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Two-phase flow problem coupled with mean curvature flow
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We prove the existence of generalized solution for incompressible and viscous non-Newtonian two-

phase fluid flow for spatial dimension d D 2 and 3. Separating two shear thickening fluids with power

law viscosity strictly above critical growth p D .dC2/=2, the phase boundary moves along with the

fluid flow plus its mean curvature while exerting surface tension force to the fluid. An approximation

scheme combining the Galerkin method and the phase field method is adopted.
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1. Introduction

In this paper we prove existence results for a problem on incompressible viscous two-phase fluid

flow in the torus ˝ D Td D .R=Z/d , d D 2; 3. A freely moving .d � 1/-dimensional phase

boundary� .t/ separates the domain˝ into two domains˝C.t/ and˝�.t/, t > 0. The fluid flow is

described by means of the velocity field u W ˝�Œ0;1/ ! Rd and the pressure˘ W ˝�Œ0;1/ ! R.

We assume the stress tensor of the fluids is of the form T˙.u;˘/ D �˙.e.u// � ˘ I on ˝˙.t/,

respectively. Here e.u/ is the symmetric part of the velocity gradient ru, i.e., e.u/ D .ru C
ruT /=2 and I is the d � d identity matrix. Let S.d/ be the set of d � d symmetric matrices. We

assume that the functions �˙ W S.d/ ! S.d/ is locally Lipschitz and satisfy for some �0 > 0 and

p > dC2
2

and for all s; Os 2 S.d/

�0jsjp 6 �˙.s/ W s 6 ��1
0 .1C jsjp/; (1.1)

j�˙.s/j 6 ��1
0 .1C jsjp�1/; (1.2)

�

�˙.s/ � �˙.Os/
�

W .s � Os/ > 0: (1.3)

Here we define A W B D tr.AB/ for d � d matrices A; B . A typical example is �˙.s/ D .a˙ C
b˙jsj2/p�2

2 s with a˙ > 0 and b˙ > 0. When the power p of growth condition is larger than 2, the

fluid is called shear thickening fluid in general.
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We assume that the velocity field u.x; t/ satisfies the following non-Newtonian fluid flow

equation:

@u

@t
C u � ru D div

�

TC.u;˘/
�

; divu D 0 on ˝C.t/; t > 0; (1.4)

@u

@t
C u � ru D div

�

T �.u;˘/
�

; divu D 0 on ˝�.t/; t > 0; (1.5)

uC D u�; n �
�

TC.u;˘/ � T �.u;˘/
�

D �1H on � .t/; t > 0: (1.6)

The upper script ˙ in (1.6) indicates the limiting values approaching to � .t/ from ˝˙.t/,

respectively, n is the unit outer normal vector of @˝C.t/, H is the mean curvature vector of � .t/

and �1 > 0 is a constant. The condition (1.6) represents the force balance with an isotropic surface

tension effect of the phase boundary. The boundary� .t/ is assumed to move with the velocity given

by

V� D .u � n/nC �2H on � .t/; t > 0; (1.7)

where �2 > 0 is a constant. This differs from the conventional kinematic condition (�2 D 0) and

is motivated by the phase boundary motion with hydrodynamic interaction. The reader is referred

to [31] and the references therein for the relevant physical background. By setting ' D 1 on˝C.t/,

' D �1 on ˝�.t/ and

�
�

'; e.u/
�

D 1C '

2
�C
�

e.u/
�

C 1 � '

2
��
�

e.u/
�

on ˝C.t/ [˝�.t/, the equations (1.4)–(1.6) are expressed in the distributional sense as

@u

@t
C u � ru D div �.'; e.u// � r˘ C �1HH

d�1b� .t/ on˝ � .0;1/;

divu D 0 on ˝ � .0;1/:

(1.8)

where H
d�1 is the .d � 1/-dimensional Hausdorff measure. The expression (1.8) makes it evident

that the phase boundary exerts surface tension force on the fluid wherever H ¤ 0 on � .t/. Note

that if � .t/ is a boundary of convex domain, the sign of H is taken so that the presence of surface

tension tends to accelerate the fluid flow inwards in general. We remark that the sufficiently smooth

solutions of (1.4)-(1.7) satisfy the following energy equality,

d

dt

�

1

2

Z

˝

juj2 dx C �1H
d�1

�

� .t/
�

�

D �
Z

˝

�
�

'; e.u/
�

W e.u/ dx � �1�2

Z

� .t/

jH j2 dH
d�1:

(1.9)

This follows from the first variation formula for the surface measure

d

dt
H

d�1
�

� .t/
�

D �
Z

� .t/

V� �H dH
d�1 (1.10)

and by the equations (1.4)–(1.7).

The aim of the present paper is to prove the time-global existence of the weak solution for

(1.4)–(1.7) (see Theorem 2.3 for the precise statement). We construct the approximate solution via

the Galerkin method and the phase field method. Note that it is not even clear for our problem
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if the phase boundary may stay as a codimension 1 object since a priori irregular flow field may

tear apart or crumble the phase boundary immediately, with a possibility of developing singularities

and fine-scale complexities. Even if we set the initial datum to be sufficiently regular, the eventual

occurrence of singularities of phase boundary or flow field may not be avoided in general. To

accommodate the presence of singularities of phase boundary, we use the notion of varifolds

from geometric measure theory. In establishing (1.7) we adopt the formulation due to Brakke [14]

where he proved the existence of moving varifolds by mean curvature. We have the extra transport

effect .u � n/n which is not very regular in the present problem. Typically we would only have

u 2 L
p

loc
.Œ0;1/IW 1;p.˝/d /. This poses a serious difficulty in modifying Brakke’s original

construction in [14] which is already intricate and involved. Instead we take advantage of the recent

progress on the understanding on the Allen-Cahn equation with transport term to approximate the

motion law (1.7),
@'

@t
C u � r' D �2

�

�' � W 0.'/

"2

�

: .ACT/

Here W is an equal depth double-well potential and we set W.'/ D .1� '2/2=2. When " ! 0, we

have proved in [30] that the interface moves according to the velocity (1.7) in the sense of Brakke

with a suitable regularity assumptions on u. To be more precise, we use a regularized version of

(ACT) as we present later for the result of [30] to be applicable. The result of [30] was built upon

those of many earlier works, most relevant being [24, 25] which analyzed (ACT) with u D 0,

and also [23, 38, 39, 44]. On some technical side, we briefly mention why we need the restriction

p > dC2
2

. Note that (1.1) via Korn’s inequality gives a control of Lp norm of ru. In terms of

scaling, p D dC2
2

corresponds to the scale invariant power for krukLp.Œ0;1/ILp.Rd // under the

natural change of variables Qx D x=�, Qt D t=�2, Qu D �u for � > 0. In analyzing the local behavior

of phase boundary, it is essential that the transport term u may be regarded as a perturbative term

for surface measure of phase boundary. Having p > dC2
2

makes the mean curvature flow more

dominant than the transport effect due to u.

Since the literature of two-phase flow is immense and continues to grow rapidly, we mention

results which are closely related or whose aims point to some time-global existence with general

initial data. In the case without surface tension .�1 D �2 D 0/, Solonnikov [41] proved the

time-local existence of classical solution. The time-local existence of weak solution was proved by

Solonnikov [42], Beale [8], Abels [1], and others. For the time-global existence of weak solution,

Beale [9] proved in the case that the initial data is small. Nouri-Poupaud [36] considered the case

of multi-phase fluid. Giga-Takahashi [20] considered the problem within the framework of level

set method. When �1 > 0, �2 D 0, Plotnikov [37] proved the time-global existence of varifold

solution for d D 2, p > 2, and Abels [2] proved the time-global existence of measure-valued

solution for d D 2; 3, p > 2d
dC2

. When �1 > 0, �2 > 0, Maekawa [32] proved the time-local

existence of classical solution with p D 2 (Navier-Stokes and Stokes) and for all dimension. As for

related phase field approximations of sharp interface model which we adopt in this paper, Liu and

Walkington [31] considered the case of fluids containing visco-hyperelastic particles. Perhaps the

most closely related work to the present paper is that of Mugnai and Röger [35] which studied the

identical problem with p D 2 (linear viscosity case) and d D 2; 3. There they introduced the notion

ofL2 velocity and showed that (1.7) is satisfied in a weak sense different from that of Brakke for the

limiting interface. Soner [43] dealt with a coupling of Allen-Cahn and heat equations to approximate

the Mullins-Sekerka problem with kinetic undercooling. Soner’s work is closely related in that he

showed the surface energy density bound which is also essential in the present problem. While the
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present article discussed the coupling of the Allen-Cahn equation and non-Newtonian flow equation,

there has been a vast literature dealing with a coupling of the Cahn-Hilliard equation and the Navier-

Stokes equation (the so called Model H [21]) in recent years. Note that the latter coupling has the

advantage that the order parameter ' becomes a conserved quantity. On the other hand, due to the

fact that the Cahn-Hilliard equation is a 4th order equation, the analogous measure-theoretic analysis

of sharp phase boundary for weak solutions poses serious difficulties. For this coupling problem we

mention [3–5, 7, 10–13, 18, 19, 26, 45] and references therein among numerous papers.

The organization of this paper is as follows. In Section 2, we summarize the basic notations and

main results. In Section 3 we construct a sequence of approximating solutions for the two-phase

flow problem. In Section 4 we first recall the result of [30] which establishes the upper density ratio

bound for surface energy and which proves (1.7). We then combine the results from Section 3 to

obtain the desired weak solution for the two-phase flow problem.

2. Preliminaries and main results

For d � d matrices A;B we denote A W B D tr .AB/ and jAj WD
p
A W A. For a 2 Rd , we denote

by a ˝ a the d � d matrix with the i -th row and j -th column entry equal to aiaj .

2.1 Function spaces

Set ˝ D Td throughout this paper. We set function spaces for p > dC2
2

and s 2 ZC [ f0g as

follows:

V D
˚

v 2 C1.˝/d I div v D 0
	

;

W s;p.˝/ D fv W rj v 2 Lp.˝/ for 0 6 j 6 sg;
V s;p D closure of V in theW s;p.˝/d -norm:

We denote the dual space of V s;p by .V s;p/�. The L2 inner product is denoted by .�; �/. Let �A be

the characteristic function of A, and for �A 2 BV.˝/ let jr�Aj be the total variation measure of

the distributional derivative r�A.

2.2 Varifold notations

We recall some notions from geometric measure theory and refer to [6, 14, 40] for more details.

A general k-varifold in Rd is a Radon measure on Rd � G.d; k/, where G.d; k/ is the space of

k-dimensional subspaces in Rd . We denote the set of all general k-varifolds by Vk.R
d /. When S is

a k-dimensional subspace, we also use S to denote the orthogonal projection matrix corresponding

to R
d ! S . The first variation of V can be written as

ıV .g/ D
Z

Rd �G.d;k/

rg.x/ W S dV.x; S/ D �
Z

Rd

g.x/ �H.x/ dkV k.x/ if kıV k � kV k:

Here V 2 Vk.R
d /, kV k is the mass measure of V , g 2 C 1

c .R
d /d , H D HV is the generalized

mean curvature vector if it exists and kıV k � kV k denotes that kıV k is absolutely continuous

with respect to kV k.
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We call a Radon measure � k-integral if � is represented as � D �H
kbX , where X is a

countably k-rectifiable, H
k-measurable set, and � 2 L1

loc.H
kbX / is positive and integer-valued

H
k a.e on X . H

kbX denotes the restriction of H
k to the set X . We denote the set of k-integral

Radon measures by IMk . We say that a k-integral varifold is of unit density if � D 1 H
k a.e. on

X . For each such k-integral measure � corresponds a unique k-varifold V defined by

Z

Rd �G.d;k/

�.x; S/ dV.x; S/ D
Z

Rd

�.x; Tx�/ d�.x/ for � 2 Cc

�

R
d �G.d; k/

�

;

where Tx� is the approximate tangent k-plane. Note that � D kV k. We make such identification

in the following. For this reason we define H� as HV (or simply H ) if the latter exists. When X

is a C 2 submanifold without boundary and � is constant on X , H corresponds to the usual mean

curvature vector for X . In the following we suitably adopt the above notions on ˝ D Td such as

Vk.˝/, which present no essential difficulties.

2.3 Weak formulation of free boundary motion

For sufficiently smooth surface � .t/ moving by the velocity (1.7), the following holds for any

� 2 C 2.˝I RC/ due to the first variation formula (1.10):

d

dt

Z

� .t/

� dH
d�1

6

Z

� .t/

.��H C r�/ � f�2H C .u � n/ng dH
d�1: (2.1)

One can check that having this inequality for any � 2 C 2.˝I RC/ implies (1.7) thus (2.1) is

equivalent to (1.7). Such use of non-negative test functions to characterize the motion law is due

to Brakke [14] where he developed the theory of varifolds moving by the mean curvature. Here we

suitably modify Brakke’s approach to incorporate the transport term u. To do this we recall

THEOREM 2.1 (Meyers-Ziemer inequality) For any Radon measure � on Rd with

D D sup
r>0; x2Rd

�
�

Br .x/
�

!d�1rd�1
< 1;

we have
Z

Rd

j�j d� 6 cD

Z

Rd

jr�j dx (2.2)

for � 2 C 1
c .R

d /. Here c depends only on d .

See [34] and [46, p. 266]. By localizing (2.2) to ˝ D Td we obtain (with r in the definition of

D above replaced by 0 < r < 1=2)

Z

˝

j�j2 d� 6 cD
�

k�k2
L2.˝/

C kr�k2
L2.˝/

�

; (2.3)

where the constant c may be different due to the localization but depends only on d . The inequality

(2.3) allows us to define
R

˝ j�j2 d� for � 2 W 1;2.˝/ by the standard density argument when

D < 1.
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We define for any Radon measure �, u 2 L2.˝/d and � 2 C 1.˝ W R
C/

B.�; u; �/ D
Z

˝

.��H C r�/ � f�2H C .u � n/ng d� (2.4)

if � 2 IMd�1.˝/ with generalized mean curvatureH 2 L2.�/d and with

sup
1
2

>r>0; x2˝

�
�

Br .x/
�

!d�1rd�1
< 1 (2.5)

and u 2 W 1;2.˝/d . Due to the definition of IMd�1.˝/, the unit normal vector n is uniquely

defined � a.e. on ˝ modulo ˙ sign. Since we have .u; n/n in (2.4), the choice of sign does not

affect the definition. The right-hand side of (2.4) gives a well-defined finite value due to the stated

conditions and (2.3). If any one of the conditions is not satisfied, we define B.�; u; �/ D �1.

Next we note

PROPOSITION 2.2 For any 0 < T < 1 and p > dC2
2

,

n

u 2 Lp
�

Œ0; T �IV 1;p
�

I @u
@t

2 L
p

p�1
�

Œ0; T �I .V 1;p/�
�

o

,! C.Œ0; T �I V 0;2/:

The Sobolev embedding gives V 1;p ,! V 0;2 for such p and we may apply [33, p. 35, Lemma

2.45] to obtain the above embedding. Indeed, we only need p > 2d
dC2

for Proposition 2.2 to hold

and we have dC2
2

> 2d
dC2

. Thus for this class of u we may define u.�; t/ 2 V 0;2 for all t 2 Œ0; T �

instead of a.e. t and we may tacitly assume that we redefine u in this way for all t . For f�t gt2Œ0;1/,

u 2 Lp

loc
.Œ0;1/IV 1;p/ with @u

@t
2 L

p
p�1

loc
.Œ0;1/I .V 1;p/�/ for p > dC2

2
and � 2 C 1.˝I RC/, we

define B.�t ; u.�; t/; �/ as in (2.4) for all t > 0.

2.4 The main results

Our main results are the following.

THEOREM 2.3 Let d D 2 or 3 and p > dC2
2

. Let˝ D Td . Assume that locally Lipschitz functions

�˙ W S.d/ ! S.d/ satisfy (1.1)–(1.3). For any initial data u0 2 V 0;2 and ˝C.0/ � ˝ having C 1

boundary @˝C.0/, there exist

(a) u 2 L1.Œ0;1/IV 0;2/ \ L
p

loc
.Œ0;1/IV 1;p/ with @u

@t
2 L

p
p�1

loc
.Œ0;1/I .V 1;p/�/,

(b) a family of Radon measures f�t gt2Œ0;1/ with �t 2 IMd�1 for a.e. t 2 Œ0;1/ and

(c) ' 2 BVloc.˝ � Œ0;1// \ C
1
2

loc
.Œ0;1/IL1.˝// with supt2Œ0;1/ k'.�; t/kBV.˝/ < 1

such that the following properties hold:

(i) The triplet .u.�; t/; '.�; t/; �t /t2Œ0;1/ is a weak solution of (1.8). More precisely, for any

T > 0 we have

Z T

0

Z

˝

�u � @v
@t

C .u � ru/ � v C �
�

'; e.u/
�

W e.v/ dxdt

D
Z

˝

u0 � v.0/ dx C
Z T

0

Z

˝

�1H � v d�tdt (2.6)
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for any v 2 C1.Œ0; T �I V/ such that v.T / D 0. Here H 2 L2.Œ0;1/IL2.�t /
d / exists and is

the generalized mean curvature vector corresponding to �t .

(ii) The triplet .u.�; t/; '.�; t/; �t /t2Œ0;1/ satisfies the energy inequality

1

2

Z

˝

ju.�; T /j2 dx

C �1�T .˝/C
Z T

0

Z

˝

�
�

'; e.u/
�

W e.u/ dxdt C �1�2

Z T

0

Z

˝

jH j2 d�tdt

6
1

2

Z

˝

ju0j2 dx C �1H
d�1

�

@˝C.0/
�

DW E0 (2.7)

for all T < 1.

(iii) For all 0 6 t1 < t2 < 1 and � 2 C 2.˝I RC/ we have

�t2.�/ � �t1.�/ 6

Z t2

t1

B.�t ; u.�; t/; �/ dt: (2.8)

Moreover, B
�

�t ; u.�; t/; �
�

2 L1
loc

�

Œ0;1/
�

.

(iv) We set D0 D sup0<r<1=2; x2˝
Hd�1.@˝C.0/\Br .x//

!d�1rd�1 . For any 0 < T < 1, there exists a

constantD D D.E0;D0; T; p; �0; �1; �2/ such that

sup
0<r<1=2; x2˝

�t

�

Br .x/
�

!d�1rd�1
6 D

for all t 2 Œ0; T �.
(v) The function ' satisfies the following properties.

(1) ' D ˙1 a.e. on ˝ for all t 2 Œ0;1/.

(2) '.x; 0/ D �˝C.0/ � �˝n˝C.0/ a.e. on˝ .

(3) sptjr�f'.�;t/D1gj � spt�t for all t 2 Œ0;1/.

(vi) There exists

T1 D T1.E0;D0; p; �0; �1; �2/ > 0

such that �t is of unit density for a.e. t 2 Œ0; T1�. In addition jr�f'.�;t/D1gj D �t for a.e.

t 2 Œ0; T1�.

REMARK 2.4 Somewhat different from the case u D 0 we do not expect that

lim sup
�t!0

�tC�t .�/ � �t .�/

�t
6 B

�

�t ; u.�; t/; �
�

(2.9)

holds for all t > 0 and � 2 C 2.˝I R
C/ in general. While we know that the right-hand side is < 1

(by definition) for all t , we do not know in general if the left-hand side is < 1. One may even
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expect that at a time when
R

˝ jru.�; t/jp dx D 1, it may be 1. Thus we may need to define (1.7)

in the integral form (2.8) for the definition of Brakke’s flow. Note that in case u D 0, one can show

that the left-hand side of (2.9) is < 1 for all t > 0 (see [14]).

REMARK 2.5 The difficulty of multiplicities have been often encountered in the measure-theoretic

setting like ours. Varifold solutions constructed by Brakke [14] have the same properties in this

regard. On the other hand, (vi) says that there is no ‘folding’ for some initial time interval Œ0; T1� at

least.

REMARK 2.6 In the following we set �1 D �2 D 1 for notational simplicity, while all the argument

can be modified with any positive �1 and �2 with no essential differences. On the other hand, their

being positive plays an essential role, and most of the estimates and claims deteriorate as �1; �2 ! 0

and fail in the limit. How severely they fail in the limit may be of independent interest which we do

not pursue in the present paper. Note that �2 D 0 limit should correspond precisely to the setting of

Plotnikov [37] for d D 2.

We use the following theorem. See [33, p. 196] and the reference therein.

THEOREM 2.7 (Korn’s inequality) Let 1 < p < 1. Then there exists a constant cK D c.p; d/

such that

kvkp

W 1;p.˝/
6 cK.ke.v/kp

Lp.˝/
C kvkp

L1.˝/
/

holds for all v 2 W 1;p.˝/d .

3. Existence of approximate solution

In this section we construct a sequence of approximate solutions of (1.4)–(1.7) by the Galerkin

method and the phase field method. The proof is a suitable modification of [28] for the non-

Newtonian setting even though we need to incorporate a suitable smoothing of the interaction terms.

First we prepare a few definitions. We fix a sequence f"ig1
iD1 with limi!1 "i D 0 and fix a

radially symmetric non-negative function � 2 C1
c .Rd / with spt � � B1.0/ and

R

� dx D 1. For a

fixed 0 < 
 < 1
2

we define

�"i .x/ D 1

"


i

�

 

x

"

=d
i

!

: (3.1)

We defined �"i so that
R

�"i dx D 1, j�"i j 6 c.d/"
�

i and jr�"i j 6 c.d/"

�
�
=d
i .

For a given initial data ˝C.0/ � ˝ with C 1 boundary @˝C.0/, we can approximate ˝C.0/

in C 1 topology by a sequence of domains ˝ iC.0/ with C 3 boundaries. Let d i .x/ be the signed

distance function to @˝ iC.0/ so that d i .x/ > 0 on˝ iC.0/ and d i .x/ < 0 on˝ i�.0/. Choose bi >

0 so that d i is C 3 function on the bi -neighborhood of @˝ iC.0/. Now we associate f"ig1
iD1 with

˝ iC.0/ by re-labeling the index if necessary so that limi!1 "i=b
i D 0 and limi!1 "

j �1
i jrjd i j D

0 for j D 2; 3 on the bi -neighborhood of @˝ iC.0/. Let h 2 C1.R/ be a function such that h

is monotone increasing, h.s/ D s for 0 6 s 6 1=4 and h.s/ D 1=2 for 1=2 < s, and define

h.�s/ D �h.s/ for s < 0. Then define

'
"i

0 .x/ D tanh.bih.d i .x/=bi /="i /: (3.2)
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Note that we have '
"i

0 2 C 3.˝/ and "
j
i jrj'

"i

0 j for j D 1; 2; 3 are bounded uniformly independent

of i . The well-known property of phase field approximation shows that

lim
i!1

k'"i

0 � .�˝C.0/ � �˝�.0//kL1.˝/ D 0;
1

�

�

"i jr'"i

0 j2
2

C W.'
"i

0 /

"i

�

dx ! H
d�1b@˝C.0/

(3.3)

as Radon measures. Here � D
R C1

�1

p

2W.s/ ds.

For V s;2 with s > d
2

C1 let f!ig1
iD1 be a set of basis for V s;2 such that it is orthonormal in V 0;2.

The choice of s is made so that the Sobolev embedding theorem implies W s�1;2.˝/ ,! L1.˝/

thus r!i 2 L1.˝/d
2
.

Let Pi W V 0;2 ! V
0;2

i D span f!1; !2; � � � ; !i g be the orthogonal projection. We then project

the problem (1.4)–(1.7) to V
0;2

i by utilizing the orthogonality in V 0;2. Note that just as in [28],

we approximate the mean curvature term in (1.8) by the appropriate phase field approximation. We

consider the following problem:

@u"i

@t
D Pi

�

div �
�

'"i ; e.u"i /
�

� u"i � ru"i

�"i

�
div

�

.r'"i ˝ r'"i / � �"i
�

�

on˝ � Œ0;1/;

(3.4)

u"i .�; t/ 2 V 0;2
i for t > 0; (3.5)

@'"i

@t
C .u"i � �"i / � r'"i D �'"i � W 0.'"i /

"2
i

on˝ � Œ0;1/; (3.6)

u"i .x; 0/ D Piu0.x/; '"i .x; 0/ D '
"i

0 .x/ on˝: (3.7)

Here � is the usual convolution. We prove the following theorem.

THEOREM 3.1 For any i 2 N, u0 2 V 0;2 and '
"i

0 , there exists a weak solution .u"i ; '"i / of (3.4)–

(3.7) such that u"i 2 L1.Œ0;1/IV 0;2/\Lp

loc
.Œ0;1/IV 1;p/, j'"i j 6 1, '"i 2 L1.Œ0;1/IC 3.˝//

and @'"i

@t
2 L1

�

Œ0;1/IC 1.˝/
�

.

We write the above system in terms of u"i D
Pi

kD1 c
"i

k
.t/!k.x/ first. Since

�

d

dt
u"i ; !j

�

D
�

d

dt

i
X

kD1

c
"i

k
.t/ !k ; !j

�

D d

dt
c

"i

j .t/;

.u"i � ru"i ; !j / D
i
X

k;lD1

c
"i

k
.t/c

"i

l
.t/.!k � r!l ; !j /;

"i .div
�

.r'"i ˝ r'"i / � �"i
�

; !j / D �"i

Z

˝

.r'"i ˝ r'"i / � �"i W r!j dx;

�

div �
�

'"i ; e.u"i /
�

; !j

�

D �
Z

˝

�
�

'"i ; e.u"i /
�

W e.!j / dx
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for j D 1; � � � ; i , (3.4) is equivalent to

d

dt
c

"i

j .t/ D �
Z

˝

�
�

'"i ; e.u"i /
�

W e.!j / dx �
i
X

k;lD1

c
"i

k
.t/c

"i

l
.t/.!k � r!l ; !j /

C "i

�

Z

˝

.r'"i ˝ r'"i / � �"i W r!j dx D A
"i

j .t/C Bklj c
"i

k
.t/c

"i

l
.t/CD

"i

j .t/: (3.8)

Moreover, the initial condition of c
"i

j is

c
"i

j .0/ D .u0; !j / for j D 1; 2; : : : ; i:

We also set

E0 D H
d�1

�

@˝C.0/
�

C 1

2

Z

˝

ju0j2 dx

and note that

1

�

Z

˝

�

"i jr'"i

0 j2
2

C W.'
"i

0 /

"i

�

dx C 1

2

i
X

j D1

�

c
"i

j .0/
�2

6 E0 C o.1/ (3.9)

by (3.3) and by the projection Pi being orthonormal.

We use the following lemma to prove Theorem 3.1.

LEMMA 3.2 There exists a constant T0 D T0.E0; i; �0; p/ > 0 such that (3.4)–(3.7) with (3.9) has

a weak solution .u"i ; '"i / in ˝ � Œ0; T0� such that u"i 2 L1.Œ0; T0�IV 0;2/ \ Lp.Œ0; T0�IV 1;p/,

j'"i j 6 1, '"i 2 L1.Œ0; T0�IC 3.˝// and @'"i

@t
2 L1.Œ0; T0�IC 1.˝//.

Proof. Assume that we are given a function u.x; t/ D
Pi

j D1 c
"i

j .t/!j .x/ 2 C 1=2.Œ0; T �IV s;2/

with

c
"i

j .0/ D .u0; !j /; max
t2Œ0;T �

0

@

1

2

i
X

j D1

jc"i

j .t/j2
1

A

1=2

C sup
06t1<t26T

i
X

j D1

jc"i

j .t1/ � c
"i

j .t2/j
jt1 � t2j1=2

6

p

2E0:

(3.10)

We let '.x; t/ be the solution of the following parabolic equation:

@'

@t
C .u � �"i / � r' D �' � W 0.'/

"2
i

; '.x; 0/ D '
"i

0 .x/: (3.11)

The existence of such ' with j'j 6 1 is guaranteed by the standard theory of parabolic equations

( [27]). By (3.11) and the Cauchy–Schwarz inequality, we can estimate

d

dt

Z

˝

�

"i jr'j2
2

C W.'/

"i

�

dx 6 �"i

2

Z

˝

�

�' � W 0.'/

"2
i

�2

dx C "i

2

Z

˝

f.u � �"i / � r'g2
dx:
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Since for any t 2 Œ0; T �

ku � �"i k2
L1.˝/ 6 "

�2

i kuk2

L1.˝/ 6 "
�2

i max

16j 6i
k!j .x/k2

L1.˝/

i
X

j D1

jc"i

j .t/j2 6 c.i/E0;

d

dt

Z

˝

�

"i jr'j2
2

C W.'/

"i

�

dx 6 c.i/E0

Z

˝

"i jr'j2
2

dx:

This gives

sup
06t6T

1

�

Z

˝

�

"i jr'j2
2

C W.'/

"i

�

dx 6 ec.i/E0TE0: (3.12)

Hence as long as T 6 1,

jD"i

j .t/j 6 ckr!j kL1.˝/

1

�

Z

˝

Z

˝

"i jr'.y/j2�"i .x � y/ dydx 6 c.i/ec.i/E0E0 (3.13)

by r!j 2 L1.˝/d
2

and (3.12).

Next we substitute the above solution ' into the place of '"i , and solve (3.8) with the initial

condition c
"i

j .0/ D .u0; !j /. Since � is locally Lipschitz with respect to e.u/, there is at least

some short time T1 such that (3.8) has a unique solution Qc"i

j .t/ on Œ0; T1� with the initial condition

Qc"i

j .0/ D .u0; !j / for 1 6 j 6 i . We show that the solution exists up to T0 D T0.i; E0; p; �0/

satisfying (3.10). Let Qc.t/ D 1
2

Pi
j D1 j Qc"i

j .t/j2. Then,

d

dt
Qc.t/ D A

"i

j Qc"i

j CBklj Qc"i

k
Qc"i

l
Qc"i

j CD
"i

j Qc"i

j :

By (1.1) A
"i

j Qc"i

j 6 0 hence

d

dt
Qc.t/ 6 c.i; E0/. Qc3=2 C Qc1=2/:

Therefore,

arctan
p

Qc.t/ 6 arctan
p

E0 C 2c.i; E0/t: (3.14)

We can also estimate jdc"i

j =dt j due to (3.8), (3.13), (3.14) and (1.2) depending only onE0; i; p; �0.

Thus, by choosing T0 small depending only on E0; i; p; �0 we have the existence of solution for

t 2 Œ0; T0� satisfying (3.10). We then prove the existence of a weak solution on˝ � Œ0; T0� by using

Leray–Schauder fixed point theorem (see [27]). We define

Qu.x; t/ D
i
X

j D1

Qc"i

j .t/!j .x/

and we define a map L W u 7! Qu as in the above procedure. Let

V.T0/ WD

8

ˆ

<

ˆ

:

u.x; t/ D
i
X

j D1

cj .t/!j .x/ I max
t2Œ0;T0�

0

@

1

2

i
X

j D1

jcj .t/j2
1

A

1=2

C sup
06t1<t26T0

i
X

j D1

jcj .t1/ � cj .t2/j
jt1 � t2j1=2

6

p

2E0; cj .0/ D .u0; !j /; cj 2 C 1=2.Œ0; T0�/

9

=

;

:
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Then V.T0/ is a closed, convex subset of C 1=2.Œ0; T0�IV 0;2
i / equipped with the norm

kukV.T0/ D max
t2Œ0;T0�

0

@

1

2

i
X

j D1

jcj .t/j2
1

A

1=2

C sup
06t1<t26T0

i
X

j D1

jcj .t1/ � cj .t2/j
jt1 � t2j1=2

and by the above argument L W V.T0/ ! V.T0/. Moreover the image of L is bounded in

C 0;1.Œ0; T0�IV 0;2
i / due to the estimate on jdc"i

j =dt j. Thus by the Ascoli–Arzelà compactness

theorem L is a compact operator. Therefore by using the Leray–Schauder fixed point theoremÅCL

has a fixed point u"i 2 V.T0/. We denote by '"i the solution of (3.6) and (3.7). Then .u"i ; '"i / is a

weak solution of (3.4)–(3.7) in ˝ � Œ0; T0�. Note that we have the required regularities for '"i due

to the regularity of u"i � �"i in x and by the standard parabolic regularity theory.

THEOREM 3.3 Let .u"i ; '"i / be the weak solution of (3.4)–(3.7) with (3.9) in ˝ � Œ0; T �. Then the

following energy estimate holds:

Z

˝

1

�

 

"i jr'"i .�; T /j2
2

C
W
�

'"i .�; T /
�

"i

!

C ju"i .�; T /j2
2

dx

C
Z T

0

Z

˝

"i

�

�

�'"i � W 0.'"i /

"2
i

�2

C �0je.u"i /jp dxdt 6 E0 C o.1/: (3.15)

Moreover for any 0 6 T1 < T2 < 1
Z T2

T1

ku"i .�; t/kp

W 1;p.˝/
dt 6 cK

˚

��1
0 E0 C .T2 � T1/E

p
2

0

	

C o.1/: (3.16)

Proof. Since .u"i ; '"i / is the weak solution of (3.4)–(3.7), we derive

d

dt

Z

˝

1

�

�

"i jr'"i j2
2

C W.'"i /

"i

�

C ju"i j2
2

dx

D
Z

˝

�"i

�

@'"i

@t

�

�'"i � W 0.'"i /

"2
i

�

C @u"i

@t
� u"i dx

D
Z

˝

�"i

�

�

�'"i � W 0.'"i /

"2
i

� .u"i � �"i / � r'"i

��

�'"i � W 0.'"i /

"2

�

dx

C
Z

˝

n

div �.'"i ; e.u"i // � u"i � ru"i � "i

�
div ..r'"i ˝ r'"i / � �"i /

o

� u"i dx

D I1 C I2:

(3.17)

Since div .u"i � �"i / D .divu"i / � �"i D 0,

�I1 D �
Z

˝

"i

�

�'"i � W 0.'/

"2
i

�2

dx C "i

Z

˝

.u"i � �"i / � r'"i�'"i dx:

For I2, with (1.1)
Z

˝

div �
�

'"i ; e.u"i /
�

� u"i dx D �
Z

˝

�
�

'"i ; e.u"i /
�

W e.u"i / dx 6 ��0

Z

˝

je.u"i /jp dx:
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Moreover, the second term of I2 vanishes by divu"i D 0 and

�
Z

˝

"i div .r'"i ˝ r'"i � �"i / � u"i dx D �
Z

˝

"i

�

r jr'"i j2
2

C r'"i�'"i

�

� �" � u"i dx

D �"i

Z

˝

.u"i � �"i / � r'"i�'"i dx:

Hence (3.17) becomes

d

dt

Z

˝

1

�

�

"i jr'"i j2
2

C W.'"i /

"i

�

Cju"i j2
2

dx 6 �
Z

˝

"i

�

�

�'"i � W 0.'"i /

"2
i

�2

C�0je.u"i /jp dx:

Integrating with respect to t over t 2 Œ0; T � and by (3.9), we obtain (3.15). The proof of (3.16)

follows from (3.15) and Theorem 2.7.

Proof of Theorem 3.1. For each fixed i we have a short time existence for Œ0; T0� where T0 depends

only on i; E0; p; �0 at t D 0. By Theorem 3.3 the energy at t D T0 is again bounded by E0 C o.1/.

By repeatedly using Lemma 3.2, Theorem 3.1 follows.

4. Proof of main theorem

In this section we first prove that f'"i g1
iD1 in Section 3 and the associated surface energy

measures f�"i
t g1

iD1 converge subsequentially to ' and �t which satisfy the properties described

in Theorem 2.3. Most of the technical and essential ingredients have been proved in [30] and we

only need to check the conditions to apply the results. We then prove that the limit velocity field

satisfies the weak non-Newtonian flow equation, concluding the proof of Theorem 2.3.

First we recall the upper density ratio bound of the surface energy.

THEOREM 4.1 ( [30, Theorem 3.1]) Suppose d > 2, ˝ D T
d , p > dC2

2
, 1

2
> 
 > 0, 1 > " > 0

and ' satisfies

@'

@t
C u � r' D �' � W 0.'/

"2
on˝ � Œ0; T �; (4.1)

'.x; 0/ D '0.x/ on˝; (4.2)

where riu; rj';rk't 2 C.˝ � Œ0; T �/ for 0 6 i; k 6 1 and 0 6 j 6 3. Let �t be the Radon

measure on˝ defined by

Z

˝

�.x/ d�t .x/ D 1

�

Z

˝

�.x/

 

"jr'.x; t/j2
2

C
W
�

'.x; t/
�

"

!

dx (4.3)
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for � 2 C.˝/, where � D
R 1

�1

p

2W.s/ ds. We assume also that

sup
˝

j'0j 6 1 and sup
˝

"i jri'0j 6 c1 for 1 6 i 6 3; (4.4)

sup
˝

�

"jr'0j2
2

� W.'0/

"

�

6 "�
 ; (4.5)

sup
˝�Œ0;T �

˚

"
 juj; "1C
 jruj
	

6 c2; (4.6)

Z T

0

ku.�; t/kp

W 1;p.˝/
dt 6 c3: (4.7)

Define for t 2 Œ0; T �

D.t/ D max

8

<

:

sup
x2˝; 0<r6

1
2

1

!d�1rd�1
�t

�

Br .x/
�

; 1

9

=

;

; D.0/ 6 D0: (4.8)

Then there exist �1 > 0 which depends only on d , p, W , c1, c2, c3, D0, 
 and T , and c4 which

depends only on c3, d , p, D0 and T such that for all 0 < " 6 �1,

sup
06t6T

D.t/ 6 c4: (4.9)

Using this we prove

PROPOSITION 4.2 For f'"i g1
iD1 in Theorem 3.1, define �

"i
t as in (4.3) replacing ' by '"i , and

define D"i .t/ as in (4.8) replacing �t by �
"i
t . Given 0 < T < 1, there exists c5 which depends

only on E0; �0; 
; D0; T; d; p and W such that

sup
06t6T

D"i .t/ 6 c5 (4.10)

for all sufficiently large i .

Proof. We only need to check the conditions of Theorem 4.1 for '"i and �
"i
t . Note that u in (4.1)

is replaced by u"i � �"i . We have d > 2, ˝ D Td , p > dC2
2

, 1
2
> 
 > 0, 1 > " > 0 and (4.1)

and (4.2). The regularity of functions is guaranteed in Theorem 3.1. With an appropriate choice of

c1, (4.4) is satisfied for all sufficiently large i due to the choice of "i in (3.2). The sup bound (4.5) is

satisfied with even 0 on the right-hand side instead of "
�

i . The bound for u"i � �"i (4.6) is satisfied

due to (3.1) and (3.15), and (4.7) is satisfied due to (3.16). Thus we have all the conditions, and

Theorem 4.1 proves the claim.

We next prove

PROPOSITION 4.3 For fu"i � �"i g1
iD1 in Theorem 3.1, there exist a subsequence (denoted by the

same index) and a limit u 2 L1.Œ0;1/IV 0;2/ \Lp

loc
.Œ0;1/IV 1;p/ such that for any 0 < T < 1

u"i � �"i * u weakly in Lp.Œ0; T �IW 1;p.˝/d /; u"i � �"i ! u strongly in L2.Œ0; T �IL2.˝/d /:

(4.11)
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Proof. Let  2 V s;2 with jj jjV s;2 6 1. With (3.4), (3.5) and integration by parts, we have
�

@u"i

@t
;  

�

D
�

@u"i

@t
; Pi 

�

D
�

�u"i � ru"i C div �.'"i ; e.u"i // � "i

�
div.r'"i ˝ r'"i / � �"i ; Pi 

�

D
�

u"i ˝ u"i � �.'"i ; e.u"i //C "i

�
.r'"i ˝ r'"i / � �"i ;rPi 

�

:

Here we remark that

krPi kL1.˝/ 6 c.d/kPi kW s;2.˝/ 6 c.d/k kW s;2.˝/ D c.d/k kV s;2 6 c.d/

by s > dC2
2

and properties of Pi (see [29] or [33, p.290]). Thus by (1.2) and (3.15), we obtain

�

@u"i

@t
;  

�

6 c.d; p; �0/
�

1C E0 C ku"i kp�1

W 1;p.˝/

�

:

Again using (3.15) and integrating in time we obtain

Z T

0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@u"i

@t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
p�1

.V s;2/�

dt 6 c.d; p;E0; �0; T /: (4.12)

Now we use Aubin–Lions compactness Theorem [29, p.57] withB0 D V s;2,B D V 0;2 � L2.˝/d ,

B1 D .V s;2/�, p0 D p and p1 D p
p�1

. Then there exists a subsequence still denoted by fu"i g1
iD1

such that

u"i ! u in Lp.Œ0; T �IL2.˝/d /:

Since p > 2, the strong convergence also holds in L2.Œ0; T �IL2.˝/d /. Note that we also have

proper norm bounds to extract weakly convergent subsequences due to (3.15). For each Tn which

diverges to 1 as n ! 1, we choose a subsequence and by choosing a diagonal subsequence, we

obtain the convergent subsequence with (4.11) with u"i instead of u"i � �"i . It is not difficult to

show at this point that the same convergence results hold for u"i � �"i as in (4.11).

Proof of main theorem. At this point, the rest of the proof concerning the existence of the limit

Radon measure �t and the limit ' D limi!1 '"i and their respective properties described in

Theorem 2.3 can be proved by almost line by line identical argument in [30, Section 4, 5].

The only difference is that the energy E0 in [30] depends also on T , while in this paper E0

depends only on the initial data due to (3.15). This allows us to have time-global estimates such

as u 2 L1.Œ0;1/IV 0;2/ and supt2Œ0;1/ k'kBV.˝/ < 1. The argument in [30] then complete the

existence proof of Theorem 2.3 (b), (c) along with (iii)–(vi). We still need to prove (a), (i) and (ii).

Due to (4.12), (1.2) and (3.16) we may extract a further subsequence so that

@u"i

@t
*

@u

@t
weakly in L

p
p�1 .Œ0; T �I .V s;2/�/;

�.'"i ; e.u"i // * O� weakly in L
p

p�1 .Œ0; T �IL
p

p�1 .˝/d
2

/:

(4.13)

For !j 2 V s;2 (j D 1; � � � ) and h 2 C1
c ..0; T // we have

Z

˝

div
�

.r'"i ˝ r'"i / � �"i
�

� h!j dx D
Z

˝

�

�'"i � W 0.'"i /

"2
i

�

r'"i � h!j � �"i dx
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by integration by parts and div!j D 0. Thus the argument in [29, p. 212] and the similar

convergence argument in [30] show

Z T

0

��

@u

@t
; h!j

�

C
Z

˝

.u � ru/ � h!j C h O� W e.!j / dx

�

dt D
Z T

0

Z

˝

H � h!j d�tdt: (4.14)

Again by the similar argument using the density ratio bound and Theorem 2.1 one shows by the

density argument and (4.14) that @u
@t

2 L
p

p�1 .Œ0; T �I .V 1;p/�/ and

Z T

0

��

@u

@t
; v

�

C
Z

˝

.u � ru/ � v C O� W e.v/ dx
�

dt D
Z T

0

Z

˝

H � v d�tdt: (4.15)

for all v 2 Lp.Œ0; T �IV 1;p/. We next prove

Z T

0

Z

˝

O� W e.v/ dxdt D
Z T

0

Z

˝

�
�

'; e.u/
�

W e.v/ dxdt (4.16)

for all v 2 C1
c ..0; T /I V/. As in [29, p. 213 (5.43)], we may deduce that

1

2
ku.t1/k2

L2.˝/
C
Z t1

0

Z

˝

O� W e.u/ dxdt >

Z t1

0

Z

˝

H � ud�tdt C 1

2
ku.0/k2

L2.˝/
(4.17)

for a.e. t1 2 Œ0; T �. We set for any v 2 V 1;p

A
t1
i D

Z t1

0

Z

˝

�

�.'"i ; e.u"i /
�

� �
�

'"i ; e.v/
�

W
�

e.u"i / � e.v/
�

dxdt C 1

2
ku"i .t1/k2

L2.˝/
: (4.18)

The property (1.3) of e.�/ shows that the first term of (4.18) is non-negative. We may further assume

that u"i .t1/ converges weakly to u.t1/ in L2.˝/d thus we have

lim inf
i!1

A
t1
i >

1

2
ku.t1/k2

L2.˝/
: (4.19)

By (3.4) we have

A
t1
i D 1

2
ku"i .0/k2

L2.˝/
� "i

�

Z t1

0

Z

˝

div..r'"i ˝ r'"i / � �"i / � u"i

�
Z t1

0

Z

˝

�
�

'"i ; e.u"i /
�

W e.v/C �
�

'"i ; e.v/
�

W
�

e.u"i / � e.v/
�

dxdt

which converges to

At1 D 1

2
ku.0/k2

L2.˝/
C
Z t1

0

Z

˝

H � ud�tdt

�
Z t1

0

Z

˝

O� W e.v/C �
�

'; e.v/
�

W
�

e.u/ � e.v/
�

dxdt: (4.20)
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The convergence of the second term is discussed in [30, Proposition 4.5] and we used that '"i

converges to ' a.e. on ˝ � Œ0; T �. By (4.17), (4.19) and (4.20), we deduce that

Z t1

0

Z

˝

�

O� � �
�

'; e.v/
�

�

W
�

e.u/ � e.v/
�

dxdt > 0:

By choosing v D u C � Qv, divide by � and letting � ! 0, we prove (4.16). Finally, (2.7) follows

from (4.16), the strong L1.˝ � Œ0; T �/ convergence of '"i , the lower semicontinuity of the mean

curvature square term (see [30, Proposition 4.4]) and the energy equality appearing in Theorem 3.3.

This concludes the proof of Theorem 2.3.
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