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Density estimates for phase transitions with a trace
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We consider a functional obtained by adding a trace term to the Allen-Cahn phase segregation model
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1. Introduction

Let p 2 .1; C1/, n > 2 and ˝ be an open bounded subset of R
n. For any u 2 W

1;p
loc .Rn; Œ�1; 1�/,

we define the functional

E˝.u/ WD
Z

˝\R
n
C

jru.x/jp C F
�

u.x/
�

dx C
Z

˝\fxnD0g

G
�

u.x0; 0/
�

dx0; (1)

where we used the notation x WD .x0; xn/ 2 R
n�1 � R and R

n
C WD R

n�1 � .0; C1/. Also, for

any R > 0 and any x 2 R
n, we denote by Bn

R.x/ the Euclidean, open, n-dimensional ball centered

at x, and Bn
R WD Bn

R.0/. We set BC
R .x/ WD Bn

R.x/ \ R
n
C, BC

R WD BC
R .0/, and we use the short

notation

ER;xo
.u/ WD EBR.xo/.u/ D

Z

B
C

R
.xo/

jru.x/jp C F
�

u.x/
�

dx C
Z

Bn�1
R

.xo/

G
�

u.x0; 0/
�

dx0:

We will suppose that F and G are non-negative “double-well” potentials. More precisely, and in

fact more generally, we assume that there exists Co > 1 such that, for any � 2 R, we have

max
˚

F.�/; G.�/
	

6 Co.1 � �2/p and F.�/ >
1

Co

.1 � �2/p : (2)

A paradigmatic example is given by F.�/ D G.�/ D .1 � �2/p, but more general potentials are

allowed by (2). The gradient term in (1) is reminiscent of a p-Laplacian partial differential equation

(hence, it encodes a possibly singular or degenerate ellipticity). We remark that the functional in (1)
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reduces to the standard Allen-Cahn phase segregation model when G is identically zero and ˝

lies in fxn > 0g. Thus, in a sense, the functional in (1) represents a phase transition in R
n
C with

a double-well G keeping track of a phase segregation on the trace of ˝ along fxn D 0g and it

may be seen as a toy-model to understand the more complicated phenomena arising in non-local

phase transitions, which have been the object of an extensive study in recent years (see, among the

others, [1–3, 10] and also [5, 6, 15, 16] for a relation between fractional operators and boundary

reactions). In practical situations, the non-local effects may be the consequence of a long-range

interaction between particles, as it happens in some statistical mechanics models (see, e.g., [7]).

The trace term
R

˝\fxnD0g G.u.x0; 0// dx0 may also be considered as a model for taking into

account the effect of the boundary of the container in which the phase transition occurs: in this

framework, the container is R
n
C, which, of course, up to a blow up, is a simplified, but effective,

version of a smooth container when we are interested in the behavior near its boundary. In this

sense, we hope that this paper may be as a first step towards a more comprehensive study of the

geometric features of the phase transitions under even more severe boundary and non-local effects.

Given Q > 1, we say that u is a Q-minimizer if E˝.u/ < C1 and

E˝.u/ 6 QE˝.u C '/
for all bounded and open ˝ � R

n

and all Lipschitz continuous functions ' supported in ˝:
(3)

The case of Q-minimizers in a fixed domain ˝o may be treated in a similar way (just suppose

that ˝ � ˝o in (3) and so on). The study of Q-minimizers is a classical topic in the calculus of

variations (see, e.g., [9]). When Q D 1 in (3), u is usually said to be a minimizer. It is easily seen

that when p D 2 the minimizers satisfy the partial differential equation problem with Neumann

condition
(

2�u D F 0.u/ inR
n
C;

2@xn
u D G0.u/ onfxn D 0g:

Such type of problems have been studied in [6, 15]. Analogously, the minimizers for p 2 .1; 2/ [
.2; C1/ satisfy a quasilinear partial differential equation whose ellipticity becomes singular or

degenerate at the critical points of the solution, and the corresponding Neumann condition becomes

non-linear too: these types of problem have been studied, for instance, in [16].

This is the main result of this paper:

THEOREM 1 Let L
n denote the n-dimensional Lebesgue measure. Let u be a Lipschitz

continuous Q-minimizer.

Then, there exists a positive C�, only depending on n, Q, p, the quantity Co in (2) and the

Lipschitz constant of u, such that

ER;xo
.u/ 6 C�Rn�1 (4)

for any xo 2 R
n
C and any R > 1.

Furthermore, given any � 2 .�1; 1/, if we suppose that there exist two positive real numbers �1

and �2 such that

L
n
�

BC
�1

.xo/ \ fu > �g
�

> �2; (5)

then there exist positive r0 and c, which depend only on n, Q, p, � , �1, �2, the quantity Co in (2)

and the Lipschitz constant of u, in such a way that

L
n
�

BC
r .xo/ \ fu > �g

�

> c rn; (6)
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for any r > r0.

Analogously, if

L
n
�

BC
�1

.xo/ \ fu < �g
�

> �2 (7)

then

L
n
�

BC
r .xo/ \ fu < �g

�

> c rn; (8)

for any r > r0.

We remark that (5) (respectively, (7)) is satisfied if u.xo/ > � (respectively, u.xo/ < �): in this

case, �1 and �2 just depend on j� � u.xo/j and on the modulus of continuity of u.

Our Theorem 1 fits into the line of research of density estimates for phase transition, as started

in [4], to which it reduces when G WD 0 or, basically, when we look at balls Br .xo/ that do not

intersect fxn D 0g. Namely, the purpose of this type of researches is to try to understand how the

level sets of a “good” solution u behave in measure. Such level sets are physically very relevant,

since they represent, roughly speaking, the separation interface of the two phases C1 and �1 in the

Allen-Cahn system. Also, from these measure theoretic estimates, it is possible to deduce a locally

uniform convergence of the level sets at the � -limit, and this information plays a crucial role in

some rigidity problems (see [12, 14, 19]).

Among the many extensions of [4], we recall here the ones in [11], where the p-Laplacian

case has been considered, [8], for quasiminima, and the recent papers [17, 18], dealing with a fully

non-local case.

Estimate (6) (as well as (8)) is obviously optimal (up to the constant c), because of the trivial

upper bound

L
n
�

BC
r .xo/ \ fu > �g

�

6 L
n
�

BC
r .xo/

�

6 L
n
�

Br .xo/
�

� rn:

Estimate (4) is optimal too, as shown by the case G WD 0, taking as u.x/ D uo.! � x/, where

! 2 Sn�1 and uo W R ! R is a minimizer of the one-dimensional Allen-Cahn functional.

As far as we know, in the framework of the functional in (1), Theorem 1 of this paper is new

even in the cases p D 2 (i.e., when the diffusion term reduces to the standard Laplacian) and Q D 1

(i.e., for minimizers).

2. Proof of Theorem 1

We will denote by “const” suitable positive constants (possibly different line by line) only depending

on the quantities fixed in the hypotheses of Theorem 1. First of all, we prove (4). This is done by

a technique well-developed after [4]: given any xo 2 R
n
C and any R > 1, we take ˇ 2 C 1.Rn/,

with ˇ.x/ D �1 for any x 2 BR�.1=2/.xo/ and ˇ.x/ D 1 for any x 2 R
n � BR�.1=4/.xo/,

with jrˇ.x/j 6 50 for any x 2 R
n. Let w.x/ WD minfu.x/; ˇ.x/g. Then, w.x/ D u.x/ in R

n �
BR.xo/, and w D �1 in BR�.1=2/.xo/. So, by (3), we obtain that

1

Q
ER;xo

.u/ 6 EBR.xo/.w/ D
Z

.Bn
R

.xo/�Bn
R�.1=2/

.xo//\R
n
C

jrw.x/jp C F
�

w.x/
�

dx

C
Z

.Bn
R

.xo/�Bn
R�.1=2/

.xo//\fxnD0g

G
�

w.x0; 0/
�

dx0: (9)



156 Y. SIRE AND E. VALDINOCI

Moreover, we have that jrw.x/j 6 jru.x/j C jrˇ.x/j 6 const , and so (9) gives that

ER;xo
.u/ 6 const

h

L
n
�

.Bn
R.xo/ � Bn

R�.1=2/.xo// \ R
n
C

�

C H
n�1

�

.Bn
R.xo/ � Bn

R�.1=2/.xo// \ fxn D 0g
�

i

6 const Rn�1;

where we denoted by H
n�1 the .n � 1/-dimensional Hausdorff measure. This proves (4).

Now, we prove (6) (the proof of (8) is the same and it will be omitted). The proof of (6) that we

give here is a modification of one of the proofs performed in [8], which was inspired by [13] (other

approaches, as the ones in [4, 11] are also possible, but they may require additional assumptions).

Differently from the existing literature, here some technical complications arise in order to cope

with the trace term of the functional along fxn D 0g. Indeed, even if such a term behaves as

an .n � 1/-dimensional correction, and therefore may look negligible, it is not completely clear that

it does not dangerously interact with some “area terms” arising in the density estimates, such as the

bound in (4) and the subsequent quantities in (36). For this, we will have to perform some careful

computation.

First, we observe that once (6) is proved for some �o 2 .�1; �1=2�, then it is proved for all � 2
Œ�o; 1/, because

Er;xo
.u/ >

Z

B
C
r .xo/

F.u/ dx > inf
Œ�o;��

F � L
n
�

BC
r .xo/ \ f� > u > �og

�

;

and if (5) holds for � 2 Œ�o; 1/, it holds for �o too, so using (6) for �o and (4) we obtain

L
n
�

BC
r .xo/ \ fu > �g

�

> L
n
�

BC
r .xo/ \ fu > �og

�

� L
n
�

BC
r .xo/ \ f� > u > �og

�

> crn � const Er;xo
.u/

> crn � const rn�1
>

c

2
rn

if r > ro and ro is large enough (here the “const” may depend on the fixed �o too). This would

be the proof of (6) for any � 2 Œ�o; 1/, up to relabeling c, and therefore, in what follows, we will

assume, without any restriction, that

� 2 .�1; �1=2�: (10)

Moreover, we observe that the portion of space R
n \ fxn < 0g does not play any role in Theorem 1,

in the sense that, if we define

Qu.x/ D Qu.x0; xn/ WD
�

u.x0; xn/ if xn > 0;

u.x0; �xn/ if xn < 0;

we have that Qu is Lipschitz, since so is u, that E˝. Qu C '/ D E˝.u C '/ for any perturbation ' in

(3), that Qu is a Q-minimizer and that if (6) holds for Qu then it holds for u as well. Consequently, we

replace u with Qu and then we drop the superscript tilde, that is we may and do suppose that

u.x0; �xn/ D u.x0; xn/: (11)

This symmetry property will play an important role, by allowing us to disregard some trace term in

a subsequent isoperimetric inequality (that is (20) below: roughly speaking, this trick will make the
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trace term in the density estimates always be weighted by the potential, thus killing any unweighted

geometric measure on fxn D 0g).

We take

T to be a free parameter, that in the sequel will be chosen to be suitably large,

possibly in dependence of the quantities fixed in the statement of Theorem 1,

and also in dependence of a further auxiliary parameter "

that will be introduced later on, after (24).

(12)

We set

S.�/ WD min
˚

.� C 1/p; 1
	

for any� 2 R:

Also, for any x 2 R
n
C and any k 2 N, we let Rk;T WD .k C 1/T C ln 2, and

vk.x/ WD
(

2ejx�xoj�.kC1/T � 1 for any x 2 BRk;T
.xo/ \ R

n
C,

3 for any x 2 R
n
C � BRk;T

.xo/.

If x 2 R
n \ fxn < 0g, we also define

vk.x0; xn/ WD vk.x0; �xn/: (13)

By construction, vk is Lipschitz. Furthermore

ˇ

ˇrvk.x/
ˇ

ˇ

p D
�

2ejx�xoj�.kC1/T
�p

(14)

D
�

vk.x/ C 1
�p

6 const S
�

vk.x/
�

for any x 2 BC
Rk;T

.xo/, and therefore, by (13), for almost every x 2 R
n. Furthermore, we deduce

from (2) that

max
˚

F.�/; G.�/
	

6 const S.�/ (15)

for any � 2 Œ�1; 1�, and that

F.�/ > const .� C 1/p D const S.�/; (16)

when � 2 Œ�1; �1=2�.

We remark that

if x 2 R
n
C and jx � xoj > .k C 1/T; then vk.x/ > 1 > u.x/ (17)

and so, recalling (11) and (13), we conclude that fu > vkg D fx 2 R
n s.t. u.x/ > vk.x/g is a

bounded set. Accordingly, we can make use of (3) with ˝ WD fu > vkg. This, and the use of (14)
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and (15), imply the following estimate:

Z

fu>vkg\R
n
C

jrujp C F.u/ dx C
Z

fu>vkg\fxnD0g

G.u/ dx0

D Efu>vkg.u/

6 QEfu>vkg.vk/

D Q

"

Z

fu>vkg\R
n
C

jrvkjp C F.vk/ dx C
Z

fu>vkg\fxnD0g

G.vk/ dx0

#

6 const

"

Z

fu>vkg\R
n
C

S.vk/ dx C
Z

fu>vkg\fxnD0g

S.vk/ dx0

#

: (18)

Now, we make a general observation: given any Lipschitz function w on a measurable set U � R
n

with image in Œ�1; 1�, we have

Z

U

jrwjp C F.w/ dx > const

Z

U

jrwj
�

F.w/
�.p�1/=p

dx

D const

Z 1

�1

�

F.�/
�.p�1/=p

H
n�1

�

U \ fw D �g
�

d�;

(19)

due to the Young inequality and the coarea formula.

Also, we define

Mk.�/ WD
˚

x 2 R
n s.t. � D u.x/ > vk.x/

	

Dfu > vkg \ fu D �g

and

Nk.�/ WD
˚

x 2 R
n s.t. u.x/ > vk.x/ D �

	

Dfu > vkg \ fvk D �g;

and we remark that

BC
kT

.xo/ \ fu > �g �
˚

x 2 BC
kT

.xo/ s.t. u.x/ > � > vk.x/
	

�
˚

x 2 R
n s.t. u.x/ > � > vk.x/

	

D fu > � > vkg

for any � 2 Œ.� � 1/=2; ��.

We employ the latter formula and the isoperimetric inequality to obtain

�

L
n
�

BkT .xo/ \ fu > �g
�

�.n�1/=n

6

�

L
n
�

fu > � > vkg
�

�.n�1/=n

6 const
�

H
n�1

�

Mk.�/
�

C H
n�1

�

Nk.�/
�

�

;

(20)

for any � 2 Œ.� � 1/=2; ��.
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Notice that we have in the back of our mind here the symmetry in (11) and (13), since we are

willing to estimate sets in (20) in the whole of R
n instead of R

n
C: due to such a symmetry, this

choice will be paid only by a factor 2 later on: see (22). On the contrary, without this trick we would

have got also a term of the form H
n�1.Bn�1

kT
/ in (20), and this would have risked to be too large to

be controlled by the quantities in (4) and (36).

Making use of (20) and then of (19) with U WD fu > vkg and either w WD u or w WD vk , we

conclude that

�

L
n
�

BC
kT

.xo/\fu > �g
�

�.n�1/=n

6 const

Z �

.��1/=2

�

F.�/
�.p�1/=p

d�
�

L
n.BkT .xo/ \ fu > �g/

�.n�1/=n

6 const

Z 1

�1

�

F.�/
�.p�1/=p

�

H
n�1

�

Mk.�/
�

C H
n�1

�

Nk.�/
�

�

d�

6 const

�Z

fu>vkg

jrujp C F.u/ dx C
Z

fu>vkg

jrvkjp C F.vk/ dx

�

:

(21)

Now, we remark that

Z

fu>vkg

jrujp C F.u/ dx C
Z

fu>vkg

jrvkjp C F.vk/ dx

D 2

"

Z

fu>vkg\R
n
C

jrujp C F.u/ dx C
Z

fu>vkg\R
n
C

jrvkjp C F.vk/ dx

#

; (22)

thanks to (11) and (13).

Therefore, exploiting (21), (22), (14), (15) and (18), we obtain

�

L
n.BC

kT
.xo/\fu > �g/

�.n�1/=n

6 const

"

Z

fu>vkg\R
n
C

jrujp C F.u/ dx C
Z

fu>vkg\R
n
C

jrvkjp C F.vk/ dx

#

6 const

"

Z

fu>vkg\R
n
C

S.vk/ dx C
Z

fu>vkg\fxnD0g

S.vk/ dx0

#

:

That is, recalling (17),

�

L
n.BC

kT
.xo/ \ fu > �g/

�.n�1/=n

6 const

"

Z

fu>vkg\B
C

.kC1/T
.xo/

S.vk/ dx C
Z

fu>vkg\B.kC1/T .xo/\fxnD0g

S.vk/ dx0

#

:

(23)
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We define

`1 D `1.k/ WD
Z

B
C

kT
.xo/

S.vk/ dx;

`2 D `2.k/ WD
Z

fu>vkg\.B
C

.kC1/T
.xo/�B

C

kT
.xo//

S.vk/ dx;

and

`3 D `3.k/ WD
Z

fu>vkg\B.kC1/T .xo/\fxnD0g

S.vk/ dx0:

With this notation, we see that (23) can be written as

�

L
n
�

BC
kT

.xo/ \ fu > �g
�

�.n�1/=n

6 const .`1 C `2 C `3/: (24)

Now, we fix a small " > 0 to be taken appropriately small (in fact, at the end, this " will be fixed

explicitly in Lemma 1 below) and we claim that

`3 6 const "kn�1 C C";T kn�2; (25)

for a suitable C";T > 0. The proof of (25) is indeed a bit long and complicated and it will be

completed only below (32), after some delicate computations. To prove (25), first we notice that

when jxo;nj > .k C 1/T then B.kC1/T .xo/ \ fxn D 0g D ¿, so `3 D 0 and (25) is obviously true.

As a consequence, we may suppose that

jxo;nj 6 .k C 1/T

and so we can define

�k WD
q

.k C 1/2T 2 � x2
o;n: (26)

We see that

Bn
.kC1/T .xo/ \ fxn D 0g � Bn�1

�k
.x0

o/

and therefore

`3 6 const

Z

Bn
.kC1/T

.xo/\fxnD0g

�

vk.x0; 0/ C 1
�p

dx0

6 const

Z

Bn�1
�k

.x0
o/

ep
�p

jx0�x0
oj2Cx2

o;n�.kC1/T
�

dx0

D const e�p.kC1/T

Z �k

0

rn�2ep
p

r2Cx2
o;n dr:

(27)

Now, to prove (25), we distinguish two cases: either n > 3 or n D 2.

If n > 3, we make use of (27) to conclude that

`3 6 const �n�3
k e�p.kC1/T

Z �k

0

rep
p

r2Cx2
o;n dr; (28)
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and we perform the substitution

s WD
q

r2 C x2
o;n: (29)

We obtain that s ds D r dr , hence (28) becomes

`3 6 const �n�3
k e�p.kC1/T

Z .kC1/T

jxo;n j

seps ds

6 const �n�3
k .k C 1/ T e�p.kC1/T

Z .kC1/T

jxo;n j

eps ds

6 const �n�3
k .k C 1/ T

6 const
�

.k C 1/T
�n�2

6 const .kT /n�2:

This proves (25) when n > 3, so now we deal with the proof of (25) when n D 2: in this case, we

claim that
Z �k

0

ep
p

r2Cx2
o;n dr 6

�

2"k C QC";T

�

ep.kC1/T (30)

for a suitable QC";T > 0.

To prove (30), we distinguish two sub-cases: either �k < "k or �k > "k.

If �k < "k, we have that

Z �k

0

ep
p

r2Cx2
o;n dr 6 e

p

q

�2
k

Cx2
o;n �k D ep.kC1/T �k 6 ep.kC1/T "k;

and this proves (30) in the sub-case �k < "k.

Now, we prove (30) in the sub-case �k > "k. In this case, we have that

q

."k/2 C x2
o;n 6

q

�2
k

C x2
o;n D .k C 1/T:

Hence
Z "k

0

ep
p

r2Cx2
o;n dr 6 ep

p
."k/2Cx2

o;n "k 6 ep.kC1/T "k: (31)

Now, we make the substitution in (29) to see that

Z �k

"k

ep
p

r2Cx2
o;n dr D

Z .kC1/T

p
."k/2Cx2

o;n

eps s
q

s2 � x2
o;n

ds

6

Z .kC1/T

p
."k/2Cx2

o;n

eps .k C 1/T
q

�

."k/2 C x2
o;n

�

� x2
o;n

ds

6
.k C 1/T

"k

Z .kC1/T

�1

eps ds

6
2T

p"
ep.kC1/T :
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From this and (31), we conclude that

Z �k

0

ep
p

r2Cx2
o;n dr D

Z "k

0

ep
p

r2Cx2
o;n dr C

Z �k

"k

ep
p

r2Cx2
o;n dr

6 ep.kC1/T

�

"k C 2T

p"

�

:

This completes the proof of (30) in the sub-case �k > "k too.

Having completed the proof of (30), we use it to complete the proof of (25) in the case n D 2:

indeed, by (27) and (30), when n D 2 we have

`3 6 const e�p.kC1/T

Z �k

0

ep
p

r2Cx2
o;n dr 6 const

�

"k C QC";T

�

: (32)

This proves (25) also in the case n D 2. So, the proof of (25) is completed.

Now, we observe that

`1 6 const

Z

B
C

kT
.xo/

.vk C 1/p dx

6 const

Z

BkT .xo/

ep
�

jx�xoj�.kC1/T
�

dx

6 const

Z kT

0

rn�1ep.r�.kC1/T / dr

6 const .kT /n�1e�p.kC1/T

Z kT

0

epr dr

6 const .kT /n�1e�pT

6 "kn�1;

(33)

provided that T is sufficiently large, possibly in dependence of ". This last requirement fixes T once

and for all (in dependence of ", which, in turn, will be fixed in the forthcoming Lemma 1).

Furthermore, since S is non-decreasing and bounded by 1, we obtain that

`2 D
Z

f�>u>vkg\.B
C

.kC1/T
.xo/�B

C

kT
.xo//

S.vk/ dx

C
Z

fu>�g\fu>vkg\.B
C

.kC1/T
.xo/�B

C

kT
.xo//

S.vk/ dx

6

Z

f�>u>vkg\
�

B
C

.kC1/T
.xo/�B

C

kT
.xo/

�
S.u/ dx

C L
n
�

fu > �g \
�

BC
.kC1/T

.xo/ � BC
kT

.xo/
�

�

:

(34)
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Moreover, using also (10), (16) and (18), and recalling (17) once more, we get
Z

B
C

kT
.xo/\fu6�g

S.u/ dx

6

Z

B
C

kT
.xo/\f�>u>vkg

S.u/ dx C
Z

B
C

kT
.xo/\fu6vkg

S.vk/ dx

6 const

Z

f�>u>vkg\R
n
C

F.u/ dx C
Z

B
C

kT
.xo/

S.vk/ dx

6 const

"

Z

fu>vkg\R
n
C

S.vk/ dx C
Z

fu>vkg\fxnD0g

S.vk/ dx0 C
Z

B
C

kT
.xo/

S.vk/ dx

#

6 const .`1 C `2 C `3/:

(35)

Now, it is convenient to introduce the following quantities:

Vr WD L
n
�

BC
r .xo/ \ fu > �g

�

and Ar WD
Z

B
C
r .xo/\fu6�g

S.u/ dx: (36)

These quantities are appropriate variations of similar ones defined in [4], and they somewhat play

the role of “volume” and “area terms”, respectively, in the minimal surface analogue. By collecting

the estimates in (24), (35), (33), (34) and (25), we conclude that

AkT C V
.n�1/=n

kT
6 const .`1 C `2 C `3/

6 const
h

Z

f�>u>vkg\.B
C

.kC1/T
.xo/�B

C

kT
.xo//

S.u/ dx

C L
n
�

fu > �g \ .BC
.kC1/T

.xo/ � BC
kT

.xo//
�

C "kn�1

2
C C";T kn�2

i

6 const

�

.V.kC1/T � VkT / C .A.kC1/T � AkT / C "kn�1

2
C C";T kn�2

�

:

We define k" to be the smallest integer bigger than �1 C.2C";T ="/, where �1 is as in (5). This gives

that C";T kn�2
6 "kn�1=2 and so

AkT C V
.n�1/=n

kT
6 const

�

.V.kC1/T � VkT / C .A.kC1/T � AkT / C "kn�1
�

(37)

for any k 2 N, with k > k". Notice that, since T has been fixed in dependence of " after (33), it is

conceivable to keep track of the dependence of k" on " only and disregard the dependence on T .

So, it is convenient to recall the following general recursive result, which is a variation of an

argument in [4] and whose detailed proof may be found in Lemma 12 of [8]:

LEMMA 1 Let C > 1, " > 0. Let Ak and Vk be two sequences of non-negative real numbers,

for k 2 N.

Suppose that

Vk > 1=C (38)

and

V
.n�1/=n

k
C Ak 6 C

�

.VkC1 � Vk/ C .AkC1 � Ak/ C "kn�1
�

(39)
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for any k 2 N.

Let

c WD min

8

ˆ

<

ˆ

:

1

C
;

1
�

2C.n C 1/Š
�n

9

>

=

>

;

:

Suppose that

" 6 min

(

c

4C
;

c.n�1/=n.
n
p

2 � 1/

2C

)

: (40)

Then,

Ak C Vk > ckn (41)

for any k > 4C.n C 1/Š.

With this, we define Ak WD A.kCk"/T and Vk WD V.kCk"/T , we have that Vk > V�1
> �2,

by (5), and so (38) holds true, if C is chosen large enough. Also, (39) follows from (37), again by

choosing C appropriately large.

Hence, we can exploit Lemma 1 (notice that (40) fixes now the value of "), and we deduce from

(41) that

AkT C VkT > const T nkn

as long as k is large enough.

Since, by (10), (16) and (4), we have that

Ar 6 const

Z

Br \fu6�g

F.u/ dx 6 const rn�1

for any r > 1, we conclude that Vr > const rn for any r suitably large, that is (6).
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