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Finite element methods for director fields on flexible surfaces
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We introduce a nonlinear model for the evolution of biomembranes driven by the L2-gradient

flow of a novel elasticity functional describing the interaction of a director field on a membrane

with its curvature. In the linearized setting of a graph we present a practical finite element method

(FEM), and prove a priori estimates. We derive the relaxation dynamics for the nonlinear model on

closed surfaces and introduce a parametric FEM. We present numerical experiments for both linear

and nonlinear models, which agree well with the expected behavior in simple situations and allow

predictions beyond theory.
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1. Introduction and discussion of the proposed model

The question of how to predict the shape of a cell bounded by a lipid bilayer membrane has inspired

a significant body of research in the past twenty years ranging from purely mechanical descriptions

to advanced mathematical analysis. We refer, e.g., to the papers [10, 19, 21, 22] for the discussion

of the shape of a red blood cell and the basic models developed for this purpose. Excellent reviews

of the topic can be found in [27, 30]. Almost all of these models share the basic structure given by

an energy functionalE.� / depending on the shape of the cell which is identified with a surface � ,

E.� / D
Z

�

��0

2
.H �H0/

2 C �G

2
K

�
d� : (1.1)

Here H is the mean curvature and K the Gauss curvature of � and �0 and �G are the associated

moduli of elasticity. By Gauss-Bonnet, the integral ofK is a topological constant on a closed surface

and can be neglected for evolutions in one topological class of surfaces. The quantityH0 is usually

referred to as spontaneous curvature and describes the preferred value of curvature induced by the

ambient space on a membrane in equilibrium. Such H0 might be constant, the usual choice, but
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it might also depend on another variable such as the bilipid concentration [7, 13, 17, 18, 28, 33].

Alternatively,H0 might be induced by an underlying director field as in [26] and our models below.

The first variation of (1.1) with respect to � is given in [4] for H0 constant and in [12] for H0

depending on position.

In a broader context, the question to find the shape of a cell is surprisingly similar to the related

problem of determining the shape of an interface between two immiscible liquids with or without

surfactants. The prediction of the structure and the elastic properties of such interfaces is still a

challenging problem in applied mathematics and physics and has been investigated by a wide range

of techniques reaching from molecular dynamics simulations to continuum descriptions in coarse

grained models; see [26] that inspired this work. These similarities motivate us to explore model

energies for membranes which combine classical elasticity terms like those present in (1.1) with

terms which couple the local orientation of the surfactants or the lipid molecules with the curvature

of the interface or the membrane, respectively; we started this investigation in [6]. These energy

contributions are relevant in the gel phase of the membrane.

In this paper we investigate a novel model for the shape of a lipid bilayer membrane which takes

into account a coupling between the curvature H D � div� � of the membrane � and the local

orientation of the lipid molecules, described by a director field n. The nonlinear model is governed

by the energy

E.�; n/ D
Z

�

�1
2

ˇ̌
div� � � ı div� n

ˇ̌2 C �

2

ˇ̌
r� n

ˇ̌2
�

d�; (1.2)

where div� and r� are the tangential divergence and gradient operators and � > 0. Comparing

with (1.1), we can interpret H0 D �ı div� n with ı 2 R as an induced spontaneous curvature

on � due to the coupling with n. In order to develop an effective approximation scheme, we first

linearize this model locally in a flat region of � and represent � as a graph with height u (Monge

gauge). The resulting model is a special case of that introduced by Laradji and Mouritsen [26]. We

study this model, propose a practical FEM for an L2-gradient flow of the linearized functional, and

show a priori estimates, which lead to existence of a limiting solution pair .u; n/. We also explore

the dynamics of defects using our FEM. We next return to the nonlinear functional (1.2), derive an

L2-gradient flow, propose a practical FEM for its solution, and show simulations of defects. The

insight gathered from the linearized graph case turns out to be useful in understanding the nonlinear

regime.

1.1 A model for surfactants

The starting point of our analysis is the Ginzburg–Landau model in Laradji and Mouritsen [26]

which was originally developed for surfactant monolayers at liquid-liquid interfaces with a locally

varying density of surfactants �. The formulation assumes that this interface is given by a two-

dimensional surface � in the three-dimensional ambient space described by a height function u W
˝ ! R. The model in [26], which is discussed below, is an attempt to match deviations from

the bending energy model (1.1) with H0 D 0 for low wave numbers, which were detected via

molecular dynamics computations. The total energy of a configuration is assumed to be given by



FINITE ELEMENT METHODS FOR DIRECTOR FIELDS ON FLEXIBLE SURFACES 233

(see Appendix A in [26])

F .u; �; n/ D
Z

˝

�
�
p
1C jruj2 C �

2
j div �j2 C a

2
�2 C c

2
jr�j2 � �s�

C g.�/

2
jnj2 � h.�/� � nC k.�/

2
j divnj2 � `.�/

2
div � divn

�
dx

with suitable constants �, �, a, c, �s and nonnegative functions �, h, g, k, and `. Here r and

div denote the planar differential operators gradient, i.e., rz D .@1z; @2z/ for a scalar function

z, and divergence, i.e., divF D @1F1 C @2F2 for a vectorfield F D .F1; F2; F3/, whereas � D
.�ru; 1/=

p
1C jruj2 is the normal to the graph of u. In [26] it is shown that the surface tension �

is vanishingly small for densities � close to one. Therefore we may assume that � � 0 and that � is

nearly equal to 1 and discard all terms depending on � and � in F . As a further simplification and in

order to focus on the interaction of orientation and curvature, we assume that n is a unit vector and

we omit for the moment the term proportional to � � n which favors alignment of n along �. This

leads to the following model which contains the essential features

F .u; n/ D
Z

˝

��
2

j div �j2 C k

2
j divnj2 � `

2
div � divn

�
dx;

with constant parameters �; k; `. Upon completing the square, one obtains

F .u; n/ D
Z

˝

��
2

�
div � � `

2�
divn

�2

C
�k
2

� `2

8�

�
j divnj2

�
dx:

Comparing with (1.1) and (1.2), we interpret this formula as saying that the local arrangement of

the surfactants leads to a (position dependent) spontaneous curvature

H0 D � `

2�
divn ;

which becomes less important for large values of the bending rigidity �. We finally observe that in

order to bound the energy it is sufficient to assume that

k

2
� `2

8�
> 0 :

The corresponding positive convex term j divnj2 in the energy gives us coercivity of the functional

F .u; n/ but it is insufficient for devising a practical numerical scheme, deriving a priori bounds

for discrete solutions which allow passing to the limit, and showing existence of a minimizing pair

.u; n/. We thus modify the model upon replacing j divnj2 with the usual Frank energy jrnj2 of the

director field n, which is ubiquitous in the theory of liquid crystals. As the maximal mesh size tends

to zero we may pass to the limit for n, in view of the enhancedH 1 regularity, as well as to enforce

the unit length constraint on n via a projection method due to Alouges [1], and extended in [5] to

FEM. Such a projection does not increase the energy of the Dirichlet integral, but the analogous

assertion is not true for the energy of the divergence.
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1.2 A model for biomembranes

Our interest in augmented Canham–Helfrich models originates in the search for models that allow

one to predict the experimentally observed coarsening mechanisms in membranes in the gel phase

based on recombination of topological defects [23]. Related models, based on the assumption that

this recombination is driven by an interaction between the director field and the curvature, have been

proposed in [32] and analyzed in [6]. See also [20] for a closely related approach.

In the model in [32] the lipid monolayer is considered in the gel phase and it is assumed that

the director field is oriented in a fixed angle relative to the surface normal [29]. Therefore it suffices

to study the tangential part m of the director field which is itself a vector field of fixed length. The

related energy functional in a linearized setting is

E.u;m/ D �

2

Z

˝

j�uj2dx C Cq

2

Z

˝

jrmj2dx � ı
Z

˝

D2u W .m˝m � 1

2
I /dx;

subject to a length constraint for m. Our numerical experiments for a rigidly imposed length

constraint show that the coupling between u and m is too weak in the regime of parameters which

define a well-posed minimization problem in order to simulate the observed recombination of

defects [6]. The coupling proposed in the present model is stronger in the sense that it involves one

more derivative. It also allows a direct extension to the nonlinear model (1.2) on closed surfaces;

cf. Section 1.6.

1.3 Linear model on graphs

We give a linearized version of (1.2) for surfactants and augment the obtained energy by a

term which penalizes deviations of the out of plane component from a given value to model

biomembranes. We focus on the local situation in which the surface � is described by the graph

of a function uW˝ ! R3 with ˝ � R2 convex. Moreover, we assume that the displacements are

small,

jruj � 1:

This yields
p
1C jruj2 � 1 as well as � � .�ru; 1/, whence div� � � ��u. Moreover, we have

r� n � rn; div� n � divnp ;

where np stands for the tangential part of the director field n D .n1; n2; n3/, that is, np D .n1; n2/,

and r, div are the planar differential operators. We are now ready to write the linearized energy:

find u 2 H 2.˝/ with u D uD on @˝ , uD 2 H 2.˝/, n 2 H 1.˝I R3/ with n D nD on @˝ ,

nD 2 H 1.˝I S2/ and � 2 L1.˝/ as stationary points of the integral

E.u; n; �/ D 1

2

Z

˝

j�uC ı divnpj2dx

C 1

2

Z

˝

jrnj2dx C 1

2

Z

˝

�
�
jnj2 � 1

�
dx �

Z

@˝

g@�udS : (1.3)

Note that � 2 L1.˝/ is the Lagrange multiplier for the nonlinear constraint n 2 S2 and that g

is related to the boundary values for the mixed method we discuss below. This model captures the

essential features of the simplified linear model of Section 1.1 with energy F .u; n/.
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To model surfactants we do not impose an angle between � and n, which typically tend to align

in the gel phase of the membrane. To model biomembranes, instead, we penalize the deviation of

� � n � n3 from a prescribed value �0 via

1

2"2

Z

˝

�
jn3j2 � �2

0

�2
;

with small parameter " > 0. This term being lower order does not cause difficulties in the numerical

method or the passage to the limit and will thus be ignored for the subsequent discussion until

Section 4.

1.4 Relaxation dynamics for surfactants

To detect critical points we suggest a relaxation dynamics given by an L2-gradient flow, i.e., we

assume that there exist constants �u and �n > 0 such that

h@tu; vi D ��uhıE
ıu
; vi for all v 2 H 2.˝/ \H 1

0 .˝/ ;

h@tn;mi D ��nhıE
ın
;mi for all m 2 H 1

0 .˝;R
3/ :

For simplicity we assume in the following that the units are chosen in such a way that �u D �n D 1.

If we include the equilibrium condition for the Lagrange multiplier in our equations, then we obtain

the following coupled system of partial differential equations: for all v 2 H 2.˝/\H 1
0 .˝/, for all

m 2 H 1
0 .˝I R

3/, and for all � 2 L1.˝/,

h@tu; vi D �
�
�uC ı divnp; �v

�
C

Z

@˝

g@�vdS ;

h@tn;mi D �
�
�uC ı divnp; ı divmp

�
� .rn;rm/� .�n;m/ ;

0 D 1

2

�
�; jnj2 � 1

�
:

(1.4)

Hereafter we write for simplicity .�; �/ for the inner product in L2. We impose the following

boundary conditions provided by the setting of the model,

u D uD ; n D nD on @˝ ;

and we need to choose a second boundary condition for the fourth order equation involving u. Such

a condition is implicit in the equation for ut above because integration by parts gives formally Qz D g

with

Qz D �uC ı divnp:

Despite the fact that this quantity is a priori only in L2, we prove that there exists a solution with

Qz 2 H 1 so that the boundary condition Qz D g is well-posed. Note that this is a natural condition

at first sight in the energy minimization but it becomes essential for the operator splitting: we use a

mixed method for the variables u and z D Qz � g with homogeneous Dirichlet boundary conditions.
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Finally we collect the equations in their strong form:

Qz D �uC ı divnp ; Qz
ˇ̌
@˝

D g ; (1.5)

@tu D ��Qz ; u
ˇ̌
@˝

D uD ; (1.6)

@tnp D ır Qz C�np � �np ; np

ˇ̌
@˝

D nD;p ; (1.7)

@tn3 D �n3 � �n3 ; n3

ˇ̌
@˝

D nD;3 ; (1.8)

jnj2 � 1 D 0 ; a.e. in ˝ : (1.9)

The essential difference with respect to the model proposed by Uchida [32], and analyzed in [6] for

a rigid constraint jnj D 1, is the additional derivative of divnp in the coupling term Qz. This leads

to additional difficulties in the stability analysis of the numerical scheme as compared to [6]. We

propose in Section 3.3 a semi-implicit algorithm for the computation of approximate solutions in

finite element spaces and prove uniform bounds for a suitable energy of the system. We then present

in Section 4 several numerical experiments displaying quite interesting dynamics of defects. Note,

that the L2-gradient flow for biomembranes is obtained by adding the term 1
"2 .jn3j2 � �2

0 /n3 to the

equation (1.8).

1.5 Qualitative analysis of defect-shape interaction

In order to understand the interaction of defects and shape in the biomembrane case, i.e., when

the angle between the director and surface normal is fixed, we consider in Sections 2 and 4 a

decomposition of the director field n into a tangential and normal part. The normal part is a

fixed multiple of the surface normal and the tangential, planar part np has a fixed length. This

decomposition allows us to construct in Section 2 formal stationary solutions with ��u D divnp.

The proposed director fields are (infinite energy) limits of energy-minimizing configurations for a

Ginzburg–Landau regularization of the Frank energy
R

˝
jrnpj2dx subject to their own boundary

data, cf. [8]. This approach allows a precise characterization of the shape corresponding to different

defects and provides insight on the long time asymptotics of .u; n/. In the numerical experiments

for the linear model on graphs reported in Section 4 we allow the tangential part of the director field

to develop an out-of-plane component, so that the full director field violates the angle condition

and finite energy minimizers are possible. We observe that for defects of degree ˙1 the asymptotic

behavior is dictated by the solutions found in Section 2. It is important to realize that, in contrast

to [6], our new model with rigid constraint jnj D 1 admits defects in the limit because np is allowed

to go out of plane near point singularities, a feature fully documented in Section 4. The numerical

results for the full model on closed surfaces reported in Section 6 show that the theoretical and

practical predictions of the interaction of defects with the membrane shape in the simplified case

explain the interesting dynamics occurring in the full biomembrane model for which the presence

of defects is unavoidable if the angle between � and n is fixed.
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1.6 Nonlinear model on closed surfaces

For a smooth embedded surface � � R
3, a director field n W � ! S

2 and constants ı; " and �, we

consider the energy (1.2) augmented as follows

E.�; n/ D 1

2

Z

�

j div� � � ı div� nj2d� C �

2

Z

�

jr� nj2d�

C 1

2

Z

�

�.jnj2 � 1/d� C 1

2"2

Z

�

f .n � �/d�;

where � is the Lagrange multiplier for the rigid constraint jnj D 1 and f is given by f .x/ D
.x2 � �2

0 /
2, for �0 2 Œ0; 1�. The last term penalizes the deviation of the three-dimensional director

field n from the cone of all vectors that have a given angle with respect to the unit normal � to the

surface, as discussed already in Section 1.3. Thus, for " D 1, which corresponds to neglecting the

last term, we obtain the surfactant case, while " � 1 results in the modelling of biomembranes. In

Section 5, we derive a variation of the energy with respect to � and n, which is the first step on

the way to discover critical points of E.�; n/. We also introduce a semi-implicit algorithm based

on parametric finite elements of Barrett, Garcke and Nünberg [3] to model the L2-gradient flow

of E.�; n/, see also [2]. As we are interested in the simulation of cells and biomembranes, side

conditions like conservation of the enclosed volume and/or the surface area are important. For this

purpose we use a Newton-iteration method, as proposed in [9]. In Section 6 we explore the behavior

of the nonlinear model via simulations. We first show that for ı D 1 and without angle penalization,

the vectors � and n tend to align since this minimizes .div� .��n//2. We also display the dynamics

of defects of degree ˙1 and observe that locally the membrane shape is similar to that discovered

earlier in the graph case. We conclude that defects of the director field n have a dramatic effect on

the shape of � , as observed in experiments, e.g., reported in [24].

2. Qualitative Behavior of Graphs

To build intuition about the mechanisms introduced by the coupling term in the model, we fix

stationary tangential director fields np of unit length and compute a function u 2 H 1
0 .˝/ for which

the first term in (1.2) vanishes. For ease of readability we omit the subscript p throughout this

section. We thus impose that the auxiliary variable

Qz D �uC divn

vanishes, thereby giving the relation

��u D divn:

Motivated by experimental observations we are particularly concerned with the surface structure

when the director field represents a defect of positive or negative degree-one, i.e.,

n D exp.˙i�/ D cos � ˙ i sin �

in polar coordinates .r; �/ and complex notation. Notice that for such a field n we haveR
˝

jrnj2dx D 1, so n cannot be a minimizer of the energy which involves the Dirichlet integral

of n, but it arises as the limit of minimizers of a corresponding Ginzburg-Landau regularization that

penalizes the unit-length constraint, cf. [8]. Therefore our calculations are only meant to explain the
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structures observed in our experiments of Section 4 which necessarily involve regularizations of the

corresponding fields. We first compute the divergence

divn D @x cos � ˙ @y sin � D � sin � @x� ˙ cos � @y�;

and recall that � D arctany=x, whence

@x� D �y
x2 C y2

; @y� D x

x2 C y2
:

We insert this result into the expression for divn and obtain

divn D y2 ˙ x2

r3
D sin2 � ˙ cos2 �

r
:

2.1 Positive degree-one defects

We now take n D exp.i�/ D cos � C i sin � . We thus seek u such that the inhomogeneous equation

(in polar coordinates)

�u D 1

r
@r

�
r@ru

�
C 1

r2
@2

�u D �1
r

holds. It is natural to look for a radial solution u.r/ D �r˛ and the expression for �u implies the

necessary condition ˛ D 1 and the cone-like surface (see Figure 1, top):

u.r/ D �r:

Consider now the director field n D ei.�C�=2/ rotated by an angle �=2. Such an n satisfies divn D
0, whence u D 0; this is depicted in the lower plot of Figure 1. Any other rotation n D ei.�C�0/ by

an angle �0 can be expressed as n D cos �0 n1 C sin �0 n2 with n1; n2 the director fields in Figure 1.

The corresponding solution is thus

u D �r cos �0:

2.2 Negative degree-one defects

We now take n D exp.�i�/ D cos � � i sin � . We thus seek u as a solution of the inhomogeneous

equation

�u D 1

r
@r

�
r@ru

�
C 1

r2
@2

�u D � sin2 � � cos2 �

r
D �cos.2�/

r
:

We try a solution of the form u.r; �/ D Cr˛ cos.2�/ for suitable constants C; ˛ and evaluate the

partial differential equation to obtain the necessary condition

�u D C
�
˛2 � 4

�
r˛�2 cos.2�/ D �cos.2�/

r
;

whence ˛ D 1; C D 1=3 and

u.r; �/ D 1

3
r cos.2�/:
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FIG. 1. Positive degree-one defect: director field n D ei� and cone-like surface u D 1 � r (top), and rotated director field

n D ei.�C�=2/ and function u D 0 (bottom) related by (finite element discretizations of) ��u D div n with uj@˝ D 0.

This solution is a saddle and is depicted in Figure 2 (top). Consider now the director field n D
e�i.���0/ which can be written as n D e�i.���0=2/ei�0=2. We thus realize that the value of n at �

results from reading the value at � � �0=2 and rotating clockwise by �0=2, an effective rotation of

e�i� by the angle �0=2. The corresponding solution thus reads

u.r; �/ D 1

3
r cos.2� � �0/:

Figure 2 (bottom) displays such a pair .u; n/ for �0 D �=2.

3. A semi-implicit scheme for graphs

For simplicity we suppress in this section the index h in connection with all finite element spaces

and functions, that is, we write, e.g., T , V and .u; n/ instead of Th, Vh and .uh; nh/, respectively.

We use upper indices for the functions at discrete time steps. In particular n0 2 V is a suitable

approximation of the initial data nD . We point out that the definition and the analysis of the L2-

gradient flow presented here is for surfactants. The linearized model for biomembranes, which will

be experimentally investigated in Section 4, is obtained by adding a lower order term that can be

neglected in the analysis.

3.1 Finite element spaces

We let T be a regular triangulation [11] of ˝ into triangles of maximal diameter h > 0. We denote

by V D V.T / the space of all continuous functions on ˝ that are affine on the elements in the

triangulation T and we set V0 D V \ H 1
0 .˝/. We say that T is weakly acute if the sum of every
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−1
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−1
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−1
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−0.1

0

0.1

−1 0 1

−1

0

1

−1

0

1

−1

0

1

−0.1

0

0.1

FIG. 2. Negative degree-one defect: Director field n D e�i� and saddle-like surface u.r; �/ � 1
3

r cos.2�/ (top), and

rotated director field n D e�i.���=2/ and corresponding rotated saddle-like surface u.r; �/ � 1
3

r cos.2� � �=2/
(bottom) related by (finite element discretizations of) ��u D div n and uj@˝ D 0. Due to the boundary condition u
mimics the exact saddle structure only in a neighborhood of the origin.

pair of angles opposite to an interior edge is bounded by � and if the angle opposite to every edge

on the boundary is less than or equal to �=2. Let .'a/a2N denote the standard nodal basis of V. For

later purposes, we note that if T is weakly acute then [5]

Ki;j WD
Z

˝

r'ai
� r'aj

dx 6 0 for all ai ¤ aj 2 N; (3.1)

where N D fa1; : : : ; aN g denotes the set of nodes in T . For completeness we include now a

monotonicity estimate due to Bartels [5] for finite element methods, following the seminal work

of Alouges [1].

LEMMA 3.1 (monotonicity) Let T be weakly acute, and let en 2 V
3 be such that jen.a/j > 1 for all

a 2 N, and define n 2 V3 by setting n.a/ D en.a/=jen.a/j for all a 2 N. Then

krnk 6 krenk: (3.2)

Proof. Let .'ai
/ai 2N denote the nodal basis of V. Besides (3.1), the symmetric matrix .Ki;j /

N
i;j D1
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satisfies
PN

j D1Ki;j D 0 owing to
PN

j D1 'aj
D 1. We observe the relations

jjrnjj2 D
NX

i;j D1

Ki;jn.ai / � n.aj /

D 1

2

NX

i;j D1

Ki;jn.ai / �
�
n.aj / � n.ai /

�
C 1

2

NX

i;j D1

Ki;jn.aj / �
�
n.ai / � n.aj /

�

D �1
2

NX

i;j D1

Ki;j

ˇ̌
n.ai / � n.aj /

ˇ̌2
:

The assertion is proved if jn.ai / � n.aj /j2 6 jen.ai / � en.aj /j2 for all i; j D 1; � � � ; N . Hence, it

suffices to show
ˇ̌

a
jaj

� b
jbj

ˇ̌
6

ˇ̌
a�b

ˇ̌
, for a; b 2 R3 with jaj; jbj > 1. This follows from the Lipschitz

continuity of �S2 W fx 2 R3 W jxj > 1g ! S2; x 7! x=jxj.

For a fixed time-step size � > 0 let tj D j� for all j > 0. Given q 2 ŒV�3 we define the space of

tangential updates with respect to the sphere for a given vector field q with jq.a/j D 1 for all a 2 N

by

F Œq� D
˚
r 2 ŒV0�

3 W r.a/ � q.a/ D 0 for all a 2 N
	
: (3.3)

Since we use time-independent boundary conditions we may assume that we are given

approximations n0 2 ŒV�3 and u0 2 V of nD and uD with jn0.a/j D 1 for all a 2 N. Moreover

we replace the additional variable Qz D �u C ı divnp, which has a Dirichlet boundary value g,

by z D Qz � g, which has vanishing trace. Given n0 2 ŒV�3 and u0 2 V, we let z0 2 V0 be an

approximation to z.0/ defined as

.z0; y/ D �.g; y/ � .ru0;ry/ � ı.n0
p;ry/ for all y 2 V0 ; (3.4)

and observe that the right-hand side in this equality defines a continuous linear form on V. Since the

L2 inner product is a norm on V0 (with zero Dirichlet conditions), existence of a unique solution

z0 follows from the Lax–Milgram lemma.

In the numerical analysis of our proposed scheme we will need to control krz0k. For this we

assume for simplicity that �u0
ˇ̌
@˝

D 0. Then, we define the discrete Laplacian �0 with zero

boundary values for a finite element function v to be the unique element�0v 2 V0 that satisfies

.�0v;w/ D �.rv;rw/ for all w 2 V0

and let ˘0 denote the L2 projection onto V0. We then have that

z0 D �˘0.g � ı divn0
p/C�0u0

and

krz0k 6 kr
�

�˘0.g � ı divn0
p/C�0u0

�
k: (3.5)

The assumption �u0
ˇ̌
@˝

D 0 can be avoided by appropriately splitting g D �u.0/
ˇ̌
@˝

C Qg and

replacing g by Qg in the foregoing discussion.
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3.2 Difference quotients

We use two definitions of difference quotients in time, i.e., for any sequence .uj / and for a sequence

.nj / which is obtained by a post processing of a sequence .enj / we write

dtu
j D 1

�

�
uj � uj �1

�
; edtn

j D 1

�

�
enj � nj �1

�
:

For all j 2 N, j > 1, we have

. dtu
j ; uj / D 1

2�

�
kuj k2 � kuj �1k2

�
C �

2
k dtu

j k2 D 1

2
dtkuj k2 C �

2
k dtu

j k2 ; (3.6)

.edtn
j ;enj / D 1

2�

�
kenj k2 � knj �1k2

�
C �

2
kedtn

j k2 D 1

2
edt knj k2 C �

2
kedtn

j k2 : (3.7)

We recall a useful estimate for the discrepancyenj �nj , and include a short proof [6, Proposition 4.2].

LEMMA 3.2 (Discrepancy kenj � nj k) For the sequences fenj gj >0 and fnj gj >0 constructed by the

numerical scheme in Section 3.3 below, that is, satisfying in particular the orthogonality condition

.nj �1; Qnj � nj �1/ D 0 for all j > 0, where we set n�1 D 0, the following estimate holds for all

j > 1,

kenj � nj k2
6 0�

4kedtn
j k2 kredtn

j k2 : (3.8)

A possible numerical value for 0 is 0 D 25.

Proof. For all nodes a 2 N, we can write

ˇ̌
enj .a/ � nj .a/

ˇ̌
D

ˇ̌
ˇ̌enj .a/ � enj .a/

jenj .a/j

ˇ̌
ˇ̌ D jenj .a/j � 1 :

Since enj .a/ D nj �1.a/C �edtn
j .a/ we obtain from orthogonality, the normalization of nj �1, and

the estimate .1C x2/1=2
6 1C 1

2
x2 that

ˇ̌
enj .a/ � nj .a/

ˇ̌
6

�ˇ̌
nj �1.a/j2 C �2jedtn

j .a/
ˇ̌2

�1=2

� 1 6
�2

2

ˇ̌edtn
j .a/

ˇ̌2
:

In view of standard estimates for mass-lumping we get the inequality jjenj � nj jj2
L2.T /

6

�4jjedtn
j jj4

L4.T /
. We take the sum over all triangles, recall the fixed boundary values for nj and

use the multiplicative interpolation estimate [25] to obtain

kenj � nj k2
L2.˝/

6 �4kedtn
j k4

L4.˝/
6 25�4kedtn

j k2
L2.˝/

kredtn
j k2

L2.˝/
:

This estimate concludes the proof.

We finally recall a variant of discrete integration in time: for 1 6 j 6 J we have dt .u
j vj / D

dtu
j vj C uj �1 dtv

j , whence for 1 6 ` 6 J

uJ vJ � u`�1v`�1 D �

JX

j D`

dt .u
j vj / D �

JX

j D`

dtu
j vj C �

JX

j D`

uj �1 dtv
j : (3.9)
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3.3 Numerical scheme

We propose a semi-implicit method for (1.4) in which the computation of the director field is

naturally decoupled from the calculation of uj and zj . We set en0 D n0 and seek for j > 1 and

given uj �1, enj �1, nj �1 functions

uj 2 V0 ; zj 2 V0 ; edtn
j 2 F Œnj �1�

such that

.zj ; y/C .ruj ;ry/C ı.enj �1
p ;ry/ D �.g; y/ for all y 2 V0 ; (3.10)

. dtu
j ; v/ � .rzj ;rv/ D .rg;rv/ for all v 2 V0 ; (3.11)

.edtn
j ; m/ � ı.rzj ; mp/C

�
renj ;rm

�
D ı.rg;mp/ for all m 2 F Œnj �1�; (3.12)

where enj D nj �1 C �edtn
j . Now set

nj .a/ D enj .a/

jenj .a/j D nj �1.a/C �edtn
j .a/

jnj �1.a/C �edtnj .a/j
; for all a 2 N:

We remark that the system (3.10)–(3.11) has the structure of a saddle-point problem, that is similar

to a hybrid formulation of the bilaplacian (with penalty term), i.e., (3.10)–(3.11) can be rewritten as

.zj ; y/C.ruj ;ry/ D �.g; y/ � ı.enj �1
p ;ry/ for all y 2 V0 ;

.rzj ;rv/���1.uj ; v/ D ���1.uj �1; v/ � .rg;rv/ for all v 2 V0 :

Owing to the essential boundary conditions imposed on zj and uj a P1 � P1 discretization is

stable. The Lax–Milgram lemma implies the unique solvability of (3.12) on the non-empty linear

space F Œnj �1�.

3.4 Stability analysis

In this section we derive energy estimates for the solutions of the finite element discretization. In

particular, we verify bounds (uniform in �) for the following quantities:

A.J / D 1

4
krzJ k2 C 1

2

JX

j D1

�k dt ruj k2 C �

2

JX

j D1

�k dt rzj k2 ;

B.J / D 1

2
kzJ k2 C 1

2
krnJ k2 C 1

2

JX

j D1

�
�
k dtu

j k2 C kedtn
j k2

�

C �

2

JX

j D1

�
�
k dtz

j k2 C kedt rnj k2
�
;

for all J > 1. The quantities which are quadratic in � do not provide uniform estimates for the

solutions. However, they are needed in order to control various terms that appear on the right-

hand sides of the following estimates. We state all bounds for j > 1 and use the conventions that
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Pk
j D`.: : : / D 0 and supj D`;:::;k.: : : / D 0 whenever k < `. We set en�1 D en0 D n0, whence

dten0 D 0, and recall the definition (3.4) of z0 2 V0. We assume

uD 2 H 3.˝/; nD 2 H 2.˝/; g 2 H 2.˝/: (3.13)

Combined with (3.4), this implies that krz0k is uniformly bounded with respect to h.

LEMMA 3.3 (first strong estimate) If (3.13) holds, then there exists a constant 0 such that for J > 1

A.J / D 1

4
krzJ k2 C 1

2

JX

j D1

�k dt ruj k2 C �

2

JX

j D1

�k dt rzj k2

6 22
0 ı

2 sup
j D3;:::;J

�
krenj �2k2 C krnj �3k2

� JX

j D3

�kedtn
j �2k2

C ı2

JX

j D2

�kedtn
j �1
p k2 C krz0k2 C 3

2
krgk2 :

Proof. Using (3.4) and the discrete time derivative of (3.10), we obtain that for j > 1

. dtz
j ; y/C . dtruj ;ry/C ı. dtenj �1

p ;ry/ D 0 ; (3.14)

because g is time-independent. The choices y D dtu
j in (3.14) and v D dtz

j in (3.11) yield

1

2
dt krzj k2 C �

2
k dtrzj k2 C k dtruj k2 D �ı. dtenj �1

p ; dtruj / � .rg; dt rzj / ; (3.15)

because of (3.6). Since (3.12) gives an estimate for edtn
j , it is thus natural to rewrite the right-hand

side of (3.15) as follows:

�ı. dtenj �1
p ; dtruj / D � ı.edtn

j �1
p ; dt ruj / � ı

�
.nj �2

p �enj �2
p ; dt ruj /

6
1

2
k dt ruj k2 C ı2kedtn

j �1
p k2 C ı2

�2
kenj �2

p � nj �2
p k2 :

For j D 1; 2, the last term vanishes; for j > 3 we use the estimate (3.8) to infer that

kenj �2
p � nj �2

p k2
6 22

0 �
2
�
krenj �2k2 C krnj �3k2

�
kedtn

j �2k2:

We take the sum in the foregoing estimates and multiply by � . Using (3.9) and the fact that g is

time-independent, the second term on the right-hand side of (3.15) reduces to

�
JX

j D1

�.rg; dt rzj / D �.rzJ ;rg/C .rz0;rg/ 6
1

4
krzJ k2 C 1

2
krz0k2 C 3

2
krgk2:

This gives the asserted estimate.
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LEMMA 3.4 (second strong estimate) Suppose that (3.13) is valid and T is weakly acute, whence

T satisfies (3.1). Then the following bound holds for J > 1:

B.J / 6
1

2
kzJ k2 C 1

2
krenJ k2 C 1

2

JX

j D1

�
�
k dtu

j k2 C kedtn
j k2

�

C �

2

JX

j D1

�
�
k dtz

j k2 C kedtrnj k2
�

6
1

2
kz0k2 C 1

2
krn0k2 C ı2T krgk2 C T

2
k�gk2

C ı2�

JX

j D2

�2k dtrzj k2 C ı2�krzJ k2

C 2ı0�
1=2 max

j D1;:::;J
krzj k

JX

j D2

�
�kedtn

j �1k2 C �2kedt rnj �1k2
�
:

Proof. We use (3.14) with y D zj , (3.11) with v D dtu
j , and (3.12) with m D edtn

j and employ

�
renj ;edt rnj

�
D �

2
kredtn

j k2 C 1

2�

�
krenj k2 � krnj �1k2

�

which is a variant of (3.7), to arrive at

1

2
dt kzj k2 C �

2
k dtz

j k2 C 1

2�

�
krenj k2 � krnj �1k2

�
C �

2
kedt rnj k2 C kedtn

j k2 C k dtu
j k2

D �ı. dtenj �1
p ;rzj /C ı.rzj ;edtn

j
p/ C . dtruj ;rg/C ı.edtn

j
p ;rg/ : (3.16)

For the first two terms on the right-hand side we have for j > 1

�ı. dtenj �1
p ;rzj /C ı.rzj ;edtn

j
p/ D � ı

�
.enj �1

p �enj �2
p �

�
enj

p � nj �1
p

�
;rzj /

D ı�. d2
tenj

p ;rzj /C ı

�
.enj �1

p � nj �1
p ;rzj / :

(3.17)

We substitute (3.17) into (3.16), multiply the resulting expression by � , and sum it from j D 1 to

J . In view of (3.8) and the fact that en0
p D n0

p , the second term on the right-hand side becomes

ı

JX

j D2

.enj �1
p � nj �1

p ;rzj / 6 ı

JX

j D2

kenj �1
p � nj �1

p k krzj k

6 ı max
j D2;:::;J

krzj k
JX

j D2

0�
2kedtn

j �1k kedt rnj �1k

6
ı

2
0�

1=2 max
j D2;:::;J

krzj k
JX

j D2

�
�kedtn

j �1k2 C �2kedt rnj �1k2
�
:

(3.18)
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Instead, for the first term on the right-hand side we use the partial summation formula (3.9), to

deduce

ı�

JX

j D1

�. d2
tenj

p ;rzj / D ı�

JX

j D1

�. dt . dtenj
p/;rzj /

D �ı�
JX

j D1

�. dtenj �1
p ; dt rzj / � ı�. dten0

p ;rz0/C ı�. dtenJ
p ;rzJ /

D �ı�
JX

j D2

�.edtn
j �1
p ; dt rzj / � ı�

JX

j D2

.nj �2
p �enj �2

p ; dt rzj /

C ı�.edtn
J
p ;rzJ /C ı.nJ �1

p �enJ �1
p ;rzJ / D I C II C III C IV :

(3.19)

We now examine terms I–IV separately. For I and III we simply use Cauchy–Schwarz to write

I 6
1

4

JX

j D2

�kedtn
j �1
p k2 C ı2�2

JX

j D2

�k dt rzj k2; III 6
�

4
kedtn

J
p k2 C ı2�krzJ k2:

Since �k dt rzj k 6 2 max
16j 6J

krzj k, we proceed as in (3.19) to find

II 6 ı�

JX

j D2

knj �2
p �enj �2

p k k dt rzj k

6 ı0�
1=2 max

j D1;:::;J
krzj k

JX

j D1

�
�kedtn

j �2k2 C �2kedt rnj �2k
�

and

IV 6 ıknJ �1
p �enJ �1

p k krzJ k 6
ı

2
0�

1=2krzJ k
�
�kedtn

J �1k2 C �2kedt rnJ �1k
�
:

It remains to estimate the terms involving g in the summation of (3.16). For the first term we use

(3.13) and integrate by parts to get

JX

j D1

�.rg;r dtu
j / D �

JX

j D1

�.�g; dtu
j / 6

1

2

JX

j D1

�k dtu
j k2 C T

2
k�gk2;

where T > �J is the final time. For the second term we simply use Cauchy–Schwarz

ı

JX

j D1

�.rg; edtn
j
p/ 6

1

4

JX

j D1

�kedtn
j k2 C ı2T krgk2:

We finally combine the foregoing estimates and use the monotonicity krnj k 6 krenj k for j D
1; 2; : : : ; J � 1, established in (3.2), as well as en0 D n0, to obtain the asserted estimate.
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THEOREM 3.5 (a priori estimates) Let (3.13) hold and T be weakly acute. We define

E.J / D 1

2
kzJ k2 C 1

2
krnJ k2; Z0 D krz0k2 C 3

2
krgk2;

G D ı2T krgk2 C T

2
k�gk2;

and set for arbitrary 0 < " < 1

B D E.0/ CG C 2�" ; A D 162
0 ı

2B
2 C 2ı2B CZ0 :

Suppose finally that

�1�"
6

1

4ı2A
; �1=2�"

6
1

8ı0A
1=2
B
: (3.20)

Then for all J > 1 we have

A.J / D 1

2
krzJ k2 C �

2

JX

j D1

�k dt rzj k2 C 1

2

JX

j D1

�k dt ruj k2
6 A

B.J / D E.J /C
JX

j D1

�
�
k dtu

j k2 C 1

2
kedtn

j k2
�

C �

2

JX

j D1

�
�
k dtz

j k2 C kedt rnj k2
�

6 B :

Proof. We proceed by induction. For J D 1 the estimates of Lemmas 3.3 and 3.4 imply

A.1/ 6 Z0 6 A; B.1/ 6 E.0/ 6 B:

Suppose now that the assertion has been verified for J � 1 > 1, i.e., for j D 1; : : : ; J � 1 we have

A.j / 6 A and B.j / 6 B. Lemma 3.3 and the definition of A imply

A.J / 6 162
0 ı

2 sup
j D0;:::;J �1

B.j /B.J � 2/C 2ı2B.J � 1/CZ0 6 A :

Similarly, Lemma 3.4 gives the upper bound

B.J / 6 E.0/CG C 4ı2�A.J /C 8ı0�
1=2 max

j D1;:::;J
A.j /1=2B.J � 1/ :

The induction hypothesisB.J � 1/ 6 B and the conditions on � lead to

B.J / 6 E.0/CG C 2�" D B

which proves the assertion of the theorem.

Remark 3.1 (regularity of g). The H 2-regularity of g, assumed in (3.13), can be weakened to

g 2 H 1.˝/ at the expense of a more technical proof of Theorem 3.5. In fact, we avoid integration

by parts in the first term involving g in Lemma 3.4 and instead write

JX

j D1

�.rg; dtruj / 6
�

2

JX

j D1

�kr dtu
j k2 C 1

2�

JX

j D1

�krgk2
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for � > 0 arbitrarily small. The recursion for B.J / in the proof of Theorem 3.5 now becomes

B.J / 6 E.0/CG C �A.J /C 4ı2�A.J /C 8ı0�
1=2A.J /1=2B.J � 1/:

Replacing this bound into the recursion ofA.J / allows us to absorb the term �A.J / for � sufficiently

small.

3.5 Weak solution of (1.4)

The a priori estimates of Theorem 3.5 allow us to establish the existence of a weak solution of the

continuousL2 flow that satisfies an energy inequality. We now state precisely the notion of solution

already introduced in (1.4) and refer the reader to [6] for details about passing to the limit.

DEFINITION 3.6 (weak solution) Let ˝ � R2 be a bounded and convex Lipschitz domain and fix

T > 0. We call a pair .u; n/ a weak solution of (1.4) in the time interval I D .0; T / if the following

assertions are true:

(i) n 2 H 1.I IL2.˝I R2// \L1.I IH 1.˝I R2//, u 2 H 1.I IL2.˝// \ L1.I IH 2.˝//;

(ii) jn.t; x/j D 1 for almost every .t; x/ 2 I �˝;

(iii) n.0; �/ D nD , u.0; �/ D uD with uD 2 H 3.˝/ and nD 2 H 2.˝/;

(iv) n.t; �/j@˝ D nD and u.t; �/j@˝ D uD in the sense of traces for almost every t 2 I ;

(v) �uC ı divnp 2 L2.I IH 1.˝// and satisfies for a.e. t 2 I that .�uC ı divnp/
ˇ̌
�

D g with

g 2 H 2.˝/ given;

(vi) for all .m; v/ 2 L2.I IH 1
0 .˝I R2// � L2

�
I IH 2.˝/ \H 1

0 .˝/
�

satisfying m � n D 0 almost

everywhere in I �˝ we have

Z

I

˚
.@tu; v/C .�uC ı divnp ; �v/

	
dt �

Z

@˝

g@�vdS D 0 ;

Z

I

˚
.@tn;m/C .�uC ı divnp; ı divmp/C .rn;rm/

	
dt D 0 :

Remark 3.2. We note that the formulation of Theorem 3.5 allows one to deduce the existence of a

solution .u; n/ that satisfies the energy inequality

1

2
k�uC ı divnpk2 C 1

2
krnk2 C

Z T

0

�
k@tuk2 C 1

2
k@tnk2

�
dt

6
1

2
k�uD C ı div.nD/pk2 C 1

2
krnDk2 C ı2T krgk2 C T

2
k�gk2 :

We refer the reader to [31] for related existence theories in the context of the harmonic map heat

flow.

4. Numerical experiments for graphs

In this section we report on various numerical experiments for biomembranes carried out with the

scheme devised and analyzed in the previous sections. Since we want to illustrate the interaction

of defects and shape we consider the case of a membrane in the gel phase where the director field

prefers to have a fixed angle with respect to the normal to the surface, say �=2 for convenience.
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As in Section 2 the director field n has unit length but is allowed to develop an out-of-plane

component to accommodate for topological defects; we omit the index p throughout this section

for the tangential part np of n. We thus augment the system of equations discussed in Section 3.4

by the term "�2.enj
3 ; m3/, where the subscript 3 refers to the third, or out-of-plane, component of a

vectorfield, in (3.12), i.e., for the evolution of the director field we employ the equation

.edtn
j ; m/ � ı.rzj ; mp/C

�
renj ;rm

�
C "�2.enj

3 ; m3/ D 0 :

This modification corresponds to the additional penalty term

1

2"2

Z

˝

jn3j2 dx

in the energy, i.e., our energy functional is

E.u; z; n/ D 1

2

Z

˝

jzj2dx C 1

2

Z

˝

jrnj2dx C 1

2"2

Z

˝

jn3j2dx

subject to the relation z D �u C ıdiv.n1; n2/, the pointwise constraint jnj D 1, and Dirichlet

boundary conditions for u, z, and n. We remark that the inclusion of an implicit treatment of

the convex penalty term in the stability analysis for the numerical scheme in Section 3 poses no

difficulties.

The goal of this section is to explore the qualitative behavior of the evolution for specific initial

conditions with defects. Here, the terminology of a defect refers to a singularity in the renormalized

planar part of the director field which is also called vortex. This evolution typically shows an initial

phase with a significant change of the shape in order for the system to adjust to the given initial

and boundary values which is followed by a slower evolution towards an equilibrium shape. In the

figures we display typical intermediate shapes and states which are close to an equilibrium. In our

simulations the domain˝ and the parameters ı, T , and " are given by

˝ D .�1=2; 1=2/2; ı D 1; T D 1; " D 10�1 :

We denote by .r; �/ the usual polar coordinates in R2 (with respect to the origin). The function '"

which is used in the extension of a function given on @˝ to ˝ is equal to '".r/ D tanh.r="/. The

initial values are always chosen to be

u0 D 0; g D IhŒdivn0�

for different choices of n0 and where Ih is the nodal interpolation operator. The sequence of

triangulations T` is generated by ` uniform refinements (division of each triangle into four congruent

ones) of the initial triangulation T0 of ˝ which consists of two triangles obtained by dividing ˝

along the diagonal x1 D x2. Hence the mesh-size h` is given by h` D
p
22�`. Moreover we used

�` D h`=.8
p
2/ as time-step size.

4.1 Positive degree-one defect

We choose boundary conditions which correspond to a defect of degree one, i.e.,

n0j@˝.x1; x2/ D n0j@˝.r cos�; r sin �/ D
�

cos.�/; sin.�/; 0
�

D
�
ei�; 0

�
; .x1; x2/ 2 @˝
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(in complex notation). Note that these boundary data do not allow for a continuous, purely planar

extension, since any such extension would necessarily contain topological defects of infinite energy.

Thus it is expected that the numerical solution will develop an out-of-plane component of the

vectorfield despite the penalization of this component in the energy in order to accommodate the

length constraint. For energetic reasons, there should be only one point in the domain where such

a defect-like structure is observed. Therefore we define the extension of n0 which is needed for

the numerical scheme at all interior nodes a 2 N with the help of polar coordinates .r2; �2/ about

.�1=4;�1=4/ by

n0.a/ D n0.r2 cos�2; r2 sin �2/ D
�
'".r2/ cos.�2/; '".r2/ sin.�2/; .1 � '".r2/

2/1=2
�
:

Thus there is such a defect-like structure already present in the initial data but it is not located at the

origin where it is expected to move during the evolution of the system.

The snapshots of the evolution in Figure 3 show indeed that this initial vortex moves slowly

towards the origin, which is an energetically favorable configuration. At the same time, the surface

develops a profile which is a smoothed version of the cone described in Section 2. The location of

the maximal height moves together with the vortex towards the origin. The initially strong energy

decay shown in the bottom plot of Figure 3 is related to the incompatibility of the initial data in the

sense that �u0 C ı divn0 is large.

4.2 Negative degree-one defect

We employ

n0j@˝.r cos�; r sin �/ D
�

cos.��/; sin.��/; 0
�

D
�
e�i� ; 0

�

with an extension to ˝ so that the defect is located at x D .�1=4;�1=4/ as above. A defect of

negative degree-one in the planar part of the director field is favored by the boundary conditions and

already present in the extension of n0j@˝ to ˝ . The corresponding evolution is shown in Figure 4.

As in the case of a positive degree-one defect we observe that the defect of negative degree-one

moves towards the center of the domain. The surface adjusts to the defect by developing a saddle-

shape and follows its motion. Eventually we observe a stationary configuration with a saddle as

predicted in Section 2. In accordance, the energy shows a rapid decay in the beginning and then

only decreases moderately.

4.3 Positive degree-two defect

We set

n0j@˝.r cos�; r sin �/ D
�

cos.2�/; sin.2�/; 0
�

D
�
e2i� ; 0

�
;

with an extension to ˝ as above so that the defect is located at the origin. This initial configuration

of the director field is unstable as can be seen in the snapshots displayed in Figure 5. The vortex of

degree two immediately splits into two defects of positive degree one and rotated by ˙�=2 which

subsequently repel each other and tend to maximize their distance. As is expected from the analysis

in Section 2, the rotated defects do not induce local curvature and the observed shape corresponds

to the nearly constant director field between the defects pointing in the negative x1-direction. In

this example we observe a rapid initial energy decay and another significant decay when the defects

have reached a proper separation distance.
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4.4 Two opposite degree-one defects

With polar coordinates .r˙; �˙/ about .˙1=4; 0/ we set

n0.x/ D
�

�
�

cos.��C/; sin.��C/; 0
�

for x1 > 0�
cos.��/; sin.��/; 0

�
for x1 6 0

for x D .x1; x2/ 2 @˝ , and extend to ˝ as above so that the defects are located at .˙1=4; 0/. We

point out that in order to match smoothly the director field at x1 D 0 the negative degree-one defect

is that of Section 4.2 rotated by � . When two defects of opposite degree are present in the initial

data, the surface adjusts with a shape as predicted in Section 2 by forming a cone and a saddle-like

structure, cf. Figure 6 (middle). During the evolution, the vortices attract each other and eventually

annihilate. The shape of the surface follows the location of the vortices. A smooth profile is still

observable after the event of annihilation which is related to the fact that the boundary data for

n; z used in this example are non-constant. The energy curve shown in the bottom plot of Figure 6

reveals a rapid initial decay related to incompatible initial data, followed by a plateau corresponding

to the motion of the vortices towards each other, and a strong decay when the annihilation of the

vortices takes place.

5. The nonlinear model on closed surfaces

In this section we return to the nonlinear model of Section 1.6, which corresponds to the energy

E.�; n/ WD 1

2

Z

�

.div� � � ıdiv� n/
2d� C �

2

Z

�

jr� nj2d� C
Z

�

�
�
jnj2 � 1

�
d� C 1

2"2

Z

�

f .n � �/d�:

(5.1)

To formulate the gradient flow ofE.�; n/ we need the first variation ofE.�; n/. We thus start with a

brief review of differential geometry which we next apply to derive the first variation in Section 5.2.

We follow with a discretization of the gradient flow, using parametric finite elements and including

constraints.

5.1 Elementary differential geometry

Let U � R2 be open and X W U ! R3, .u1; u2/ 7! X.u1; u2/ be a local parametrization of � . If

Xi D @ui
X , then the induced metric on � is given by gij D Xi � Xj . The inverse of gij is gij and

the square root of the matrix gij is g
.�1=2/
ij , i.e.,

P
k g

.�1=2/

ik
g

.�1=2/

jk
D gij . If g D det.gij /, then

the volume element on � is given by d� D p
gdu1du2. The unit normal is � D X1�X2

jX1�X2j
, and the

second fundamental form is hij D �@i� �Xj : If f and F are scalar- and vector-valued functions on

� and Qf ; QF are arbitrary extensions then the tangential gradient and divergence on � are given by

r� f D r Qf � .� � r Qf /�; div� F D div QF � �TD QF �:

In the local coordinates defined above these operators are

.r� f / ıX D
X

i;j

gij @j .f ıX/Xi ; .div� F / ıX D
X

i;j

gij @i .F ıX/ �Xj : (5.2)
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FIG. 3. Positive degree-one defect: in-plane component of the director field (left), out-of-plane component of the director

field (middle), and height function (right) after j D 0; 32; 256 time steps. The surface develops a smoothed out cone and

follows the motion of the defect. The energy shows a rapid initial decay when the surface adjusts to the defect.
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FIG. 4. Negative degree-one defect: in-plane component of the director field (left), out-of-plane component of the director

field (middle), height function (right) after j D 0; 8; 16 time steps. The height function shows a saddle shape in a

neighborhood of the defect and this configuration is stable. The energy decays rapidly during the first time steps and remains

almost constant subsequently.
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FIG. 5. Positive degree-two defect: in-plane component of the director field (left), out-of-plane component of the director

field (middle), height function (right) after j D 0; 48; 128 time steps. The defect splits into two rotated positive degree-one

defects which do not induce local curvature, in good agreement with Section 2. The initial energy decay is followed by

another strong decay when the degree-one defects are properly separated.
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FIG. 6. Two opposite degree-one defects: in-plane component of the director field (left), out-of-plane component of the

director field (middle), height function (right) after j D 0; 80; 96 time steps. The surface rapidly forms a cone and a

saddle-like structure which move towards each other and disappear when the attracting defects annihilate. The energy shows

a strong decay when the annihilation takes place.
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The first representation is standard. To deduce the second one we make use of the orthonormal basis

.V1; V2; �/, where Vi D
P

j g
.�1=2/
ij Xj , i D 1; 2. On � we have

div QF D trD QF D
X

i

V T
i D

QFVi C �TD QF�

D
X

i;j;k

g
.�1=2/
ij g

.�1=2/

ik
XT

j D
QFXk C �TD QF�

D
X

j;k

gjk@j .F ıX/ �Xk C �TD QF�:

For F D � we obtain the mean curvature, i.e.,

H D � div� � D
X

i;j

gijhij :

With this definition the unit sphere S
2 has mean curvature �2. It is now easy to check for all

functions f , f1, and f2 the identities

.r� f1 � r� f2/ ıX D
X

i;j

gij @i .f1 ıX/@j .f2 ıX/; Xi � .r� f / ıX D @i .f ıX/: (5.3)

We note that the tangential gradient r� F of a vector field F is a square matrix in R3�3 whose

i -th row is the tangential gradient of the i -th component of F . If F is tangential, then it can be

equivalently written as

F D
X

k

.Vk � F /Vk D
X

i;j;k

g
.�1=2/

ik
g

.�1=2/

jk
F �XiXj D

X

i;j

gijF �XiXj :

Applying this expression to the tangential vector @k� yields the Weingarten equations

@k� D �
X

i;j

gijhkiXj : (5.4)

The Laplace-Beltrami operator �� f D div� r� f has the following expression in local

coordinates

�� f D 1
p
g

X

i;j

@i .
p
ggij @jf /: (5.5)

Let � be a smooth real-valued function on � and s 2 .��; �/, � > 0 small enough. A normal

variation of � is given by the map

Xs.u1; u2/ D X.u1; u2/C s�
�
X.u1; u2/

�
�

with values in a tubular neighborhood of � . The first variation of E in (5.1) with respect to � is

now defined as ˝
ı�E; �

˛
WD d

ds

ˇ̌
ˇ
sD0

E.�s; n/:
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We write  0 WD @s jsD0 s for a quantity that depends on s, we recall the basic geometric identities

g0
ij D �2�hij ; .gij /0 D 2�

X

k;`

gjkgi`h`k; �0 D �r� �;

d� 0 D ��Hd�; H 0 D �� � C �jr� �j2:
(5.6)

We refer the reader to [34] for a detailed calculation and note that the first identity follows from

g0
ij D @s jsD0 .Xi C s@i�� C s�@i�/ �

�
Xj C s@j�� C s�@j �

�
D �2�hij :

For the side conditions we define the area and volume function as

A W � 7!
Z

�

1 d�; V W � 7! 1

3

Z

�

x � � d�:

5.2 First variation of the energy and gradient flow

In the following we identify n with its constant extension in the normal direction so that ns D n

and therefore n0 D 0. Notice that the variation of E.�; n/ with respect to � does depend on the

particular extension. This choice is not arbitrary: biomembranes are made of lipid bilayers and thus

have a small thickness across which it is reasonable to assume no variation of the physical quantities

such as n.

LEMMA 5.1 For a normal variation of � defined by a function � as in Section 5.1 we have

@s jsD0div�s
n D ��r� n W r� � C �T r� nr� �; (5.7)

@s jsD0jr�s
nj2 D �2�.r� n/

T W r� �.r� n/: (5.8)

Proof. Using the expression (5.2) for the tangential divergence div� n, we obtain

@s jsD0.div�s
n/ D @s jsD0

�X

i;j

gij
s @in �Xs;j

�
D

X

i;j

.gij /0@in �Xj C gij @in
0 �Xj C gij @in �X 0

j :

Since n0 D 0 the middle term vanishes. For the first term we use (5.6) to write

X

i;j

.gij /0@in �Xj D 2�
X

i;j;k;`

gjkgi`h`k@in �Xj D 2�
X

i;`

gi`@in �
X

j;k

gjkh`kXj :

We invoke the Weingarten equations (5.4) to identify the last factor with �@`�, and (5.3) to get

X

i;j

.gij /0@in �Xj D �2�
X

i;`

gi`@in � @`� D �2�r� n W r� �:

To manipulate the remaining term, we first observe that X 0
j D @j�� C �@j�. In view of (5.3) we

see that

X

i;j

gij @in �X 0
j D

X

k

�kr� nk � r� � C �r� n W r� �:
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Since
P
k

�kr� nk �r� � D �T r� nr� �, collecting the last two expressions leads to (5.7). To prove

(5.8) we use (5.3) for jr� nj2, combined with n0 D 0, to arrive at

@s jsD0jr�s
nj2 D @s jsD0

�X

i;j

gij
s @in � @jn

�
D

X

i;j

.gij /0@in � @jn:

We replace .gij /0 with the expression from (5.6), and next use (5.3) to write h`k D �Xk � r� �X`,

whence

@s jsD0jr�s
nj2 D 2�

X

i;j;k;`

gjkgi`h`k

X

m

@inm@jnm

D �2�
X

m

� X

j;k

gjk@jnmXk

�
� r� �

� X

i;`

gi`@inmX`

�
:

The equivalent representation (5.2) of the surface gradient yields

@s jsD0jr�s
nj2 D �2�

X

m

r� nm � r� �r� nm D �2�.r� n/
T W r� �r� n;

and completes the proof.

To compute the first variation of the energyE.�; n/ of (5.1) we recall the differentiation rule

d

ds

ˇ̌
ˇ
sD0

Z

�s

 sd�s D
Z

�

 0d� �
Z

�

 H�d�:

We abreviate the first variation of the four terms in (5.1) with I , II, III and IV and deduce for I

d

ds

ˇ̌
ˇ
sD0

�1
2

Z

�s

�
Hs C ıdiv�s

n
�2

d�s

�

D
Z

�

�
H C ıdiv� n

��
H 0 C ı@s jsD0div�s

n
�
d� � 1

2

Z

�

�
H C ıdiv� n

�2
H�d�:

In light of (5.6) and (5.7), we can expand I as follows:

I D
Z

�

�
H C ıdiv� n

��
�� � C �jr� �j2 � ı�r� n W r� � C ı�T r� n � r� �

�
d�

D �
�
r�H;r� �

�
C

�
H jr� �j2; �

�
� ı

�
H.r� n W r� �/; �

�
C ı

�
H.�T r� n/;r� �

�

� ı
�
r� .div� n/;r� �

�
C ı

�
div� njr� �j2; �

�
� ı2

�
div� n.r� n W r� �/; �

�

C ı2
�
div� n.�

T r� n/;r� �
�

� 1

2

�
H.H C ıdiv� n/

2; �
�
:

For II we apply (5.8) to arrive at

II D d

ds

ˇ̌
ˇ
sD0

Z

�s

jr�s
nj2d� D �2

Z

�

�.r� n/
T W r� �r� nd� �

Z

�

jr� nj2H�d�:
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Then II gives no contribution because jnj D 1 on � and n0 D 0, namely

III D d

ds

ˇ̌
ˇ
sD0

Z

�s

�
�

�
jnj2 �1

��
d� D

Z

�

�
�0

�
jnj2 �1

�
C2�n �n0

�
d��

Z

�

�
�
jnj2 �1

�
�Hd� D 0:

Finally, since (5.6) implies .n � �/0 D n � �0 D �n � r� �, we can compute for IV

IV D d

ds

ˇ̌
ˇ
sD0

Z

�s

f .n � �s/d� D �
Z

�

f 0.n � �/n � r� �d� �
Z

�

f .n � �/H�d�:

We are now in a position to write ı�E . Collecting all previous expressions I–IV we obtain for all

� 2 C1.� /

DıE
ı�
; �

E
D �

�
r�H;r� �

�
C

�
H jr� �j2; �

�
� ı

�
H.r� n W r� �/; �

�
C ı

�
H.�T r� n/;r� �

�

� ı
�
r� .div� n/;r� �

�
C ı

�
div� njr� �j2; �

�
� ı2

�
div� n.r� n W r� �/; �

�

C ı2
�

div� n.�
T r� n/;r� �

�
� 1

2

�
H.H C ıdiv� n/

2; �
�

� �
�
.r� n/

T W D�.r� n/; �
�

� �

2

�
H jr� nj2; �

�
� 1

2"2

�
f 0.n � �/n;r� �

�

� 1

2"2

�
Hf.n � �/; �

�
;

The variation with respect to n is given by

DıE
ın
;m

E
D ı

�
H C ıdiv� n; div�m

�
C �

�
r� n;r�m

�
C

�
2�n;m

�
C 1

2"2

�
f 0.n � �/;m � �

�
;

for all m 2 C1.� I R3/. This expression simplifies if we impose tangential variations m 2
C1.� ITnS2/ WD fv 2 C1.� I R3/ W v.x/ 2 Tn.x/S

2 a.e. x 2 � g so that .�n;m/ D 0.

We simulate the evolution of � and n via a relaxation dynamics, which is an L2-gradient flow.

If v denotes the normal velocity of � , we then have to solve the following system of PDE on �

hv; �i D �
D ıE
ı�
; �

E
for all � 2 C1.� /;

h@tn;mi D �
DıE
ın
;m

E
for all m 2 C1.� ITnS

2/;

subject to the constraint that n.t; x/ 2 S2 for almost every .t; x/.

Remark 5.1. Let ˚ W Œ0; T / � R3 ! R3 be the flow of the evolution of � .t/ for t 2 Œ0; T /, that is,

˚.0; �/j� .0/ D idj� .0/ and @t˚.t; x/ D v.t; ˚.t; x//�.t; ˚.t; x//. Then

d

ds

ˇ̌
ˇ
sDt
E

�
� .s/; n

�
s; ˚.s; �/

��
D

D @E
@�

; v
E

C
D@E
@n
;

d

ds

ˇ̌
ˇ
sDt
n
�
s; ˚.s; �/

�E
:

Since n is constant in normal direction we have that

d

ds

ˇ̌
ˇ
sDt
n
�
s; ˚.s; x/

�
D @tn

�
t; ˚.t; x/

�
C rn

�
t; ˚.t; x/

�
� �

�
t; ˚.t; x/

�
v
�
t; ˚.t; x/

�

D @tn
�
t; ˚.t; x/

�
:
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Although, we do not prove a discrete energy law for the L2 gradient flow in the closed surface case

we have that
d

ds

ˇ̌
ˇ
sDt
E

�
� .s/; n

�
s; y.s/

��
D �hv; vi � h@tn; @tni 6 0;

and expect a discrete energy reduction in the numerical experiments.

5.3 Finite elements on surfaces

The time discretization of the gradient flow leads to a family of surfaces .� j /j 2N related to the

time-steps tj . Let �
j

h
be a polyhedral approximation of � j consisting of flat triangles with maximal

diameter less than h > 0. Since �
j

h
is the union of triangles T 2 T

j , we identify the triangulation

T
j and the discrete surface �

j

h
. Let V

j D V.�
j

h
/ be the space of all continuous functions on �

j

h

whose restriction to the triangles are affine. Moreover let C
j
0 D C0.�

j

h
/ denote the space of all

functions that are constant on every triangle and define the averaging operator A
j W C

j
0 ! Vj ,

v 7!
P

a va'a, where va WD 1
j!a j

R
!a
v.x/dx and .'a/a2Nj is the standard nodal basis of Vj . Here

N
j D N.tj / D fa1.tj /; : : : ; aN .tj /g is the set of all nodes in �

j

h
, !a D supp'a, and the map

tj 7! a.tj / 2 R3 is the trajectory on which a node a 2 N moves in time as the surface is changing

its shape. If e�j 2 C
j
0 stands for the the piecewise constant outer normal to �

j

h
, then

�j WD A
j .e�j / 2 ŒVj �3 (5.9)

is a piecewise linear reconstruction ofe�j . For a given function �j �1 2 Vj �1 we defineGj ı�j �1 2
Vj by .Gj ı �j �1/.a.tj // D �j �1.a.tj �1// for all a 2 N

j . For a better readability we will denote

Gj ı �j �1 also by �j �1 if no confusion is possible.

5.4 Discretization

We start with the time discretization. Given the surface � j �1 � R3 at time tj �1 we follow the

ideas in [14] to parametrize � j at time tj over � j �1. We thus look for Xj W � j �1 ! R3 and set

� j D Xj .� j �1/. As in [3], we approximate the normal velocity via

vj � 1

�

�
Xj � id� j �1

�
� �j �1;

where �j �1 W � j �1 ! S2 is the outer unit normal to � j �1. Now, again, using an idea from [14] to

computeH j we discretize the crucial geometric identity��X D H� [14, 15]:

�� j �1Xj D H j �j �1:

Notice that we compute the scalar mean curvatureH j , as in [3], and not the mean curvature vector,

as in [2, 9, 15]. For the evolution of n we use the techniques from [5].

In order to formulate the fully discrete evolution concisely we set Div
�

j �1

h

nj �1 WD
A

j .div
�

j �1

h

nj �1/, denote by .�; �/
�

j �1

h

the standard L2-inner product on �
j �1

h
, and we define
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j �1;j

ı� E
D 	

j �1;j

ı� E
.H j ;H j �1; �j �1; nj �1/ 2 V

j �1 to be the representation of a semi-implicit

discretization of ıE
ı�

given by

�
	

j �1;j

ı� E
; �

�
D �

�
r

�
j �1

h

H j ;r
�

j �1

h

�
�

�
j �1

h

C
�
H j �1jr

�
j �1

h

�j �1j2; �
�

�
j �1

h

� ı
�
H j .r

�
j �1

h

nj �1 W r
�

j �1

h

�j �1/; �
�

�
j �1

h

C ı
�
H j ..�j �1/T r

�
j �1

h

nj �1/;r
�

j �1

h

�
�

�
j �1

h

� ı
�
r

�
j �1

h

.Div
�

j �1

h

nj �1/;r
�

j �1

h

�
�

�
j �1

h

C ı
�

Div
�

j �1

h

nj �1jr
�

j �1

h

�j �1j2; �
�

�
j �1

h

� ı2
�

Div
�

j �1

h

nj �1.r
�

j �1

h

nj �1 W r
�

j �1

h

�j �1/; �
�

�
j �1

h

C ı2
�

Div
�

j �1

h

nj �1..�j �1/T r
�

j �1

h

nj �1/;r
�

j �1

h

�
�

�
j �1

h

� 1

2

�
H j .H j �1 C ıDiv

�
j �1

h

nj �1/2; �
�

�
j �1

h

� �
�
.r

�
j �1

h

nj �1/T W r
�

j �1

h

�j �1.r
�

j �1

h

nj �1/; �
�

�
j �1

h

� �

2

�
H j jr

�
j �1

h

nj �1j2; �
�

�
j �1

h

� 1

2"2

�
f 0.nj �1 � �j �1/nj �1;r

�
j �1

h

�
�

�
j �1

h

� 1

2"2

�
H jf .nj �1 � �j �1/; �

�
�

j �1

h

;

for all � 2 Vj �1.

5.5 Volume and mass constraints

We now recall a method for the conservation of area and volume proposed by Bonito, Nochetto, and

Pauletti in [9]. We introduce the extended energy

F.�; n/ D E.�; n/C �1

�
V.� / � V.� 0/

�
C �2

�
A.� / �A.� 0/

�
;

and compute the first variation with respect to � :

D ıF
ı�
; �

E
D

D ıE
ı�
; �

E
C �1

Z

�

�d� � �2

Z

�

H�d�:

Following [9] we compute in each time-step the velocities v
j
E ; v

j
V ; v

j
A via

.v
j
E ; �/� j �1

h

D �
˝
	

j �1;j

ı� E
; �

˛
; .v

j
V ; �/� j �1

h

D �.1; �/
�

j �1

h

; .v
j
A; �/� j �1

h

D .H j ; �/
�

j �1

h

;

and define the function

f j W R
2 ! R

2; .�1; �2/ 7!
�
V.� j .�1; �2// � V.� j �1/

A.� j .�1; �2// �A.� j �1/

�
;

for � j .�1; �2/ D X.� j �1/, X D Xj �1 C �.v
j
E C �1v

j
V C �2v

j
A/. Now we use a Newton iteration

to compute a solution .�
j
1 ; �

j
2 / of f .�1; �2/ D 0 and set Xj D Xj �1 C �.v

j
E C �

j
1v

j
V C �

j
2v

j
A/ and

� j D Xj .� j �1/.
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5.6 Semi-implicit fully discrete gradient flow with constraints

We start with an initial polyhedral surface � 0
h

, time-step size � > 0, parameters "; ı; �, and an

initial director field n0 2 ŒV0�3 with jn0.a/j D 1 for all a 2 N
0
h
. We set j WD 1 and iterate on j the

following steps:

(1) Compute .eXj ;H j / 2 ŒVj �1�3 � V
j �1 satisfying

1

�

�
.eXj �Xj �1/ � �j �1; �

�
�

j �1

h

D �
�
	

j �1;j

ı� E
; �

�
�

j �1

h

;

�
r

�
j �1

h

eXj ;r
�

j �1

h

�
�

�
j �1

h

D �
�
H j ; � � �j �1

�
�

j �1

h

;

for all � 2 Vj �1 and all � 2 V.�
j �1

h
I R3/.

(2) Set

vE D 1

�

�eXj � Xj �1
�

� �j �1; vV D �1; vA D H j ;

and compute .�
j
1 ; �

j
2 / such that f j .�

j
1 ; �

j
2 / D 0. Set

Xj D Xj �1 C �.vE C �
j
1vV C �

j
2vA/�

j �1; �
j

h
D fXj .x/ W x 2 � j �1

h
g;

nj �1 WD Gj ı nj �1:

(3) Compute edtn
j 2 FŒnj �1� with

�
edtn

j ; m
�

�
j

h

C ��
�
r

�
j

h

edtn
j ;r

�
j

h

m
�

�
j

h

D ��
�
r

�
j

h

nj �1;r
�

j

h

m
�

�
j

h

� ı
�
H j C ıDiv

�
j �1

h

nj �1; div
�

j

h

m
�

�
j

h

� 1

2"2

�
f 0.nj �1 � �j /;m � �j

�
�

j

h

;

for all m 2 FŒnj �1�, where the latter is the space of vector-valued continuous piecewise linear

functions that are orthogonal to nj �1 at the nodes N
j �1.

(4) For all a 2 N
j set

nj .a/ D nj �1.a/C �edtn
j .a/

jnj �1.a/C �edtnj .a/j
:

(5) Set Xj WD Gj ıXj D id
�

j

h

, j D j C 1 and go to (1).

Remarks 5.1. (i) Setting .�
j
1 ; �

j
2 / D 0 in 2 reduces the iteration to an L2-flow for E.�; n/.

(ii) Solvability of the system in Step (1) can be established by arguing as in [3]; see also [2].

6. Numerical experiments for the nonlinear model

In our numerical experiments for the model on closed surfaces we distinguish the cases " D 1
and " � 1, where " D 1 means that the term penalizing variations of n from a prescribed angle

relative to the surface normal, i.e., the term including f in E.�; n/, is omitted. The realization of
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the volume and area constraints via the Newton iteration outlined above allowed us to satisfy the

conservation of these quantities up to machine precision. As a stopping criterion for the discrete

evolutions we used that the change of the discrete energy

Eh.�h; nh/ WD 1

2

Z

�h

.H C ıA.div�h
nh//

2d� C �

2

Z

�h

jr�h
nhj2d� C 1

2"2

Z

�h

f .nh � �/d�

in two consecutive time-steps was less than 10�5. For significantly smaller stopping criteria we

observed in some of our experiments that the evolution became unstable which is related to

unfavorable tangential motions on the surface which eventually lead to singularities in the mesh.

Given that there is no stability analysis for the closed surface case an optimal time-step size can

not be computed and in our simulations we mainly use � D h4. Moreover we work only on two

different meshes so there is no evidence for assuming a scaling or special asymptotics for � . We

believe that by employing mesh regularization techniques such as those in [2, 9] we could use larger

time steps and a smaller stopping criterion. The evolution equation for the director field n on � is

a second order parabolic equation and should therefore also work for � � h2 as was shown in [16].

Our proposed algorithm was implemented in Matlab and all experiments were carried out on a

standard desktop (Intel Core (TM) 2 Quad CPU Q6600 @ 2.40 GHz). The CPU-time needed for

the calculation of one step with 2048 elements including the assembly of the system matrices was

around 0.05 seconds. In all figures displayed below the color scale was chosen so that low values of

a quantity are represented by dark and large values by bright colors. All displayed arrows have unit

length and are scaled for graphical purposes.

6.1 Surfactants

To simulate surfactants we omit the penalty term which corresponds to the choice " D 1.

6.1.1 Perturbed sphere with volume constraint. We set ı D 1, � D 5, � D h4, choose as

initial surface � 0
h

a perturbation of the unit sphere, and as initial director field n0 a perturbation

of the discrete outer unit normal �0. The perturbations were realized by displacing the nodes of

a triangulation T of the unit sphere with 2048 elements in normal direction and the unit normals

by random vectors with magnitudes bounded by 0:1 and 0:05, respectively. The first summand of

the continuous energy functional E.�; n/ vanishes for n D � and this director field is stationary

for the Dirichlet energy subject to a unit-length constraint, i.e., the outer unit normal of the sphere

is a harmonic map into the unit sphere. Therefore, we expect that the pair .S2; �/ is a stationary

point for E.�; n/ subject to a volume constraint. The snapshots of the discrete evolution shown in

Figure 7 confirm this expected behavior and the monotone energy decay displayed in the right plot of

Figure 7 suggests that the chosen discretization parameters are sufficiently small to compute a stable

and accurate approximation of the exact evolution. When we stopped our calculations the discrete

energy was Eh D 62:8516, which is an accurate approximation of the value E.S2; �/ D 20� , i.e.,

the absolute error is jEh � E.S2; �/j < 0:02. The alignment of the director field n describing the

orientation of the surfactant molecules and the surface normal is visualized by the coloring of the

displayed arrows and is an effect which is frequently observed for surfactants. We remark that our

simulations showed that for larger values of � we could use larger time steps.

6.1.2 4-4-1 Ellipsoid with area and volume constraint. We set ı D 1, � D 1, and � D h3. To

define the initial surface � 0 we employ a triangulation T of the unit sphere with 768 elements and
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FIG. 7. Evolution from a perturbed sphere in the surfactant case with volume constraint: snapshots of the evolution after

j D 1; 50 and 400 time-steps. The arrows are colored by n � �. The surface normal and the director field align and the

surface attains a stable state that coincides with a sphere. The plot depicts the decay of the energy during the evolution.

deform the triangulated sphere by mapping its nodes contained in N onto a 4-4-1 ellipsoid, i.e., we

set

N
0 D fea W ea D 4a1e1 C 4a2e2 C e3 for a D .a1; a2; a3/ 2 Ng;

and this defines a triangulation � 0
h

of the ellipsoid. The initial director field was defined by setting

n0 D �0. Incorporating volume and area constraints in the evolution allows us to compare the

qualitative behavior of our model with well known observations for the Helfrich flow which is

included in our model and corresponds to the uncoupled flow defined through ı D 0, i.e., without

spontaneous curvature. The upper row in Figure 8 displays a cut through the discrete surfaces at

different times within the evolution for ı D 1. We observe that the surface develops the shape of a

discocyte. Qualitatively, such shapes have been observed to be stationary for the Helfrich flow and

we plot in the second row of Figure 8 the discrete surfaces for this model, i.e., for our scheme with

ı D 0. We observe that the coupling with the director field leads to a deceleration and the shape of

the discocyte is not as pronounced as in the uncoupled case. The plots including the director field
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FIG. 8. Evolution from a prolate 4-4-1 ellipsoid in the surfactant case with volume and area constraint: snapshots of the

evolution after j D 50; 200; 600 and 1200 time-steps. The upper plots show the evolution in the presence of surfactants

(ı D 1) while the third and fourth row shows the Helfrich-flow (ı D 0). The coupling of the surface and the director field

decelerates the evolution and leads to a less pronounced shape.

in Figure 9 of the nearly stationary configuration in the coupled case show that the director field is

aligned with the surface normal in regions where the surface can be approximated by a sphere, i.e.,

in regions where the unit normal is a harmonic map.

6.2 Biomembranes

In our second set of experiments for the full model on closed surfaces we use " D 1=
p
20 and

consider initial director fields on the sphere with different topological properties. In the gel phase

the director field prefers to have a fixed angle with respect to the normal to the surface. As in the flat

case we restrict ourselves to �=2, which corresponds to �0 D 0. Throughout the first subsection the

underlying triangulation of the unit sphere consists of 8192 elements, we always choose � D h4,

� D 1, and we enforce conservation of the enclosed volume. For the last experiment we use a finer

triangulation, consisting of 12288 elements, while � and � remain unchanged. To magnify relevant

effects of the coupling between the director field and the curvature of the surface we employ different

values of ı.

6.2.1 Positive degree-one defects. Given a point a D .a1; a2; a3/ on the sphere we let .r; �/

be the polar coordinates of the first two components of a, i.e., .a1; a2/ D r.cos �; sin �/. Since

deviations of n � � from 0 are penalized by a Ginzburg Landau term we use the characteristic profile

of tanh to regularize the initial singularities. Thus, we set '".r/ D tanh.r="/ and use this function

in the extension of a director field in the neighborhood of a singularity. Then the transition of n � �
from 0 to 1 is on an annulus of width " around the center of the singularity where the value 1 is

taken. Note that " has to be chosen big enough so that the transition can be resolved properly by the

mesh. We define three initial director fields n0 that have defects of positive degree-one at the north
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FIG. 9. Evolution from a prolate 4-4-1 ellipsoid in the surfactant case with volume and area constraint: snapshots of the final

state of the evolution in the presence of surfactants (ı D 1). The director field is colored by the deviation of n � � from 1
and we observe that in regions where the surface is approximated by a sphere the director aligns with the surface normal. A

monotone decay of the energy can be observed in the right plot.

and south pole as follows.

(i) Two outward pointing defects:

n0.a/ D
�
'".r/ cos.�/; '".r/ sin.�/; sign.a3/.1 � '".r/

2/1=2
�
:

(ii) Two 90ı-rotated defects:

n0.a/ D
�
'".r/ cos.� C �=2/; '".r/ sin.� C �=2/; sign.a3/.1 � '".r/

2/1=2
�
:

(iii) Inward and outward pointing defect:

n0.a/ D .0; 0; 1/� '".r/a3a

j.0; 0; 1/� '".r/a3aj :

The initial director fields are shown from different perspectives in the rows of Figure 10 for (i)–(iii),

respectively. We use ı D 0:5, ı D 1, and ı D 0:75 for the settings defined by (i), (ii), and (iii),

respectively, in order to enhance the effect of the different defects on the shape of the surface.

Snapshots of the surface and the director field during the discrete evolutions defined with the

initial data from (i) and (iii) are shown in Figure 11 and 12, respectively. The observed results are in
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very good agreement with our theoretical predictions from Section 2: The surface develops outward

cones of negative curvature at defects for which the tangential part of the director field points away

from the defect and inward cones if the director field points towards the defect. These configurations

show certain analogies with stomatocyte and echinocyte shapes observed in experiments, cf., e.g.,

[24]. For the initial data defined in (i) and the corresponding snapshots displayed in Figure 11 we

see that the surface also develops large curvature in a neighborhood of the equator. This is related to

the fact that the director field is purely normal along this line thereby leading to a large contribution

from the penalty term which induces local curvature. In the plots shown in Figure 12, where the

initial director field from (iii) is tangential along the equator, the surface does not develop such

effects. For the initial data defined in (ii) we did not observe changes of the initial surface which

again matches our earlier observation that a 90ı-rotated defect of positive degree one is divergence

free and hence does not enforce local curvature. We finally remark that the qualitative behavior of

the surfaces with initial director fields defined in (i)–(iii) was nearly independent of the choice of

the preferred angle �0. This justifies the earlier discussed simplification of the previous sections to

consider only the tangential part of the director field and to analyze its influence on the local shape

of the surfaces. In Figure 13 we see the monotone decay of energy during the evolutions.

FIG. 10. Initial director fields with two defects of positive degree-one. Upper row: outward pointing defects at north and

south pole defined in (i). Middle row: 90ı-rotated defects at north and south pole defined in (ii). Lower row: Inward and

outward pointing defects at north and south pole defined in (iii).
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FIG. 11. Biomembrane case with two outward pointing defects of positive degree one: Snapshots of the evolving surface and

of the director field along a (deformed) geodesic through the north and south pole after j D 50; 1000; 4800 time steps.

The surface develops a cone-like shape at the poles while the director field remains nearly unchanged during the evolution.

The surface and the director field are colored by n � �.

FIG. 12. Biomembrane case with inward and outward pointing defects of positive degree one: Snapshots of the surface

and the director field along a (deformed) geodesic through the north and south pole after j D 50; 500; 1400 time steps.

The surface develops inward and outward cones at the poles while the director field remains nearly unchanged during the

evolution.

6.2.2 Negative degree-one defects. To analyze the effect of negative degree-one defects on the

local curvature we set ı D 1, let .r; �/ denote polar coordinates of the components .a1; a2/ for a
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FIG. 13. Decay of energy during the evolution of the positive degree-one defects: Energies for the initial director fields

defined through (i),(ii), and (iii) (from left to right).

point a D .a1; a2; a3/ on the sphere, and define the initial director field by setting

en0.a/ D
�
'".r/ cos.��/; '".r/ sin.��/; sign.a3/.1 � '".r/

2/1=2
�

and subtracting 90% of the normal component of en0 so that the resulting director field is nearly

tangential, i.e., we set

n0.a/ D en0.a/ � 0:9.en0.a/ � a/a
jen0.a/ � 0:9.en0.a/ � a/aj :

The initial director field is constructed in such a way that it has two defects of negative degree one at

the poles. It is displayed in Figure 14 from two different perspectives and along the equator. By the

Poincaré–Hopf index formula the sum of the degrees of the defects equals the Euler characteristic �

of the surface. We have �.S2/ D 2 and for our choice of n0 we obtain four defects of positive degree

one located on the equator. Two of them are outward and two of them inward pointing. The initial

director field is almost stationary for our scheme and the surface adjusts to it during the evolution.

From the final configuration displayed in the plots of Figure 15 we see that the surface forms saddles

at the north and south pole and cones of positive and negative curvature at the positions of the

positive degree-one defects on the equator. This is again in agreement with our predictions for the

simplified setting discussed in Section 2.
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FIG. 14. Initial director field with negative degree-one defects at the north and south pole from different perspectives and the

director field along the equator with 4 defects of positive degree one.
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FIG. 15. Final state in the biomembrane case that develops from a director field with two negative degree-one defects at

the poles: As in the linearized case the surface forms saddle-shapes at the places where the negative degree-one defects are

located (see the zoom to the north-pole in the upper right picture) and cones in neighborhoods of the four positive degree-one

defects located on the equator (see the cut through the equator in the lower left picture). The right plot shows a monotone

decay of the energy during the evolution. The surface and the director field are colored by div� n.
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