subject of this note is qualitative analysis of a monodimensional version of a class of nonlinear

elliptic systems

div F.ru/ D f in ˝; u D g at @˝; (1)

where F is a monotone function. This classical nonlinear problem is well studied in the literature

[2, 13], but in the case of discontinuous function F the theory delivers only very general result, we

mention here [4, 7, 15, 18], which of course do not represent the whole theory. From the viewpoint

analysis of one-dimensional case seems to be very promising [1, 6]. It shall give hints how to

deal with multi-dimensional case and what type of properties one can expect. Realistic models

arising from applications are usually so complex that it is almost impossible to point a key analytical

obstacle.

On the other hand monodimensional version of (1) can be found in models arising from the

theories of crystal growth and image processing [3, 5, 8, 14, 16], where description of interfaces,

like free boundaries or edges, is the heart of studied phenomena. In modeling, qualitative analysis

of solutions is irreplaceable for effective application to a particular model. In many of such systems,

the discontinuity of F causes appearance of facets – flat parts of solutions. They are the kernel of

analysis of behavior of solutions to the total variation equation or the weighted mean curvature flows

[9, 12, 17, 19]. To try to understand this phenomenon we would like to study a simple model. Even

for the simplification, studied in this note, we obtain some unexpected properties. In particular we

make clear the appearance condition of facets in a class of typical solutions. Analysis of such models

seems to be the best way to understand deeper the nature of this unusual fascinating phenomenon.

From the point of view of the theory of crystal growth, our equation is related to a free boundary

problem for a model with anisotropy which is strictly convex but not smooth, so called “lens”

crystal for which the structural unit is lens-shaped. Mathematical theory of such problems is an

almost untouched field.
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The results

We aim at solving the following monodimensional elliptic problem

d

dx
L.ux/ D f in Œ0; 1�; u.0/ D A; u.1/ D B: (2)

Within this note we assume that L.�/ is in the following form

L.w/ D w C sgn w D

8

ˆ

<

ˆ

:

w C 1 for w > 0;

Œ�1; 1� for w D 0;

w � 1 for w < 0:

(3)

We treat L.�/ as a maximal multivalued function, i.e., for each x 2 R we have L.x/ D

Œlimz!x� L.z/; limz!xC L.z/�.

Now let us state the first result proved here, concerning the issue of existence and regularity.

THEOREM 1 Let f 2 L1.0; 1/, then there exists a unique solution to (2) such that u 2 W 2
1.0; 1/

and u.0/ D A, u.1/ D B in the following weak meaning

.�; �x/ D �.f; �/ for each � 2 C 1
0 .0; 1/ (4)

and � 2 L1.0; 1/ with �.x�/ 2 L.ux/jxDx�
a.e. x� 2 .0; 1/, where .�; �/ is the usual inner product

in L2.0; 1/, defined as .u; v/ D
R 1

0
uvdx for u; v 2 L2.0; 1/.

A closer look at the above theorem suggests that it is rather expected. However it defines us

optimal regularity of solutions to (4), too. The W 2
1 class is relatively high, but it seems to be the best

possible – provided that even f is smooth. A key information from Theorem 1 is that the derivative

of solutions is continuous, even Lipschitz continuous. Of course, a question to ask whether such

approach to the issue of regularity to solutions to (4) is suitable, reminds open. Another question is a

meaning of solutions. The second derivative is well defined, even bounded, but all known definitions

at the set fux D 0g fail. Even the approach via “almost classical” solutions developed by [17] seems

to be not appropriate.

The next result describes precisely shape of solutions, particularly it determines appearance of

facets. In order to obtain the full characterization of this phenomenon we restrict ourself to the case

of nonnegative data f . Additionally we fix boundary data (u.0/ D 0 and u.1/ D 1) to make the

obtained characterization more readable.

THEOREM 2 Let A D 0 and B D 1, f 2 L1.0; 1/ and f > 0, then u – the weak solution to (2) –

is convex. Furthermore the shape of solution is described by one of three possibilities below:

� u is strictly monotone, provided

Z 1

0

d�

Z �

0

f .s/ds < 1I (5)

� u is monotone with a flat part (a facet) touching point x D 0, i.e.

u D

�

0 for x 2 .0; b�;

strictly increasing for x 2 .b; 1/;
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for some b 2 Œ0; 1/, provided existence of d 2 Œ0; 1/ such that

Z 1

d

d�

Z �

d

f .s/ds D 1 and

Z d

0

f .s/ds 6 2I (6)

� u has an interior minimum realized on a nondegenerate interval Œa; b� � .0; 1/, i.e.,

u D

8

<

:

strictly decreasing for x 2 .0; a/;

constant for x 2 Œa; b�;

strictly increasing for x 2 .b; 1/;

provided existence of d 2 .0; 1/ such that

Z 1

d

d�

Z �

d

f .s/ds D 1 and

Z d

0

f .s/ds > 2: (7)

The above result describes structure of solutions to (2). It provides necessary and sufficient

conditions of generation of interior facets. In case of general f , the structure of solutions is of

course more complex, however local behavior of solutions with fixed convexity is the same as

described by Theorem 2. As an addition we obtain a restriction of possible regularity of solutions.

For f � constant , we obtain uxx just in L1, provided that this constant is sufficiently large, in

order to fulfill condition (7). Thus, the regularity given by Theorem 1 is optimal.

The third result points an interesting phenomenon which holds for the case u.0/ D u.1/. It is a

limit version of Theorem 2, but more spectacular.

THEOREM 3 Let A D B D 0, f 2 L1.0; 1/ and f > 0, then solution to (2) is:

� u � 0, provided

Z 1

0

f .s/ds 6 2;

� u has an interior minimum realized on a nondegenerate interval Œa; b� � .0; 1/, i.e.,

u D

8

<

:

strictly decreasing for x 2 .0; a/;

constant for x 2 Œa; b�;

strictly increasing for x 2 .b; 1/;

provided

Z 1

0

f .s/ds > 2.

The first part of Theorem 3 may be generalized of the case of f with variable sign.

THEOREM 4 Let A D B D 0, f 2 L1.0; 1/, then weak solution to (2) is trivial, i.e. u � 0,

provided 0 6

Z x

0

f .s/ds 6 2 for all x 2 Œ0; 1�.

The above results show that for sufficiently small data f , or rather suitable, solutions to (2) are

trivial. It is a consequence of jumps of function L.�/. The singularity is so strong that it absorbs

the whole influence coming from f . Similar effects have been observed in analysis of a model of

crystal growth. Equation (1) has a variational structure which is similar to that of determining the

crystalline curvature of a facet in case there is a driving due to the influx of diffusing matter, see

Formula (1.8) in [10]. The authors showed there results which can be stated as follows, if the driving,
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i.e., influx is small, (cf. [10, Corollary 4.13]), then the facets is stable. The original formulation is

different: if the facet is smaller than a critical length, then it is stable, see [10, Theorem 4.8, Theorem

4.14], [11, Theorem 4.7, Corollary 4.9].

In what follows we are trying to use standard notation. Below we prove subsequently our main

results.

Proof of Theorem 1. In order to prove the existence we follow a classical approach via a

regularization of the function L. We show few details to the proof since it will be useful in the

proof of the next theorem being the main contribution of this note.

Given � > 0, let us define

L�.w/ D w C sgn �.w/ D w C ı� � sgn w: (8)

Functions ı� stand for a smooth approximation of the Dirac measure (ı� ! ı0 in D0.R//. Definition

(8) follows that L� is strictly increasing and L0
� D 1 C ı� 6

C
�

. In addition for jwj > � we keep

L�.w/ D L.w/.

Examine the approximative system of (2)

d

dx
L�.u�

x/ D f in Œ0; 1�; u�.0/ D A; u�.1/ D B: (9)

A proof of existence to the above problem follows immediately from the Schauder fixed point

theorem. Define a map T W C 1C˛.0; 1/ ! C 1C˛.0; 1/ for some fixed ˛ 2 .0; 1/ such that T . Qu/ D

u, where u is a solution to

.1 C ı�. Qux//uxx D f in Œ0; 1�; u.0/ D A; u.1/ D B: (10)

Since 1 C ı�. Qux/ > 1, we find that juxxj 6 jf j pointwisely a.e. thus we get kukW 2
1.0;1/ 6

C.kf kL1.0;1/ C 1/, where the constant C depends on the boundary data A and B . Solvability of

(10) is immediate. It is clear that for sufficiently large ball B in C 1C˛, we have T B � B and the

estimate in the W 2
1-norm yields the necessary compactness. Thus we proved existence to system

(9) with a uniform in � bound

ku�kW 2
1.0;1/ 6 C

�

kf kL1.0;1/ C 1
�

: (11)

The uniqueness to (9) follows from strict monotonicity of L� .

Now we are in a good position to pass to the limit. By (11) we choose a subsequence

u� *� u in W 2
1.0; 1/ with kukW 2

1.0;1/ 6 C
�

kf kL1.0;1/ C 1
�

(12)

and

L�.u�
x/ *� � in L1.0; 1/ with k�kL1.0;1/ 6 C

�

kf kL1.0;1/ C 1
�

: (13)

Let us check whether .u; �/ fulfills (4). Given ı > 0, we consider the set

Aı D
˚

x 2 .0; 1/ W jux.x/j > ı
	

: (14)

Then thanks to convergence of fu�
xg in a strong topology C.Œ0; 1�/, we are able to find 0 < �0 < ı=2

such that for 0 < � < �0 there holds
�

x 2 .0; 1/ W ju�
x.x/j >

ı

2

�

� Aı �
˚

x 2 .0; 1/ W ju�
x.x/j > 2ı

	

: (15)
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Hence L�.u�
x/ D u�

x C sgn u�
x on the set Aı for each � 2 .0; �0/.

Next, we consider the weak form of (9). For each � 2 C 1
0 .0; 1/ regular solutions to (9) fulfill

�

L�.u�
x/; �x

�

D �.f; �/: (16)

Remembering that ı > 0 is fixed, we find

L�.u�
x/jAı

D u�
x C sgn u�

xjAı
! ux C sgn ux jAı

in L1.Aı / as � ! 0: (17)

On the other hand by (15) and (8)

L�.u�
x/jŒ0;1�nAı

� Œ�1 � 2ı; 1 C 2ı�: (18)

Subsequently, as � ! 0

L�.u�
x/jŒ0;1�nAı

*� L.ux/ in L1.Œ0; 1� n Aı / and L.ux/jŒ0;1�nAı
2 Œ�1 � 2ı; 1 C 2ı�: (19)

Here we follow the notation that L.ux/ denotes a weak limit of subsequence L�.u�
x/.

Since ı > 0 is chosen in an arbitrary way, we pass with � ! 0 in (16) and from (13), (17), (18)

and (19) we conclude that the sought limit

� D L.ux/ D

�

ux C sgn ux for ux ¤ 0;

2 Œ�1; 1� for ux D 0
(20)

fulfills the weak formulation (4), namely, u given by (12) is a weak solution to (2).

The strict monotonicity of L.�/ yields the uniqueness, since high regularity of solutions allows

us to use a difference of two solutions as a test function in the weak formulation (4). Theorem 1 is

proved.

Proof of Theorem 2. By considerations in the previous proof, by (10), we find that 0 6 uxx.x/ 6

f .x/, so u stays convex at Œ0; 1�. In order to analyze three possibilities pointed by the thesis of

Theorem 2 we examine the possible minimum of u over Œ0; 1�.

Let us assume that u has an essential minimum, i.e., minx2Œ0;1� u.x/ D m and m < 0. Then

there are two possibilities being a consequence of convexity of u: either the minimum is realized

at a single point or at a connected interval, say Œa; b� � .0; 1/. We want to exclude the first case.

Assume that it holds, so there exists a point c 2 .0; 1/ such that u.c/ D m < 0 and u is strictly

deceasing on .0; c/ and strictly increasing on .c; 1/.

Given 
 > 0, define a sequence of smooth functions �l 2 C 1
0 .0; 1/, an approximation of

characteristic function of set .c �
; c C
/, such that �l ! �Œc�
;cC
� a.e. pointwisely. In particular

�l
x ! ı.� � .c � 
// � ı.� � .c C 
// in D0.0; 1/ as l ! 1. Here ı.�/ denotes the Dirac measure

located at point zero.

In small neighborhoods of points c � 
 and c C 
 we have L.ux/ D ux , so by (12), (17) and

(20) it belongs at least to C ˛ for some ˛ > 0. It is sufficient to pass to the limit with l in order to

use the limit value of test functions, namely the Dirac measures. So the limit applied to (4) yields

L.ux/jxDcC
 � L.ux/jxDc�
 D

Z cC


c�


fds: (21)
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By Theorem 1 we know ux 2 W 1
1.0; 1/, so the continuity of ux follows that ux.c ˙ 
/ ! 0˙ as


 ! 0C, hence (21) takes the form

2 D lim

!0

Z cC


c�


fds D 0; (22)

what can not be true as f is locally integrable. To obtain (22) we shall recall that limw!0C L.w/ �

L.�w/ D 2, which follows directly from definition (3).

The above analysis said that the function u, in the examined case, admits only interior minima

realized by a nontrivial interval, we name it Œa; b� with a < b. Considering a sequence of smooth

test functions �l such that �l ! �Œa�
;bC
�, using the same arguments as for (22), we find the

necessary condition

2 D

Z b

a

f .x/dx: (23)

Hence we got the first condition admitting the third case:
R 1

0 f .x/dx > 2.

Let us analyze the third case of Theorem 2 more deeply. By definition on Œa; b� the function

is constant and the regularity guaranteed by Theorem 1 implied that ux jfa;bg D 0. So we find the

following prescription of the solution to (4)

uxx D f for x 2 .0; a/; u.0/ D 0; ux.a/ D 0;

u D m for x 2 Œa; b�;

uxx D f for x 2 .b; 1/; ux.b/ D 0; u.1/ D 1:

(24)

Note that we are able to solve systems .24/1;3, provided that a; b are known. Thus

u.x/ D �

Z x

0

d�

Z a

�

f .s/ds for x 2 .0; a/;

u.x/ D 1 �

Z 1

x

d�

Z �

b

f .s/ds for x 2 .b; 1/:

(25)

The last formula provides criteria which describes as three cases stated in Theorem 2:

1. Note that if (5) holds, then above analysis has no realization. Using .25/2 we are not able to

reach point u.0/ D 0, so the only solution must fulfill the following problem

uxx D f for x 2 .0; 1/; u.0/ D 0; u.1/ D 1:

In this case the only minimum is at x D 0.

2. The second case holds if (6) is assumed. Analysis of the first part yields that in the second case

there exists Nd 2 Œ0; 1/ such that ux. Nd/ D 0 and u is strictly monotone on Œ Nd; 1�. It is clear that

u. Nd/ D min u over Œ0; 1�. Since considerations from the beginning of the proof excluded the

case u. Nd/ < 0 under (6), we deduce u. Nd/ D 0. Recalling u.0/ D 0 we obtain the desired form

of the solutions in the second case. Observer that Nd D b D d .

3. The last point describes the case of (7). Then we have for some m < 0

�

Z a

0

d�

Z a

�

f .s/ds D m;

Z b

a

f .s/ds D 2; 1 �

Z 1

b

d�

Z �

b

f .s/ds D m: (26)
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To find m; a; b we construct the following function � such that: for a given b0 2 Œ0; d � we find

m0 D m0.b/ D 1�

Z 1

b0

d�

Z �

b0

f .s/ds and b0 is taken to satisfy that m0
6 0 and

Z b0

0

f .s/ds > 0;

next we find a0 2 Œ0; b0� by condition

Z b0

a0

f .s/ds D 2; and finally we put �.b0/ D m0 C

Z a0

0

d�

Z a0

�

f .s/ds:

Next, we observe that as we find b� such that m0.b�/ D 0, then �.b�/ > 0. And b� such that

a� D 0, then �.b�/ < 0. Clearly the map � is continuous, so we find b such that �.b/ D 0, what

defines the sought triplet .m; a; b/ from (26). Theorem 2 is proved.

Proof of Theorems 3 and 4. The first part of Theorem 3 and Theorem 4 require just one observation.

Note that putting

�.x/ D �1 C

Z x

0

f .s/ds 2 Œ�1; 1�; then
d

dx
� D f: (27)

So � fulfills the definition (4), since L.0/ D Œ�1; 1�. To ensure (27) we recall that by the assumptions
Z x

0

f .s/ds 2 Œ0; 2� for x 2 Œ0; 1�. The uniqueness given by Theorem 1 ends our considerations. We

are done.

The proof of the second part of Theorem 3 is almost the same as for the third part of Theorem 2.

If min u < 0, then repeating the analysis from the previous proof we obtain that there exists an

interval Œa; b� with a < b such that u is strictly decreasing on Œ0; a� and u is strictly increasing on

Œb; 1�. Based on (21)–(23) we find that

Z b

a

f .s/ds D 2. Next, we obtain the formula on the solution

being a modification of (25) due to different boundary conditions, here u.1/ D 0. The last step is to

construct a solution under condition

Z 1

0

f .s/ds > 2. And here we repeat the third point from the

proof of Theorem 2.
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