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We study liquid drops lying on a rough planar surface. The drops are minimizers of an energy

functional that includes a random adhesion energy. We prove the existence of minimizers and the

regularity of the free boundary. When the length scale of the randomly varying surface is small,

we show that minimizers are close to spherical caps which are minimizers of an averaged energy

functional. In particular, we give an error estimate that is algebraic in the scale parameter and holds

with high probability.

2010 Mathematics Subject Classification: Primary 76D45; Secondary 35B27, 35R60, 35R35,

49Q10.

Keywords: Capillary drops, homogenization, random media, free boundary problems

1. Introduction

1.1 Liquid drops and Caccioppoli sets

We consider liquid drops resting on an planar surface with inhomogeneous adhesion properties.

A drop is represented by a set E of finite perimeter (also called a Caccioppoli set) contained in

˝ D R
d � .0; 1/ and having fixed volume jEj D V > 0. Throughout we will use x to denote a

point in R
d , z to denote a point in Œ0; 1/, and y D .x; z/ to denote a point in R

dC1. The boundary

set @˝ D f.x; 0/ W x 2 R
d g is the solid surface on which the drop is resting.

For a given Caccioppoli set E � ˝ , P.E; ˝/ will denote the perimeter of the free surface

@E \ fz > 0g (which represents the liquid-vapor interface) and is defined as follows:

P.E; ˝/ D sup

�Z

E

div g.y/dy W g 2 ŒC1
0.˝/�dC1; jgj 6 1

�

:

Because the characteristic function �E of a Caccioppoli set is in BV.˝/, it has a trace N�E 2 L1.@˝/

(see [5]).

We consider a simple situation in which the energy of a drop is the sum of the surface tension

energy (proportional to the free surface area) and the wetting energy (resulting from the interactions

between the liquid and the solid). After some normalization, we thus assume that the energy of a

drop E is given by

J .E/ D P.E; ˝/ �

Z

Rd

ˇ.x/ N�E .x/ dx (1.1)
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where the coefficient ˇ.x/ 2 R is the relative adhesion coefficient between the liquid and the solid.

Positive values ˇ > 0 correspond to a hydrophilic surface, while negative values ˇ < 0 correspond

to a hydrophobic surface. It is known that if ˇ.x/ 6 �1 for all x, then global minimizers of J .E/,

under the volume constraint jEj D V , are spherical sets in ˝ having no contact with the surface

@˝ . On the contrary, if ˇ > �1, absolute minimizers of the functional J must touch the solid

support, though a sphere of volume V is still a local (degenerate) minimizer (see [4, 6]).

In this article we study minimizers of J when ˇ.x/ is a random field taking values in the

interval .�1; 1/. Our first result is a proof of the existence and regularity of global minimizers under

an additional constraint that confines the drop to a bounded region. We then consider the issue of

homogenization. For ˇ.x/ D �.x="/ with " > 0 small, we show that global minimizers E" are

very close to minimizers of a homogenized energy functional J0. In particular, we give an error

estimate that is algebraic in " as " ! 0 and holds with high probability.

1.2 Free surface, wetted region and contact line

Given a drop E , the free surface of the drop (the liquid-vapor interface) is the set @E \ fz > 0g

whose area (perimeter of E) is defined above. Note that sets of finite perimeter are defined only up

to sets of measure 0. We will thus normalize E (as in [5]) so that

0 < jE \ BC
r .y/j < jBC

r .y/j for all y 2 @E and all r > 0:

Here and below, jAj denotes the Lebesgue measure of a set A, Br .y/ denotes a ball of radius r and

center y, and BC
r D Br \ fz > 0g.

For a smooth set, the wetted region (liquid-solid interface), is

˙E D E \ fz D 0g;

which is the trace of E on @˝ . However in general, it is not obvious that the trace N�E of �E is equal

to 0 or 1 almost everywhere, so we cannot yet define ˙E .

Next, the contact line (the liquid-vapor-solid interface) is defined for a smooth set E as the

topological boundary of ˙E :

C lE D @˙E :

For a general Caccioppoli set, the contact line C lE is defined as the set of points x0 such that .x0; 0/

belongs to @E , that is such that
(

jE \ BC
r .x0; 0/j > 0 for all r > 0,

j.˝ n E/ \ BC
r .x0; 0/j > 0 for all r > 0

(1.2)

We immediately see that if x0 … C lE , then either N�E is zero almost everywhere in a neighborhood

of x0 or N�E is one almost everywhere in a neighborhood of x0. This means that outside of C lE , the

contact set ˙E is well defined.

In Section 2.3, we will show that for minimizers of J , the contact line C lE is indeed a line

– it has finite d � 1 Hausdorff measure. This implies in particular that for minimizers of J , the

trace N�E is equal to 0 or 1 almost everywhere, which justifies, a posteriori, our notation ˙E for the

wetted region (˙E can indeed be defined as the set of points where N�E D 1). For such sets, we have
Z

Rd

g.x/ N�E .x/dx D

Z

˙E

g.x/ dx
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for all bounded measurable functions g, and

j˙E j D

Z

Rd

N�E .x/ dx:

1.3 Constant adhesion coefficient

Before defining the random field ˇ.x/ and stating our results, we first briefly recall some classical

facts about the minimizers of (1.1) when ˇ � ˇ0 2 .�1; 1/ is constant (see E. Gonzalez et.al. [7]

for details and references). For such a homogeneous surface, the corresponding energy functional is

J0.E/ D P.E; ˝/ � ˇ0

Z

Rd

N�E .x/ dx: (1.3)

For any given volume V > 0, we define E0.V / D fE � ˝ I P.E; ˝/ < 1; jEj D V g. It is

known that there exists a set E 2 E0.V / which is a minimizer of the energy functional (1.3):

J .E/ 6 J .F /; 8 F 2 E0.V /:

Furthermore, Schwarz symmetrization decreases the energy: For every E 2 E0.V /, the set

Es D f.x; z/ 2 ˝ I jxj < �.z/g; where �.z/ D

�

!�1
d

Z

Rd

�E .x; z/dx

�
1
d

is a Caccioppoli set with the same volume V , and we have the inequality

J0.Es/ 6 J0.E/: (1.4)

The constant !d is the measure of the unit ball in R
d . Equality holds in (1.4) if and only if E is

symmetric (i.e. Es D E). This fact implies that any minimizer should have axial symmetry, and it

can be shown that minimizers are spherical caps, which are the intersection of the upper-half space

˝ with a ball B�0
.x0; z0/ 2 R

dC1 having radius �0 and center .x0; z0/. We use

BC
�0

.x0; z0/ D B�0
.x0; z0/ \ fz > 0g

to denote such a spherical cap. In this case the wetted region ˙E is a disc of radius

q

�2
0 � z2

0 ,

where z0, �0 are such that the Young-Laplace law and volume constraint are satisfied:

z0

�0

D ˇ0; V D !d

Z �0

�z0

.�2
0 � r2/d=2 dr: (1.5)

Finally, we recall the following stability result for the minimization problem with constant adhesion

coefficient (see [1]), which will play an important role in our analysis for the case of heterogeneous

adhesion coefficient:

THEOREM 1.1 Suppose a set E 2 E0.V / and R > 0 is such that

E is contained in a ball BR � ˝; (1.6)
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and

9ı > 0 s.t. J0.E/ 6 J0.F / C ı; 8F 2 E0.V /: (1.7)

There exists a universal s > 0, a constant C (depending on R), and a point x0 2 R
d such that

jE4BC
�0

.x0; z0/j 6 Cıs ;

where �0 and z0 satisfy (1.5).

The notation E4B denotes the symmetric difference of sets E , B . If E also satisfies some non-

degeneracy conditions, then Theorem 1.1 implies the uniform stability in the following sense: For

any � > 0, there exists ı0 such that if (1.7) holds with ı < ı0, then

BC
.1��/�0

.x0; z0/ � E � BC
.1C�/�0

.x0; z0/:

In other words, the free surface @E \ fz > 0g is between @BC
.1C�/�0

.x0; z0/ and @BC
.1��/�0

.x0; z0/.

1.4 Random adhesion coefficient

We now describe the framework of this paper and state our main result:

Let fˇkgk2Zd be a collection of independent, identically distributed random variables satisfying

P .ˇk 2 .ˇmin; ˇmax// D 1; EŒˇk � D ˇ0; (1.8)

for some constants �1 < ˇmin 6 ˇmax < 1. We use .H; F ; P/ to refer to the probability space over

which these random variables are defined. For " > 0 and k 2 Z
d , let Q"

k
D "k C Œ0; "/d denote the

nonoverlapping cubes of size " with corners at the points "Z
d . Then, we define the random adhesion

coefficient ˇ".x/ according to

ˇ".x/ D ˇk; if x 2 Q"
k: (1.9)

Observe that ˇ".x/ D ˇ1.x="/. We will use J" and J0 to denote the energy functionals associated

with ˇ".x/ and ˇ0, respectively, replacing ˇ.x/ in (1.1).

In full generality, the existence of a minimizer for (1.1) can be delicate to establish. Indeed,

it easy to construct a function ˇ.x/ for which minimizing sequences do not converge in L1. For

example, let ˇ.x/ be a strictly increasing function of x1 (such as ˇ.x/ D 1
�

arctan.x1/, which

satisfies limx1!˙1 ˇ.x/ D ˙1
2

2 .�1; 1/). In that case, any minimizing sequence will drift toward

x1 ! C1 and will not converge in L1.

In order to avoid such behavior, we will assume that the drops must stay inside a “container” of

the form

U D BR � Œ0; 1/

where BR is a ball of radius R in R
d (R will always be assumed to be large enough, so that a

ball of volume V fits in U). The “bottom” of the container is thus BR � f0g, while the “wall” is

@BR � Œ0; 1/. We will assume that the wall of the container is completely hydrophobic. One way

to take that into account is to include the area of E \ .@BR � Œ0; 1// in the wetting energy, with

ˇ D �1. Another way is to include the area E \ .@BR � Œ0; 1// in the free surface area. Choosing

the later approach, we define

E .V / D fE � U W P.E; ˝/ < 1; jEj D V g ; (1.10)
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and for all E 2 E .V / we define the energy

J".E/ D P.E; ˝/ �

Z

Rd

ˇ".x/ N�E .x/ dx: (1.11)

Our main result is:

THEOREM 1.2 With probability one and for all " > 0, there exists a Caccioppoli set E" 2 E .V /

such that

J".E"/ D min
E2E .V /

J".E/:

Furthermore, for any r > .d C 1/=d there are constants Kr , K2, and K3 such that if ˛ > 0 and

" < Kr min.1; ˛r /, then there is a random point x0 2 R
d such that

jE"4BC
�0

.x0; z0/j 6 C˛s (1.12)

holds, except possibly on a F -measurable set of measure less than K2e�K3"�d ˛2
. The constants K2

and K3 depend on V , but not on r .

The exponent s > 0 and the constant C are the same as those appearing in Theorem 1.1. The

estimate (1.12) shows that when " is small, minimizers of J" are close to a spherical cap which

minimizes J0, the energy functional associated with the homogeneous medium ˇ � ˇ0. It is

not clear whether the random variable jE"4BC
�0

.x0; z0/j is F -measurable; we do not claim that

x0 is F -measurable. Nevertheless, the set where (1.12) may not hold must be contained in a F -

measurable set of measure less than K2e�K3"�d ˛2
. Therefore, if we choose 0 < p < d=.d C 1/,

then the estimate (1.12) says that jE"4BC
�0

.x0; z0/j 6 C "sp with very high probability as " ! 0. In

particular, if the surface dimension is d D 2, then the error jE"4BC
�0

.x0; z0/j is almost O."s2=3/.

Theorem 1.2 builds upon work of Caffarelli and Mellet [1] where they studied the case of

periodic adhesion coefficient ˇ.x=�/. In that setting, they proved the existence of minimizers which

are close to a spherical cap when � is small. For a random adhesion coefficient, however, some

technical issues arise related to the construction of minimizers, as we have mentioned. In Section 2,

we prove the existence and regularity properties of minimizers of J with the additional constraint

E � U. We prove the error estimate (1.12) later in Section 3. In view of Theorem 1.1, the error

estimate follows from a suitable bound on the energy difference J".E"/ � J0.E"/. To obtain

such a bound, we make use of the uniform regularity of the free boundary and apply concentration

inequalities for sums of independent random variables. We refer to [3] for another example of an

error estimate for a nonlinear, stochastic homogenization problem.

In [2], Caffarelli and Mellet used the result of [1] to show that homogenization leads to hysteresis

phenomena, in the sense that there exist local minimizers for " > 0 that converge to non-spherical

drops (with contact angle larger than the average of ˇ on parts of the contact line). Such a result

could be extended to the random framework, but would require strong assumptions on the structure

of the oscillations of ˇ. Several results have also been obtained concerning the homogenization

of dynamic contact angle conditions (moving liquid drops). In particular, Kim in [9, 10] has

studied the periodic homogenization of some Hele–Shaw type models for dynamic contact angle,

and established error estimates [8]. Finally, the random homogenization for the Hele–Shaw free

boundary problem is studied in [11].

Acknowledgment. AM was partially supported by NSF grant DMS-0901340. JN was partially

supported by NSF grant DMS-1007572.
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2. Existence and regularity of minimizers

In this section, we consider the functional J defined by (1.1) with ˇ.x/ being any measurable

function that satisfies

�1 < ˇmin 6 ˇ.x/ 6 ˇmax < 1; for allx 2 R
d : (2.1)

Our goal is to study the existence and regularity of minimizers for J (with the volume constraint).

Similar results were proved in [1] in the periodic framework, and can be generalized. However, in

the periodic case, it is not necessary to constrain E to a bounded set U: the periodicity prevents

minimizing sequences from drifting away. As pointed out in the introduction, in the general case,

we need to work within a bounded set U in order to find a minimizer, and we have to check carefully

that this additional constraint does not cause any problems.

We will show:

PROPOSITION 2.1 For any measurable function ˇ.x/ satisfying (2.1), there exists E 2 E .V / such

that

J .E/ D min
F 2E .V /

J .F /: (2.2)

The contact line C lE (defined by (1.2)) has finite .d � 1/-Hausdorff measure and there exists a set

˙E such that
Z

Rd

g.x/ N�E .x/ dx D

Z

˙E

g.x/ dx; for all g 2 C
1
0.Rd /:

Finally, there exists a universal constant C > 0 such that

C �1V
d

dC1 6 P.E; ˝/ 6 C V
d

dC1 ; j˙E j 6 C V
d

dC1 (2.3)

and

H
d�1.C lE / 6 C V

d�1
dC1 : (2.4)

2.1 Existence of a minimizer

Because subsets of BV.˝/ are pre-compact in L1
loc

.˝/, Lemma 2.1 and 2.2 below will yield the

existence of minimizers provided that we stay within a bounded subset of R
dC1. We thus define

UT D BR � Œ0; T �

and

ET .V / D fE 2 E .V / I E � UT g;

and we assume that T is large enough, so that ET .V / is not empty. We then have the following

proposition:

PROPOSITION 2.2 There exists E 2 ET .V / satisfying

J .E/ D min
F 2ET .V /

J .F /: (2.5)

Moreover, there exists a universal constant C such that

C �1V
d

dC1 6 P.E; ˝/ 6 C V
d

dC1 and

Z

Rd

N�E .x/ dx 6 C V
d

dC1 : (2.6)
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Proposition 2.2 follows from the following lemmas:

LEMMA 2.1 The functional J is lower semicontinuous with respect to the L1 topology: If fEj g1
j D1

is a sequence of Caccioppoli sets such that �Ej
�! �E in L1.˝/ then

J .E/ 6 lim inf
j !1

J .Ej /:

LEMMA 2.2 If ˇ satisfies (2.1), then

J .E/ >
1 � ˇmax

2
P.E; ˝/ C

1 � ˇmax

2

Z

Rd

N�E .x/ dx

for all E 2 E .V /.

Proof of Lemma 2.2. We recall that for all h 2 ŒC1.RdC1/�dC1, we have

Z

˝

�E div h D �

Z

˝

hh; D�E i C

Z

Rd

N�E .x/hdC1.x; 0/ dx: (2.7)

If g.x/ is a non-negative measurable function, then taking h D .0; : : : ; 0; g.x//, we deduce:

Z

˝

g.x/jD�E j dy >

Z

Rd

g.x/ N�E dx: (2.8)

Hence
Z

˝

1 C ˇ.x/

2
jD�E j dy >

Z

Rd

1 C ˇ.x/

2
N�E .x/dx

and therefore

Z

˝

�

1 �
1 � ˇ.x/

2

�

jD�E j dy >

Z

Rd

�

1 � ˇ.x/

2
C ˇ.x/

�

N�E .x/dx

which gives

J .E/ >

Z

˝

1 � ˇ.x/

2
jD�E j dy C

Z

Rd

1 � ˇ.x/

2
N�E .x/dx

and implies Lemma 2.2.

Proof of Proposition 2.2. Consider a minimizing sequence �Ej
with Ej 2 ET .V /. Lemma 2.2

and the fact that UT is bounded imply that .�Ej
/j is bounded in BV.UT / and thus compact

in L1.UT /. Hence there exists E such that �Ej
�! �E . Using Lemma 2.1 we deduce E is a

minimizer of J in ET .V /.

Next, we remark that (2.8) implies (with g D 1)

P.E; ˝/ >

Z

Rd

N�E .x/ dx: (2.9)

We recall the isoperimetric inequality

jEj
d

dC1 D V
d

dC1 6 �dC1P.E; R
dC1/
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and (2.7) gives for all h 2 ŒC1
0.RdC1/�dC1 with jhj 6 1

ˇ

ˇ

ˇ

ˇ

Z

RdC1

�E div h

ˇ

ˇ

ˇ

ˇ

6

Z

˝

jD�E j C

Z

Rd

N�E .x/ dx

6 P.E; ˝/ C

Z

Rd

N�E .x/ dx:

Taking the supremum over all such h, we deduce

P.E; R
dC1/ 6 P.E; ˝/ C

Z

Rd

N�E .x/ dx

and therefore

V
d

dC1 6 �dC1

�

P.E; ˝/ C

Z

Rd

N�E .x/ dx

�

: (2.10)

Using (2.9), we deduce

V
d

dC1 6 2�dC1P.E; ˝/: (2.11)

Moreover, we have

J .E/ > P.E; ˝/ � ˇmax

Z

Rd

N�E .x/ dx > .1 � ˇmax/P.E; ˝/:

and since J .E/ 6 J .B/ where B � ˝ is a ball with volume V , we also have

.1 � ˇmax/P.E; ˝/ 6 J .B/ D ��1
dC1V

d
dC1 : (2.12)

Combining (2.9), (2.11) and (2.12), we get (2.6).

In order to prove the first part of Proposition 2.1, it remains to prove that for T large enough,

the minimizer for J in ET .V / provided by Proposition 2.2 is actually a minimizer in E .V /. This

follows from the following result, the proof of which can be found in [1]:

LEMMA 2.3 There exists T1 such that for all T > T1, there exists a minimizer E of J in ET that

satisfies

E 2 ET1
.V /:

2.2 Non-degeneracy estimates and weak regularity of the contact line

In this section, we prove the Hausdorff estimate (2.4). First, we need to show that minimizers of J
enjoy some non-degeneracy properties which will also be useful later on. Throughout this section,

E denotes a minimizer of J in E .V /, as constructed in the previous section.

We recall the following simple fact:

min
E .V /

J 6 min
E .V CdV /

J 6 min
E .V /

J C C V � 1
dC1 dV: (2.13)

The first inequality can be obtained simply taking the minimizer with volume V CdV and chopping

a piece of volume dV at the top. For the second inequality, we consider the minimizer E with

volume V and take a vertical dilation Et D f.x; z/I .x; .1 C t/�1z/ 2 E/g. Then, for t D dV=V ,

Et is an admissible set of volume V C dV . See [1] for details.

We now prove the following non-degeneracy estimate:
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LEMMA 2.4 Let .x0; z0/ 2 @E with z0 > 0. There exists c, universal constant, such that for all

r 6 z0 we have

jBr .x0; z0/ \ Ej > c rdC1;

jBr .x0; z0/ n Ej > c rdC1:

Proof. In order to prove the first inequality, we define (for r 6 z0):

U.r/ D jBr.x0; z0/ \ Ej; S.r/ D H n.@Br .x0; z0/ \ E/

and

A D P.E; Br .x0; z0//:

Then, using (2.13) and the fact that E is a minimizer, we have

J .E n Br / D J .E/ � A C S > min
F 2E .V �U /

J .F / > J .E/ � CU

and therefore

A 6 S.r/ C CU.r/:

The isoperimetric formula then yields

U.r/
d

dC1 6 2�dC1.S.r/ C CU.r//:

Noticing that U 0.r/ D S.r/, and using the fact that U.0/ D 0 and U.r/ > 0 for all r > 0,

Gronwall’s Lemma gives the first inequality.

The second inequality is proved in a similar way, by estimating J .E [ Br /. However, we

have to be a little bit careful here, since Br might not lie entirely in the domain U. But defining

d0 D d.x0; @U/ the distance of x0 from the boundary of U (note that we can have d0 D 0), we

can still prove

jBr.x0; z0/ n Ej > c rdC1; for all r 6 d0:

For r > d0, we then have (since E � U)

jBr .x0; z0/ n Ej > jBd0
.x0; z0/ n Ej C jBr .x0; z0/ n Uj

> c d dC1
0 C jBr .x0; z0/ n Uj:

Finally, we note that

jBr.x0; z0/ n Uj > ˛1rdC1 � ˛2d dC1
0

and so replacing jBr .x0; z0/ n Uj by 
 jBr .x0; z0/ n Uj for some small enough 
 in the previous

inequality we deduce

jBr .x0; z0/ n Ej > c rdC1; for all r < z0:

Next, we want to derive similar non-degeneracy estimate in the neighborhood of the contact

line:
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LEMMA 2.5 If x0 2 C lE , then

jE \ BC
r .x0; 0/j > c rdC1

and

j.˝ n E/ \ BC
r .x0; 0/j > c rdC1

for every r such that jE \ BC
r .x0; 0/j 6 c1V .

Proof. For r > 0, we define

U.r/ D jBC
r .x0; 0/ \ Ej; ˙.r/ D

Z

Br .x0/

N�E .x/ dx;

and

S.r/ D H n
�

@BC
r .x0; 0/ \ E

�

; A D P.E; BC
r

�

x0; 0/
�

(note that for a smooth enough set, we have ˙.r/ D jBr.x0/ \ ˙E j).

We then have

J .E n BC
R

�

x0; 0/
�

6 J .E/ � A C ˇmax˙ C S; (2.14)

and since

J .E n BC
R

�

x0; 0/
�

> J .E/ � CU;

we deduce

A 6 ˇmax˙ C S C CU: (2.15)

If E 0 D E \ BC
r .x0; 0/, then the equality

Z

˝

�E 0 div h D �

Z

˝

hh; D�E 0i C

Z

Rd

N�E 0.x/hdC1.x; 0/ dx (2.16)

with h.y/ D .0; : : : ; 0; 1/ implies that

˙ 6 S C A: (2.17)

Inequalities (2.15) and (2.17) imply

.1 � ˇmax/˙ 6 2S C CU

and

A 6 CS C CU:

Finally, the isoperimetric inequality (as in (2.10)) yields

U
d

dC1 6 �dC1.˙ C S C A/ (2.18)

6 CS C CU: (2.19)

Using the fact that S D U 0, Gronwall lemma and (1.2) give the first inequality in Lemma 2.5.

The second inequality follows in a similar fashion.

We deduce:
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COROLLARY 2.1 If x0 2 C lE , then

P.E; BC
r .x0; 0// > c rd

for every r such that jE \ BC
r .x0; 0/j 6 c1V .

Proof of Corollary 2.1. Let

V1.r/ D jE \ BC
r .x0; 0/j; S1.r/ D H n

�

E \ @BC
r .x0; 0/

�

;

V2.r/ D
ˇ

ˇ.˝ n E/ \ BC
r .x0; 0/

ˇ

ˇ; S2.r/ D H n
�

.˝ n E/ \ @BC
r .x0; 0/

�

:

Lemma 2.5 yields

Vi .r/ > c rdC1 i D 1; 2: (2.20)

Moreover, the isoperimetric inequality gives (after reflecting the set E about z D 0)

.2V1/
d

dC1 6 �dC1

�

2S1 C 2P
�

E; BC
r .x0; 0/

�

�

;

.2V2/
d

dC1 6 �dC1

�

2S2 C 2P
�

E; BC
r .x0; 0/

�

�

and (since we have equality in the isoperimetric inequality for the ball)

�

2.V1 C V2/
�

d
dC1 D �dC12.S1 C S2/:

It follows that

V
d

dC1

1 C V
d

dC1

2 � .V1 C V2/
d

dC1 6 4�dC1P
�

E; BC
r .x0; 0/

�

;

which yields the result thanks to (2.20).

2.3 Hausdorff dimension of the contact line

The nondegeneracy estimates enable us to prove the following partial regularity result for the contact

line, and complete the proof of Proposition 2.1:

PROPOSITION 2.3 Let E 2 E .V / minimize J . Then, the contact line C lE in R
d has finite .d �1/-

Haussdorff measure, and there exists a universal constant C such that

H
d�1.C lE / 6 C V

d�1
dC1 : (2.21)

In particular, the function N�E is equal to 0 or 1 almost everywhere, and we can define the wetted

region ˙E � R
d as the set where N�E D 1.

This proposition is a consequence of Corollary 2.1 and the following lemma.

LEMMA 2.6 There exists a universal constant C such that

P.E; f0 < z < tg/ 6 C V
d�1
dC1 t:
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Proof. We cut from E all the points for which z 6 t and lower it by t . This defines

F D
˚

.x; z/I .x; z C t/ 2 E
	

\ fz > 0g:

Then we have jF j 6 jEj � C t and so by (2.13) we have J .E/ 6 J .F / C C t . Moreover

J .E/ � J .F / D P
�

E; f0 < z < tg
�

�

Z

ˇ.x="/
�

�E .x; 0/ � �E .x; t/
�

dx;

(where �E .x; 0/ and �E .x; t/ denotes the trace of �E on fz D 0g and fz D tg) but if x belongs to

the symmetric difference of E \ fz D 0g and E \ fz D tg, then, going from the slice fz D 0g to

the slice fz D tg, we must cross @E , and therefore

Z

ˇ

ˇ�E .x; 0/ � �E .x; t/
ˇ

ˇdx 6 P
�

E; f0 < z < tg
�

:

We deduce

.1 � ˇmax/P
�

E; f0 < z < tg
�

6 C V
d�1
dC1 t

which completes the proof.

Proof of Proposition 2.3. Let [j 2J Bı .xj / be a covering of C lE by balls of radius ı with finite

overlapping. Then by Corollary 2.1, we have P.E; BC
ı

.xj // > Cıd . Due to the finite overlapping

property,
X

j 2J

P
�

E; BC
ı

.xj /
�

6 CP
�

E; f0 < z < ıg
�

6 C V
d�1
dC1 ı:

Therefore, the number of balls is less than C V
d�1
dC1 ı1�d . Hence the stated result.

3. Proof of Theorem 1.2

The first part of Theorem 1.2 follows immediately from Proposition 2.1: with probability one

ˇ.x/ D ˇ".x/ satisfies the hypotheses of Proposition 2.1 for all " > 0. So, for all " > 0 there

exists a minimizer E" 2 E .V / of J" and by Proposition 2.3, we can define the wetted region

˙" D E" \ fz D 0g and the contact line @˙" D C lE"
.

The minimizer E" is a random set in R
d . Nevertheless, we have shown that there is a

deterministic constant C , independent of ", such that E" satisfies:

P.E"; ˝/ 6 C V
d

dC1 ; j˙"j 6 C V
d

dC1 ; and H
d�1.@˙"/ 6 C V

d�1
dC1 : (3.1)

We recall that J0 denotes the functional defined as J" but with the constant ˇ0 in the place of

ˇ".x/, and we denote by E0 its minimizer with volume constraint jE0j D V . This set is a spherical

cap E0 D BC
� .x0; z0/, and it is unique up to translation in x0. The wetted region is ˙0 D ˙E0

. In

order to estimate the symmetric difference jE"4E0j, we will apply Theorem 1.1. To this end, we

will show that for any ˛ > 0, the set E" satisfies

J0.E"/ 6 J0.E0/ C ˛ (3.2)

with high probability if " is sufficiently small. More precisely, we will show
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THEOREM 3.1 Let r > .d C 1/=d . There are constants Kr ; K2; K3 such that if ˛ > 0 and " 6

Kr min.1; ˛r /, the minimizer E" of J" satisfies

P
�

J0.E"/ > J0.E0/ C ˛
�

6 K2e�K3"�d ˛2

:

The bound (1.12) now follows immediately from this estimate and Theorem 1.1.

Proof of Theorem 3.1. By definition of J0, J", and E", we have:

J0.E"/ D J".E"/ C

Z

˙"

.ˇ".x/ � ˇ0/ dx

6 J".E0/ C

Z

˙"

.ˇ".x/ � ˇ0/ dx; (3.3)

where E0 denotes the minimizer of J0. Also, we have

J".E0/ D J0.E0/ C

Z

˙0

�

ˇ0 � ˇ".x/
�

dx:

Therefore,

J0.E"/ 6 J0.E0/ C

Z

˙0

�

ˇ0 � ˇ".x/
�

dx C

Z

˙"

�

ˇ".x/ � ˇ0
�

dx: (3.4)

These two integrals are random variables. In the first integral, the domain of integration ˙0 is fixed.

In the second integral, the domain of integration ˙" is random. However, Proposition 3.1 below

shows that both integrals are small with high probability. Consequently, (3.4) and Proposition 3.1

imply

P
�

J0.E"/ > J0.E0/ C ˛
�

6 Ce�C "�d ˛2

:

for all " 6 Kr min.1; ˛r /.

PROPOSITION 3.1 There are constants K1; K2; K3 such that for all ˛ > 0 and " 6 K1˛, we have

P

�
ˇ

ˇ

ˇ

ˇ

Z

˙0

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

> ˛

�

6 K2e�K3"�d ˛2

: (3.5)

If r > .d C 1/=d , there is a constant Kr such that for all ˛ > 0 and " 6 Kr min.1; ˛r /,

ˇ

ˇ

ˇ

ˇ

Z

˙"

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

6 ˛ (3.6)

also holds, except possibly on a set of measure K2e�K3"�d ˛2
.

Proof of Proposition 3.1. We first prove (3.5). Recall that ˇ".x/ D ˇ"
k

within the cube Q"
k

. Let us

define the set of indices k 2 Z
d such that the cube Q�

k
is contained within ˙0:

�";0 D
n

k 2 Z
d I jQ"

k \ ˙0j D jQ"
kj
o

:
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We also define the set of indices

� ";0 D
n

k 2 Z
d W jQ"

k \ ˙0j > 0; jQ"
k \ .Rd n ˙0/j > 0

o

(3.7)

corresponding to cubes overlapping the contact line @˙0. Therefore,

Z

˙0

.ˇ".x/ � ˇ0/ dx D
X

k2�";0

"d .ˇ"
k � ˇ0/ C

X

k2� ";0

Z

Q"
k

\˙0

.ˇ".x/ � ˇ0/ dx: (3.8)

Because ˙0 is a ball with positive radius r D

q

�2 � z2
0 , the number of "-cubes intersecting the

contact line @˙0 is bounded by j� ";0j 6 C V
d�1
dC1 "1�d . Therefore, since ˇ"

k
2 .�1; 1/, the last term

in (3.8) is bounded by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2� ";0

Z

Q"
k

\˙0

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6

X

k2� ";0

2jQ"
k \ ˙0j 6 2j� ";0j"d

6 C V
d�1
dC1 " (3.9)

with probability one.

We can estimate the first term in the right hand side of (3.8) using a concentration inequality for

sums of independent random variables. Observe that the set of indices �";0 is deterministic, since

˙0 is a deterministic set. Therefore, Hoeffding’s inequality ( [12], Theorem 2) implies that

P

0

@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2�";0

"d .ˇ"
k � ˇ0/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

1

A 6 2e
� "�2d ˛2

2j�";0j (3.10)

holds for all ˛ > 0 and " > 0, since ˇk 2 .�1; 1/. We also have the bound j�";0j 6 C V
d

dC1 "�d

and so

P

0

@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2�";0

"d .ˇ"
k � ˇ0/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

1

A 6 2e� 1
2C "�d ˛2V

� d
dC1

: (3.11)

By combining (3.9) and (3.11), we deduce that if " is such that

C V
d�1
dC1 " 6

˛

2
;

then

P

�
ˇ

ˇ

ˇ

ˇ

Z

˙0

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

> ˛

�

6 P

0

@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2�";0

"d .ˇ"
k � ˇ0/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

>
˛

2

1

A 6 2e�C "�d ˛2

;

which is the estimate (3.5).

Now we prove (3.6). The main difficulty here is that the set ˙" is a random set, so the argument

used to prove (3.5) does not work unless we have some control on the regularity of the set ˙� . For

a large integer N > 1 (to be chosen later) we set h D N" and define the family of open cubes

Qh
k

� R
d by

Qh
k D hk C .0; h/d ; k 2 Z

d :
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These cubes have volume hd D N d �d . For h > 0, let �h;" be the set of all indices k 2 Z
d such

that the cube Qh
k

is contained in ˙":

�h;" D
n

k 2 Z
d I jQh

k \ ˙"j D jQh
kj
o

:

Let � h;" be the set of all indices k such that cube Qh
k

straddles the contact line @˙":

� h;" D
n

k 2 Z
d W jQh

k \ ˙"j > 0; jQh
k \ .Rd n ˙"/j > 0

o

: (3.12)

We will use j�h;"j and j� h;"j to denote the cardinality of these index sets. Now the integral in (3.6)

may be decomposed as

Z

˙"

.ˇ".x/ � ˇ0/ dx D
X

k2�h;"

Z

Qh
k

.ˇ".x/ � ˇ0/ dx C
X

k2� h;"

Z

Qh
k

\˙"

.ˇ".x/ � ˇ0/ dx: (3.13)

The integrals in the last sum are over cubes Qh
k

that intersect the random contact line @˙". Because

of the regularity of the contact line, the number of disjoint cubes of size h covering @˙" cannot be

too large:

LEMMA 3.1 There is a universal constant C such that j� h;�j 6 C V
d�1
dC1 h1�d holds for all h; � > 0.

The proof of Lemma 3.1 is almost identical to that of Lemma 3.2 below, so we omit it. Therefore,

since ˇ"
k

2 .�1; 1/, the second sum in (3.13) is bounded by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2� h;"

Z

Qh
k

\˙"

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6

X

k2� h;"

2jQh
k \ ˙"j 6 2j� h;"jhd

6 C V
d�1
dC1 h (3.14)

with probability one. This is bounded by ˛=2 if C V
d�1
dC1 h 6 ˛=2.

In the first sum appearing on the right hand side of (3.13), the integrals are over all cubes Qh
k

that

are contained within ˙". The collection of such cubes is random. Nevertheless, it is not an arbitrary

collection, since the boundary of their union cannot be too irregular, as we will show. Given a set of

indices S � Z
d , let @S denote the set of indices k 2 S such that k C v 2 Z

d n S for some v 2 Z
d

with jvj D 1. So, if we define

D.S/ D
[

k2S

Qh
k
;

then @S is the collection of indices corresponding to cubes Qh
k

� D.S/ having a face on the

boundary of D.S/. For S D �h;�, we have the following estimate:

LEMMA 3.2 There is a universal constant such that j@�h;�j 6 C V
d�1
dC1 h1�d holds for all h; � > 0.

We will postpone the proof of this estimate and finish the proof of Proposition 3.1. Suppose

S � Z
d is a fixed set of indices having cardinality jS j D sd . Since h D N" each cube Qh

k
contains

N d cubes of size ", and there are .sN /d cubes of size " contained in [k2SQh
k

. Therefore, since the
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random variables ˇj are independent and identically distributed, we have

P

 
ˇ

ˇ

ˇ

ˇ

ˇ

X

k2S

Z

Qh
k

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

!

D P

0

B

B

B

B

@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2S

X

j 2Z
d

Q"
j

�Qh
k

"d .ˇj � ˇ0/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

1

C

C

C

C

A

D P

0

@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

j 2Z
d \Œ0;Ns/d

"d .ˇj � ˇ0/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

1

A : (3.15)

So, applying Hoeffding’s inequality to (3.15), we conclude that

P

 
ˇ

ˇ

ˇ

ˇ

ˇ

X

k2S

Z

Qh
k

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

!

6 2e� 1
2 .h"/�d s�d ˛2

(3.16)

holds for the fixed set of indices S .

By definition of �h;� we know that j�h;"j 6 h�d j˙�j 6 C1V .d=dC1/h�d . Also, ˙" � BR.0/,

so �h;" � B2R=h.0/. These bounds and Lemma 3.2 show that, with probability one, the random

index set �h;� must be an element of

Gh D
n

S � Z
d \ B2R=h.0/ j jS j 6 C1V .d=dC1/h�d ; j@S j 6 C V

d�1
dC1 h1�d

o

: (3.17)

We refer to Gh as the collection of admissible index sets, and we use jGhj to denote the cardinality of

Gh (i.e. the number of admissible sets). A key point in our analysis is that the number of admissible

sets does not grow too fast as h ! 0:

LEMMA 3.3 There is a universal constant C such that logjGhj 6 C h1�d j log.h/j for all h 2

.0; 1=2/.

For ˛, h, and " fixed and S 2 Gh, let us define the F -measurable set �S � H by

�S D

(

! 2 H W

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2S

Z

Qh
k

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

)

:

Since �h;" 2 Gh, we observe that

8

<

:

! 2 H W

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2�h;"

Z

Qh
k

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> ˛

9

=

;

�
[

S2Gh

�S :

Moreover, from (3.16) and the fact that jS j 6 C1V d=.dC1/h�d for all admissible index sets, we

have

P

0

@

[

S2Gh

�S

1

A 6

X

S2Gh

P .�S / 6 jGhj2 exp

�

�
1

2
"�d ˛2C �1

1 V �1=.dC1/

�

(3.18)
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where jGhj is the cardinality of Gh, the number of admissible index sets. Therefore, by Lemma 3.3

we have

P

0

@

[

S2Gh

�S

1

A 6 C3 exp

�

"�d

�

C2�N 1�d log.h/ �
1

2
˛2C �1

1 V �1=.dC1/

��

: (3.19)

Considering both (3.14) and (3.19), we now choose N D d��pe with suitable p so that C V
d�1
dC1 h 6

˛=2 holds and so that the exponent in (3.19) is negative for � sufficiently small. Let us choose

p D 1=.d C 1/ and set N D d��pe, h D �N D �1�p D �d=.dC1/. Then �N 1�d log.h/ D

.1�p/�1Cp.d�1/ log."/ 6 .1�p/�2d=.dC1/ log."/. Therefore, if r > .d C1/=d there is a constant

Cr such that

C2�N 1�d log.h/ 6
1

4
˛2C �1

1 V �1=.dC1/

holds for all " 6 Cr min.1; ˛r /. The condition C V
d�1
dC1 h 6 ˛=2 is also satisfied for such r .

Therefore, (3.14) and (3.19) imply that

ˇ

ˇ

ˇ

ˇ

Z

˙"

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

6
˛

2
C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2�h;"

Z

Qh
k

.ˇ".x/ � ˇ0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6 ˛;

except possibly on the set [S2Gh
�S which has measure less than Ce�C "�d ˛2

. This proves (3.6).

Proof of Lemma 3.2. This is similar to the proof of Proposition 2.3. If k 2 @�h;� , then k 2 �h;"

and there exists v 2 Z
d with jvj D 1 such that k C v … �h;". Therefore, there must be a point

xk 2 Qh
kCv

for which xk 2 @˙� (the contact line). By choosing such a point xk for each index

k 2 @�h;� , we obtain a set of balls BC
h=2

.xk ; 0/ with no more than 2d of the balls overlapping. By

Corollary 2.1 we know that P.E�; BC
h=2

.xk; 0// > C hd . Therefore,

X

k2@�h;"

P.E�; BC
h=2

.xk ; 0// 6 CP.E�; f0 < z < h=2g/ 6 C V
d�1
dC1 h=2:

Hence, the cardinality of @�h;" is bounded by j@�h;"j 6 C V
d�1
dC1 h1�d .

Proof of Lemma 3.3. If S 2 Gh, then S � Z
d \ B2R=h.0/, so there are at most M D dC h�d e

cubes that can belong to S . Moreover, the set S is uniquely determined by the cubes that have faces

on the boundary of D.S/. That is, S1 D S2 if and only if @S1 D @S2. By definition of Gh, we know

that j@S j 6 C h1�d
6 CM q with q D .d � 1/=d . Therefore, the number of possible sets in Gh is

bounded by

jGhj 6

CM q
X

nD0

 

M

n

!

6 .M C 1/CM q

:

Therefore, we have log jGhj 6 C h1�d log.C h�d C 1/.
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