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Asymptotic analysis for Korteweg models
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This paper deals with a sharp interface limit of the isothermal Navier–Stokes–Korteweg system. The

sharp interface limit is performed by matched asymptotic expansions of the fields in powers of the

interface width ". These expansions are considered in the interfacial region (inner expansions) and in

the bulk (outer expansion) and are matched order by order. Particularly we consider the first orders

of the corresponding inner equations obtained by a change of coordinates in an interfacial layer. For

a specific scaling we establish solvability criteria for these inner equations and recover the results

within the general setting of jump conditions for sharp interface models.
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1. Introduction

Phase transitions in single substance flows are usually described by two kinds of models: the sharp

interface model and the diffuse phase field model. The conventional and physically more intuitive

approach is the sharp interface model. In the sharp interface approach, interfaces separating the

coexisting phases or structural domains are modeled as hypersurfaces at which certain quantities

such as the density or the pressure suffer jump conditions. Local quantities at the interface are then

determined from the boundary conditions or are calculated from the driving force for interfacial

motion. The structure of possible interfacial conditions is quite well-founded from the view point of

thermodynamics. However from the numerical point of view the sharp interface approach involves

the explicit tracking of the interface and becomes often numerically impractical for complicated

microstructures. Because of these disadvantages, the phase field approach has emerged as a powerful

method during the last twenty years. A phase field model represents a microstructure, both the

compositional domains and the interfaces, as a whole. The interface between different phases is

described by a small transition region, where an order parameter, representing the phases, changes
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its state smoothly. The microstructural evolution is modeled by a system of partial differential

equations. The phase field model contains the corresponding sharp interface description as a

particular limit, i.e., if the interfacial thickness tends to zero. An overview about a large class of

phase field models and their sharp interface limits can be found in [2]. For phase field models it is

of overall interest to validate them, by investigating the sharp interface limit in appropriate scaling

regimes.

In this work we consider a sharp interface limit of the isothermal Navier–Stokes–Korteweg phase

field model for a particular scaling. The sharp interface limit is performed by matched asymptotic

expansions of the fields of these models in powers of the interface width �. These expansions are

considered in the interfacial region (inner expansion) and in the bulk (outer expansion), and are

matched order by order. This results in partial differential equations for the diffuse field and a series

of boundary conditions at the interface from which we achieve jump conditions in the sharp interface

limit.

We consider the case where the Mach number is of order O.1/ and viscosity and capillarity are

both of order O."2/. Our particular scaling of the viscosity leads to a no-entropy-dissipation kinetic

relation in the leading order O.1/. The resulting sharp interface model is the isothermal Euler model.

In the first order O."/ we obtain a Young–Laplace law and a non-zero entropy dissipation, which is

determined by the viscosity. The fact that the surface tension is of order O."/ is in agreement with

the results obtained in [9, 20, 21] for equilibria. A different kinetic relation was considered in [5],

there surface tension and entropy dissipation are of order O.1/ and O."/ respectively. There are

also other physically meaningful scalings, for instance the case where the viscosity is of order O."/;

which implies entropy dissipation already in the leading order [3, 16, 23]. Another possibility is to

look at a low Mach number limit linked to the sharp interface limit, which can be found in [15], and

in [17, 18, 22] for the one phase case.

The paper is organized as follows: We start with describing the Navier–Stokes–Korteweg phase

field model in Section 2. The corresponding sharp interface setting is introduced in Section 3.

By non-dimensionalization we introduce the smallness parameter " with physical interpretation,

see Section 4. In Section 5 we introduce the asymptotic expansions and provide formulas for the

geometric properties of the interface in two dimensions. Then we state our main results in Section 6,

which are proven in Sections 7 and 8 respectively. In Section 9 we investigate the kinetic relation

comprised in the jump conditions derived in Section 6. We show that the state on one side of the

phase boundary already determines the interfacial velocity and the state on the other side of the

phase boundary. Furthermore this property does not follow from the jump conditions for mass and

momentum alone.

2. The Navier–Stokes–Korteweg phase field model

We consider an isothermal, compressible fluid with density � 2 .0; b/ and velocity u 2 R
d ; that is

capable to undergo phase transitions. We assume that the stress tensor can be additively decomposed

according to

� D �NS C �K ;

where �NS denotes the classical Navier–Stokes stress and �K is called Korteweg stress that takes

care of possible phase transitions. The Navier–Stokes stress has the form

�NS WD �.divu/I C �.ru C .ru/T /; (2.1)
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FIG. 1. Van-der-Waals pressure and free energy density function

where � is the bulk viscosity and � is the shear viscosity, which satisfy � > 0; �C 2�
d

> 0; where

d is the space dimension. The Korteweg tensor is given by

�K WD
�

���C
1

2
 jr�j2

�

I � .r�˝ r�/; (2.2)

where  is a constant which models capillarity effects. The evolution of the model is described by

the isothermal Navier–Stokes–Korteweg equations

�t C div.�u/ D0;

.�u/t C div.�u ˝ u/C rp.�/ Ddiv�NS C div�K ;
in R

d � .0,T /:
(2.3)

(2.4)

We assume that the local part of the pressure p D p.�/ is a non-monotone function of the density

given by a van-der-Waals law. From the density the phase can be directly derived, see Figure 1. The

corresponding Helmholtz free energy density functionW.�/ is related to the pressure by

p.�/ D �W 0.�/ �W.�/ (2.5)

and has the following properties:

� W 2 C 2
�

.0; b/; Œ0;1/
�

;

� 9a1; a2 2 .0; b/ W W 00 > 0 in .0; a1/ [ .a2; b/;W
00 < 0 in .a1; a2/;

� lim�!bW.�/ D 1:

We will denote the Gibbs free energy by g, which is given by g.�/ D W 0.�/:

Smooth solutions of (2.3), (2.4) identically satisfy the entropy inequality, which is given by

�

W.�/C
�

2
juj2 C



2
jr�j2

�

t
C div

��

W.�/C
�

2
juj2 C



2
jr�j2

�

u
�

C div
�

.p.�/I � �NS � �K/u C �r�.r � u/
�

D ��NS W .ru/ 6 0: (2.6)

An alternative form of the inequality is derived in [1, 9]. The existence of classical solutions of

(2.3),(2.4) was studied in [14, 19], while weak solutions were investigated in [6, 8, 11].
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3. The Euler–Korteweg sharp interface model

Now we describe the phase transition by means of a sharp interface model. In this paper we treat

the case where the capillarity  and the viscosities � and � are of the same small order. The

corresponding sharp interface model is described by the Euler–Korteweg system. In this context the

conservation laws of mass and momentum read in the bulk phases ˝�.t/ WD fx 2 R
d W �.t; x/ 2

.0; a1/g and˝C.t/ :=fx 2 R
d W �.t; x/ 2 .a2; b/g, t 2 Œ0; T /:

�t C div.�u/ D 0; (3.1)

.�u/t C div.�u ˝ u/C rp D 0 : (3.2)

The interface between two adjacent phases ˝˙ is described by a moving hypersurface � .t/, i.e.,

a sharp interface of zero thickness. Across � .t/ the bulk quantities may have discontinuities. We

are particularly interested in the case that the interface itself is equipped with mass, momentum,

energy and entropy. The jump conditions for these quantities rely on the conservation laws for mass,

momentum and energy and on the entropy inequality across the interface � . To state these jump

conditions we will use the following notation for some quantity  having a jump at the interface.

By  ˙ we denote the limit at the interface from˝˙ and we abbreviate

ŒŒ �� WD  C �  �; f g WD
 C C  �

2
:

For more details of the following equations we refer to [10].

The general forms of conservation of mass and momentum read:

ŒŒ�.u� � w�/�� D �
@��

@t
� .div� .wt / � �w�/�� ; (3.3)

ŒŒ�.u� �w�/.u � w/C p��� D ���
@w

@t
C div� .�� /: (3.4)

The newly introduced quantities are the normal component of the fluid velocity u� ; the interfacial

mass density �� ; the interfacial velocity w which may be decomposed into normal- and tangential

speed, i.e., w D wt t C w�� and �� 2 R
d�.d�1/ is the surface stress tensor. Each surface point is

equipped with a tangential matrix t and a normal vector � and � denotes the sum of the principal

curvatures.

We consider exclusively isothermal processes at the temperature T0, and these are guaranteed

by corresponding heat fluxes q , q� in the bulk and on the interface. The conservation of energy

serves to eliminate the heat fluxes in the entropy inequality, which hereafter becomes the relevant

inequality for the isothermal Euler–Korteweg model.

The general form of conservation of energy across the interfaces reads:

��

�.u� �w�/.e C
1

2
juj2/C q � � C u�p

��

D

�
@�� .e� C 1

2
jwj2/

@t
� .div� .wt / � �w�/�� .e� C

1

2
jwj2/ � div� .q� � wT �� /: (3.5)

The internal energy densities of bulk and interface are denoted by �e and �� e� , respectively.
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Finally we give the entropy inequality across the interface. In [1, 9] it is shown that the sharp

interface version of the Navier–Stokes–Korteweg phase field model has entropy fluxes in the bulk

and at the interface that are given by q=T0 and q� =T0, respectively. In this case the entropy

inequality across the interface reads

��

�.u� � w�/s C
q � �

T0

��

> �
@�� s�

@t
� .div� .wt / � �w�/�� s� � div� .

q�

T0
/ ; (3.6)

where �s is the entropy density of the bulk, and the entropy density of the interface is denoted by

�� s� .

Next we multiply the momentum balance (3.4) by w and subtract it from the energy law (3.5).

The result is simplified by means of the jump condition for the mass, leading to the general form of

the jump condition for the internal energy

��

�.u� �w�/

�

e C
p

�
C
1

2
ju � wj2

�

C q � �

��

D

�
@�� e�

@t
� .div� .wt / � �w�/�� e� � div� .q� /C r� .w/ W �

T
� : (3.7)

We are interested here in a special case where the constitutive law for the surface stress vector ��

has a simple structure:

�� D �
t

jtj2
: (3.8)

The quantity � is called surface tension. In this case the jump condition for the internal energy

assumes the special form

��

�.u� � w�/

�

e C
p

�
C
1

2
ju � wj2

�

C q � �

��

D �
@�� e�

@t
� .�� e� � � /.div� .wt / � �w�/ :

(3.9)

Finally we multiply the entropy inequality by T0 and subtract it from the jump condition for the

internal energy. There follows the interfacial inequality for the Helmholtz free energy W� D

�� e� � T0�� s� :

@W�

@t
� .� �W� /.div� .wt / � �w�/

C f�.u� � w�/g

��

W 0.�/C
1

2
ju � wj2

��

C ŒŒ�.u� �w�/��

�

W 0.�/C
1

2
ju � wj2

�

6 0: (3.10)

Among the objectives of this study is to deduce the Euler–Korteweg sharp interface model from the

Navier–Stokes–Korteweg phase field model. Note that the sharp interface model must fit into the

setting given here, i.e., we have to recover (3.3), (3.4) and (3.10).

4. Non-dimensionalization

We introduce the following reference quantities xr ; tr ; ur ; �r ; pr ; �r and r such that

x D xrx
�; t D tr t

�; u D uru
�; � D �r�

�; p D prp
�; � D ���r ; � D ���r ;  D r

�:
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Then we may rewrite the Navier–Stokes–Korteweg equations (2.3), (2.4) as

xr

ur tr
��
t� C div�.��u�/ D 0;

trur

xr
.��u�/t� C

t2r u
2
r

x2r
div�.��u� ˝ u�/C

t2r u
2
r

x2rM
2

r�p� D
t2r u

2
r

x2rRe
div�

�
�
NS C C�div�

�
�
K ;

where M denotes the Mach number MD ur

q
�r

pr
, ReD �r

�r
urxr is the Reynolds number and C D

t2r �rr

x4
r

the capillarity number.

There are several possibilities to non-dimensionalize the NSK-system. In the sequel we choose

ur D xr

tr
and consider for a small parameter " > 0 the following scaling:

M D 1;
1

Re
D "2; C D "2: (4.1)

This leads to

��
t� C div�.��u�/ D 0; (4.2)

.��u�/t� C div�.��u� ˝ u�/C r�p� D "2div�
�

�
NS C "2�div�

�
�
K : (4.3)

We will call this scaling the capillarity regime. We remark that (4.2),(4.3) is equivalent to

��
t� C div�.��u�/ D 0; (4.4)

u�
t� C .u� � r�/u� C r�g.��/ D "2

1

��
div�

�
�
NS C "2�r�����: (4.5)

There are further choices that lead to physically meaningful limits. More details can be found in the

introduction.

For simplification we omit the symbol � in the forthcoming considerations. Letting the parameter

" ! 0 leads to jump conditions of the corresponding sharp interface model, which we will deduce

in Section 7. Before that, we need some prerequisites for the asymptotic analysis.

5. Inner and outer expansions and matching conditions

We consider the two dimensional case d D 2. The position of the phase boundary in the sharp

interface limit is described by a function r.t; s/; where s is some coordinate parameterizing the

interface. We can calculate normal- and tangent vectors as well as the velocity of the interface from

r:We want to mention that there is some freedom in the choice of a parameterization, especially we

can prescribe any tangential velocity. We will later on see that the tangential velocity is continuous

across the interface. Therefore we may choose a particular parameterization such that several terms

drop out, cf. Remark 7.2.

The tangent vector pointing in counterclockwise direction is given by

t.t; s/ D

�
@r1

@s
.t; s/;

@r2

@s
.t; s/

�T

;
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where r1 and r2 denote the components of the vector r in Cartesian coordinates. The inner unit

normal to the interface is given by

�.t; s/ D
1

jt.t; s/j

�

�
@r2

@s
.t; s/;

@r1

@s
.t; s/

�T

:

The mean curvature, which in two space dimensions coincides with the sum of the principal

curvatures, is defined by

� WD
r1s r

2
ss � r1ssr

2
s

�

.r1s /
2 C .r2s /

2
� 3

2

: (5.1)

Next we define the interface velocity and its decomposition into tangential and normal components

by

w WD
@r

@t
D wt t C w��: (5.2)

We observe that �
tj

jtj

�

s

D �jtj�j and .�j /s D �tj �; .j D 1; 2/ (5.3)

and

.�j /��
j D 0;

�
tj

jtj

�

�

tj

jtj
D 0;

�
tj

jtj

�

�

�j D �
tj

jtj
.�j /� ; (5.4)

where the index � in the expressions denotes the time or tangential derivative. Note that in equation

(5.4) and all subsequent calculations we sum over all indices occurring twice.

For some generic tangent vector  the surface divergence in one dimension is defined by

div� . / D
1

jtj

@.jtj /

@s
: (5.5)

5.1 Outer setting

We assume the existence of expansions in " for the density and velocity in the bulk phases:

u.t; x1; x2I "/ �

1
X

iD0

"iui .t; x
1; x2/; �.t; x1; x2I "/ �

1
X

iD0

"i�i .t; x
1; x2/; (5.6)

where the � implicitly means that the infinite sum converges uniformly. Inserting these expansions

into the NSK equations leads to the following equations in the first two orders: In the O."0/ order:

�0;t C div.�0u0/ D 0; (5.7)

.u0/t C .u0 � r/u0 C rg.�0/ D 0: (5.8)

In the O."1/ order:

�1;t C div.�1u0 C �0u1/ D 0; (5.9)

.u1/t C .u0 � r/u1 C .u1 � r/u0 C r.g0.�0/�1/ D 0: (5.10)

The conditions at the interface are obtained via matching.
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FIG. 2. Boundary layer region

5.2 Inner setting

Throughout the rest of this paper we will assume that the interface �" defined as

�".t/ D f.x1; x2/ 2 R
2 W �".t; x

1; x2/ D ��g (5.11)

is a C 1.Œ0; T /; C 2.˝//-hypersurface. We like to mention that this has not to be the case in general

for all times t . The value �� is some point in the elliptic region, i.e., p0.��/ < 0. The interface �" is

explicitly described by r"; the inner unit normal �" and the tangential vector t" respectively. A point

in the neighborhood of the interface is represented by

�

x1

x2

�

.�; s; z/ D r".�; s/C "z�".�; s/; (5.12)

where z denotes the distance from the interface in normal direction. The reader may note that we

could have used t instead of � in (5.12), but it will become clear in the subsequent analysis why

we want to rename the time variable in inner coordinates. The small parameter " is introduced

to zoom in the interfacial region. The representation (5.12) can be used to change variables from

.x1; x2/ $ .s; z/ without changing the time variable.

We suppose a scalar or a Cartesian component of a vector  is defined in inner and outer

coordinates, i.e.,  .t; x1; x2/ D 	.�; s; z/: In the following we denote quantities in inner

coordinates by capital letters. In particular R is the density in inner coordinates. The partial

derivatives of  transform as follows:

0

B
B
@

@ 

@x1

@ 

@x2

@ 
@t

1

C
C
A

D

0

B
B
@

.1C "z�/ 1
jt" j2

t1" "�1�1" 0

.1C "z�/ 1
jt" j2

t2" "�1�2" 0

�.1C "z�/..wt /" C "z 1
jt" j2

t i".�
i
"/� / �"�1.w�/" 1

1

C
C
A

0

B
B
@

@	
@s

@	
@z

@	
@�

1

C
C
A

C O."2/; (5.13)

where .wt /" D wi"
t i"

jt"j2
and .w�/" D wi"�

i
", for any .�; s; z/ 2 Œ0; T /� I � R, where I � R is some

compact interval used to parameterize the interface.
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Accordingly to the outer expansion (5.6) we assume the existence of inner expansions in ". In

particular we assume

U.�; s; zI "/ �

1
X

iD0

"iUi .�; s; z/; R.�; s; zI "/ �

1
X

iD0

"iRi .�; s; z/; (5.14)

where Ui ; Ri do not depend on " for all i 2 N0: Furthermore we suppose expansions of the

geometric quantity

r".�; s/ �

1
X

iD0

"iri .�; s/; (5.15)

which induces "�expansions of �"; t" and w".

Particularly we get the following expansions, up to terms of order O."2/:

.w�/" D �i0w
i
0

„ƒ‚…

DWw�0

C" .�i1w
i
0 C �i0w

i
1/

„ ƒ‚ …

DWw�1

CO."2/; (5.16)

.U�/" D �i0U
i
0

„ƒ‚…

DWU�0

C" .�i1U
i
0 C �i0U

i
1/

„ ƒ‚ …

DWU�1

CO."2/; (5.17)

.Ut /" D
t i0U

i
0

jt0j2
„ƒ‚…

DWUt0

C"

 

t i1U
i
0

jt0j2
� 2

t i0U
i
0 t
j
0 t
j
1

jt0j4
C
t i0U

i
1

jt0j2

!

„ ƒ‚ …

DWUt1

CO."2/; (5.18)

.wt /" D
t i0w

i
0

jt0j2
„ƒ‚…

DWwt0

C"

 

t i1w
i
0

jt0j2
� 2

t i0w
i
0t
j
0 t
j
1

jt0j4
C
t i0w

i
1

jt0j2

!

„ ƒ‚ …

DWwt1

CO."2/; (5.19)

J" WD R"
�

.U�/" � .w�/"
�

(5.20)

D R0.U�0 � w�0/
„ ƒ‚ …

DWJ0

C" .R1.U�0 � w�0/CR0.U�1 �w�1//
„ ƒ‚ …

DWJ1

CO."2/: (5.21)

With respect to the expansions of the geometric quantities we observe

1 D j�"j
2 D �i0�

i
0 C 2"�i0�

i
1 C O."2/;

which implies

�i0�
i
0 D 1; �i0�

i
1 D 0: (5.22)

Furthermore we have

0 D t i"�
i
" D t i0�

i
0 C ".t i1�

i
0 C t i0�

i
1/C O."2/;

which implies

t i0�
i
0 D 0; �i0t

i
1 C �i1t

i
0 D 0: (5.23)

Additionally an easy calculation shows

.�i0/s D ��0t
i
0;

�
t i0

jt0j

�

s

D �0jt0j�
i
0: (5.24)

Using (5.12), (5.14) and (5.15) we get the inner equations by comparing coefficients of different

powers of ":
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5.3 Matching conditions

Inner- and outer quantities are matched by the usual procedure, see [7] for details. For convenience

of the reader we sketch the arguments. Let  and 	 be any function possessing expansions like

(5.6) and (5.14). Near the interfacial layer we formally equate the two expansions

	.�; s; zI "/ �

1
X

iD0

"i	i .�; s; z/ D

1
X

iD0

"i i
�

t; r".�; s/C "z�".�; s/
�

�  .t; x1; x2I "/: (5.25)

Then we expand the right-hand side in a Taylor series yielding

1
X

iD0

"i	i .�; s; z/ D

N
X

iD0

"iP˙
i .�; s; z/C "NC1R˙

NC1; (5.26)

where

P˙
i D

1

iŠ

d i

d"i
 
�

�; r".�; s/C "z�".�; s/
�
ˇ
ˇ
ˇ
ˇ
"D0

(5.27)

and R˙
NC1 is a Lagrange remainder. We observe that P˙

i is a polynomial of order i in z with

coefficients depending on r and its derivatives and on .x1; x2/-derivatives of  : We will assume

that all the .x1; x2/-derivatives of  up to order N C 1 are bounded in a neighborhood of the

interface. The polynomials PC
i ; P

�
i are valid for z > 0 and z < 0 respectively. Now let z ! ˙1

with " coupled to z such that "zNC1 ! 0 but otherwise arbitrary. Then the remainder term in

(5.26) has higher order than all the preceding terms. This fact leads to the identification of the inner

quantities with the Taylor polynomials for z ! 1; i.e.,

	i .�; s; z/ D P˙
i .�; s; z/C o.1/ for z ! ˙1: (5.28)

Applying this to the first two orders of the asymptotic expansions shows

	0.�; s; z/ !  ˙
0

�

�; r0.�; s/
�

z ! ˙1;

(5.29)

	1.�; s; z/ � ˙
1

�

�; r0.�; s/
�

�

�
@ 0

@xj

�˙
�

�; r0.�; s/
�

.r
j
1 .�; s/ D �

j
0 .�; s/z/C o.1/ z ! ˙1:

(5.30)

By differentiating both sides in (5.25) with respect to s; z or � we can derive further matching

conditions:

	0;� !
�
@ 0

@xj

�˙ �
�; r0.�; s/

�

w
j
0 .�; s/C

�
@ 0

@t

�˙

.�; r0.�; s// z ! ˙1; (5.31)

	0;s !
�
@ 0

@xj

�˙ �
�; r0.�; s/

�

t
j
0 .�; s/ z ! ˙1; (5.32)

	0;z ! 0 z ! ˙1; (5.33)

	1;z !
�
@ 0

@xj

�˙ �
�; r0.�; s/

�

�
j
0 .�; s/ z ! ˙1: (5.34)
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We will assume that all these limits are attained superlinearly fast. When we redefine

 C
0 .s; �/ WD lim

z>0;z!0
 0
�

�; r0.s; �/C z�0.s; �/
�

; (5.35)

 �
0 .s; �/ WD lim

z<0;z!0
 0
�

�; r0.s; �/C z�0.s; �/
�

; (5.36)

we can rewrite (5.31) and (5.32) as

	0;� ! . ˙
0 /� z ! ˙1; (5.37)

	0;s ! . ˙
0 /s z ! ˙1: (5.38)

6. Main results

In our considerations we assume that for all relevant quantities there exists an asymptotic expansion

in ": In particular we consider solutions of the structure given below:

DEFINITION 6.1 Let .�";u"/ be a classical solution of (4.4), (4.5) existing in the time interval Œ0; T /

with inner and outer expansions as in (5.6) and (5.14).

In addition let

˝�
" .t/ WD

˚

.x1; x2/ 2 R
2 W �".t; x

1; x2/ < ��

	

;

˝C
" .t/ WD

˚

.x1; x2/ 2 R
2 W �".t; x

1; x2/ > ��

	

;

�".t/ WD
˚

.x1; x2/ 2 R
2 W �".t; x

1; x2/ D ��

	

;

for t 2 Œ0; T / and let �" be a C 1.Œ0; T /; C 2.R2//-hypersurface with an asymptotic "-expansion as

in (5.15).

We call .�0;u0; �1;u1/ an outer solution if

�0; �1 2 C 1
�

Œ0; T /; C 0. N̋ ˙
0 .t//

�

\ C 0
�

Œ0; T /; C 1. N̋ ˙
0 .t//

�

; (6.1)

u0;u1 2 C 1
�

Œ0; T /; C 0. N̋ ˙
0 .t/;R

2/
�

\ C 0
�

Œ0; T /; C 1. N̋ ˙
0 .t/;R

2/
�

(6.2)

and .�0;u0; �1;u1/ satisfies

�0;t C div.�0u0/ D 0; (6.3)

.u0/t C .u0 � r/u0 C rg.�0/ D 0; (6.4)

�1;t C div.�1u0 C �0u1/ D 0; (6.5)

.u1/t C .u0 � r/u1 C .u1 � r/u0 C r.g0.�0/�1/ D 0: (6.6)

We call .R0;U0; R1;U1/ an inner solution if

R0; R1 2 C 1
�

Œ0; T / � I; C 3.R/
�

; (6.7)

U0;U1 2 C 1
�

Œ0; T / � I; C 2.R;R2/
�

; (6.8)

where I is the compact interval used to parameterize the interface and .R0;U0; R1;U1/ satisfies

�w�0R0;z C .U�0R0/z D 0; (6.9)
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�w�0.U
j
0 /z C U�0.U

j
0 /z C �

j
0g.R0/z � �

j
0 R0;zzz D 0; (6.10)

�w�1R0;z � w�0R1;z �wt0R0;s CR0;� C
t i0

jt0j2
.R0U

i
0/s C .R1U�0 CR0U�1/z D 0; (6.11)

�w�1.U
j
0 /z � w�0.U

j
1 /z C .U

j
0 /� �wt0.U

j
0 /s C U�1

�

U
j
0

�

z
C U�0

�

U
j
1

�

z

CUt0.U
j
0 /s C g.R0/z�

j
1 C .g0.R0/R1/z�

j
0 C g.R0/s

t
j
0

jt0j2

� .�C 2�/ �
j
0

1

R0
.U�0/zz

D �t
j
0

1

R0
.Ut0/zz C �

j
0R1;zzz C �

j
1R0;zzz � �0�

j
0R0;zz C 

t
j
0

jt0j2
R0;szz :

(6.12)

We call .�0;u0; �1;u1; R0;U0; R1;U1/ a matching solution, when .�0;u0; �1;u1/ is an outer

solution, .R0;U0; R1;U1/ is an inner solution and both are linked by the matching conditions

(5.29)-(5.34). We call a matching solution admissible, if the mass flux �0.u�0 �w�0/ 6D 0:

REMARK 6.2 Equations (6.3)–(6.6) were motivated in Section 5.1. To derive (6.9)–(6.12) we

perform the coordinate change (5.12) in (4.4) and (4.5), which changes the partial derivatives

according to (5.13). Then we insert the expansions (5.14) and compare coefficients of different

powers of ":

REMARK 6.3 Real phase transitions take only place if the mass flux is non-zero, i.e., �0.u�0 �

w�0/ 6D 0. Therefore, we have chosen this condition as an admissibility condition. We like to point

out that the subsequent analysis does not cover the case �0.u�0 � w�0/ D 0:

For every quantity  in outer variables having an asymptotic expansion in " we will use the

following notation for the jump of its leading orders at the interface:

ŒŒ ��0;1 WD ŒŒ 0��C " ŒŒ 1�� and f g0;1 WD f 0g C "f 1g:

Now we are well-prepared to state our main results.

THEOREM 6.4 If .�0;u0; �1;u1; R0;U0; R1;U1/ is an admissible matching solution defined as in

Definition 6.1, then the following jump conditions are fulfilled:

ŒŒ�"..u�/" � .w�/"/��0;1 D �"
@��

@�
� ".div� .wt0/ � �0w�0/�� ; (6.13)

ŒŒ�"..u�/" � .w�/"/.u" � w"/C p.�"/�"��0;1 D �"��
@w0

@�
C "div� .�� /; (6.14)

""

1

2

�
j"

�"

�2

C g.�"/

##

0;1

D �"

Z 1

0

�
j
0

�

U
j
0 � .u

j
0/

C
�

�
dz (6.15)

� "

Z 0

�1

�
j
0

�

U
j
0 � .u

j
0/

�
�

�
dz

� ".�C 2�/j0

Z 1

�1

��
1

R0

�

z

�2

dz;
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where

j" WD �"
�

.u�/" � .w�/"
�

(6.16)

is the massflux across the interface and

�� WD

Z 1

0

.R0 � �C
0 / dz �

Z 0

�1

.R0 � ��
0 / dz; (6.17)

�� WD �
j
� D

 
Z 1

0

 

j 20
R0

�
j 20

�C
0

C R20;z

!

dz C

Z 0

�1

: : : dz

!

t
j
0

jt0j2
: (6.18)

REMARK 6.5 We want to emphasize that (6.13) and (6.14) recover (3.3) and (3.4) respectively and

we will show in Theorem 6.7 that (6.13)–(6.15) are in agreement with (3.10).

REMARK 6.6 The zeroth orders of (6.13)–(6.15) imply that the states �˙
0 are the Maxwell points of

the free energy density function

Wj0
.�/ WD W.�/ �

j 20
2�
:

The Maxwell points ˛ and ˇ are the uniquely determined points satisfying

W 0
j0
.˛/ D W 0

j0
.ˇ/ D

Wj0
.ˇ/ �Wj0

.˛/

ˇ � ˛
:

THEOREM 6.7 If .�0;u0; �1;u1; R0;U0; R1;U1/ is an admissible matching solution defined as in

Definition 6.1, then for " sufficiently small the jump conditions derived in Theorem 6.4 imply the

inequality

0 > �".�C 2�/j 20

Z 1

�1

��
1

R0

�

z

�2

dz (6.19)

D "
@W�

@�
� " .� �W� /

�

div� ..wt /"/ � �".w�/"
�

C ŒŒj"��0;1

�

W 0.�"/C
ju" � w"j

2

2

�

0;1

C fj"g0;1

��

W 0.�"/C
ju" � w"j

2

2

��

0;1

:

Recall that the surface tension � is related to the surface stress tensor by (3.8). The interface mass

density �� and the surface stress tensor are as in (6.17), (6.18) and the Helmholtz surface energy

density W� is given by

W� D

Z 1

0

 

W.R0/ �W.�C
0 /C

1

2

j 20
R0

�
1

2

j 20

�C
0

C


2
R20;z

!

dz

C

Z 0

�1

�

W.R0/ �W.��
0 /C

1

2

j 20
R0

�
1

2

j 20
��
0

C


2
R20;z

�

dz: (6.20)

The inequality (6.19) is identical to the entropy inequality (3.10). Note that in (6.19) the interface

terms contribute in the first order of ". Thus the jump conditions derived in Theorem 6.4 are

compatible to the second law of thermodynamics.
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REMARK 6.8 A straightforward computation shows

W� � � D ��

 

g.�˙
0 /C

1

2

�
j0

�˙
0

�2
!

which is a special case of the Gibbs adsorption law, see [12].

REMARK 6.9 The inequality (6.19) can be obtained by straightforward but cumbersome

calculations using asymptotic analysis to the entropy inequality in the bulk (see (2.6)), which is

derived in [9].

7. Proof of Theorem 6.4

7.1 O."�1/-terms

In the following lemma we will establish the zeroth order of (6.13), (6.14) and (6.15).

LEMMA 7.1 If .�0;u0; �1;u1; R0;U0; R1;U1/ is an admissible matching solution defined as in

Definition 6.1, then the following jump conditions of zeroth order are satisfied:

ŒŒ�"..u�/" � .w�/"/��0 D 0; (7.1)

ŒŒ�"..u�/" � .w�/"/.u" � w"/C p.�"/�"��0 D 0; (7.2)

ŒŒ.ut /"��0 D 0; (7.3)
""

1

2

�
j"

�"

�2

C g.�"/

##

0

D 0: (7.4)

Proof. We recall that the mass flux across the interface is given by j D �.u��w�/. Hence equation

(6.9) implies J0;z D 0 and therefore we get the jump condition (7.1), i.e.,

ŒŒj ��0 D 0: (7.5)

Multiplying (6.10) with the zeroth order of the tangent vector t0 we obtain

J0

R0
.Ut0/z D 0: (7.6)

Hence, the leading order of the tangent velocity Ut0 is constant across the interface. Furthermore

to solve (6.9) and (6.10) it is sufficient to substitute U�0 D J0

R0
� w�0 in (6.10) and to solve (6.10)

times �0 which gives
J0

R0

�
J0

R0

�

z

C g.R0/z D R0;zzz: (7.7)

By Proposition 1.2 in the work of Benzoni-Gavage et. al. [4] there exist values �˙
0 satisfying certain

jump conditions which we will state in (7.9) and (7.12) below. Given these states �˙
0 there exists a

solution R0 of (7.7) attaining �˙
0 as boundary values.

In the sequel we will show that (7.9) and (7.12) are necessary conditions for boundary values of

solutions of (7.7). From (7.7) we infer

1

2

�
J0

R0

�2

C g.R0/ D R0;zz C c1 (7.8)
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for some c1 2 R: Using the matching conditions (5.29) and (5.33) this implies

c1 D
1

2

�
j0

��
0

�2

C g.��
0 / D

1

2

 

j0

�C
0

!2

C g.�C
0 /: (7.9)

Multiplying (7.7) by R0 we get

J0

�
J0

R0

�

z

C p.R0/z D R0R0;zzz; (7.10)

which implies

J 20
R0

C p.R0/ D 

�

R0R0;zz �
1

2
.R0;z/

2

�

C c2 (7.11)

for some c2 in R. Applying (5.29) and (5.33) to (7.11) we find

c2 D
j 20
��
0

C p.��
0 / D

j 20

�C
0

C p.�C
0 /: (7.12)

REMARK 7.2 In the proof of Lemma 7.1 we have seen that the tangential velocity is constant across

the interface and up to now we have not chosen a specific parameterization of the interface. So we

are free to impose

U i0 D wt0t
i
0 C U�0�

i
0; i.e., Ut0 D wt0: (7.13)

We want to point out that the admissibility condition from Definition 6.1 is crucial to establish the

equality of the tangent velocities of the fluid and the interface.

7.2 Prerequisites for O.1/-terms

The following technical lemmata are used to derive the first order jump conditions. Lemma 7.4

shows solvability criteria for the inner equations on an abstract level and is exploited in Lemma 7.5.

LEMMA 7.3 Let Q 2 C 2.R/ be given with

Qz.z/;Qzz.z/ ! 0; for jzj ! 1: (7.14)

Further, define

'.z/ D

Z z

0

1
�

Qz.Qz/
�2
d Qz:

Then
ˇ
ˇ'.z/Qz.z/

ˇ
ˇ ! 1; for jzj ! 1: (7.15)

Proof. Due to (7.14) there exists some K > 0 such that

jQz.z/j < ";
ˇ
ˇQzz.z/

ˇ
ˇ < "; for jzj > K:
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We consider some pair .z; Nz/ with j Nzj > K C 1; jzj > K and z Nz > 0: Then we have

ˇ
ˇQz.z/ �Qz.Nz/

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z z

Nz

Qzz.Qz/ d Qz

ˇ
ˇ
ˇ
ˇ

6 jz � Nzj": (7.16)

Therefore
ˇ
ˇQz.z/

ˇ
ˇ 6 2

ˇ
ˇQz.Nz/

ˇ
ˇ; for all jz � Nzj 6

jQz.Nz/j

"
.< 1/:

Next we define z� WD Nz � sgn.Nz/ jQz. Nz/j
"

and find

j'.Nz/j >

ˇ
ˇ
ˇ
ˇ
ˇ

Z Nz

z�

�
1

Qz.Qz/

�2

d Qz

ˇ
ˇ
ˇ
ˇ
ˇ

> j Nz � z�j
1

4

ˇ
ˇ
ˇ
ˇ

1

Qz.Nz/

ˇ
ˇ
ˇ
ˇ

2

; (7.17)

which implies

j'.Nz/Qz.Nz/j >
1

4
j Nz � z�j

ˇ
ˇ
ˇ
ˇ

1

Qz.Nz/

ˇ
ˇ
ˇ
ˇ

D
1

4"
: (7.18)

Hence for every " > 0 we find some K > 0 such that

ˇ
ˇ'.Nz/Qz.Nz/

ˇ
ˇ >

1

4"
for all j Nzj > K C 1; (7.19)

which proves (7.15).

LEMMA 7.4 Let .�0;u0; �1;u1; R0;U0; R1;U1/ be an admissible matching solution and let the

operator

L W W 3;1.R/ �W 1;1.R/ �W 1;1.R/ ! L1.R/ � L1.R/ �L1.R/

be given by

L

0

@

A

B

C

1

A WD

0

@

.A.U�0 � w�0/CR0B/z
..U�0 � w�0/B C g0.R0/A � Azz/z

.U�0 � w�0/Cz

1

A : (7.20)

Then

L

0

@

A

B

C

1

A D

0

@

f1
f2
f3

1

A ; f1; f2; f3 2 L1.R/; (7.21)

has a solution if and only if

Z 1

�1

f1 dz D 0; (7.22)

Z 1

�1

f2 dz D 0; (7.23)

Z 1

�1

R0f3 dz D 0; (7.24)

Z 1

�1

j0

R0
f1 CR0f2 dz D 0: (7.25)
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Proof. By the Fredholm alternative theorem the system (7.21) is solvable if and only if the right

hand side satisfies Z 1

�1

f1 � QAC f2 � QB C f3 � QC dz D 0

for every solution . QA; QB; QC/T of the homogeneous problem for the adjoint operator. The adjoint

operator

L� W L1.R/ �L1.R/ �L1.R/ ! W �3;1.R/ �W �1;1.R/ �W �1;1.R/

is given by

L�

0

@

QA
QB
QC

1

A WD

0

@

�.U�0 �w�0/ QAz � g0.R0/ QBz C  QBzzz
�R0 QAz � .U�0 � w�0/ QBz

�
�

.U�0 �w�0/ QC
�

z

1

A : (7.26)

In order to determine solvability criteria for (7.21) we have to find all . QA; QB; QC/T 2 .L1.R//3

satisfying

L�. QA; QB; QC/T D 0: (7.27)

Considering the homogeneous problem (7.27) it is well known (cf. [13] for example) that all

distributional solutions are already classical solutions. There are five linearly independent solutions

of (7.27) inC 3.R/�C 1.R/�C 1.R/. We have to determine whether they are elements of .L1.R//3.

The homogeneous problem (7.27) decouples into one problem for QA and QB and one for QC . The

latter immediately implies that QC has to be some multiple of R0, because J0 is constant in z. The

equations for QA and QB are more involved. They amount to

j0

R0
QAz C g0.R0/ QBz �  QBzzz D 0; (7.28)

R0 QAz C .U�0 �w�0/ QBz D 0: (7.29)

We can solve (7.29) for QAz ; which yields

QAz D �
j0

R20

QBz : (7.30)

Inserting (7.30) in (7.28) we obtain

�
j 20
R30

QBz C g0.R0/ QBz �  QBzzz D 0: (7.31)

For simplification of notation we introduce a new energy density function and a corresponding

Gibbs free energy function

QW .R0/ WD W.R0/ �
1

2

j 20
R0
; Qg.R0/ WD QW 0.R0/ D g.R0/C

1

2

j 20
R20
: (7.32)

Then (7.31) becomes

Qg0.R0/ QBz �  QBzzz D 0: (7.33)
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We observe that every constant function and QB D R0, owing to (7.7), are solutions of (7.33). Hence

we only have to find one more linearly independent solution of (7.33). When we define QD WD QBz
and QE D QDz ; we get from (7.33)

�
QD
QE

�

z

D

�
0 1

1


Qg0.R0/ 0

��
QD
QE

�

: (7.34)

As QB D R0 is a solution of (7.33), .R0;z; R0;zz/
T is a solution of (7.34). Due to the d’Alembert

reduction principle we make the following ansatz:

QD.z/ D '.z/R0;z.z/; (7.35)

QE.z/ D '.z/R0;zz.z/C  .z/; (7.36)

where the functions ' and  are to be determined. Inserting (7.35), (7.36) in (7.34) we get

'z.z/R0;z.z/C '.z/R0;zz.z/ D '.z/R0;zz C  .z/; (7.37)

'z.z/R0;zz.z/C '.z/R0;zzz.z/C  z.z/ D
1


Qg0.R0/'.z/R0;z.z/: (7.38)

We can solve (7.37) with respect to 'z ; which gives

'z D
 

R0;z
: (7.39)

Using (7.7) and (7.32) in (7.38) we obtain

 z.z/ D �'z.z/R0;zz.z/
.7:39/

D � .z/
R0;zz.z/

R0;z.z/
: (7.40)

From this we find

 D
k

R0;z

for k 2 R and hence by (7.39)

'z D
k

.R0;z/2
: (7.41)

We only need one solution F of (7.33) which is linearly independent of the constant and R0: Thus

we consider the special case

'.z/ D

Z z

0

1
�

R0;z.Qz/
�2
d Qz:

Then F is given as a primitive function of 'R0;z. From Lemma 7.3 we conclude that F 62 L1.R/

as j'.z/R0;z.z/j ! 1 for jzj ! 1. Hence there are only two linearly independent solutions of

(7.33) in L1.R/.

Using (7.30) the general solution of the homogeneous problem (7.27) in .L1.R//3 has the form

QA D k1 C k2
j0

R0
;

QB D k3 C k2R0; (7.42)

QC D k4R0;
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for arbitrary coefficients k1; k2; k3; k4 2 R: This gives rise to the four solvability criteria
Z 1

�1

f1 dz D 0;

Z 1

�1

f2 dz D 0;

Z 1

�1

R0f3 dz D 0;

Z 1

�1

j0

R0
f1 CR0f2 dz D 0:

LEMMA 7.5 Let .�0;u0; �1;u1; R0;U0; R1;U1/ be an admissible matching solution and let the

functions ˚;	� ; 	t 2 C1.R/ satisfy

˚.z/ D �˙
1 C

�
@�0

@xk

�˙

.rk1 C z�k0 /; (7.43)

	�.z/ D .u
j
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˙�
j
1 C .u

j
1/

˙�
j
0 C

 

@u
j
0

@xk

!˙

�
j
0 .r

k
1 C z�k0 /; (7.44)

	t .z/ D .u
j
1/

˙ t
j
0

jt0j2
C

 

@u
j
0

@xk

!˙
t
j
0

jt0j2
.rk1 C z�k0 /C .u

j
0/

˙

 

t
j
1

jt0j2
� 2

t
j
0 t
i
0t
i
1

jt0j4

!

; (7.45)

for z > 1 and z < �1 respectively. Further, let QR1 D R1�˚; QU�1 D U�1�	� and QUt1 D Ut1�	t :

Then equations (6.11), (6.12) can be equivalently written as

L

0

@

QR1
QU�1
QUt1

1

A D

0

@

f1ŒR0;U0; ˚; 	�

f2ŒR0;U0; ˚; 	�

f3ŒR0;U0; ˚; 	�

1

A ; (7.46)

where L is the operator from Lemma 7.4 and

f1ŒR0;U0; ˚; 	� WD �
1

jt0j
.wt0jt0jR0/s �R0;� C �0R0U�0

�
�

˚.U�0 � w�0/CR0.	� �w�1/
�

z
; (7.47)

f2ŒR0;U0; ˚; 	� WD ��
j
0 .U

j
0 /� C .�C 2�/

1

R0
.U�0/zz � �0R0;zz

�
�

.U�0 � w�0/.	� � w�1/C g0.R0/˚ � ˚zz
�

z
; (7.48)

f3ŒR0;U0; ˚; 	� WD �

 

t
j
0

jt0j2

!

.U
j
0 /� �

1

jt0j2
.g.R0/ � R0;zz/s � .U�0 � w�0/.	t /z : (7.49)

Proof. We will not consider (6.12) directly but separate it into a normal and a tangential part. The

normal part is given by (6.12) times �
j
0 plus (6.9) times �

j
1 , i.e.,

�w�1.U�0/z �w�0.U�1/z C �
j
0 .U

j
0 /� C U�1.U�0/z C U�0.U�1/z C .g0.R0/R1/z

D
1

R0
.�C 2�/.U�0/zz C R1;zzz � �0R0;zz: (7.50)
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Rearranging the terms in (7.50) gives

�

.U�0 �w�0/.U�1 �w�1/C g0.R0/R1
�

z

D ��
j
0 .U

j
0 /� C

1

R0
.�C 2�/.U�0/zz C R1;zzz � �0R0;zz: (7.51)

The tangential part of (6.12) is given by (6.12) times
t

j
0

jt0j2
plus (6.9) times

t
j
1

jt0j2
� 2

t
j
0
t i
0
t i
1

jt0j4
, i.e.,
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z
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1
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!

z

C
t
j
1 �

j
0

jt0j2
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D �
1
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.Ut0/zz C 

�
j
1 t
j
0

jt0j2
R0;zzz C 

1

jt0j2
R0;szz C 

t
j
1 �

i
0

jt0j2
R0;zzz : (7.52)

Using (7.13) and (5.23) this is equivalent to

.U�0 � w�0/.Ut1/z C
t
j
0

jt0j2
.U

j
0 /� C

1

jt0j2
g.R0/s D 

1

jt0j2
R0;szz: (7.53)

By the matching conditions, R1; U�1; Ut1 must have the following asymptotic behavior for z !

˙1 W

R1.z/ D �˙
1 C

�
@�0

@xk

�˙

.rk1 C z�k0 /C o.1/; (7.54)
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j
1 C .u
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0 C
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0 .r

k
1 C z�k0 /C o.1/; (7.55)

Ut1.z/ D .u
j
1/

˙ t
j
0

jt0j2
C

 

@u
j
0

@xk

!˙
t
j
0

jt0j2
.rk1 C z�k0 /C .u

j
0/

˙

 

t
j
1

jt0j2
� 2

t
j
0 t
i
0t
i
1

jt0j4
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C o.1/: (7.56)

Hence, solving (6.11),(6.12) is equivalent to solving

�
QR1.U�0 � w�0/CR0 QU�1

�

z
D �

1

jt0j
.wt0jt0jR0/s �R0;� C �0R0U�0

� .˚.U�0 � w�0/CR0.	� �w�1//z ;

�
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z
D ��

j
0 .U

j
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z
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.U�0 �w�0/. QUt1/z D �

 

t
j
0

jt0j2

!

.U
j
0 /� �

1

jt0j2
.g.R0/ � R0;zz/s � .U�0 � w�0/.	t /z ;
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with the new boundary conditions

QR1.z/; QU�1.z/; QUt1.z/ ! 0 for z ! 1: (7.57)

In the following we deduce the first order jump conditions in Theorem 6.4 by exploiting the

solvability conditions from Lemma 7.4.

7.3 O.1/-order terms

7.3.1 Mass balance. Relying on Lemma 7.4 and Lemma 7.5 we can determine the first order of

the jump of the mass flux across the interface.

LEMMA 7.6 Let .�0;u0; �1;u1; R0;U0; R1;U1/ be an admissible matching solution then

��

�"
�

.u�/" � .w�/"
���

1
D �

@��

@�
� .div� .wt0/ � �0w�0/�� ; (7.58)

where

�� D

Z 1

0

.R0 � �C
0 / dz �

Z 0

�1

.R0 � ��
0 / dz C O."/: (7.59)

Proof. From Lemma 7.4 and Lemma 7.5 we know

Z 1

�1

f1ŒR0;U0; ˚; 	� dz D 0;

where

f1ŒR0;U0; ˚; 	� D �
1
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.wt0jt0jR0/s � R0;� C �0R0U�0

�
�

˚.U�0 �w�0/CR0.	� � w�1/
�

z
;

when f1 2 L1.R/. We start with showing that f1 2 L1.R/.

We observe that

.�0;t /
˙ C

t i0
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i
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j
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�
j
0 D 0; (7.60)

because �0;u0 satisfy the mass conservation equation in the bulk. Utilizing w�0�
i
0 C wt0t

i
0 D wi0

equation (7.60) is equivalent to
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i
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�
j
0 D 0: (7.61)
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Using the different forms of the matching conditions implies

�w�0

�
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�i0 �wt0
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C .�˙
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0 .u

i
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˙/s C �i0
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i
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�˙

�
j
0 D 0: (7.62)

Due to (5.24) and (7.13) we obtain

.u˙
�0�w�0/

�
@�0
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�˙

�i0C�˙
0

�
@ui0
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�˙
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j
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.wt0jt0j/s�

˙
0 C.�˙

0 /���0�
˙
0 u

˙
�0 D 0: (7.63)

Keeping in mind the definition of f1ŒR0;U0; ˚; 	� (see (7.47)), equation (7.63) implies due to

(5.31), (5.32) and (5.34)

f1ŒR0.z/;U0.z/; ˚.z/; 	.z/� ! 0; for jzj ! 1 (7.64)

superlinearly and hence f1ŒR0;U0; ˚; 	� 2 L1.R/:

Thus we can write (7.22) as
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i

:

Now we would like to decompose the limit into several parts, which have to converge. This can be

achieved by subtracting a times (7.63)˙ before letting a ! 1; i.e.,
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(7.65)

Inserting (A.3) in (7.65) and using

R0U�0 � �C
0 u

C
�0 D R0w�0 � �C

0 w�0;
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we obtain
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(7.66)

In view of (3.3) we can identify the surface mass density as

�� WD

Z 1

0

.R0 � �C
0 / dz C

Z 0

�1

.R0 � ��
0 / dz C O."2/; (7.67)

which finishes the proof.

7.3.2 Gibbs free energy. We deduce the first order of the jump of the Gibbs free energy across

the interface. The proof is based on Lemma 7.4 and Lemma 7.5.

LEMMA 7.7 Let .�0;u0; �1;u1; R0;U0; R1;U1/ be an admissible matching solution. Then
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Proof. From Lemma 7.4 and Lemma 7.5 we know
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where
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when f2 2 L1.R/. We start with showing that f2 2 L1.R/.

As the outer quantities �0; u0 satisfy (4.5), we have
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Due to the matching conditions (5.33), (5.34), (5.37) and the assumptions (7.43), (7.44) and (7.45)

on ˚;	� and 	t we get
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Inserting (7.70) in (7.71) we get
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where the convergence is obtained superlinear, whence f2ŒR0;U0; ˚; 	� 2 L1.R/:

Due to the matching conditions and (7.43), (7.44) the solvability condition (7.23) is equivalent

to
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Now we subtract a times (7.70)C and a times (7.70)� before letting a ! 1 and obtain
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Using (A.5) equation (7.74) means
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7.3.3 Momentum balance. Using the last two solvability conditions from Lemma 7.4 together

with Lemma 7.5, we will determine the first order of the pressure jump across the interface.

LEMMA 7.8 Let .�0;u0; �1;u1; R0;U0; R1;U1/ be an admissible matching solution. Then
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Proof. From Lemma 7.4 and Lemma 7.5 we have the solvability criteria
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where
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On the other hand, �0;u0 satisfy (4.5) in the bulk, such that

t
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Inserting (7.81) in (7.80) we get
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t
j
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�
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D 0: (7.82)

To obtain a solvability criterion, which has the form of the Young–Laplace law, we will deal with the

solvability criteria (7.24) and (7.25) simultaneously. As �0 and t0 are linearly independent equations

(7.24) and (7.25) are equivalent to

Z 1

�1

R0f3ŒR0;U0; ˚; 	�t
i
0 C

j0

R0
f1ŒR0;U0; ˚; 	��

i
0 CR0f2ŒR0;U0; ˚; 	��

i
0 dz D 0: (7.83)

As f1; f2; f3 go to zero superlinearly for jzj ! 1; we have

lim
z!˙1

R0f3ŒR0;U0; ˚; 	�t
i C

j0

R0
f1ŒR0;U0; ˚; 	��

i CR0f2ŒR0;U0; ˚; 	��
i D 0: (7.84)
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Inserting (7.47)–(7.49) in (7.83) yields

0 D
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�1

h J0

R0
�i0

�

�
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1
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J0
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.	t /z

!
i
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The terms containing w�1 cancel out and using integration by parts, (7.85) becomes
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i
0

1

jt0j
.wt0jt0j/s �

J0

R0
�i0R0;� C �0�

i
0J0U�0

� �i0

�

J0	� C
J 20
R20
˚ C J0	� C p0.R0/˚ � .˚zzR0 � ˚zR0;z C ˚R0;zz/

�

z
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i
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jt0j2
p.R0/s C 
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i
0.	t /z

i

dz: (7.86)

We observe that (6.9) and (7.13) imply

J0

R0
�i0R0;� CR0.U

i
0/� D .J0�

i
0/� CR0.w

i
0/� and

�
J0
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�

z

R0 C

�
J0
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�

R0;z D 0:

Using this (7.86) yields
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z
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�i
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We remark that the last line of (7.87) vanishes due to (6.10).
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Now we will consider some of the terms from (7.87) separately. We start with multiplying (6.10)

with R0 and subtracting (6.9) times w
j
0 . We obtain

�

R0U�0.U
j
0 �w

j
0 /
�

z
�
�

R0w�0.U
j
0 � w

j
0 /
�

z
„ ƒ‚ …

D0

D ��
j
0p.R0/z C �

j
0 R0R0;zzz: (7.88)

So there exists Di
1 independent of z such that

�i0j0U�0 D ��i0p.R0/C �i0R0R0;zz � �i0
1

2
.R0;z/

2 CDi
1: (7.89)

With (5.3) we compute

p.R0/s
t
j
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t
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(7.90)

D
1

jt0j

 

t
j
0

jt0j
p.R0/

!

s

� �
j
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Additionally we observe that due to (6.9)

D
j
2 WD .R0.U

j
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j
0 //� D .j0�

j
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and

D
j
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1
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.jt0jwt0/sR0.U

j
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j
0 / D

1
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j
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are independent of z. Now we insert (7.89) and (7.90) in (7.87) and we end up with
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By (7.84) the integrand in (7.93) goes to zero for jzj ! 1, i.e.,
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Using the matching conditions and (7.43)–(7.45) equation (7.93) is equivalent to
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We subtract a times (7.94)C and a times (7.94)� before letting a ! 1 which yields
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�
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As explained in the appendix, (7.96) can be written as
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or by (5.3) equivalently
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Because of (7.11) we have
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2
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Inserting this into (7.98) we can, in view of (3.4), identify the surface stress vector �� as
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8. Proof of Theorem 6.7

Now we will establish Theorem 6.7.

Proof. To prove the theorem we will compute the first non-vanishing order of
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ju" � w"j

2

2

�
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by the jump conditions in Theorem 6.4.
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As we see from (6.13) and (6.14) there are no O.1/ contributions in the jump terms in (8.1), so

the leading order terms are of O."/. They are given as products of the order O."/-terms in the jumps

and the order O.1/-terms in the mean values, i.e., the leading order of (8.1) is given by
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By (7.13) we have ut0 D wt0 such that u
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Hence, (8.2) equals
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Now we use (6.13) and (6.14) to get an equality
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To simplify the notation we define
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We will first deal with A˙: Due to (5.4) there exists c 2 R; which is independent of z as �0 and t0
are independent of z; such that
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Therefore we get
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Using (7.9) yields
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Inserting (8.8) and (8.9) in (8.6) implies
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This finishes our calculations for A˙ and we turn to B˙:
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First we observe that due to (7.9)
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From (7.11) and (7.12) we already know
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C
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2
R20;z: (8.13)

Inserting (8.12) and (8.13) in (8.7) we find

BC C B� D (8.14)
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Plugging (8.11) and (8.14) in (8.5) we get
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Recalling equation (3.10) and definitions (6.17), (6.18) we can identifyW� as

W� D

Z 1
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0 /C

1

2

j 20
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0 /C

1

2

j 20
R0

�
1

2

j 20
��
0

C


2
R20;z

�

dz:

and obtain the assertion of Theorem 6.7.

9. Kinetic relation

We will show that the leading order jump conditions stated in Theorem 6.4 consist of the two

conservation laws for mass and momentum and in addition of a kinetic relation. In particular, when

the direction of the mass flux is given, the normal velocity of the interface is determined by the state

on one side of the interface.

LEMMA 9.1 Let �C
0 ; �

�
0 ; u

C
�0; u

�
�0; u

C
t0; u

�
t0; w�0 satisfy the jump conditions from Lemma 7.1, such

that ��
0 62 Œ˛; ˇ�; where ˛; ˇ are the Maxwell points of W , and the equal area construction

0 D �

Z 1

�
C
0

1
��

0

p.�0/ d
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1

�0
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��
1

�0
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(9.1)

is possible. If ��
0 ; u

�
�0; u

�
t0 and the sign of j0 are specified, then �C

0 ; u
C
�0; u

C
t0; w�0 are determined.

Proof. Due to (7.3) we know uC
t0 equals u�

t0: Using (7.2) we get the following expression for the

mass flux

j 20 D �
ŒŒp.�0/��
hh
1
�0

ii : (9.2)

Inserting (9.2) in (7.4) we find
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2
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This is equivalent to
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��
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C
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From equation (2.5) we conclude

d

d 1
�0
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Inserting (9.5) in (9.4) we obtain
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Note that (9.6) is an equal area rule which determines �C
0 : Then (9.2) prescribes j0 which we can,

in turn, use to obtain w�0 and uC
�0 from (7.1).

As shown in [5] the kinetic relation derived in Lemma 9.1 guarantees the solvability of the

free boundary value problem for �0;u0. Hence, when we want to determine �C
1 ; u

C
�1; u

C
t1 and w�1

from ��
1 ; u

�
�1 and u�

t1; we can assume that we can, at least numerically, calculate �0; u0 and w0:

Furthermore R0 and U0 are traveling wave solutions of the non-viscous problem. Their phase

portraits can be found in [4].

For the following lemma we assume that we have solved, at least numerically, the inner and

outer problem of zeroth order. Hence, we know the right hand side of the first order jump conditions

in Theorem 6.4.

LEMMA 9.2 Let �C
1 ; �

�
1 ; u

C
�1; u

�
�1; u

C
t1; u

�
t1; w�1 satisfy the first order of the jump conditions in

Theorem 6.4. If ��
1 ; u

�
�1; u

�
t1 are given and j0 6D 0, then �C

1 ; u
C
�1; u

C
t1; w�1 are determined.

Proof. We start by determining uC
t1: We multiply (7.77) by t0 and obtain

j0u
C
t1 D h1; (9.7)

where h1 comprises terms depending only on ��
1 ; u

�
�1; u

�
t1 and terms of zeroth order and their

derivatives. As j0 6D 0 equation (9.7) prescribes the value of uC
t1: To determine �C

1 ; u
C
�1; w�1 we

consider (7.58), (7.68) and (7.77) times �0:We obtain a system of linear equations for �C
1 ; u

C
�1; w�1

which reads
0
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1
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where h2; : : : ; h4 only contain terms depending on ��
1 ; u

�
�1; u

�
t1, terms of zeroth order and their

derivatives and r1. An easy calculation shows

detA D
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0 /
2

 

g0.�C
0 / �

j 20

.�C
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@
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1
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� .�C
0 /C
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hh
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1

A :

The last expression vanishes if and only if the tangent at �C
0 and the secant connecting �C

0 to ��
0

coincide. However this is not possible due to the equal area rule (9.1).

Thus we have a relation w�1.r1/ such that we end up with an ODE to determine the interface

position up to the first order.
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A. Appendix: List of the "-expansions of the jump brackets and proof of Lemma 7.3

In this section we provide identities for the first two orders of the jump brackets of mass, Gibbs free

energy and pressure.

A.1 Mass flux

We have
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To determine the first orders of the jump we will look at the "�expansion of �":
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Hence we obtain the following two jump conditions:
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A.2 Balance of Gibbs free energy
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The derivation of (A.4) and (A.5) is analogous to the derivation of (A.2) and (A.3).

A.3 Momentum balance
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The derivation of (A.6) and (A.7) is analogous to the derivation of (A.2) and (A.3).
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